APW7057KC-TRL [ANPEC]

High Power Step-Down Synchronous DC/DC Controller; 高功率降压型同步DC / DC控制器
APW7057KC-TRL
型号: APW7057KC-TRL
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

High Power Step-Down Synchronous DC/DC Controller
高功率降压型同步DC / DC控制器

开关 光电二极管 控制器
文件: 总15页 (文件大小:419K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7057  
High Power Step-Down Synchronous DC/DC Controller  
Features  
General Description  
·
·
Operates from +5V Input  
The APW7057 is a 300kHz constant frequency voltage  
mode synchronous switching controller that drives exter-  
nal N-channel MOSFETs. When the input supply drops  
close to output, the upper MOSFET remains on, achiev-  
ing 100% duty cycle. Internal loop compensation is opti-  
mized for fast transient response, eliminating external  
compensation network. The precision 0.8V reference  
makes this part suitable for a wide variety of low voltage  
applications. Soft-start is internally set to 2ms, limiting  
the input in-rush current and preventing the output from  
overshoot during powering up.  
0.8V Internal Reference Voltage  
- ±1.5% Accuracy Over Line, Load and  
Temperature  
·
·
0.8V to VCC Output Range  
Full Duty Cycle Range  
- 0% to 100%  
·
·
Internal Loop Compensation  
Internal Soft-Start  
The APW7057 has over current and short circuit  
protections. Over current protection is achieved by moni-  
toring the voltage drop across the high side MOSFET,  
eliminating the need for a current sensing resistor and  
short circuit condition is detected through the FB pin. If  
either fault conditions occur, the APW7057 would initiate  
the soft-start cycle. After three cycles and if the fault condi-  
tion persists, the controller will be shut down. To restart  
the controller, either recycle the VCC supply or momen-  
tarily pull the OSCSET pin below 1.25V.  
- Typical 2ms  
·
Programmable Over-Current Protection  
- Lossless Sensing Using MOSFET RDS (ON)  
Under-Voltage Protection  
Drives External N-Channel MOSFETs  
Shutdown Control  
·
·
·
·
·
Small SOP-8 Package  
Lead Free and Green Devices Avaliable  
(RoHS Compliant)  
The APW7057 can be shutdown by pulling the OCSET  
pin below 1.25V. In shutdown, both gate drive signals will  
be low. The controller is available in a small SOP-8  
package.  
Applications  
·
·
·
·
·
·
·
Motherboard  
Pin Configuration  
Graphics Cards  
Cable or DSL Modems, Set Top Boxes  
DSP Supplies  
PHASE  
OCSET  
BOOT  
1
2
3
4
8
7
UGATE  
Memory Supplies  
6
5
GND  
FB  
5V Input DC-DC Regulators  
Distributed Power Supplies  
LGATE  
VCC  
SOP-8 (Top View )  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  
APW7057  
Ordering and Marking Information  
Package Code  
K : SOP-8  
Operating Junction Temperature Range  
APW7057  
°
C : 0 to 70 C  
Handling Code  
Assembly Material  
Handling Code  
TR : Tape & Reel  
Assembly Material  
Temperature Range  
Package Code  
L : Lead Free Device G : Halogen and Lead Free Device  
APW7057  
XXXXX  
APW7057 K :  
XXXXX - Date Code  
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which  
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for  
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen  
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by  
weight).  
Absolute Maximum Ratings  
Symbol  
Parameter  
Rating  
-0.3 ~ 7  
Unit  
V
VCC Supply Voltage (VCC to GND)  
VCC  
BOOT Supply Voltage (BOOT to GND)  
PHASE, OCSET to GND Input Voltage  
FB to GND Input Voltage  
VBOOT  
-0.3 ~ 15  
-0.3 ~ 12  
-0.3 ~ VCC+0.3  
125  
V
