ACA2601 [ANADIGICS]

Fiber-to-the-Home RF Amplifier; 光纤到到户射频放大器
ACA2601
型号: ACA2601
厂家: ANADIGICS, INC    ANADIGICS, INC
描述:

Fiber-to-the-Home RF Amplifier
光纤到到户射频放大器

光纤 射频放大器
文件: 总20页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACA2601  
Fiber-to-the-Home RFAmplifier  
PRELIMINARY DATASHEET - Rev 1.4  
FEATURES  
50 - 870 MHz Operating Frequency  
High Linearity: 65 dBc CTB/CSO (79 Chan.)  
Low Equivalent Input Noise: 4.5 pA/rtHz  
20 dB Gain Adjust  
400 Differential Input Impedance: No  
Transformer Required for Interface to  
Photodiode  
Single +5 V Supply  
5 mm x 5 mm x 1 mm Surface Mount Package  
RoHS Compliant Package  
APPLICATIONS  
FTTH RF Amplifier Used in Conjunction With  
Triplexer in Fiber-Coax Line Terminals  
S29 Package  
28 Pin QFN  
5 mm x 5 mm x 1 mm  
PRODUCT DESCRIPTION  
maintain low CTB and CSO levels in full-bandwidth  
(132 channel) systems, even across a wide gain  
adjustment range.  
The ANADIGICS ACA2601 amplifier for Fiber-to-the-  
Home (FTTH) applications is intended to be used  
in conjunction with the triplexer in fiber-coax line  
terminals. The device is driven by, and amplifies the  
output of, the video downstream path photodiode.  
The ACA2601 is manufactured using ANADIGICS’s  
proven MESFET technology that offers state-of-the-  
art reliability, temperature stability and ruggedness.  
The device operates from a single +5V supply and  
is offered in a 5 mm x 5 mm x 1 mm surface mount  
package.  
The high-impedance input of the ACA2601  
eliminates the need for a costly transformer usually  
needed to interface to the photodiode, and a low  
equivalent input noise level offers excellent  
sensitivity. The device provides sufficient linearity to  
Attenuator  
Control  
Supply  
RF Output  
Voltage  
Controlled  
Attenuator  
Matching  
Circuit  
Output  
Amplifier  
LNA  
1:1  
Transmission  
Line Balun  
ACA2601  
Figure 1: Application Block Diagram  
01/2006  
ACA2601  
NC  
RFIN1  
NC  
1
2
3
4
5
6
7
21  
VCC_OUT1  
20 RFOUT1  
19 GND  
18 GND  
17 GND  
16 RFOUT2  
GND  
NC  
RFIN2  
NC  
15  
VCC_OUT2  
Figure 2: Pinout (X-ray Top View)  
Table 1: Pin Description  
PIN  
NAME  
NC  
DESCRIPTION  
PIN  
NAME  
DESCRIPTION  
1
2
No Connection  
RF Input 1  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC_IN2  
Input Stage Supply 1  
No Connection  
AGC Control Input  
Ground  
RFIN1  
NC  
NC  
3
No Connection  
Ground  
V
AGC  
4
GND  
NC  
GND  
5
No Connection  
RF Input 2  
V
CC_AGC  
AGC Supply  
No Connection  
Ground  
6
RFIN2  
NC  
NC  
7
No Connection  
Input Stage Supply 2  
Ground  
GND  
8
V
CC_IN2  
V
CC_OUT1  
RFOUT1  
GND  
Output Stage Supply 1  
RF Output 1  
9
GND  
10  
11  
12  
13  
14  
IADJ_IN  
Input Stage Current Adjust  
Ground  
Ground  
GND  
NC  
GND  
Ground  
No Connection  
Ground  
GND  
Ground  
GND  
GND  
RFOUT2  
RF Output 2  
Ground  
V
CC_OUT2  
Output Stage Supply 2  
PRELIMINARY DATA SHEET - Rev 1.4  
2
01/2006  
ACA2601  
ELECTRICAL CHARACTERISTICS  
Table 2: Absolute Minimum and Maximum Ratings  
PARAMETER  
