AAT3608IIC-1-T1 [ANALOGICTECH]

Power Management Circuit,;
AAT3608IIC-1-T1
型号: AAT3608IIC-1-T1
厂家: ADVANCED ANALOGIC TECHNOLOGIES    ADVANCED ANALOGIC TECHNOLOGIES
描述:

Power Management Circuit,

文件: 总44页 (文件大小:1608K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
General Description  
Features  
The AAT3608 is a member of AnalogicTech’s Total Power  
Management IC™ (TPMIC™) product family. It contains  
a single-cell lithium ion/polymer battery charger, two  
800mA switching regulators, and five low dropout (LDO)  
regulators in a small Pb-free 40-pin 5mmx5mm TQFN  
package, making it ideal for portable space-constrained  
systems. The single-input linear charger powers up from  
an adapter or a USB port. The adapter charge current is  
programmable with an external resistor or pin selectable  
between 100mA and 500mA when connected to a USB  
port. The device integrates a load switch for dynamic  
power path and features deep sleep mode operation. The  
step-down regulators are monolithic synchronous con-  
verters integrating the compensation network and soft  
start circuitry. The 1.5MHz operating frequency enables  
the use of tiny 2.2μH inductors and small 4.7μF output  
capacitors. External resistors set the output voltage for  
Buck 1 and Buck 2; the output voltage of Buck 2 is  
dynamically adjustable with I2C. The LDO regulators fea-  
ture 3% output voltage accuracy over the full operating  
temperature range. The fast control loop of the LDO  
regulators also provide excellent transient response with  
a typical output voltage deviation of 1.5%. The AAT3608  
provides protection features to safeguard from over-  
temperature operation, over-current operation, and a  
digital thermal loop to protect the battery during battery  
charging. The device is rated over an ambient tempera-  
ture range of -40°C to 85°C.  
2.7V to 5.5V Operating Input Voltage Range  
Adapter or USB Single Input Linear Charger  
Battery Charger Digital Thermal Regulation  
Battery Temperature Monitoring  
Battery Charger Includes Programmable Timer  
Input Load Switch  
Dual 800mA Monolithic Switching Converters  
1.5MHz Switching Frequencies  
95% Efficiency  
Independent Input Power and Ground  
Buck1 Output Programmable With External  
Resistors  
Buck 2 Feedback Voltage is Dynamically Adjustable  
between 0.5V and 0.7V with I2C Interface  
Five Channel LDO Regulators  
300mA, Output Adjustable via Two Logic Inputs  
80mA, Output Adjustable via I2C Interface  
50mA, 2.5V Output Voltage  
50mA, 3.3V Output Voltage  
80mA with 1.2V Fixed Output  
3% Accuracy and 1.5% Typical Transient Accuracy  
Very Low Shutdown Current  
Power-On Push Button  
Status Outputs  
Interrupt, Reset and Status Pins, Low Battery Flag  
Separate Enable Pin for LDO2, LDO4, LDO5, and  
Buck2 (when mask is removed)  
Over-Current and Over-Thermal Protection  
5mmx5mm, 40-Pin TQFN Package  
Applications  
GPS  
Handheld Devices  
Mobile Media Players  
MP3  
Portable Navigation  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
1
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical Application Circuit  
VIN  
VBAT  
SYSOUT  
CSYSOUT  
SYSOUT  
SYSOUT  
INBUCK  
INLDO  
INLDO  
LX1  
C3  
PWR_ID  
USBSEL  
S2  
C2  
C1  
S1  
L1  
EXT_ON  
Buck1  
PWR_ON  
PWR_HOLD  
PWR_EN  
SDA  
Buck2  
C10  
R2  
R3  
C8  
FB1  
R4  
R5  
AAT3608  
SCL  
TS  
L2  
LX2  
FB2  
PBSTAS  
INT  
STAT  
LBO  
LBI  
LDO1  
LDO2  
LDO3  
LDO4  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
RESET  
ISETA  
CT  
LDO5  
C15  
C17  
R6  
C13  
C14  
C16  
C12  
PGND PGND1 PGND2  
w w w . a n a l o g i c t e c h . c o m  
2
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Pin Descriptions  
Pin #  
Symbol  
Function  
1
STAT  
Open drain (pull-down) output for battery charging status.  
Input pin for charge current programming for the adapter. Connect a 1.24kΩ resistor to get 800mA of charging current. Can be  
used to monitor charging current.  
2
3
4
ISETA  
TS  
Battery temperature sense pin with 75μA output current. Connect the battery’s NTC 10kΩ resistor from this pin to ground.  
A Beta range of 3300 to 4000 will place the typical charging temperature between -4°C and 48°C.  
Charger safety timer pin. A 0.1μF ceramic capacitor should be connected between this pin and GND. Connect directly to GND to  
disable the timer function.  
CT  
5
6
LDO2  
INLDO  
LDO3  
LDO1  
INLDO  
LDO4  
LDO5  
Output for LDO2 regulator.  
Input power for LDO regulators.  
Output for LDO3 regulator.  
Output for LDO1 regulator.  
Input power for LDO regulators.  
Output for LDO4 regulator.  
Output for LDO5 regulator.  
7
8
9
10  
11  
Open drain (pull-down) output for PWR_ON status. When PWR_ON is high, PBSTAS will be low (after the debounce time). When  
PWR_ON is low, PBSTAS will be high (or equal to the voltage to which that external pull-up resistor is connected).  
12  
13  
14  
PBSTAS  
RESET  
INT  
Open drain (pull-down) active-low output for reset. After Buck2 is OK, there is a delay of 200ms before RESET goes High. RESET  
pin is low in shutdown.  
Open drain (pull-down) active-low output for interrupt. When any of the I2C read bits (except the DS_RDY and PWR_DS bits)  
change state this pin will pull low. It will be released again after a read from the I2C is complete.  
15  
16  
17  
18  
19  
LBO  
LBI  
GND  
S2  
Open drain (pull-down) active-low output for low-battery comparator. When the battery is low, LBO will pull down.  
Feedback input for low-battery comparator. The LBI threshold is 1.0V.  
Ground.  
S1 and S2 bits set the output voltage for LDO1.  
S1  
S1 and S2 bits set the output voltage for LDO1.  
Enable for LDO2, LDO4, and LDO5 for default condition. Buck2 can also be controlled by PWR_EN only if the SOC masks  
PWR_EN through I2C, refer to the "I2C Serial Interface and Programmability" section of this datasheet for additional information.  
20  
PWR_EN  
21  
22  
FB2  
PGND2  
LX2  
Feedback input for Buck2 regulator.  
Power ground for Buck2 regulator.  
Switching node for Buck2 regulator.  
Input power for Buck regulators.  
Switching node for Buck1 regulator.  
Power ground for Buck1 regulator.  
Feedback input for Buck1 regulator.  
Input for lithium-ion battery.  
I2C serial data pin.  
23  
24  
INBUCK  
LX1  
25  
26  
PGND1  
FB1  
27  
28, 29  
30  
BAT  
SDA  
31  
SCL  
I2C serial clock pin.  
Enable for the system. PWR_HOLD must be held high by the processor to keep system turned on. To shut down the device, the  
microcontroller should pull PWR_HOLD to ground.  
32  
33  
34  
PWR_HOLD  
PWR_ON  
EXT_ON  
Enable for the system. Connect a push-button from this pin to BAT to activate system. It is debounced for 320ms.  
Alternate system enable; may be used by the RTC alarm or other system input. This pin's function is similar to PWR_ON; it has a  
similar 320ms debounce but does not affect the PBSTAS pin.  
35, 36  
37  
SYSOUT  
PWR_ID  
PWR_IN  
System output. Connect to the INLDO and INBUCK input supply pins.  
Logic input to identify the source of PWR_IN.  
38, 39  
Power Input. System input from adapter or USB.  
Logic input to select 500mA current limit and fast charge current (USBSEL=H) or 100mA current limit and fast charge  
(USBSEL=L). An internal pull-down resistor is connected to this pin. If is left oating,USBSEL is pulled to ground.  
40  
EP  
USBSEL  
EP  
For best thermal performance the exposed thermal pad must be thermally connected to a large exposed copper pad underneath  
the package. Additionally, the exposed thermal pad (EP), GND, and PGND must be electrically connected to ground copper.  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
3
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Pin Configuration  
TQFN55-40  
(Top View)  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
1
2
3
4
30  
29  
28  
27  
STAT  
ISETA  
TS  
SDA  
BAT  
BAT  
FB1  
PGND1  
LX1  
INBUCK  
LX2  
PGND2  
FB2  
CT  
5
6
7
26  
25  
24  
LDO2  
INLDO  
LDO3  
LDO1  
INLDO  
LDO4  
EP  
8
9
23  
22  
21  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Absolute Maximum Ratings1  
Symbol  
Pin Name  
Value  
Units  
PWR_IN, PWR_ID, BAT, SYSOUT, SDA, SCL, RESET, STAT, USBSEL, ISETA, TS, CT, LBI,  
LBO, INT, PWR_EN, PWR_HOLD, PWR_ON, PBSTAS, EXT_ON, S1, S2 Voltage to GND  
-0.3 to 6.5  
V
-0.3 to  
VSYSOUT + 0.3  
-0.3 to  
VINBUCK + 0.3  
-0.3 to  
VINLDO + 0.3  
-0.3 to +0.3  
-40 to 150  
-40 to 85  
-65 to 150  
300  
INBUCK, INLDO Voltage to GND  
V
V
LX1, LX2, FB1, FB2 Voltage to PGND1, PGND2  
LDO1, LDO2, LDO3, LDO4, LDO5 Voltage to GND  
V
V
PGND1, PGND2 to GND  
Operating Junction Temperature Range  
Ambient Temperature Range  
Storage Temperature Range  
Maximum Junction Soldering Temperature (at leads, 10 sec.)  
TJ  
TA  
TS  
°C  
TLEAD  
Thermal Information2, 3, 4  
Symbol  
Description  
Value  
Units  
θJA  
PD  
Thermal Resistance  
Maximum Power Dissipation  
25  
4
°C/W  
W
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions  
specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.  
2. Thermal Resistance will be measured with the AAT3608 device on the 4-layer FR4 evaluation board in a thermal oven. The amount of power dissipation which will cause the  
thermal shutdown to activate will depend on the ambient temperature and the PC board layout ability to dissipate the heat.  
3. Measured on the AAT3608 demo board.  
4. Derate the maximum power dissipation by 40mW/°C above 25°C ambient temperature.  