V
V
oC  
oC  
oC  
Maximum Junction Temperature  
Storage Temperature  
TSTG  
TSDR  
-65 ~ 150  
260  
Maximum Lead Soldering Temperature, 10 Seconds  
Thermal Characteristics  
Symbol  
Parameter  
Junction-to-Ambient Resistance in Free Air  
Typical Value  
Unit  
qJA  
oC/W  
SOP-8  
160  
Recommended Operating Conditions  
Symbol  
VCC  
VOUT  
VIN  
Parameter  
Range  
Unit  
V
VCC Supply Voltage  
±
5
5%  
Output Voltage of the Switching Regulator (Note)  
Input Voltage of the Switching Regulator (Note)  
Ambient Temperature  
0.8 ~ VCC  
3.3 ~ VCC  
0 ~ 70  
V
V
TA  
oC  
oC  
Junction Temperature  
TJ  
0 ~ 125  
Note : Refer to the typical application circuit  
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  
APW7057  
Electrical Characteristics  
Unless otherwise specified, these specifications apply over VCC=5V, VBOOT=12V and TA= 0~70 oC. Typical values are  
at T =25oC.  
A
APW7057  
Unit  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
SUPPLY CURRENT  
IVCC  
VCC Nominal Supply Current  
BOOT Nominal Supply Current  
UGATE and LGATE Open  
-
-
2.1  
2.1  
-
-
mA  
mA  
IBOOT  
UGATE Open  
UNDER VOLTAGE LOCKOUT (UVLO)  
Rising VCC Threshold  
4.0  
3.8  
4.2  
4.0  
4.4  
4.2  
V
V
Falling VCC Threshold  
OSCILLATOR  
FOSC  
Free Running Frequency  
Ramp Upper Threshold  
Ramp Lower Threshold  
Ramp Amplitude  
250  
300  
2.85  
0.95  
1.9  
340  
kHz  
V
-
-
-
-
-
-
V
D
VOSC  
VP-P  
REFERENCE VOLTAGE  
VREF Reference Voltage  
Reference Voltage Accuracy  
-
0.8  
-
-
V
-1.5  
+1.5  
%
ERROR AMPLIFIER  
DC Gain  
-
-
75  
10  
1
-
-
dB  
Hz  
kHz  
%
FP  
FZ  
First Pole Frequency  
First Zero Frequency  
UGATE Duty Range  
FB Input Current  
-
-
0
-
-
100  
0.1  
-
mA  
PWM CONTROLLER GATE DRIVERS  
UGATE Source  
VUAGTE=1V  
VUGATE=1V  
VLGATE=1V  
VLGATE=1V  
-
-
-
-
-
0.6  
7.3  
0.6  
1.8  
50  
-
-
-
-
-
A
W
A
UGATE Sink  
LGATE Source  
LGATE Sink  
W
nS  
TD  
Dead Time  
PROTECTION  
IOCSET  
UVFB  
OCSET Sink Current  
VOCSET=4.5V  
FB falling  
34  
-
40  
0.5  
15  
46  
-
mA  
V
FB Under-Voltage Level  
FB Under-Voltage Hysteresis  
-
-
mV  
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  
APW7057  
Electrical Characteristics (Cont.)  
Unless otherwise specified, these specifications apply over VCC=5V, VBOOT=12V and TA= 0~70 oC. Typical values are  
at T =25oC.  
A
APW7057  
Unit  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
SOFT-START AND SHUTDOWN  
TSS  
Soft-Start Interval  
-
-
-
2
-
-
-
mS  
V
Shutdown Threshold  
OCSET Shutdown Hysteresis  
VOCSET Falling  
1.25  
20  
mV  
Function Pin Description  
BOOT (Pin 1)  
OCSET (Pin 7)  
This pin provides the supply voltage to the high side  
MOSFET driver. A voltage no greater than 13V can be con-  
nected to this pin as a supply to the driver. For driving  
logic level N-channel MOSEFT, a bootstrap circuit can be  
use to create a suitable driver’s supply.  
This pin serves two functions: as a shutdown control and  
for setting the over current limit threshold. Pulling this pin  
below 1.25V shuts the controller down, forcing the UGATE  
and LGATE signals to be at 0V. A soft-start cycle will be  
initiated upon the release of this pin.  
A resistor (Rocset) connected between this pin and the drain  
of the high side MOSFET will determine the over current  
limit. An internally generated 40mA current source will flow  
through this resistor, creating a voltage drop. This volt-  
age will be compared with the voltage across the high  
side MOSFET. The threshold of the over current limit is  