MIN  
0
MAX  
+8  
UNIT  
V
Supply Voltage (VCC  
)
AGC Voltage (VAGC  
RF Input Power (PIN  
Storage Temperature  
)
0
+5  
V
)
-
+25  
+150  
dBmV  
°C  
-65  
Stresses in excess of the absolute ratings may cause permanent  
damage. Functional operation is not implied under these conditions.  
Exposure to absolute ratings for extended periods of time may  
adversely affect reliability.  
Table 3: Operating Ranges  
PARAMETER  
MIN  
50  
-
TYP  
-
MAX  
870  
-
UNIT  
MHz  
V
COMMENTS  
Operating Frequency (f)  
Supply Voltage (VCC  
RF Output Power (POUT  
Case Temperature (T  
)
+5  
+18  
-
)
-
-
dBmV  
°C  
C
)
-40  
+110  
The device may be operated safely over these conditions; however, parametric performance is guaranteed  
only over the conditions defined in the electrical specifications.  
PRELIMINARY DATA SHEET - Rev 1.4  
3
01/2006  
ACA2601  
Table 4: Electrical Specifications  
(TA = +25 °C, POUT = +18 dBmV, VCC = +5 V, 75 system, see Figure 3)  
MIN  
TYP  
MAX  
UNIT COMMENTS  
PARAMETER  
RF Gain over Temperature (1)  
Gain Tilt (2)  
20  
20.7  
-
dB  
dB  
at 550 MHz  
V
V
AGC = +3.0 V  
AGC = +0.5 V  
0.5  
2.5  
1.5  
3.5  
2.0  
4.5  
Gain Tilt over Temperature (1), (2)  
V
V
AGC = +3.0 V  
AGC = +0.5 V  
0
2.25  
1.5  
-
3.0  
4.75  
dB  
dB  
(1), (3)  
Gain Flatness over Temperature  
V
V
AGC = +3.0 V  
AGC = +0.5 V  
-
-
0.7  
0.5  
1.5  
1.0  
Gain Adjustment Range  
20  
22  
-
-
+3.0  
-60  
-
dB  
V
Gain Adjust Control Voltage  
+0.5  
Max. gain at +3.0 V  
79 Channels  
(5)  
CTB  
-
-65  
-65  
-
dBc  
CSO (5)  
-
dBc  
79 Channels  
OIP2 (7)  
+47  
-
dBm  
pA/rtHz  
pA/rtHz  
Equivalent Input Noise (EIN) (4)  
EIN over Temperature (1), (4)  
Input Impedance  
-
-
-
4.5  
5
5.5  
6
400  
-
differential  
Output Return Loss (1), (6)  
-30 oC to +85 oC  
+85 oC to +100 oC  
16  
15  
18  
-
-
-
differential, 75 system  
dB  
Current Consumption(1)  
-
-
230  
18  
295  
25  
mA  
Thermal Resistance  
oC/W  
Notes:  
o
(1) Package slug temperature range of -30 to +100 C.  
(2) Recorded tilt of the calculated best fit straight line from 50 to 870 MHz.  
(3) Flatness is the peak-to-peak deviation from the calculated best fit straight line.  
(4) Measured using application circuit with photodiode, as shown in Figure 16.  
(5) Measured at +18 dBmV output power, with 14 dB gain reduction.  
(6) Over the 50 to 870 MHz Frequency band.  
(7) Measured using two tones at 379.25 and 301.25 MHz, -12 dBm output power per tone, with 14 dB gain reduction.  
PRELIMINARY DATA SHEET - Rev 1.4  
4
01/2006  
ACA2601  
+5V  
+5V  
0.01 uF  
680 nH  
0.01 uF  
270 nH  
180 pF  
470 pF  
470 pF  
18 nH  
18 nH  
RF Input  
1:1  
Balun  
4:1  
Balun  
Atten  
RF Output  
180 pF  
680 nH  
0.01 uF  
270 nH  
0.01 uF  
+5V  
V
+5V  
AGC  
Figure 3: Test Circuit  
PRELIMINARY DATA SHEET - Rev 1.4  
5
01/2006  
ACA2601  
PERFORMANCE DATA  
All performance data measured using application circuit with input photodiode, as shown in Figure 16.  
Figure 4: Gain vs. Frequency  
(TA = +25 oC, VCC = + 5 V)  
40  
35  