w w w . a n a l o g i c t e c h . c o m  
4
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Electrical Characteristics1  
VPWR_IN = 5V, VPWR_ID = 5V, VBAT = 3.6V, -40°C TA +85°C, unless noted otherwise. Typical values are TA = 25°C.  
Symbol Description  
Power Supply  
Conditions  
Min Typ Max Units  
VIN  
VINBUCK, VINLDO Input Operating Voltage  
PWR_IN UVLO Threshold  
2.7  
5.5  
V
V
Rising (100mV hysteresis)  
VPWR_IN = 0V, Only LDO1, LDO3, and  
Buck1 are on  
VPWR_IN = 0V, Only Buck1 is on  
VPWR_IN = 0V and system is shut down  
4.5  
200  
100  
IOPS  
Sleep Mode Battery Operating Current  
A  
IOPDS  
ISHDN  
Deep-Sleep Mode Battery Operating Current  
Battery Shutdown Current  
A  
A  
10  
Charger Voltage Regulation  
VBAT_REG Output Charge Voltage Regulation  
VMIN  
0°C TA +70°C  
4.158  
2.6  
4.2  
2.8  
4.00  
4.242  
3.0  
V
V
V
Preconditioning Voltage Threshold  
Battery Recharge Voltage Threshold  
VRCH  
Charger Current Regulation  
RISETA = 1.24kΩ (for 0.8A) (Can be set  
to up to 1.2A)  
ICH_CC  
Constant-Current Mode ADP Charge Current  
800  
mA  
USB Charge Current  
USB Charge Current  
Charge Current Set Factor: ICH_CC/IISET  
Preconditioning Charge Current  
Charge Termination Threshold Current  
USBSEL = H, PWR_ID = L  
USBSEL = L, PWR_ID = L  
Constant Current Mode  
RISETA = 1.24kΩ  
500  
100  
800  
12  
mA  
mA  
/
mA  
% ICH_CC  
% ICH_CC  
mA  
KISET  
ICH_PRE  
ICH_TERM  
5
Charging Device  
RDS(ON),CHG On-Resistance of Charging Transistor  
Logic Control / Protection  
SYSOUT to BAT Switch  
0.6  
0.9  
Ω
VPWR_HOLD  
VPWR_ON  
VUSBSEL  
,
Input High Threshold  
1.4  
V
V
,
Input Low Threshold  
0.3  
0.4  
V
INT, VSTAT  
VOVP  
IOCP  
TC  
Output Low Voltage  
Pin Sinks 4mA  
CCT = 100nF  
V
V
Over-Voltage Protection Threshold  
Over Current Protection Threshold  
Constant Current Mode Time Out  
Trickle Charge Time Out  
Constant Voltage Mode Time Out  
Current Source from TS Pin  
4.3  
105  
3
TC/8  
3
% ICH_CC  
Hours  
Hours  
Hours  
A  
TK  
TV  
ITS  
69  
75  
79  
Falling Threshold  
Hysteresis  
Rising Threshold  
Hysteresis  
318  
331  
25  
2.39  
25  
346  
mV  
mV  
V
mV  
TS1  
TS2  
TS Hot Temperature Fault  
TS Cold Temperature Fault  
2.30  
2.48  
TLOOP_IN  
TLOOP_OUT  
TREG  
Thermal Loop Entering Threshold  
Thermal Loop Exiting Threshold  
Thermal Loop Regulation  
115  
85  
100  
°C  
°C  
°C  
Load Switches / SYSOUT LDO  
RDS(ON),  
BAT-SYSOUT  
On-Resistance of BAT-SYSOUT Load Switch  
100  
0.2  
150  
0.3  
mΩ  
RDS(ON),  
PWR_IN-SYSOUT  
On-Resistance of PWR_IN-SYSOUT Load  
Switch  
Ω
PWR_IN-SYSOUT Current Limit  
PWR_IN-SYSOUT Current Limit  
BAT-SYSOUT Current Limit  
2
A
USBSEL = High, PWR_ID = L  
USBSEL = Low, PWR_ID = L  
400  
450  
100  
2
500  
mA  
mA  
A
1. Specification over the -40°C to +85°C operating temperature range is assured by design, characterization and correlation with statistical process controls.  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
5
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Electrical Characteristics (continued)1  
VPWR_IN = 5V, VPWR_ID = 5V, VBAT = 3.6V, -40°C TA +85°C, unless noted otherwise. Typical values are TA = 25°C.  
Symbol Description  
Conditions  
Min  
Typ  
Max Units  
Step-Down Buck Regulator (Buck1)  
VINBUCK  
VOUT  
VREG  
Input Voltage Range  
Output Voltage Programmable Range  
Output Voltage Accuracy  
2.7  
0.6  
5.5  
VINBUCK  
V
V
V
Using External Feedback Resistors, No Load  
IOUT = 10mA  
0.582 0.600 0.618  
ILIM  
P-Channel Current Limit  
High-Side Switch On-Resistance  
Low-Side Switch On-Resistance  
2600  
450  
400  
mA  
mΩ  
mΩ  
RDS(ON)H  
RDS(ON)L  
ΔVOUT  
/
Line Regulation  
0.2  
1.5  
%/V  
MHz  
(VOUT ΔVIN)  
FOSC  
Oscillator Frequency  
Step-Down Buck Regulator (Buck2)  
VINBUCK  
VFB  
VREG  
Input Voltage Range  
Feedback Voltage Programmable Range Using I2C, with Default FB = 0.6V  
2.7  
0.5  
-3  
5.5  
0.7  
+3  
V
V
%
Output Voltage Accuracy  
IOUT = 10mA  
ILIM  
P-Channel Current Limit  
High-Side Switch On-Resistance  
Low-Side Switch On-Resistance  
2600  
450  
400  
mA  
mΩ  
mΩ  
RDS(ON)H  
RDS(ON)L  
ΔVOUT  
/
Line Regulation  
0.2  
1.5  
%/V  
MHz  
(VOUT ΔVIN)  
FOSC  
Oscillator Frequency  
Low-Dropout Regulator (LDO1)  
VINLDO  
Input Voltage Range  
2.7  
5.5  
V
V
V
V
ILDO = 1mA to 300mA, S1 = 0, S2 = 0  
ILDO = 1mA to 300mA, S1 = 0, S2 = 1  
ILDO = 1mA to 300mA, S1 = 1, S2 = 0  
2.91  
3.20  
2.71  
3.00  
3.30  
2.80  
3.09  
3.40  
2.89  
VLDO  
LDO Output Voltage  
VINLDO = 5V, added quiescent current when  
LDO is enabled  
IQ  
LDO Quiescent Current  
50  
90  
A  
Line Regulation  
Dropout Voltage  
LDO Maximum Load Current  
LDO Current Limit  
ILDO = 10mA  
ILDO = 300mA  
0.09  
100  
%/V  
mV  
mA  
mA  
170  
ILDO  
ILDO(LIM)  
500  
800  
Low-Dropout Regulator (LDO2)  
VINLDO  
Input Voltage Range  
2.7  
5.5  
V
V
VLDO  
LDO Output Voltage  
ILDO = 1mA to 80mA  
1.164  
1.2  
1.236  
VINLDO = 5V, added quiescent current when  
LDO is enabled  
IQ  
LDO Quiescent Current  
35  
80  
A  
Line Regulation  
LDO Maximum Load Current  
LDO Current Limit  
ILDO = 10mA  
0.09  
%/V  
mA  
mA  
ILDO  
ILDO(LIM)  
200  
800  
Low-Dropout Regulator (LDO3)  
VINLDO  
Input Voltage Range  
Output Voltage Range  
2.7  
0.8  
5.5  
1.4  
V
V
Using I2C. Default=1.2V  
ILDO = 1mA to 80mA  
VLDO  
IQ  
LDO Output Voltage  
-3  
+3  
%
VINLDO = 5V, added quiescent current when  
LDO is enabled  
LDO Quiescent Current  
35  
80  
A  
Line Regulation  
LDO Maximum Load Current  
LDO Current Limit  
ILDO = 10mA  
0.09  
%/V  
mA  
mA  
ILDO  
ILDO(LIM)  
200  
800  
1. Specification over the -40°C to +85°C operating temperature range is assured by design, characterization and correlation with statistical process controls.  
w w w . a n a l o g i c t e c h . c o m  
6
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Electrical Characteristics (continued)1  
VPWR_IN = 5V, VPWR_ID = 5V, VBAT = 3.6V, -40°C TA +85°C, unless noted otherwise. Typical values are TA = 25°C.  
Symbol Description  
Conditions  
Min  
Typ Max  
Units  
Low-Dropout Regulator (LDO4)  
VINLDO  
VLDO  
Input Voltage Range  
LDO Output Voltage  
2.7  
5.5  
V
V
ILDO = 1mA to 50mA  
2.425  
2.5  
50  
2.575  
VINLDO = 5V, added quiescent current  
when LDO is enabled  
IQ  
LDO Quiescent Current  
80  
A  
Line Regulation  
LDO Maximum Load Current  
LDO Current Limit  
ILDO = 10mA  
0.09  
%/V  
mA  
mA  
ILDO  
ILDO(LIM)  
200  
800  
Low-Dropout Regulator (LDO5)  
VINLDO  
VLDO  
Input Voltage Range  
LDO Output Voltage  
2.7  
3.2  
5.5  
3.4  
V
V
ILDO = 1mA to 50mA  
3.3  
50  
VINLDO = 5V, added quiescent current  
when LDO is enabled  
IQ  
LDO Quiescent Current  
80  
A  
Line Regulation  
LDO Maximum Load Current  
LDO Current Limit  
ILDO = 10mA  
0.09  
%/V  
mA  
mA  
ILDO  
ILDO(LIM)  
200  
800  
Reset and Low-Battery Comparator  
Rising threshold  
Hysteresis  
91  
%
%
Buck2 Power OK Threshold  
3
From Power OK of BUCK2 output to  
RESET pin rising edge  
Reset Time  
200  
ms  
Falling Edge  
Hysteresis  
0.96  
1.0  
50  
1.04  
V
mV  
Low-Battery Threshold Voltage  
Thermal  
TSD  
THYS  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Hysteresis  
Rising  
140  
15  
°C  
°C  
SCL, SDA (I2C Interface)  
FSCL  
TLOW  
THIGH  
THD_STA  
TSU_STA  
TSU_DAT  
THD_DAT  
TSU_STO  
Clock Frequency  
Clock Low Period  
Clock High Period  
Hold Time for START Condition  
Set-up Time for Repeated START Condition  
Data Setup Time  
Data Hold Low Time  
Setup Time for STOP Condition  
Bus Free Time Between STOP and START  
Condition  
Input Threshold Low  
Input Threshold High  
Input Leakage Current  
Output Logic Low (SDA)  
0
400  
kHz  
s  
s  
s  
s  
ns  
s  
s  
1.3  
0.6  
0.6  
0.6  
100  
0.9  
0.3  
0.6  
1.3  
TBUF  
s  
VIL  
VIH  
II  
2.7V VIN 5.5V  
2.7V VIN 5.5V  
V
V
A  
V
1.4  
-1.0  
1.0  
0.3  
VOL  
IPULLUP = 3mA  
1. Specification over the -40°C to +85°C operating temperature range is assured by design, characterization and correlation with statistical process controls.  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
7
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsCharger  
Power-In to SYSOUT Switch Current Limit  
Power-In to SYSOUT Switch Current Limit  
(100mA)  
180  
2.5  
160  
140  
120  
100  
80  
2.0  
1.5  
1.0  
0.5  
0.0  
60  
40  
0.5A  
2.0A  
20  
0
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6 3.9 4.2  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6 3.9 4.2  
V(PWRIN-SYSOUT) (V)  
V(PWRIN-SYSOUT) (V)  
IBAT vs. Temperature  
IBAT vs. Temperature  
(100mA)  
(500mA)  
501  
500  
499  
498  
497  
496  
495  
494  
493  
100.2  
100.0  
99.8  
99.6  
99.4  
99.2  
99.0  
98.8  
98.6  
98.4  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Temperature (°C)  
Ideal Diode Load Switch between VBAT and VSYSOUT  
Constant Charging Current vs. RSET  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
10000  
1000  
100  
10  
1
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.1  
1
10  
100  
1000  
V(BAT-SYSOUT) (V)  
RSET (kΩ)  
w w w . a n a l o g i c t e c h . c o m  
8
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsCharger  
Adapter Mode Supply Current vs. RSET Resistor  
5.0  
Constant Current  
Preconditioning  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.1  
1
10  
100  
1000  
RSET (kΩ)  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