therefore given by:  
UGATE(Pin 2)  
This pin provides gate drive for the high-side MOSFET.  
GND (Pin 3)  
Signal and power ground for the IC. All voltage levels are  
measured with respect to this pin. Tie this pin to the ground  
plane through the lowest impedance connection available.  
40uA x ROCSET  
IOI =  
LGATE(Pin 4)  
RDS(ON)  
This pin provides the gate drive signal for the low side  
MOSFET.  
An over current condition will cycle the soft-start function.  
After three consecutive cycles and if the fault condition  
persists, the controller will be shut down. To restart the  
controller, either recycle the VCC supply or momentarily  
pull the OSCSET pin below 1.25V.  
VCC (Pin 5)  
This is the main bias supply for the controller and its low  
side MOSFET driver. Must be closely decoupled to GND  
(Pin 3). DO NOT apply a voltage greater than 5.5V to this  
pin.  
PHASE (Pin 8)  
This pin is connected to the source of the high-side  
MOSFET and is used to monitor the voltage drop across  
the high-side MOSFET for over-current protection.  
FB (Pin 6)  
This pin is the inverting input of the error amplifier and it  
receives the feedback voltage from an external resistive  
divider across the output (VOUT). The output voltage is de-  
termined by:  
ROUT  
RGND  
VOUT = 0.8V(1+  
)
where ROUT is the resistor connected between VOUT  
and FB while RGND is the resistor connected from FB to  
GND.  
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  
APW7057  
Block Diagram  
VCC  
BOOT  
Shutdown  
UnderVoltage  
Lockout  
OCSET  
IOCSET  
40mA  
OC  
UVLO  
Comparator  
Soft-Start  
and Fault  
Logic  
OCP  
PHASE  
UGATE  
0.5V  
UVP  
Soft-Start  
Inhibit  
Gate  
Control  
PWM  
COMP  
FB  
-
VCC  
+
+
-
Error  
Amplifier  
REF  
V
LGATE  
GND  
0.8V  
OSC  
F
Oscillator  
300kHz  
Figure 1.  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  
APW7057  
Typical Application Circuit  
R3  
2.2  
C3  
1uF  
V
IN  
+5V  
5
+
C2  
1000uF x2  
C1  
1uF  
D1  
C7  
R4  
VCC  
1N4148  
470pF  
8.2k  
1
2
8
BOOT  
7
OCSET  
C4  
0.1uF  
Q3  
Q1  
Q2  
UGATE  
PHASE  
L1  
3.3uH  
VOUT  
+2.5V/10A  
Shutdown  
+
U1  
APW7057  
LGATE  
C5  
1000uF x2  
4
6
FB  
GND  
3
R1  
5.1k  
R2  
2.4k  
C6  
0.1uF  
Q1: APM2014N UC  
Q2: APM2014N UC  
Q3: 2N7002  
C2: 1000uF/10V, ESR = 25mW  
C5: 1000uF/6.3V, ESR = 25mW  
Figure 2.  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  
APW7057  
Typical Operating Characteristics  
Switching Frequency vs. Junction Temperature  
Reference Voltage vs. Junction Temperature  
350  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
-50  
-25  
0
25  
50  
75  
100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
Junction Temperature (oC)  
Junction Temperature (°C)  
OCSET Current vs. Junction Temperature  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
-50  
-25  
0
25  
50  
75  
100 125 150  
Junction Temperature (oC)  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  
APW7057  
Operating Waveforms (Refer to the typical application circuit)  
1. Load Transient Response : IOUT = 0A -> 10A -> 0A  
- IOUT slew rate = ±10A/mS  
IOUT = 0A -> 10A  
IOUT = 0A -> 10A -> 0A  
IOUT = 10A -> 0A  
VOUT  
VOUT  
VOUT  
VUGATE  
VUGATE  
10A  
IOUT  
IOUT  
IOUT  
0A  
Ch1 : VOUT, 100mV/Div, DC,  
Offset = 2.50V  
Ch1 : VOUT, 100mV/Div, DC,  
Offset = 2.50V  
Ch1 : VOUT, 100mV/Div, DC,  
Offset = 2.50V  
Ch2 : VUGATE, 10V/Div, DC  
Ax1 : IOUT, 5A/Div  
Time : 10mS/Div  
Ax1 : IOUT, 5A/Div  
Time : 100mS/Div  