Vagc=3.0V  
30  
25  
20  
15  
10  
5
Vagc=2.5V  
Vagc=2.0V  
Vagc=1.9V  
Vagc=1.8V  
Vagc=1.7V  
Vagc=1.6V  
Vagc=1.5V  
Vagc=1.3V  
Vagc=1.0V  
Vagc=0.5V  
Vagc=0.0V  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (MHz)  
Figure 5: Output Return Loss vs. Frequency  
(TA = +25 oC, VCC = + 5 V)  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
Vagc=3.0V  
Vagc=2.5V  
Vagc=2.0V  
Vagc=1.9V  
Vagc=1.8V  
Vagc=1.5V  
Vagc=1.0V  
Vagc=0.0V  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (MHz)  
PRELIMINARY DATA SHEET - Rev 1.4  
6
01/2006  
ACA2601  
All performance data measured using application circuit with input photodiode, as shown in Figure 16.  
Figure 6: Gain Flatness To Best Fit Line over Temperature  
(VCC = + 5 V, VAGC = +3.0 V)  
2
1.5  
1
Temperature  
0.5  
0
+115C  
+100C  
+60C  
+40C  
+15C  
-5C  
-0.5  
-1  
-25C  
-35C  
-1.5  
-2  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (MHz)  
Table 5: Gain Flatness to Best Fit Line  
(VAGC = +3.0 V)  
The best fit line is calculated  
using the least mean squares  
method:  
Temp (oC)  
Tilt (dB)  
3.5  
Flatness (dB)  
115  
100  
60  
2
3.8  
1.8  
1.5  
1.4  
1.3  
1.2  
1.2  
1.3  
y = mx + b  
4.4  
x⋅  
y
∑ ∑  
40  
4.7  
(
xy  
)
n
15  
5
m =  
2
( )  
x
x2 −  
-5  
5.2  
y
n
-25  
-35  
5.4  
5.6  
x
b =  
m⋅  
n
n
n = number of points  
PRELIMINARY DATA SHEET - Rev 1.4  
7
01/2006  
ACA2601  
All performance data measured using application circuit with input photodiode, as shown in Figure 16.  
Figure 7: Output Return Loss over Temperature  
(VCC = + 5 V, VAGC = +3.0V)  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
+115C  
+100C  
+60C  
+40C  
+15C  
-5C  
-25C  
-35C  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (MHz)  
PRELIMINARY DATA SHEET - Rev 1.4  
8
01/2006  
ACA2601  
All performance data measured using application circuit with input photodiode, as shown in Figure 16.  
Figure 8: Gain Flatness To Best Fit Line over Temperature  
(VCC = + 5 V, VAGC = +1.6 V)  
2
1.5  
1
+115C  
+100C  
+60C  
+40C  
+15C  
-5C  
0.5  
0
-25C  
-0.5  
-1  
-35C  
-1.5  
-2  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (MHz)  
Table 6: Gain Flatness to Best Fit Line  
(VAGC = +1.6 V)  
The best fit line is calculated  
using the least mean squares  
method:  
Temp (oC)  
Tilt (dB)  
3.8  
4.1  
4.7  
5.1  
5.5  
5.8  
6
Flatness (dB)  
115  
100  
60  
2.3  
1.9  
0.9  
1.2  
1.6  
1.9  
1.9  
1.6  
y = mx + b  
x⋅  
y
40  
∑ ∑  
(
xy  
)
n
15  
m =  
2
( )  
x
-5  
x2 −  
y
n
-25  
-35  
6
x
b =  
m⋅  
n
n
n = number of points  
PRELIMINARY DATA SHEET - Rev 1.4  
9
01/2006  
ACA2601  
All performance data measured using application circuit with input photodiode, as shown in Figure 16.  
Figure 9: Output Return Loss over Temperature  
(VCC = + 5 V, VAGC = +1.6 V)  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
+115C  
+100C  
+60C  
+40C  
+15C  
-5C  
-25C  
-35C  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (MHz)  
PRELIMINARY DATA SHEET - Rev 1.4  
10  
01/2006  
ACA2601  