9
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsBuck1  
Efficiency vs. Load  
Load Regulation  
(VB1 = 2.5V; L1 = 2.2μH)  
(VB1 = 2.5V; L1 = 2.2μH)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
VBAT = 3.3V  
BAT = 3.6V  
VBAT = 3.9V  
BAT = 4.2V  
VBAT = 3.3V  
BAT = 3.6V  
VBAT = 3.9V  
BAT = 4.2V  
V
V
V
V
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
No Load Total Input Current vs. VBAT Voltage  
Output Ripple  
(VEN = VBAT; Closed Loop)  
(VBAT = 3.6V; VB1 = 2.5V; IOUTB1 = 1mA)  
0.50  
85°C  
25°C  
-40°C  
3.6  
0
0.45  
2.55  
2.50  
2.45  
0.40  
0.35  
0.30  
0.2  
0.0  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
VBAT Voltage (V)  
Time (100μs/div)  
Output Ripple  
System Line Transient Response  
(VBAT = 3.6V; VB1 = 2.5V; IOUTB1 = 800mA)  
(VIN = 3.5V to 5V; VBAT = 3.6V; VOUTB1 = 2.5V; IOUTB1 = 800mA; falling)  
6
3.6  
0
5
4
2.52  
3
2.50  
2.48  
2
2.7  
2.5  
2.3  
2.1  
1.0  
0.8  
0.6  
Time (500ns/div)  
Time (200μs/div)  
w w w . a n a l o g i c t e c h . c o m  
10  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsBuck1 (continued)  
System Line Transient Response  
System Load Transient Response  
(VIN = 3.5V to 5V; VBAT = 3.6V; VOUTB1 = 2.5V; IOUTB1 = 800mA; rising)  
(IOUTB1 = 80mA to 800mA; VBAT = 3.6V; COUTB1 = 4.7μF; CFF1 = 0pF)  
6
1.5  
5
1.0  
0.5  
0.0  
800mA  
4
80mA  
3
2
2.7  
2.5  
2.3  
2.1  
2.7  
2.5  
2.3  
2.1  
Time (200μs/div)  
Time (100μs/div)  
Line Regulation  
Output Voltage Error vs. Temperature  
(VOUT1 = 2.5V; L1 = 2.2μH)  
(VBAT = 3.6V; VOUT1 = 2.5V)  
0.3  
0.2  
0.1  
0.0  
1.5  
IOUT1 = 10mA  
OUT1 = 100mA  
IOUT1 = 400mA  
OUT1 = 800mA  
I
1.0  
0.5  
I
0.0  
-0.1  
-0.5  
-1.0  
-1.5  
IOUT = 50mA  
IOUT = 100mA  
-0.2  
-0.3  
IOUT = 400mA  
IOUT = 800mA  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
4.5  
-50  
-25  
0
25  
50  
75  
100  
V
BAT Voltage (V)  
Temperature (°C)  
Switching Frequency vs. Temperature  
Switching Frequency vs. VBAT Voltage  
(VIN = 3.6V; VOUT1 = 2.5V; IOUT1 = 800mA)  
(VOUT1 = 2.5V; IOUT1 = 800mA)  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
1.52  
1.51  
1.50  
1.49  
1.48  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
VBAT Voltage (V)  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
11  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsBuck1 (continued)  
Soft Start  
(VBAT = 3.6V; VOUT1 = 2.5V; IOUT1 = 800mA; CFF = 100pF)  
4
3
2
1
0
1.0  
0.5  
0.0  
Time (100μs/div)  
w w w . a n a l o g i c t e c h . c o m  
12  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsBuck2  
Efficiency vs. Load  
DC Regulation vs. Load  
(VB2 = 1.2V; L2 = 2.2μH)  
(VB2 = 1.2V; L2 = 2.2μH)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
2.0  
VBAT = 3.3V  
BAT = 3.6V  
VBAT = 3.9V  
BAT = 4.2V  
V
1.5  
1.0  
V
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
VBAT = 3.3V  
BAT = 3.6V  
VBAT = 3.9V  
BAT = 4.2V  
V
V
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Output Ripple  
Output Ripple  
(VBAT = 3.6V; VOUTB2 = 1.2V; IOUTB2 = 1mA)  
(VBAT = 3.6V; VOUTB2 = 1.2V; IOUTB2 = 800mA)  
3.6  
3.6  
0
0
1.22  
1.20  
1.18  
1.22  
1.20  
1.18  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
Time (50μs/div)  
Time (500ns/div)  
System Line Transient Response  
System Line Transient Response  
(VIN = 3.5V to 5V; VBAT = 3.6V; VOUTB2 = 1.2V; IOUTB2 = 800mA; falling)  
(VIN = 3.5V to 5V; VBAT = 3.6V; VOUTB2 = 1.2V; IOUTB2 = 800mA; rising)  
6
6
5
5
4
4
3
3
2
2
1.3  
1.2  
1.1  
1.0  
1.3  
1.2  
1.1  
1.0  
Time (200μs/div)  
Time (200μs/div)  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
13  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsBuck2 (continued)  
System Load Transient Response  
Line Regulation  
(IOUTB2 = 80mA to 800mA; VBAT = 3.6V; COUTB2 = 4.7μF; CFF1 = 0pF)  
(VOUT2 = 2.5V; L2 = 2.2μH)  
0.3  
0.2  
1.5  
IOUT2 = 10mA  
OUT2 = 50mA  
IOUT2 = 100mA  
OUT2 = 400mA  
IOUT2 = 800mA  
1.0  
0.5  
0.0  
800mA  
I
80mA  
I
0.1  
0.0  
1.3  
1.2  
1.1  
1.0  
-0.1  
-0.2  
-0.3  
3.2  
3.4  
3.6  
3.8  
4.0  
4.2  
4.4  
V
BAT Voltage (V)  
Time (100μs/div)  
Output Voltage Error vs. Temperature  
Soft Start  
(VBAT = 3.6V; VOUT2 = 1.2V)  
(VBAT = 3.6V; VOUT1 = 1.2V; IOUT2 = 800mA; CFF = 100pF)  
1.5  
4
3
1.0  
0.5  
2
1
0
0.0  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
IOUT2 = 10mA  
OUT2 = 100mA  
IOUT2 = 400mA  
OUT2 = 800mA  
I
I
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Time (100μs/div)  
w w w . a n a l o g i c t e c h . c o m  
14  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsLDO1  
System Line Transient Response  
System Line Transient Response  
(VIN = 3.5V to 5V; VBAT = 3.6V; VLDO1 = 3V; ILDO1 = 300mA; rising)  
(VIN = 3.5V to 5V; VBAT = 3.6V; VLDO1 = 3V; ILDO1 = 300mA; falling)  
6
6
5
4
3
5
4
3
3.2  
3.1  
3.0  
2.9  
2.8  
3.1  
3.0  
2.9  
2.8  
Time (200μs/div)  
Time (200μs/div)  
Output Voltage Error vs. Temperature  
Line Regulation  
(VBAT = 3.6V; VLDO1 = 3.0V)  
(VLDO1 = 3.0V)  
0.3  
1.5  
1.0  
0.5  
IOUT = 0.1mA  
IOUT = 1mA  
OUT = 10mA  
0.2  
I
IOUT = 100mA  
IOUT = 150mA  
0.1  
0.0  
I
OUT = 300mA  
0.0  
IOUT = 0.1mA  
IOUT = 10mA  
-0.1  
-0.2  
-0.3  
-0.5  
IOUT = 100mA  
OUT = 150mA  
IOUT = 300mA  
-1.0  
I
-1.5  
-50  
3.4  
3.6  
3.8  
4.0  
4.2  
4.4  
-25  
0
25  
50  
75 100  
Temperature (°C)  
VBAT Voltage (V)  
Load Transient Response  
Load Regulation  
(ILDO1 = 30mA to 300mA; VBAT = 3.6V; VLDO1 = 3V; CLDO1 = 4.7μF)  
(VBAT = 3.6V; VLDO1 = 3.0V)  
0.4  
1.5  
0.3  
1.0  
0.5  
0.2  
0.1  
0.0  
0.0  
3.05  
3.00  
2.95  
2.90  
-0.5  
-1.0  
-1.5  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Time (200μs/div)  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
15  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsLDO1 (continued)  
Soft Start  
(VBAT = 3.6V; VLDO1 = 3.0V; ILDO1 = 150mA)  
4
3
2
1
0
200  
100  
0
Time (100μs/div)  
w w w . a n a l o g i c t e c h . c o m  
16  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsLDO2  
System Line Transient Response  
System Line Transient Response  
(VIN = 3.5V to 5V; VBAT = 3.6V; VLDO2 = 1.2V; ILDO2 = 80mA; rising)  
(VIN = 3.5V to 5V; VBAT = 3.6V; VLDO2 = 1.2V; ILDO2 = 80mA; falling)  
6
5
4
3
6
5
4
3
2
1.3  
1.2  
1.1  
1.0  
1
0
1.3  
1.2  
1.1  
1.0  
Time (200μs/div)  
Time (200μs/div)  
Load Transient Response  
Output Voltage Error vs. Temperature  
(ILDO2 = 8mA to 80mA; VBAT = 3.6V; VLDO2 = 1.2V; CLDO2 = 4.7μF)  
(VBAT = 3.6V; VLDO2 = 1.2V)  
150  
100  
50  
1.5  
1.0  
0.5  
0.0  
0
1.22  
1.20  
1.18  
1.16  
-0.5  
IOUT = 0.1mA  
I
OUT = 1mA  
-1.0  
IOUT = 10mA  
IOUT = 100mA  
-1.5  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Time (200μs/div)  
Line Regulation  
Load Regulation  
(VLDO2 = 1.2V)  
(VBAT = 3.6V; VLDO2 = 1.2V)  
1.5  
1.0  
0.3  
0.2  
0.1  
0.0  
0.5  
0.0  
-0.1  
-0.5  
-1.0  
-1.5  
IOUT = 0.1mA  
IOUT = 1mA  
-0.2  
-0.3  
I
I
OUT = 10mA  
OUT = 100mA  
3.2  
3.4  
3.6  
3.8  
4.0  
4.2  
4.4  
0.1  
1
10  
100  
V
BAT Voltage (V)  
Output Current (mA)  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
17  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsLDO2 (continued)  
Soft Start  
(VBAT = 3.6V; VLDO2 = 1.2V; ILDO2 = 80mA)  
4
3
2
1
0
100  
50  
0
Time (100μs/div)  
w w w . a n a l o g i c t e c h . c o m  
18  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsLDO3  
System Line Transient Response  
System Line Transient Response  
(VIN = 3.5V to 5V; VBAT = 3.6V; VLDO3 = 1.2V; ILDO3 = 80mA; rising)  
(VIN = 3.5V to 5V; VBAT = 3.6V; VLDO3 = 1.2V; ILDO3 = 80mA; falling)  
6
5
4
3
6
5
4
3
1.4  
1.3  
1.2  
1.1  
1.0  
1.3  
1.2  
1.1  
1.0  
Time (200μs/div)  
Time (200μs/div)  
Load Transient Response  
Line Regulation  
(ILDO3 = 8mA to 80mA; VBAT = 3.6V; CLDO3 = 4.7μF)  
(VLDO3 = 1.2V)  
150  
100  
50  
0.3  
0.2  
0.1  
0.0  
0
1.22  
1.20  
1.18  
1.16  
-0.1  
IOUT = 0.1mA  
IOUT = 1mA  
OUT = 10mA  
IOUT = 100mA  
-0.2  
-0.3  
I
3.2  
3.4  
3.6  
3.8  
4.0  
4.2 4.4  
V
BAT Voltage (V)  
Time (200μs/div)  
Output Voltage Error vs. Temperature  
Load Regulation  
(VBAT = 3.6V; VLDO3 = 1.2V)  
(VBAT = 3.6V; VLDO3 = 1.2V)  
1.5  
1.5  
1.0  
0.5  
0.0  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-0.5  
IOUT = 0.1mA  
IOUT = 1mA  
-1.0  
IOUT = 10mA  
IOUT = 100mA  
-1.5  
-50  
-25  
0
25  
50  
75  
100  
0.1  
1
10  
100  
Temperature (°C)  
Output Current (mA)  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
19  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsLDO3 (continued)  
Soft Start  
(VBAT = 3.6V; VLDO3 = 1.2V; ILDO3 = 80mA)  
4
3
2
1
0
100  
50  
0
Time (100μs/div)  
w w w . a n a l o g i c t e c h . c o m  
20  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsLDO4  
System Line Transient Response  
System Line Transient Response  
(VIN = 3.5V to 5V; VBAT = 3.6V; VLDO4 = 2.5V; ILDO4 = 50mA; rising)  
(VIN = 3.5V to 5V; VBAT = 3.6V; VLDO4 = 2.5V; ILDO4 = 50mA; falling)  
6
6
5
5
4
4
3
3
2.7  
2.6  
2.5  
2.4  
2.3  
2.7  
2.6  
2.5  
2.4  
2.3  
Time (200μs/div)  
Time (200μs/div)  
Load Transient Response  
Line Regulation  
(ILDO4 = 5mA to 50mA; VBAT = 3.6V; VLDO4 = 2.5V; CLDO4 = 4.7μF)  
(VLDO4 = 2.5V)  
150  
100  
50  
0.3  
0.2  
0.1  
0.0  
0
2.52  
2.50  
2.48  
2.46  
-0.1  
IOUT = 0.1mA  
IOUT = 1mA  
OUT = 10mA  
-0.2  
I
IOUT = 100mA  
-0.3  
3.2  
3.4  
3.6  
3.8  
4.0  
4.2  
4.4  
V
BAT Voltage (V)  
Time (200μs/div)  
Output Voltage Error vs. Temperature  