BW = 20MHz  
Ch2 : VUGATE, 10V/Div, DC  
Ax1 : IOUT, 5A/Div  
Time : 10mS/Div  
BW = 20MHz  
BW = 20MHz  
2. UGATE and LGATE  
UGATERising  
UGATEFalling  
IOUT=10A  
IOUT=10A  
VUGATE  
VUGATE  
VLGATE  
VLGATE  
Ch1 : VUGATE, 2V/Div, DC  
Time : 125nS/Div  
Ch2 : VLGATE, 2V/Div, DC  
BW = 500MHz  
Ch1 : VUGATE, 2V/Div, DC  
Time : 125nS/Div  
Ch2 : VLGATE, 2V/Div, DC  
BW = 500MHz  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  
APW7057  
Operating Waveforms (Cont.)  
(Refer to the typical application circuit)  
3. Powering ON / OFF  
Soft-Start at Powering ON  
VIN  
PoweringOFF  
VIN  
VOUT  
VOUT  
Ch1 : VIN, 2V/Div, DC  
Time : 5mS/Div  
Ch2 : VOUT, 1V/Div, DC  
BW = 20MHz  
Ch1 : VIN, 2V/Div, DC  
Time : 1mS/Div  
Ch2 : VOUT, 1V/Div, DC  
BW = 20MHz  
4. Short-Circuit Protection  
Under-Voltage (UVP)  
UVP  
and Over-Current Protection (OCP)  
OCP  
OCP  
Ch1 : VOUT, 1V/Div, DC  
Ax1 : IOUT, 10A/Div  
Time : 1mS/Div  
VOUT  
BW = 20MHz  
IOUT  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  
APW7057  
Application Information  
Component Selection Guidelines  
Output Capacitor Selection  
The maximum ripple current occurs at the maximum in-  
put voltage. A good starting point is to choose the ripple  
current to be approximately 30% of the maximum output  
current.  
The selection of COUT is determined by the required effec-  
tive series resistance (ESR) and voltage rating rather than  
the actual capacitance requirement. Therefore, select high  
performance low ESR capacitors that are intended for  
switching regulator applications. In some applications,  
multiple capacitors have to be paralled to achieve the  
desired ESR value. If tantalum capacitors are used, make  
sure they are surge tested by the manufactures. If in doubt,  
consult the capacitors manufacturer.  
Once the inductance value has been chosen, select an  
inductor that is capable of carrying the required peak cur-  
rent without going into saturation. In some types of  
inductors, especially core that is make of ferrite, the ripple  
current will increase abruptly when it saturates. This will  
result in a larger output ripple voltage.  
MOSFETSelection  
Input Capacitor Selection  
The selection of the N-channel power MOSFETs are de-  
termined by the RDS(ON), reverse transfer capacitance (CRSS  
)
The input capacitor is chosen based on the voltage rating  
and the RMS current rating. For reliable operation, select  
the capacitor voltage rating to be at least 1.3 times higher  
than the maximum input voltage. The maximum RMS  
current rating requirement is approximately IOUT/2 , where  
IOUT is the load current. During power up, the input capaci-  
tors have to handle large amount of surge current. If tanta-  
lum capacitors are used, make sure they are surge tested  
by the manufactures. If in doubt, consult the capacitors  
and maximum output current requirement.The losses in  
the MOSFETs have two components: conduction loss and  
transition loss. For the upper and lower MOSFET, the  
losses are approximately given by the following equations:  
PUPPER = Io2ut (1+ TC)(RDS(ON))D + (0.5)(Iout)(VIN)(tsw)FS  
PLOWER = Io2ut (1+ TC)(RDS(ON))(1-D)  
where IOUT is the load current  
TC is the temperature dependency of RDS(ON)  
FS is the switching frequency  
tsw is the switching interval  
manufacturer.  
For high frequency decoupling, a ceramic capacitor be-  
tween 0.1mF to 1mF can be connected between VCC and  
ground pin.  
D is the duty cycle  
Inductor Selection  