All performance data measured using application circuit with input photodiode, as shown in Figure 16.  
Figure 10: Gain Flatness To Best Fit Line vs. Frequency over Temperature  
(VCC = + 5 V, VAGC = 0 V)  
2
1.5  
1
+115C  
0.5  
0
+100C  
+60C  
+40C  
+15C  
-5C  
-25C  
-35C  
-0.5  
-1  
-1.5  
-2  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (MHz)  
Table 7: Gain Flatness to Best Fit Line  
(VAGC = 0 V)  
The best fit line is calculated  
using the least mean squares  
method:  
Temp (oC)  
Tilt (dB)  
5.4  
Flatness (dB)  
115  
100  
60  
1.2  
1.2  
1.1  
1.1  
1.1  
1.2  
1.3  
1.5  
5.7  
y = mx + b  
6.1  
x⋅  
y
40  
6.3  
∑ ∑  
(
xy  
)
n
15  
6.6  
m =  
2
( )  
x
-5  
6.8  
x2 −  
y
n
-25  
-35  
6.9  
7
x
b =  
m⋅  
n
n
n = number of points  
PRELIMINARY DATA SHEET - Rev 1.4  
11  
01/2006  
ACA2601  
All performance data measured using application circuit with input photodiode, as shown in Figure 16.  
Figure 11: Output Return Loss over Temperature  
(VCC = + 5 V, VAGC = 0 V)  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
+115C  
+100C  
+60C  
+40C  
+15C  
-5C  
-25C  
-35C  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (MHz)  
PRELIMINARY DATA SHEET - Rev 1.4  
12  
01/2006  
ACA2601  
All performance data measured using application circuit with input photodiode, as shown in Figure 16.  
Figure 12: CTB vs. Frequency  
(TA = +25 oC, VCC = + 5 V, 132 Analog Channel Loading,  
Optical Input Power = 0 dBm, RF Output Power = +18 dBmV)  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (MHz)  
Figure 13: CSO vs. Frequency  
(TA = +25 oC, VCC = + 5 V, 132 Analog Channel Loading,  
Optical Input Power = 0 dBm, RF Output Power = +18 dBmV)  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (MHz)  
PRELIMINARY DATA SHEET - Rev 1.4  
13  
01/2006  
ACA2601  
All performance data measured using application circuit with input photodiode, as shown in Figure 16.  
Figure 14: Equivalent Input Noise vs. Frequency  
(TA = +25 oC, VCC = + 5 V, VAGC = +3.0)  
6
5
4
3
2
1
0
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (MHz)  
Figure 15: Equivalent Input Noise over Temperature  
(VCC = + 5 V, VAGC = +3.0)  
7
6
5
4
3
2
1
0
+115 degC  
+100 degC  
+60 degC  
+40 degC  
+15 degC  
-5 degC  
-25 degC  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
Frequency (MHz)  
PRELIMINARY DATA SHEET - Rev 1.4  
14  
01/2006  
ACA2601  
APPLICATION INFORMATION  
G N D  
N C  
A G C C C V _  
G N D  
G N D  
1 4  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
G N D  
1 3  
N C  
1 2  
G N D  
1 1  
C
A G V  
N I _ A I D J  
1 0  
N C  
G N D  
9
I N 1 C C V _  
I N 2 C C V _  
8
Figure 16: Application Circuit with Input Photodiode  
PRELIMINARY DATA SHEET - Rev 1.4  
15  
01/2006  
ACA2601  
Table 8: Evaluation Board Parts List  
DESCRIPTION QTY VENDOR  
REF  
C11  
VENDOR PART NO.  
0.5 pF; 0603 Cap  
1 pF; 0603 Cap  
1
1
2
2
1
Murata Electronics  
GRM1885C1HR50CZ01D  
GRM1885C1H1R0CZ01D  
C1608C0G1H181J  
C1  
Murata Electronics  
TDK Corporation  
Murata Electronics  
Murata Electronics  
C9, C10  