Load Regulation  
(VBAT = 3.6V; VLDO4 = 2.5V)  
(VBAT = 3.6V; VLDO4 = 2.5V)  
1.5  
1.5  
1.0  
0.5  
0.0  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-0.5  
IOUT = 0.1mA  
I
OUT = 1mA  
IOUT = 10mA  
OUT = 100mA  
-1.0  
I
-1.5  
-50  
-25  
0
25  
50  
75  
100  
0.1  
1
10  
100  
Temperature (°C)  
Output Current (mA)  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
21  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsLDO4 (continued)  
Soft Start  
(VBAT = 3.6V; VLDO4 = 2.5V; ILDO4 = 50mA)  
4
3
2
1
0
100  
50  
0
Time (100μs/div)  
w w w . a n a l o g i c t e c h . c o m  
22  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsLDO5  
System Line Transient Response  
System Line Transient Response  
(VIN = 3.5V to 5V; VBAT = 3.6V; VLDO5 = 3.3V; ILDO5 = 50mA; rising)  
(VIN = 3.5V to 5V; VBAT = 3.6V; VLDO5 = 3.3V; ILDO5 = 50mA; falling)  
6
6
5
5
4
4
3
3
3.5  
3.4  
3.3  
3.2  
3.1  
3.5  
3.4  
3.3  
3.2  
3.1  
Time (200μs/div)  
Time (200μs/div)  
Load Transient Response  
Line Regulation  
(ILDO5 = 5mA to 50mA; VBAT = 3.9V; CLDO5 = 4.7μF)  
(VLDO5 = 3.3V)  
150  
0.3  
0.2  
0.1  
0.0  
100  
50  
0
3.34  
3.32  
3.30  
3.28  
3.26  
-0.1  
IOUT = 0.1mA  
I
OUT = 1mA  
-0.2  
-0.3  
IOUT = 10mA  
I
OUT = 100mA  
3.6  
3.8  
4.0  
4.2  
4.4  
V
BAT Voltage (V)  
Time (200μs/div)  
Output Voltage Error vs. Temperature  
Load Regulation  
(VBAT = 3.6V; VLDO4 = 3.3V)  
(VBAT = 3.6V; VLDO5 = 3.3V)  
1.5  
1.5  
1.0  
0.5  
0.0  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-0.5  
IOUT = 0.1mA  
I
OUT = 1mA  
-1.0  
IOUT = 10mA  
I
OUT = 100mA  
75  
-1.5  
-50  
-25  
0
25  
50  
100  
0.1  
1
10  
100  
Temperature (°C)  
Output Current (mA)  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
23  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Typical CharacteristicsLDO5 (continued)  
Soft Start  
(VBAT = 3.6V; VLDO5 = 3.3V; ILDO5 = 50mA)  
4
3
2
1
0
0.10  
0.05  
0.00  
Time (100μs/div)  
w w w . a n a l o g i c t e c h . c o m  
24  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Functional Block Diagram  
1 Cell Li-Ion  
To INBUCK, INLDO  
+
INBUCK  
24  
SYSOUT  
BAT  
35,36  
28,29  
38,39  
Load  
Switch  
PWR_IN  
L1  
LX1  
25  
26  
BUCK1  
800mA max  
0.6V to 5.5V  
Charge  
Switch  
PGND1  
Buck1  
37  
PWR_ID  
27  
13  
40  
FB1  
USBSEL  
SYSOUT  
2
LBO  
ISETA  
Li-Ion  
Reset  
Buck2  
3
Linear  
Charger  
Control  
RESET  
TS  
INBUCK  
Thermal  
Shutdown  
4
BAT  
CT  
L2  
23  
LX2  
1
BUCK2  
800mA max  
0.6V (default)  
FB2 is I2C adj.  
from 0.5V to 0.7V  
STAT  
BUCK1  
22  
21  
PGND2  
12  
PBSTAS  
FB2  
20  
PWR_EN  
INLDO  
33  
PWR_ON  
6,9  
8
320ms Debounce  
320ms Debounce  
2µ  
2µ  
34  
Enable  
Control and  
I2C Logic  
EXT_ON  
LDO1  
300mA max  
3.3V/3.0V/2.8V (S1 & S2 bits)  
1.2V (fixed)  
LDO1  
32  
Buck1 OK  
5
PWR_HOLD  
LDO2  
LDO2  
LDO3  
80mA max  
14  
INT  
7
1.2V (default)  
Output is I2C adj.  
from 1.0V to 1.4V  
LDO3  
80mA max  
30  
SDA  
31  
10  
11  
SCL  
LDO4  
50mA max  
2.5V (default)  
3.3V/2.85V/2.5V/1.8V (I2C)  
15  
BAT  
LDO4  
LDO5  
LBO  
+
1.0V  
-
16  
3.3V (default)  
3.3V/3.0V/1.5V/1.2V (I2C)  
LDO5  
50mA max  
LBI  
17  
19  
18  
S1  
S2  
GND  
tem to operate regardless of the state of the battery. It  
can even operate with no battery.  
Functional Description  
The AAT3608 is a complete power management solution.  
It seamlessly integrates a battery charger with two step-  
down converters and five low-dropout regulators to pro-  
vide power from either an external power source or a  
single-cell Lithium Ion/Polymer battery. Internal load  
switches allow the converters to operate from the best  
available power source.  
System Output (SYSOUT)  
Intelligent control of the integrated load switches is  
managed by the switch control circuitry. If the voltage  
across PWR_IN and GND pin is above the UVLO typical  
threshold voltage of 4.5, then the switch control will  
automatically short the load switch connecting PWR_IN  
to SYSOUT. Additionally, the charging switch will be  
enabled and switch connecting BAT and SYSOUT will be  
turned off. The location of the two switches and the bat-  
tery charging switch allows the step-down converter and  
LDO to always have the best available source of power.  
Furthermore, AAT3806 control logic allows the voltage  
converters to operate with no battery, or with a battery  
voltage below the trickle charge threshold.  
If only the battery is available, then the voltage convert-  
ers are powered directly from the battery through a 100  
mΩ load switch (BAT to SYSOUT). During this condition,  
the charger is put into sleep mode and draws less than  
1A quiescent current. If the system is connected to a  
wall adapter, then the voltage converters are powered  
directly from the adapter through a 200mΩ load-switch  
(PWR_IN to SYSOUT) and the battery is disconnected  
from the voltage converter inputs. This allows the sys-  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
25  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
settings of 100mA or 500mA; refer to the logic settings  
Battery Charging  
in Table 2. Constant-current charging continues until the  
Battery charging commences only after the AAT3608 bat-  
voltage reaches the charge voltage regulation point.  
tery charger checks several conditions in order to main-  
VBAT_REG is factory programmed to 4.2V (nominal).  
Charging in constant-voltage mode will continue until the  
charge current has reduced to the charge termination  
current threshold. After the charge cycle is complete, the  
battery charger turns off the series pass device and  
automatically goes into a power saving sleep mode.  
During this time, the series pass device will block current  
in both directions to prevent the battery from discharg-  
ing through the battery charger.  
tain a safe charging environment. When an adapter input  
is connected to PWR_IN and is greater than 4.5V, the  
ENCHG bit is set (default) and the PWR_HOLD signal is  
high, the charger is enabled. The charger can be disabled  
by clearing the ENCHG bit through the I2C interface.  
Figure 1 illustrates the entire battery charging profile or  
operation, which consists of three phases:  
1. Preconditioning (Trickle) Charge  
2. Constant Current Charge  
3. Constant Voltage Charge  
The battery charger will remain in sleep mode even if the  
charger source is disconnected. It will come out of sleep  
mode when either the battery terminal voltage drops  
below the VRCH threshold, or the charging source is  
removed and reconnected. In all cases, the battery char-  
ger will monitor all parameters and resume charging in  
the most appropriate mode.  
During battery charging, the battery charger initially  
checks the condition of the battery and determines which  
charging mode to apply. If the battery voltage is below  
VMIN, then the battery charger initiates trickle charge  
mode and charges the battery at 12% of the programmed  
constant-current magnitude. For example, if the pro-  
grammed current (ISETA) is 500mA, then the trickle charge  
current will be 60mA. Trickle charge is a safety precau-  
tion for a deeply discharged cell. It is intended to reduce  
stress on the battery, but also reduces the power dissipa-  
tion in the internal series pass MOSFET when the input-  
output voltage differential is at its highest.  
Battery Temperature Fault Monitoring  
The TS pin is available to monitor the battery tempera-  
ture. Connect a 10k NTC resistor from the TS pin to  
ground. The TS pin outputs a 75A constant current into  
the resistor and monitors the voltage to ensure that the  
battery temperature does not fall outside the operating  
limits depending on the temperature coefficient of the  
resistor used. When the voltage goes above 2.39V or  
goes below 0.331V, the charging will be suspended. A  
Beta range of 3300 to 4000 will place the typical charg-  
ing temperature between -4°C and 48°C.  
Trickle charge continues until the battery voltage reach-  
es 2.8V. At this point the battery charger begins con-  
stant-current charging. The current level for this mode is  
programmed using a resistor from the ISETA pin to  
ground, or can be selected through the USBSEL pin with  
Preconditioning  
Constant Current (CC)  
Trickle Charge  
Charge Phase  
Phase  
Constant Voltage  
Charge Phase  
Battery Discharge  
(CC)  
Constant Voltage  
Charge Phase  
Charge Complete Voltage  
Battery Recharge  
Voltage Threshold  
ICH_CC  
Regulated Current  
Constant Current Mode  
Voltage Threshold (VMIN  
)
ICH_PRE  
Trickle Charge and  
Termination Threshold  
Figure 1: Current vs. Voltage Profile During Charging Phases.  
w w w . a n a l o g i c t e c h . c o m  
26  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Battery Charging Flowchart  
Enable  
Yes  
Power on Reset  
No  
No  
Power Input  
Voltage  
VIN > VUVLO  
Enable  
Yes  
Fault  
Conditions  
Monitoring  
OV, OT,  
TS < VTS1  
TS > VTS2  
Expired  
Charge Timer  
Control  
Shut Down  
Yes  
No  
Yes  
Preconditioning  
Trickle Charge  
VBAT < VMIN  
Thermal Loop  
Current  
No  
Reduction in  
C.C. Mode  
No  
Yes  
Recharge Test  
VBAT < VRCH  
Constant Current  
VBAT < VBAT_EOC  
Yes  
No  
No  
Device Thermal  
Loop Monitor  
TJ > 115 C  
Yes  
Constant  
Voltage  
IBAT > ITERM  
No  
Charge Completed  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