Note that both MOSFETs have conduction losses while  
the upper MOSFET includes an additional transition loss.  
The switching internal, tsw, is the function of the reverse  
transfer capacitance CRSS. Figure 3 illustrates the switch-  
ing waveform internal of the MOSFET.  
The inductance of the inductor is determined by the out-  
put voltage requirement. The larger the inductance, the  
lower the inductor’s current ripple. This will translate into  
lower output ripple voltage. The ripple current and ripple  
voltage can be approximated by:  
VIN - VOUT  
Fs x L  
VOUT  
VIN  
Layout Consideration  
x
IRIPPLE  
=
In high power switching regulator, a correct layout is im-  
portant to ensure proper operation of the regulator. In  
general, interconnecting impedances should be mini-  
mized by using short, wide printed circuit traces. Signal  
and power grounds are to be kept separate and finally  
combined using ground plane construction or single point  
grounding. Figure 4 illustrates the layout, with bold lines  
indicating high current paths. Components along the bold  
lines should be placed close together.  
DVOUT = IRIPPLE x ESR  
where Fs is the switching frequency of the regulator.  
There is a tradeoff exists between the inductor’s ripple  
current and the regulator load transient response time. A  
smaller inductor will give the regulator a faster load tran-  
sient response at the expense of higher ripple current  
and vice versa.  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  
APW7057  
Application Information  
Layout Consideration (Cont.)  
V
IN  
Below is a checklist for your layout:  
CHF  
· Keep the switching nodes (UGATE, LGATE, and  
PHASE) away from sensitive small signal nodes since  
these nodes are fast moving signals. Therefore, keep  
traces to these nodes as short as possible.  
C
IN  
5
1
VCC  
BOOT  
+
· Decoupling capacitor CIN provides the bulk capacitance  
4
and needs to be placed close to the IC since it will  
provide the MOSFET drivers transient current  
requirement.  
LGATE  
APW7057  
2
8
COUT  
UGATE  
Q1  
Q2  
+
· The ground return of CIN must return to the combine  
COUT (-) terminal.  
PHASE  
L1  
V
OUT  
· Capacitor CBOOT should be connected as close to the  
BOOT and PHASE pins as possible.  
Figure 4. Recommended Layout Diagram  
· Capacitor CHF is to improve noise performance and a  
small 1mF ceramic capacitor will be sufficient.  
VDS  
t
Time  
sw  
Figure 3. Switching waveform across MOSFET  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  
APW7057  
Package Information  
SOP-8  
D
SEE VIEW A  
°
b
c
e
GAUGE PLANE  
SEATING PLANE  
L
VIEW A  
SOP-8  
S
Y
M
B
O
L
MILLIMETERS  
INCHES  
MIN.  
MAX.  
MIN.  
MAX.  
0.069  
0.010  
A
1.75  
0.25  
0.004  
0.049  
0.012  
0.007  
0.10  
1.25  
0.31  
0.17  
4.80  
5.80  
3.80  
A1  
A2  
b
0.020  
0.010  
0.51  
0.25  
5.00  
6.20  
4.00  
c
D
0.189  
0.228  
0.150  
0.197  
0.244  
0.157  
E
E1  
e
1.27 BSC  
0.050 BSC  
0.010  
0.016  
0.020  
0.050  
0.25  
0.40  
0.50  
1.27  
h
L
°
°
°
°
0
0
8
0
8
Note: 1. Follow JEDEC MS-012 AA.  
2. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.  
3. Dimension “E” does not include inter-lead flash or protrusions.  
Inter-lead flash and protrusions shall not exceed 10 mil per side.  
Copyright ã ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  
APW7057  
Carrier Tape & Reel Dimensions  
P0  
P2  
P1  
OD0  
A
K0  
A0  
A
OD1  
B
B
SECTION A-A  
SECTION B-B  
d
T1  
Application  
SOP-8  
A
H
T1  
C
d
D
W
E1  
F
12.4+2.00 13.0+0.50  