C2, C3  
C5  
180 pF; 0603 Cap  
470 pF; 0603 Cap  
1000 pF; 0603 Cap  
GRM155R71H471KA01D  
GRM1885C1H102JA01D  
C6, C7, C12, C13,  
C15, C16  
0.01 µF; 0603 Cap  
6
Murata Electronics  
GRM1885C1HR50CZ01D  
C4  
0.1 µF; 0603 Cap  
1 µF; 0603 Cap  
47 µF; Elect. Cap 25 V  
27 nH; 0603 Ind  
1
1
1
4
2
2
1
2
Murata Electronics  
Murata Electronics  
Panasonic-ECG  
Coilcraft  
GRM188F51C104ZA01D  
GRM188R61C105KA93D  
ECA-1EM470B  
C14  
C8  
L1, L2, L3, L4  
L5, L8  
L6, L7  
L9  
0603CS-27NXJB  
0603CS-R18XJB  
0603CS-R27XJB  
ELJ-NCR82JF  
180 nH; 0603 Ind  
270 nH; 0603 Ind  
820 nH; 1008 Ind  
1 k; 0603 Res  
Coilcraft  
Coilcraft  
Panasonic  
R1, R2  
Panasonic-ECG  
ERJ-3EKF1001V  
1:1 Balun Transformer;  
0603 Cap  
T1  
1
1
1
M/A-COM  
MABAES0029  
PD070-HL1-300 or  
PD070-HL2-300  
D1  
Analog Photodiode  
ANADIGICS  
75 N Male Panel  
Mount  
Pasternack  
Enterprises  
Connector  
PE4504  
PRELIMINARY DATA SHEET - Rev 1.4  
16  
01/2006  
ACA2601  
PACKAGE OUTLINE  
Figure 17: S29 Package Outline - 28 Pin 5 mm x 5 mm x 1 mm QFN  
PRELIMINARY DATA SHEET - Rev 1.4  
17  
01/2006  
ACA2601  
NOTES  
PRELIMINARY DATA SHEET - Rev 1.4  
18  
01/2006  
ACA2601  
NOTES  
PRELIMINARY DATA SHEET - Rev 1.4  
19  
01/2006  
ACA2601  
ORDERING INFORMATION  
TEMPERATURE  
PACKAGE  
ORDER NUMBER  
COMPONENT PACKAGING  
RANGE  
DESCRIPTION  
RoHS-Compliant  
28 Pin QFN  
ACA2601RS29P8  
-40 °C to +110 °C  
Tape and Reel, 2500 pieces per Reel  
5 mm x 5 mm x 1 mm  
ANADIGICS, Inc.  
141 Mount Bethel Road  
Warren, New Jersey 07059, U.S.A.  
Tel: +1 (908) 668-5000  
Fax: +1 (908) 668-5132  
URL: http://www.anadigics.com  
E-mail: Mktg@anadigics.com  
IMPORTANT NOTICE  
ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without  
notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are  
subject to change prior to a product’s formal introduction. Information in Data Sheets have been carefully checked and are  
assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges  
customers to verify that the information they are using is current before placing orders.  
WARNING  
ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS  
product in any such application without written consent is prohibited.  
PRELIMINARY DATA SHEET - Rev 1.4  
20  
01/2006  

相关型号:

ACA2601RS29P8

Fiber-to-the-Home RF Amplifier
ANADIGICS

ACA2604

Fiber-to-the-Home RF Amplifier
ANADIGICS

ACA2604RS29P8

Fiber-to-the-Home RF Amplifier
ANADIGICS

ACA2764

1 GHz, 21 dB Gain CATV Push-Pull Amplifier
ANADIGICS

ACA2782

1 GHz, 21 dB Gain CATV Power Doubler Amplifier
ANADIGICS

ACA2784

1 GHz, 21 dB Gain High Output Power DoublerAmplifier
ANADIGICS

ACA2786

1 GHz, 25 dB Gain CATV Power Doubler Amplifier
ANADIGICS

ACA2786

1 GHz, 25 dB Gain CATV Power Doubler Amplifier
SKYWORKS

ACA2786P9

1 GHz, 25 dB Gain CATV Power Doubler Amplifier
SKYWORKS

ACA2786V0

1 GHz, 25 dB Gain CATV Power Doubler Amplifier
SKYWORKS

ACA2788

1 GHz, 28 dB Gain CATV Power Doubler Amplifier
ANADIGICS

ACA2788P9

1 GHz, 28 dB Gain CATV Power Doubler Amplifier
ANADIGICS