27  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
below the level where the converter can regulate the  
Buck Regulators  
output, the high side P-channel MOSFET is enabled con-  
The AAT3608 step-down converters are peak current  
tinuously for 100% duty cycle. At 100% duty cycle the  
mode PWM converters operating at 1.5MHz frequency.  
output voltage tracks the input voltage minus the I*R  
The input voltage range is 2.7V to 5.5V. The converters  
drop of the high side P-channel MOSFET.  
provide internal compensation. Power devices are sized  
For overload conditions, the peak input current is limit-  
ed. The bucks use a cycle-by-cycle current limit to pro-  
tect itself and the load from an external fault condition.  
Thermal protection completely disables switching when  
internal dissipation becomes excessive. The junction  
over-temperature threshold is 140°C with 15°C of hys-  
teresis. Once an over-temperature or over-current fault  
conditions is removed, the output voltage automatically  
recovers.  
for 800mA output current while maintaining over 85%  
efficiency at full load. Peak efficiency is above 90%. Light  
load efficiency is maintained at greater than 80% down  
to 85% of full load current. Soft start limits the current  
surge seen at the input and eliminates output voltage  
overshoot.  
The input pin, INBUCK (Pin 24) must be connected to the  
SYSOUT output pin. The Buck1 output voltage is adjust-  
able from 0.6V to 5.5V and is programmed through an  
external resistor divider. Buck2 output default value is  
set by external resistor feedback and then the feedback  
voltage can be dynamically adjusted via I2C in 12.5mV  
increments from 0.5V to 0.7V.  
Low-Dropout Regulators  
The advanced circuit design of the linear regulators has  
been specifically optimized for very fast start-up and  
shutdown timing. These proprietary LDOs are tailored for  
superior transient response characteristics. These traits  
are particularly important for applications which require  
fast power supply timing.  
For overload conditions, the peak input current is limit-  
ed. Also, thermal protection completely disables switch-  
ing if internal dissipation becomes excessive, thus pro-  
tecting the device from damage. The junction over-  
temperature threshold is 140°C with 15°C of hysteresis.  
Under-voltage lockout (UVLO) guarantees sufficient VIN  
bias and proper operation of all internal circuits prior to  
activation.  
The high-speed turn-on capability is enabled through the  
implementation of a fast start control circuit, which  
accelerates the power up behavior of fundamental con-  
trol and feedback circuits within the LDO regulator. For  
fast turn-off time response is achieved by an active out-  
put pull down circuit, which is enabled when the LDO  
regulator is placed in the shutdown mode. This active  
fast shutdown circuit has no adverse effect on normal  
device operation.  
The current through the P-channel MOSFET (high side)  
is sensed for current loop control, as well as short circuit  
and overload protection. A fixed slope compensation sig-  
nal is added to the sensed current to maintain stability  
for duty cycles greater than 50%. The peak current  
mode loop appears as a voltage-programmed current  
source in parallel with the output capacitor. The output  
of the voltage error amplifier programs the current mode  
loop for the necessary peak switch current to force a  
constant output voltage for all load and line conditions.  
Internal loop compensation terminates the transconduc-  
tance voltage error amplifier output. The reference volt-  
age is internally set to program the converter output  
voltage greater than or equal to 0.6V.  
There are two LDO input pins, INLDO (pins 6 and 9),  
which must be connected to the SYSOUT output pin.The  
LDO1 output voltage is selectable using pins S1 and S2  
as shown in Table 1. LDO2 is fixed at 1.2V, LDO4 is fixed  
at 2.5V and LDO5 is fixed at 3.3V. LDO3 output default  
value is 1.2V and then can be dynamically adjusted via  
I2C in 25mV increments from 1.0V to 1.4V.  
S1  
S2  
LDO1  
0
0
1
1
0
1
0
1
3.0V  
3.3V  
2.8V  
For conditions where the input voltage drops to the out-  
put voltage level, the converter duty cycle increases to  
100%. As the converter approaches the 100% duty  
cycle, the minimum off-time initially forces the high side  
on-time to exceed the 1.5MHz clock cycle and reduces  
the effective switching frequency. Once the input drops  
Reserved  
Table 1: LDO1 Output Voltages.  
w w w . a n a l o g i c t e c h . c o m  
28  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Deep Sleep Mode  
Controlling the System Outputs  
“Deep Sleep Mode” is both an SOC and PMU-defined  
mode where all regulators have been turned off except  
for SYSOUT and Buck1. Data is backed up by the SOC  
and Buck1 stays alive to maintain the memory. LDO4  
and LDO5 would be turned off separately by I2C, but the  
DS_RDY and PWR_DS I2C bits are used to get into and  
out of Deep Sleep Mode. See the flowchart diagrams for  
more detail.  
The AAT3608 has a specific startup and shutdown condi-  
tions depending on its mode of operation.  
Shutdown Mode  
“Shutdown Mode” is defined as the mode where the  
entire PMU (Power Management Unit) is shut down. This  
is a state that normally happens after all power has been  
disconnected from PWR_IN and BAT. Typically, after  
power has been applied and the part has been turned  
on, it will normally never need to be turned off. For GPS  
applications, the amount of time required for the SOC to  
start up from shutdown is prohibitively long, so the only  
time that it will go into Shutdown Mode (from any other  
mode) is when PWR_IN is disconnected and the BAT is  
below the Low-Battery comparator threshold.  
PWR_ID Pin  
The PWR_ID pin is an input logic pin which determines  
the current limits and fast charge currents that will be  
used by PMU. PWR_ID settings are listed in Table 2.  
Timing Sequences  
The AAT3608 has a specific startup sequence when the  
device is activated. See the timing diagrams in Figures 2  
through 7.  
Normal Mode  
“Normal Mode” is defined as the mode where all regula-  
tors are active. Once the part is in Normal Mode, it will  
typically go into Sleep or Deep-Sleep Mode when trying  
to save current.  
RESET  
The RESET pin is an open drain active low output signal  
for system reset. Connect a pull-up resistor from the  
RESET pin to SYSOUT pin with a recommended resis-  
tance value of 100kΩ. After Buck2 and LDO2 reach their  
target nominal output voltage, a delay of 200ms exists  
before RESET goes high; refer to the timing diagram in  
Figure 2.  
SOC Sleep Mode  
“Sleep Mode” is an SOC-defined mode which simply  
means that all regulators are shut down except SYSOUT,  
Buck1, LDO1, and LDO3. To get into this mode from  
Normal, the SOC will pull the PWR_EN pin low to turn off  
LDO2, LDO4, and LDO5. Buck2 can also be controlled by  
PWR_EN only if the SOC masks PWR_EN through I2C.  
From a PMU point of view, it is no different from Normal  
Mode except for the regulators that have been switched  
off by pulling PWR_EN low.  
PWR_IN – SYSOUT  
Switch Current Limit  
PWR_ID Pin  
USBSEL Pin  
Battery Fast Charge Current  
L
L
H
L
H
X
100mA (typical)  
500mA (typical)  
Up to 1.2A (typical)  
100mA (typical)  
500mA (typical)  
Set by the resistor at the ISETA pin.  
Table 2: PWR_ID Settings.  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
29  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Power off sequence  
Sleep Mode  
Wake up sequence  
Normal Mode  
Power on sequence  
Normal Mode  
SYSOUT  
SYSOUT  
LDO3  
BUCK2  
LDO1  
BUCK1  
PWR_ EN  
disabled  
PWR_ EN  
asserted  
PWR_EN pin  
LDO2  
Triggered by  
PWR_EN  
LDO4  
LDO5  
RESET pin  
1ms  
200ms  
Figure 2: Normal Ù Sleep Mode Sequence.  
The user pushes and releases the button to go into Sleep Mod.e  
The user pushes and releases the pushbutton again to go back to Normal Mod. e  
PBSTAS  
X_PWR_EN  
PWR_HOLD  
GPIO  
PWR_ON  
2u  
320ms  
Debounce  
The PMU  
regulators  
only react to  
the PWR_EN  
pin.  
PWR_EN  
BUCK2  
LDO2  
LDO4 &  
LDO5  
PWR_HOLD  
AAT3608  
PMU  
SOC  
Figure 3: Normal Ù Sleep Mode Block Diagram.  
w w w . a n a l o g i c t e c h . c o m  
30  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Power off  
sequence  
Wake up  
sequence  
Power on sequence  
Normal Mode  
Deep-sleep Mode  
Normal Mode  
SYSOUT  
LDO3  
BUCK2  
LDO1  
LDO2  
BUCK1  
LDO4  
LDO5  
LDO5 (VDDA3V3_USB),  
LDO4 (VDDA2V5_USB, VDDIO_TSC,  
VDDA_TSC, VREF_ADC)  
X_RESET_B  
T1  
T2  
T2  
Notes 1: T1 at least 650µS for internal LVR setup time; T2 is about 2ms to wait until PLL is stable; other time interval is dependent on power stability.  
Notes 2: After wake-up sequence from Deep-sleep Mode, the power on sequence to Normal Mode is similar to when powering on initially.  
Figure 4: Normal Ù Deep-Sleep Mode Sequence.  
Deep-Sleep  
SOC sets PWR_DS bit through I2C.  
Ready  
When Deep-Sleep is  
triggered (by the pushbutton)  
DS_RDY = 1  
PWR_DS = 0  
PMU sees that PWR_DS has been set  
so then PMU disables regulators Buck2,  
LDO1, LDO2, LDO3, LDO4,and LDO5  
simultaneously.  
-SOC will back up all data  
Buck1 on  
Buck2 on  
LDO1 on  
LDO2 on  
LDO3 on  
LDO4 off  
LDO5 off  
-SOC will turn off LDO4 and  
LDO5 using I2C  
Each Buck output is at High-Z, but all  