330.0±  
2.00  
50 MIN.  
1.5 MIN. 20.2 MIN. 12.0±0.30 1.75±0.10 5.5±0.05  
-0.00  
-0.20  
P0  
P1  
P2  
D0  
D1  
T
A0  
6.40±0.20 5.20±0.20 2.10±0.20  
(mm)  
B0  
K0  
1.5+0.10  
-0.00  
0.6+0.00  
-0.40  
4.0±0.10 8.0±0.10 2.0±0.05  
1.5 MIN.  
Devices Per Unit  
Package Type  
SOP-8  
Unit  
Tape & Reel  
Quantity  
2500  
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  
APW7057  
Reflow Condition (IR/Convection or VPR Reflow)  
tp  
TP  
Critical Zone  
TL to TP  
Ramp-up  
TL  
tL  
Tsmax  
Tsmin  
Ramp-down  
ts  
Preheat  
25  
°
t 25 C to Peak  
Time  
Reliability Test Program  
Test item  
SOLDERABILITY  
Method  
Description  
245°C, 5 sec  
MIL-STD-883D-2003  
MIL-STD-883D-1005.7  
JESD-22-B, A102  
MIL-STD-883D-1011.9  
MIL-STD-883D-3015.7  
JESD 78  
HOLT  
PCT  
TST  
ESD  
1000 Hrs Bias @125°C  
168 Hrs, 100%RH, 121°C  
-65°C~150°C, 200 Cycles  
VHBM > 2KV, VMM > 200V  
10ms, 1tr > 100mA  
Latch-Up  
Classification Reflow Profiles  
Profile Feature  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
Average ramp-up rate  
(TL to TP)  
Preheat  
3°C/second max.  
3°C/second max.  
100°C  
150°C  
60-120 seconds  
150°C  
200°C  
60-180 seconds  
- Temperature Min (Tsmin)  
- Temperature Max (Tsmax)  
- Time (min to max) (ts)  
Time maintained above:  
- Temperature (TL)  
183°C  
60-150 seconds  
217°C  
60-150 seconds  
- Time (tL)  
Peak/Classification Temperature (Tp)  
See table 1  
See table 2  
Time within 5°C of actual  
Peak Temperature (tp)  
10-30 seconds  
20-40 seconds  
Ramp-down Rate  
6°C/second max.  
6°C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to Peak Temperature  
Notes: All temperatures refer to topside of the package. Measured on the body surface.  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  
APW7057  
Classification Reflow Profiles (Cont.)  
Table 1. SnPb Eutectic Process – Package Peak Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350  
<2.5 mm  
³ 2.5 mm  
240 +0/-5°C  
225 +0/-5°C  
225 +0/-5°C  
225 +0/-5°C  
Table 2. Pb-free Process – Package Classification Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350-2000  
Volume mm3  
>2000  
<1.6 mm  
1.6 mm – 2.5 mm  
³ 2.5 mm  
260 +0°C*  
260 +0°C*  
250 +0°C*  
260 +0°C*  
250 +0°C*  
245 +0°C*  
260 +0°C*  
245 +0°C*  
245 +0°C*  
*Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the  
stated classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C)  
at the rated MSL level.  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,  
Sindian City, Taipei County 23146, Taiwan  
Tel : 886-2-2910-3838  
Fax : 886-2-2917-3838  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.5 - Jun., 2008  

相关型号:

APW7057KC-TU

High Power Step-Down Synchronous DC/DC Controller
ANPEC

APW7057_08

High Power Step-Down Synchronous DC/DC Controller
ANPEC

APW7058

Synchronous Buck PWM and Linear Controllers
ANPEC

APW7058KC-TR

Synchronous Buck PWM and Linear Controllers
ANPEC

APW7058KC-TRL

Synchronous Buck PWM and Linear Controllers
ANPEC

APW7058KC-TU

Synchronous Buck PWM and Linear Controllers
ANPEC

APW7058KC-TUL

Synchronous Buck PWM and Linear Controllers
ANPEC

APW7060

Dual Controllers - Step Down Synchronous PWM and Linear Controller
ANPEC

APW7060K

Dual Controllers - Step Down Synchronous PWM and Linear Controller
ANPEC

APW7060KC-TR

Dual Controllers - Step Down Synchronous PWM and Linear Controller
ANPEC

APW7060KC-TU

Dual Controllers - Step Down Synchronous PWM and Linear Controller
ANPEC

APW7061

Synchronous Buck PWM Controller
ANPEC