LDOs will be pulled to GND.  
-SOC will set DS_RDY bit  
using I2C  
Deep-Sleep  
Mode  
DS_RDY = 1  
PWR_DS = 1  
Normal Mode  
SYSOUT on  
Charger on  
LB comp on  
DS_RDY = 0  
PWR_DS = 0  
Buck1 on  
Buck2 off  
LDO1 off  
LDO2 off  
LDO3 off  
LDO4 off  
LDO5 off  
Buck1 on  
Buck2 on  
LDO1 on  
LDO2 on  
LDO3 on  
LDO4 on  
LDO5 on  
SOC reads I2C  
DS_RDY bit from  
PMU.  
SYSOUT on  
Charger on  
LB comp on  
DS_RDY = 1  
PWR_DS = 0  
SOC first sets  
DS_RDY bit to 0  
and then retrieves  
memory.  
SYSOUT on  
Charger on  
LB comp on  
Buck1 on  
Buck2 on  
LDO1 on  
LDO2 off  
LDO3 on  
LDO4 off  
LDO5 off  
User presses pushbutton  
connected to PWR_ON (or  
EXT_ON) pin for > 320ms  
(PWR_ON = H).  
SOC will pull up the  
PWR_EN pin to turn  
on LDO2, LDO4, and  
LDO5 simultaneously.  
When LDO3 AND  
Buck2 reach 90%  
regulation, the PMU  
will turn on LDO1.  
PMU looks at PWR_DS bit.  
Because PWR_DS=1,PMU  
will begin Startup sequence  
starting with LDO3 and  
Buck2.  
SYSOUT on  
Charger on  
LB comp on  
PMU will force PWR_DS to 0.  
Figure 5: Normal Mode Î Deep-Sleep Mode Î Normal Mode Flowchart.  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
31  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Normal Mode  
Sleep Mode  
If a trigger event occurs, SOC pulls  
down PWR_EN which turns off Buck2,  
LDO2, LDO4, and LDO5 simultaneously.  
Buck1 on  
Buck2 on  
LDO1 on  
LDO2 on  
LDO3 on  
LDO4 on  
LDO5 on  
Buck1 on  
Buck2 off  
LDO1 on  
LDO2 off  
LDO3 on  
LDO4 off  
LDO5 off  
If a trigger event occurs, PWR_EN  
is asserted to turn on Buck2, LDO2,  
LDO4, and LDO5 simultaneously.  
SYSOUT on  
Charger on  
LB comp on  
SYSOUT on  
Charger on  
LB comp on  
Figure 6: Normal Mode Ù Sleep Mode Flowchart.  
Shutdown  
DS_RDY = 0  
PWR_DS = 0  
Startup  
DS_RDY = 0  
PWR_DS = 0  
PWR_HOLD  
is maintained high  
Buck1 off  
Buck2 off  
LDO1 off  
LDO2 off  
LDO3 off  
LDO4 off  
LDO5 off  
Buck1 on  
Buck2 on  
LDO1 on  
LDO2 off  
LDO3 on  
LDO4 off  
LDO5 off  
User presses  
pushbutton  
connected to  
PWR_ON pin  
for >320ms.  
When LDO3  
AND Buck2  
reach 90%  
regulation, PMU  
will turn on  
LDO1 and  
PMU begins  
Startup sequence  
starting with LDO3  
and Buck2  
SYSOUT off  
Charger off  
LB comp off  
(PWR_ON = H)  
Buck1  
SYSOUT on  
Charger on  
LB comp on  
If ADP and USB are  
removed and the BAT  
pin is < Low-Battery  
threshold, the PMU will  
automatically go back  
into Shutdown mode.  
Normal Mode  
DS_RDY= 0  
PWR_DS= 0  
SOC will pull up  
PWR_EN pin to  
turn on LDO2,  
LDO4, and LDO5  
simultaneously.  
RESET is pulled high  
Buck1 on  
Buck2 on  
LDO1 on  
LDO2 on  
LDO3 on  
LDO4 on  
LDO5 on  
All Regulators will be  
turned off simultaneously.  
All bucks will be in  
Hi-Z mode.  
All LDOs will pull  
down their outputs.  
SYSOUT on  
Charger on  
LB comp on  
Figure 7: System Shutdown Ù Normal Mode (Initial Start-Up) Flowchart.  
w w w . a n a l o g i c t e c h . c o m  
32  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
I2C Serial Interface and Programmability  
MSB  
LSB  
R/W  
Serial Interface  
Many of the features of the AAT3608 can be controlled  
via the I2C serial interface. The I2C serial interface is a  
widely used interface where it requires a master to initi-  
ate all the communications with the slave devices. The  
I2C protocol consists of 2 active wires, SDA (serial data  
line) and SCL (serial clock line). Both wires are open  
drain and require an external pull up resistor to VCC  
(SYSOUT may be used as VCC). The SDA pin serves I/O  
function, and the SCL pin controls and references the I2C  
bus. I2C protocol is a bidirectional bus which allows both  
read and write actions to take place. The timing diagram  
in Figure 8 depicts the transmission protocol.  
Figure 8: Bit Order.  
Acknowledge Bit  
The acknowledge bit is the ninth bit of data. It is used to  
send back a confirmation to the master that the data has  
been received properly. For acknowledge to take place,  
the MASTER must first release the SDA line, then the  
SLAVE will pull the data line low as shown in Figure 9.  
The address is embedded in the first seven bits of the  
byte. The eighth bit is reserved for the direction of the  
information flow for the next byte of information. For the  
AAT3608, this bit must be set to “0” when writing and  
“1” when reading. The full 8-bit address including the  
R/W bit is 0x9C (hex) or 10011100 in binary for writing  
and 0x9D(hex) or 10011101 in binary for reading.  
START and STOP Conditions  
START and STOP conditions are always generated by the  
master. Prior to initiating a START condition, both the SDA  
and SCL pin are idle mode (idle mode is when there is no  
activity on the bus and SDA and SCL are pulled to VCC via  
external resistor). As depicted in Figure 9, a START condi-  
tion is defined to be when the master pulls the SDA line  
low and after a short period pulls the SCL line low. A  
START condition acts as a signal to all ICs that something  
is about to be transmitted on the BUS. A STOP condition,  
also shown in Figure 9, is when the master releases the  
bus and SCL changes from low to high followed by SDA  
low to high transition. The master does not issue an  
ACKNOWLEDGE and releases the SCL and SDA pins.  
I2C Write Code  
After sending the chip address, the master should  
send an 8-bit data stream (“2ND Word”). The “2ND Word”  
can consist of any one of the four sets of data listed in  
Table 3.  
The “3RD Word” should be entered into the I2C only if  
(Bit7,Bit6,Bit5) = (0,0,0) in the “2ND Word”. In this case,  
the bits (G2,G1,G0) are used to set the bit assignments  
as shown in Tables 4 and 5.  
Transferring Data  
Every byte on the bus must be 8 bits long. A byte is  
always sent with the most significant bit first (see Figure  
8).  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
33  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
I2C Address  
2nd Word  
3rd Word  
R/W ACK  
9
0
ACK  
ACK  
18  
27  
G2:0=3'b000  
START  
E15 E14 E1 3 E12 E1 1 E10  
STOP  
STOP  
A6 A5 A4 A3 A2 A1  
0
0
0
0
0
0
0
1
1
0
1
0
1
x
x G2 G1 G0  
0
1
1
1
0
1
E25 E24 E2 3 E22 E2 1 E20  
E35 E34 E3 3 E32 E3 1 E30  
D14 D13 D12 D11 D10  
D24 D23 D22 D21 D20  
D34 D33 D32 D31 D30  
STOP  
STOP  
G2:0=3'b010  
0
1
F15 F14 F13 F12 F11 F10  
STOP  
SCL  
SDA  
A6  
A5  
A0  
W
A
0
01or 10 or 11 Dx4  
Dx0  
A
START command  
from the master.  
Write command Acknowledge  
from the maste.r from the slave.  
Acknowledge  
from the slave.  
STOP command  
from the master.  
START  
STOP  
D1<4:0>  
D2<4:0>  
D3<4:0>  
E1<5:0>  
E2<5:0>  
E3<5:0>  
SCL  
SDA  
Data Data Data  
Data  
F1<5:0>  
A<6:0>  
I2C Controller  
Figure 9: I2C Protocol.  
Bit7 Bit6 Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0
0
0
0
0
0
1
1
0
1
0
1
0
0
G2  
DS_RDY  
LDO41  
G1  
PWR_DS  
LDO40  
G0  
Reserved  
ENCHG  
ENLDO5  
LDO51  
ENLDO4  
LDO50  
BUCK24 and LDO34 BUCK23 and LDO33  
BUCK22 and LDO32  
BUCK21 and LDO31 BUCK20 and LDO30  
Table 3: I2C “2nd Word” Bit Assignments.  
w w w . a n a l o g i c t e c h . c o m  
34  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0
1
1
0
ENLDO3  
PWR_IN IN Mask  
ENLDO2  
PWR_IN OUT Mask  
ENLDO1  
Reserved  
ENBUCK1  
LBO Mask  
ENBUCK2  
TIME OUT Mask  
PWR_EN Mask  
CHG DONE Mask  
Table 4: I2C “3rd Word” Bit Assignments for (G2,G1,G0) = (0,0,0)  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0
1
Test Modes  
Table 5: I2C “3rd Word” Bit Assignments for (G2,G1,G0) = (0,1,0).  
BUCK24  
LDO34  
BUCK23  
LDO33  
BUCK22  
LDO32  
BUCK21  
LDO31  
BUCK20  
LDO30  
LDO3 Output Voltage  
BUCK2 FB Voltage  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
X
1.000V  
1.025V  
1.050V  
1.075V  
1.100V  
1.125V  
1.150V  
1.175V  
0.5000V  
0.5125V  
0.5250V  
0.5375V  
0.5500V  
0.5625V  
0.5750V  
0.5875V  
1.200V (Default)  
1.225V  
0.6000V (Default)  
0.6125V  
1.250V  
1.275V  
1.300V  
1.325V  
1.350V  
1.375V  
1.400V  
0.6250V  
0.6375V  
0.6500V  
0.6625V  
0.6750V  
0.6875V  
0.7000V  
Table 6: Buck2 and LDO3 Output Voltage.  
LDO41  
LDO40  
LDO4 Output Voltage  
LDO51 LDO50  
LDO5 Output Voltage  
0
0
1
1
0
1
0
1
1.8V  
2.5V (Default)  
2.85V  
0
0
1
1
0
1
0
1
1.2V  
1.5V  
3.0V  
3.3V  
3.3V (Default)  
Table 7: LDO4 Output Voltage.  
Table 8: LDO5 Output Voltage.  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
35  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
ENCHG  
Description  
DS_RDY  
Description  
0
1
Turn off Battery Charger  
Turn on Battery Charger (Default)  
0
1
(Default)  
Deep Sleep Recognition Flag  
ENBUCK1  
Description  
PWR_DS  
Description  
0
1
Turn off Buck1  
Turn on Buck1 (Default)  
0
1
(Default)  
Force PMU to go into Deep Sleep Mode  
ENBUCK2  
Description  
PWR_EN Mask  
Description  
0
1
Turn OFF Buck2  
Turn ON Buck2 (Default)  
0
1
No Masking  
Mask the PWR_EN pin ability to control BUCK2 (Default)  
ENLDO1  
Description  
PWR_IN IN Mask  
Description  
0
Turn OFF LDO1  
0
No Masking  
Prevent an interrupt from being generated if the  
PWR_IN IN bit has been asserted (Default)  
1
Turn ON LDO1 (Default)  
1
ENLDO2  
Description  
PWR_IN OUT Mask  
Description  
0
Turn OFF LDO2  
0
No Masking  
Turn ON LDO2 only if PWR_EN pin is  
Prevent an interrupt from being generated if the  
PWR_IN OUT bit has been asserted (Default)  
1
1
High (Default)  
ENLDO3  
Description  
LBO Mask  
Description  
0
Turn OFF LDO3  
0
No Masking  
Prevent an interrupt from being generated if the LBO  
comparator has been asserted (Default)  
1
Turn ON LDO3 (Default)  
1
ENLDO4  
Description  
TIMEOUT Mask  
Description  
0
Turn OFF LDO4  
0
No Masking  
Prevents an interrupt from being generated if the  
TIMEOUT bit has been asserted (Default)  
1
Turn ON LDO4 (Default)  
1
ENLDO5  
Description  
CHG_DONE Mask  
Description  
0
Turn OFF LDO5  
0
No Masking  
Prevent an interrupt from being generated if the charger  
has reached End-of-Charge (Default)  
1
Turn ON LDO5 (Default)  
1
Table 9: Enable Settings.  
Interrupt (Read from I2C)  
The INT (interrupt) pin is an open drain output which  
pulls low when there is an assertion in any one of the  
status bits (except the DS_RDY and PWR_DS bits).  
When a Read from the I2C is initiated AND completed by  
the SOC, the INT pin is released and the voltage will go  
high through the external pull-up resistor.  
A single byte is used when reading I2C data from the  
AAT3608. The R/W address should be set to 1 so that  
complete address of the chip would be 0x9D or 10011101  
in binary.  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
PWR_IN IN  
PWR_IN OUT  
Reserved  
LBO  
TIME OUT  
CHG_DONE  
DS_RDY  
PWR_DS  
Table 10: I2C Read Table.  
w w w . a n a l o g i c t e c h . c o m  
36  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Interrupt Signal  
PWR_IN IN Bit  
Description  
Produced?  
0
1
Default  
Only if PWR_IN IN Mask  
bit is not set  
If VPWR_IN > UVLO threshold, this bit will be set  
Interrupt Signal  
Produced?  
PWR_IN OUT Bit  
Description  
0
1
Default  
Only if PWR_IN OUT  
Mask bit is not set  
If VPWR_IN < UVLO threshold, this bit will be set  
Interrupt Signal  
Produced?  
TIMEOUT Bit  
Description  
0
1
Default  
Only if TIMEOUT Mask  
bit is not set  
If the charger watchdog timer has reached Timeout, this bit will be set.  
Interrupt Signal  
Produced?  
LBO Bit  
Description  
0
1
Default  
Only if LBO Mask bit is  
not set  
If Low-Battery comparator is tripped then this bit will be set.  
Interrupt Signal  
Produced?  
CHG DONE Bit  
Description  
0
1
Default  
Only if CHG_DONE  
Mask bit is not set  
If the Charger has reached End-Of-Charge (EOC), this bit will be set  
Interrupt Signal  
Produced?  
DS_RDY Bit  
Description  
0
1
Default  
No INT signal  
Same as the DS_RDY bit described in the "I2C Write" section of this datasheet  
Interrupt Signal  
Produced?  
PWR_DS Bit  
Description  
0
1
Default  
No INT signal  
Same as the PWR_DS bit described in the "I2C Write" section of this datasheet  
Table 11: Status Bit Descriptions.  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
37  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Input Capacitor (Bucks)  
Application Information  
All input capacitors should be located as physically close  
to the power pin (INBUCK) and power ground pins  
(PGND1 and 2). Ceramic capacitors are recommended for  
their higher current operation and small profile. Also,  
ceramic capacitors are inherently capable to withstand  
input current surges from low impedance sources such as  
batteries in portable devices over tantalum capacitors.  
Typically, 10V or 16V rated capacitors are required.  
The two bucks are high performance 800mA 1.5MHz  
monolithic step-down converters. They have been  
designed with the goal of minimizing external compo-  
nent size and optimizing efficiency over the complete  
load range. Apart from the small bypass input capacitor,  
only a small L-C filter is required at the output.  
Both bucks can be programmed with external feedback  
resistors to any voltage, ranging from 0.6V to the input  
voltage in default feedback voltage condition.  
The following are the typical recommended capacitance  
values:  
At dropout, the step down converters duty cycle increas-  
es to 100% and the output voltage tracks the input volt-  
age minus the RDSON drop of the P-channel high-side  
MOSFET.  
Two 10μF capacitors for INBUCK  
One 10μF capacitor for INLDO  
One 10μF capacitor for SYSOUT  
One 10μF capacitor for PWR_IN  
One 10μF capacitor for BAT  
Output Voltage Resistor Selection  
Resistors R2 through R5 in Figure 10 program the output  
to regulate at a voltage higher than 0.6V in default  
mode. The feedback voltage of Buck2 can have a wider  
range and can be adjusted down to 0.5V through I2C. To  
limit the bias current required for the external feedback  
resistor string while maintaining good noise immunity, a  
suggested value for R3 and R5 is 59kΩ to provide a bias  
current of 10uA with a feedback voltage of 0.6V. Although  
a larger value will further reduce quiescent current, it  
will also increase the impedance of the feedback node,  
making it more sensitive to external noise and interfer-  
ence. Table 12 summarizes the resistor values for vari-  
ous output voltages with R3 and R5 set to either 59kΩ  
for good noise immunity or 100kΩ for reduced no load  
input current.  
Output Capacitor (Bucks)  
For proper load voltage regulation and operational stabil-  
ity, a capacitor is required on the output of each buck.  
The output capacitor connection to the ground pin should  
be made as directly as practically possible for maximum  
device performance. Since the bucks have been designed  
to function with very low ESR capacitors, a 4.7μF ceram-  
ic capacitor is recommended for best performance.  
Inductor Selection  
The two bucks use peak current mode control with slope  
compensation to maintain stability for duty cycles great-  
er than 50%. The output inductor value must be selected  
so the inductor current down slope meets the internal  
slope compensation requirements. The internal slope  
compensation is 1A/μs. The inductor should be set equal  
to the output voltage numeric value in micro henries  
(μH). This guarantees that there is sufficient internal  
slope compensation.  
VOUT  
(V)  
R3 and R5 = 59kΩ R3 and R5 = 100kΩ  
R2 and R4 (kΩ)  
R2 and R4 (kΩ)  
0.8  
0.9  
1
19.6  
29.4  
39.2  
49.9  
59  
68.1  
78.7  
88.7  
118  
124  
137  
187  
267  
33.2  
49.9  
66.5  
82.5  
100  
118  
133  
150  
200  
210  
232  
316  
453  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2
Inductor manufacturer’s specifications list both the  
inductor DC current rating, which is a thermal limitation,  
and the peak current rating, which is determined by the  
saturation characteristics. The inductor should not show  
any appreciable saturation under normal load conditions.  
Some inductors may meet the peak and average current  
ratings yet result in excessive losses due to a high DCR.  
Always consider the losses associated with the DCR and  
its effect on the total converter efficiency when selecting  
an inductor.  
2.5  
3.3  
Table 12: Feedback Resistors  
(Feedback Voltage = 0.6V).  
w w w . a n a l o g i c t e c h . c o m  
38  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Input Capacitor (LDOs)  
Layout Guidance  
Typically, a 10μF or larger capacitor, C4 (see Figure 10),  
is recommended as close as possible to the device  
INLDO pin. The input capacitor value of 10μF will offer  
superior input line transient response and will assist in  
maximizing the highest possible power supply ripple  
rejection.  
Figure 10 is the schematic for the evaluation board. The  
evaluation board has extra components for easy evalua-  
tion; the bill of materials for the system is shown in Table  
12. When laying out the PC board, the following layout  
guidelines should be followed to ensure proper operation  
of the AAT3608:  
There is no specific capacitor ESR requirement; there-  
fore ceramic, tantalum, or aluminum electrolytic capaci-  
tors may be selected for capacitor C4. However, ceramic  
capacitors are recommended due to their inherent capa-  
bility over tantalum capacitors to withstand input current  
surges from low impedance sources such as batteries in  
portable devices.  
1. The exposed pad (EP) must be reliably soldered to  
exposed copper pad on the board and electrically  
connected to GND/PGND pins.  
2. The power traces, including GND traces, the LX  
traces and the VIN trace should be kept short, direct  
and wide to allow large current flow. Use several via  
pads when routing between layers.  
3. The input capacitors should be connected as close as  
possible from SYSOUT and INBUCK to PGND1 and  
PGND2 to get good power filtering.  
4. Keep the switching node LX away from the sensitive  
buck feedback nodes, FB1 and FB2.  
5. The feedback trace for the bucks should be separate  
from any power trace and connected as closely as  
possible to the load point. Sensing along a high cur-  
rent load trace will degrade DC load regulation.  
6. The output capacitors and inductors should be con-  
nected as close as possible and there should not be  
any signal lines under the inductor.  
7. The resistance of the trace from the load return to  
PGND1 and PGND2 should be kept to a minimum.  
This will help to minimize any error in DC regulation  
due to differences in the potential of the internal  
signal ground and the power ground.  
Output Capacitor (LDOs)  
For proper load voltage regulation and operational stabil-  
ity, a 4.7F ceramic capacitor is required between the  
output of the LDOs and GND. If desired, the output  
capacitor may be increased without limit. The output  
capacitor connection to the LDO regulator ground pin  
should be made as direct as practically possible for  
maximum device performance.  
Although the device is intended to operate with low ESR  
capacitors, it is stable over a very wide range of capaci-  
tor ESR, thus it will also work with higher ESR tantalum  
or aluminum electrolytic capacitors. However, for best  
performance, ceramic capacitors are recommended.  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
39  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
J1  
J2  
VBAT  
VIN  
VBAT  
VIN  
C2  
10µF  
C3  
10µF  
C1  
0.1µF  
VIN  
TB1  
1
PGND  
AAT3608  
U1  
2
PGND  
39  
38  
29  
28  
J3  
TB-2  
PWR_IN PWR_IN BAT BAT  
J4  
SYSOUT  
C6  
10µF 10µF 10µF 10µF  
PWR_ID  
USBSEL  
Buck 1  
37  
40  
36  
35  
PWR_ID  
SYSOUT  
SYSOUT  
BUCK1  
PGND  
VBAT  
C4  
C5  
C7  
USBSEL  
SYSOUT  
1 TB3  
2
18  
19  
S2  
S1  
S2  
S1  
TB2  
1
R2  
316K  
24  
9
P6,9  
P24  
P24  
P35,36  
GND  
J22  
INBUCK  
INLDO  
INLDO  
TB-2  
C8  
4.7µF  
J5  
2
EXT_ON  
PWR_ON  
34  
33  
EXT_ON  
EXT_ON  
6
PGND PGND2 PGND1 PGND  
J26  
TB-2  
PWR_ON  
PWR_HOLD  
PWR_EN  
PWR_HOLD 32  
R3  
100K  
PGND  
LX1  
PWR_EN  
20  
PGND1  
L1 2.2µH  
25  
27  
30  
31  
SDA  
SCL  
LX1  
FB1  
SDA  
SCL  
PGND  
FB = 0.6V  
J6  
3
TS  
Buck 2  
GND GND GND  
J25 J24 J28 J29  
TS  
J27  
1TB4  
2
BUCK2  
13 RESET  
RESET  
LX2  
LX2  
L2 2.2µH  
12  
PBSTAS  
GND  
J23  
R4  
100K  
PBSTAS  
23  
21  
TB-2  
C10  
4.7µF  
14  
1
INT  
STAT  
GND  
INT  
STAT  
FB2  
R5  
100K  
PGND  
LDO1  
LDO2  
8
J8  
J9  
15  
16  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LBO  
LBI  
PGND2  
LBO  
LBI  
5
Star Ground is the Exposed Pad:  
Connect all Ground Planes at the  
Exposed Pad  
PGND  
LDO3  
J10  
J11  
J12  
7
2
4
LDO4  
C15  
ISETA  
10  
LDO5  
11  
R6  
1.24K  
TC  
GND  
17  
PGND1 PGND2  
C13  
4.7µF  
C17  
4.7µF  
C12  
0.1µF  
26  
22  
4.7µF  
VBAT  
C16  
4.7µF  
C14  
4.7µF  
SW1  
SYSOUT  
PWR_ON  
J7  
PGND  
PGND  
PGND1 PGND2  
1
3
2
PWR_ON  
VBAT  
3-PIN_JUMPER  
J15  
LBI  
SYSOUT  
PGND  
J13  
BUCK1  
VBAT  
J16  
R14  
100K  
R15  
2M  
J14  
TS  
R13  
10K  
SYSOUT VBAT  
J17  
SYSOUT  
S1  
J19  
1
INT  
INT  
LBI  
TS  
LBO  
LBO  
PWR_HOLD  
2
PWR_EN  
R12  
10K  
1
2
3
4
5
6
12  
11  
10  
9
R16  
1M  
3
C9  
100pF  
PWR_ID  
USBSEL  
S2  
VIO  
3-PIN_JUMPER  
SDA  
8
S1  
PGND  
P1  
PGND  
R17  
10K  
R18  
10K  
7
PGND  
PGND  
1
3
5
7
9
2
4
SW DIP-6  
J18  
STAT  
R7 R8 R9 R10 R11  
1M 1M 1M 1M 1M  
D1  
6
PGND  
SCL  
SYSOUT  
J20  
R20  
1M  
SYSOUT  
8
SYSOUT  
J21  
R21  
100K  
10  
STAT  
C18  
100pF  
C19  
100pF  
R19  
1.5K  
Header 5X2  
PBSTAS  
PBSTAS  
xRESET  
RESET  
LED2  
PGND  
PGND  
Figure 10: AAT3608 Evaluation Board Schematic.  
w w w . a n a l o g i c t e c h . c o m  
40  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Figure 11: AAT3608 Evaluation Board Silk Screen Layer.  
Figure 12: AAT3608 Evaluation Board Top Layer.  
Figure 13: AAT3608 Evaluation Board  
Mid Layer 1 (GND Plane).  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
41  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Figure 14: AAT3608 Evaluation Board  
Mid Layer 2 (SYSOUT).  
Figure 15: AAT3608 Evaluation Board  
Bottom Layer.  
Description  
Value  
Quantity  
Footprint  
U1  
Battery Charger PMU  
1
TQFN55-40L  
J1, J2, J3, J4, J5, J6, J8, J9,  
J10, J11, J12, 13, J14,J15, J16,  
J18, J20, J21, J22, J23, J24,  
J25, J26, J27, J28, J29  
Test Point  
26  
TP  
Terminal Block Connector 2 Positions -  
DigiKey 277-1273-ND  
Switch Tact, SPST, 5mm - C&K Components  
PTS645TL50 LFS  
TB1, TB2, TB3, TB4  
SW1  
4
1
TBLOK2  
SW-2  
P1  
Header, 5-Pin, Dual row  
1X3 Header  
DIP Switch, 6 Position, SPST  
Inductor  
1
3
1
2
1
6
1
2
6
3
4
1
1
1
5
1
7
HDR2X5  
HDR1X3  
DIP-12/SW  
CDRH4D16  
1206LED - duplicate  
0805  
J7, J17, J19  
S1  
L1, L2  
D1  
2.2H  
Typical red, green, yellow, amber GaAs LED  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Resistor  
C2, C3, C4, C5,C6,C7  
10F  
4.7F  
0.1F  
4.7F  
100pF  
10K  
C8  
C1, C12  
C10, C13, C14, C15, C16, C17  
0805  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
C9, C18, C19  
R12, R13, R17, R18  
R15  
R19  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
2M  
1.5K  
316K  
100K  
1.24K  
1M  
R2  
R3, R4, R5, R14, R21  
R6  
0603  
0603  
0603  
R7, R8, R9, R10, R11, R16, R20  
Table 12: AAT3608 Evaluation Board Bill of Materials (BOM).  
w w w . a n a l o g i c t e c h . c o m  
42  
3608.2010.08.1.3  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Ordering Information  
Package  
Marking1  
Part Number (Tape and Reel)2, 3  
TQFN55-40  
C8XYY  
AAT3608IIC-1-T1  
All AnalogicTech products are offered in Pb-free packaging. The term “Pb-free” means semiconductor  
products that are in compliance with current RoHS standards, including the requirement that lead not  
exceed 0.1% by weight in homogeneous materials. For more information, please visit our website at  
http://www.analogictech.com/aboutus/quality.php.  
Package Information  
TQFN55-404  
Pin 1 Identification  
Chamfer 0.300 x 45°  
Pin 1 Dot  
by Marking  
0.380 ± 0.050  
0.450 ± 0.050  
5.000 ± 0.050  
3.600 ± 0.050  
Top View  
Bottom View  
0.750 ± 0.050  
0.203 REF  
+ 0.100  
- 0.000  
0.000  
Side View  
All dimensions in millimeters.  
1. XYY = assembly and date code.  
2. Sample stock is generally held on part numbers listed in BOLD.  
3. Available exclusively outside of the United States and its territories.  
4. The leadless package family, which includes QFN, TQFN, DFN, TDFN and STDFN, has exposed copper (unplated) at the end of the lead terminals due to the manufacturing  
process. A solder fillet at the exposed copper edge cannot be guaranteed and is not required to ensure a proper bottom solder connection.  
w w w . a n a l o g i c t e c h . c o m  
3608.2010.08.1.3  
43  
PRODUCT DATASHEET  
AAT3608  
TM  
SystemPower Compact 7 Channel Regulator with Li+/Polymer Linear Battery Charger and I2C Interface  
Revision History  
Date  
Revision  
Edits  
1. edits to Typical Application drawing p.1.  
2. edits to Thermal Information p.3.  
3. edits to Buck Regulators p.27.  
4. edits to Low-Dropout Regulators p.28.  
5. edits to Acknowledge Bit p.32  
3. edits to Table 6 p.34.  
5/5/2010  
3608.2010.04.1.1  
4. edits to Table 10 p.35.  
5. edits to Fig.10 p.38.  
6. edits to Table 12 p.40.  
7. edits to Ordering Information p.41.  
1. Edits to General Description, Features, and Application sections p.1.  
2. edits to Typical Application drawing p.2.  
3. edits to pin description table p.3  
4. edits to Thermal Information p.4.  
5. Edits to Electrical Characteristics p.5.  
6. edits to curves p.8-22.  
7. edits to Block Diagram p.24.  
8. edits to SYSOUT p.25-26.  
9. Battery Temperature Fault Monitoring title added p.26.  
10. owchart replaced p.27.  
11. edits to Buck Regulators p.28.  
3608.2010.07.1.2 12. edits to Low-Dropout Regulators p.29.  
13. Figs. 2-3 replaced p.30.  
7/15/2010  
14. edits to Fig.7 p.31.  
15. edits to Fig.7 p.32.  
16. edits to Acknowledge Bit p.34  
17. Fig.9 replaced p.34.  
18. edits to Table 6 p.35.  
19. edits to Table 10 p.36.  
20. sections added to Application Information p.38.  
21. edits to Table 12 p.38.  
22. edits to Fig.10 p.40.  
23. edits to Ordering Information p.43.  
8/24/2010  
3608.2010.08.1.3  
1. Add footnote 3 p.43.  
Advanced Analogic Technologies, Inc.  
3230 Scott Boulevard, Santa Clara, CA 95054  
Phone (408) 737-4600  
Fax (408) 737-4611  
© Advanced Analogic Technologies, Inc.  
AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual  
property rights are implied. AnalogicTech reserves the right to make changes to their products or specications or to discontinue any product or service without notice. Except as provided in AnalogicTech’s terms and  
conditions of sale, AnalogicTech assumes no liability whatsoever, and AnalogicTech disclaims any express or implied warranty relating to the sale and/or use of AnalogicTech products including liability or warranties  
relating to tness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. In order to minimize risks associated with the customer’s applications, adequate  
design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to  
support this warranty. Specic testing of all parameters of each device is not necessarily performed. AnalogicTech and the AnalogicTech logo are trademarks of Advanced Analogic Technologies Incorporated. All other  
brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.  
w w w . a n a l o g i c t e c h . c o m  
44  
3608.2010.08.1.3  

相关型号:

AAT3620IWO-4.2-T1

Power Supply Management Circuit, PDSO14,
SKYWORKS

AAT3663

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663-4.2-1

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663-4.2-2

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663-8.4-1

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663-8.4-2

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663IWO-4.2-1-T1

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663IWO-4.2-1-T1

Power Supply Management Circuit, Adjustable, 1 Channel, PDSO14, TDFN-14
SKYWORKS

AAT3663IWO-4.2-2-T1

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663IWO-8.4-1-T1

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663IWO-8.4-2-T1

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663_08

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH