APW7065 [ANPEC]

Synchronous Buck PWM Controller; 同步降压PWM控制器
APW7065
型号: APW7065
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

Synchronous Buck PWM Controller
同步降压PWM控制器

控制器
文件: 总19页 (文件大小:763K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7065  
Synchronous Buck PWM Controller  
Features  
General Description  
TheAPW7065usesfixed300KHzswitchingfrequency,  
voltage mode, synchronous PWM controller which  
drivesdualN-channelMOSFETs. Thedeviceintegrates  
the control, monitoring and protection functions into a  
single package, provides one controlled power output  
with under-voltage and over-current protections.  
·
·
Single 12V Power Supply Required  
Fast Transient Response  
- 0~90% Duty Ratio  
·
·
0.8V Reference with 1% Accuracy  
Shutdown Function by Controlling  
COMP Pin Voltage  
The APW7065 provides excellent regulation for output  
load variation. The internal 0.8V temperature-  
compensated reference voltage is designed to meet  
the requirement of low output voltage applications. An  
built-in digital soft-start with fixed soft-start interval  
prevents the output voltage from overshoot as well as  
limiting the input current.  
·
·
·
·
Internal Soft-Start (3.4ms) Function  
Voltage Mode PWM Control Design  
Under-VoltageProtection  
Over-CurrentProtection  
- Sense Low Side MOSFET’s RDS(ON)  
300KHz Fixed Switching Frequency  
·
·
·
The APW7065 with excellent protection functions:  
POR, OCP and UVP. The Power-On Reset (POR)  
circuit can monitor VCC supply voltage exceeds its  
threshold voltage while the controller is running, and a  
built-in digital soft-start provides output with controlled  
voltage rise. The Over-Current Protection (OCP)  
monitors the output current by using the voltage drop  
across the lower MOSFET’s RDS(ON), comparing with  
internal VOCP (0.27V), when the output current reaches  
the trip point, the controller will run the soft-start  
function until the fault events are removed. The Under-  
Voltage Protection (UVP) monitors the voltage of FB  
pin for short-circuit protection, when the VFB is less  
than 50% of VREF (0.4V), the controller will shutdown  
the IC directly.  
SOP-8 Package  
Lead FreeAvailable (RoHSCompliant)  
Applications  
·
·
Graphics Card  
Mother Board  
Pinouts  
BOOT  
UGATE  
GND  
PHASE  
COMP  
FB  
1
2
8
7
6
5
3
4
LGATE  
VCC  
SOP-8  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Ordering and Marking Information  
PackageCode  
APW 7065  
K : SOP-8  
OperatingAmbientTemp. Range  
E : -20 to 70 °C  
LeadFreeCode  
HandlingCode  
Temp.Range  
PackageCode  
HandlingCode  
TU : Tube  
TR : Tape & Reel  
LeadFreeCode  
L : Lead Free Device  
Blank : Original Device  
APW7065  
XXXXX  
APW7065 K :  
XXXXX-DateCode  
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate  
termination finish; which are fully compliant with RoHS and compatible with both SnPb and lead-free soldering  
operations. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C  
for MSL classification at lead-free peak reflow temperature.  
Block Diagram  
VCC  
GND  
BOOT  
Power-On  
Reset  
UGATE  
Sense Low Side  
O.C.P  
Comparator  
Digital  
Soft Start  
PHASE  
0.27V  
U.V.P  
50%VREF  
Comparator  
:
2
Error Amp  
PWM  
Comparator  
Gate Control  
LGATE  
VREF  
Sawtooth  
Wave  
Oscillator  
FOSC  
300KHz  
FB  
COMP  
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Application Circuit  
1N4148  
12V  
VIN (12V)  
1uH  
2.2R  
1uF  
1uF  
470uFx2  
470uF  
5
1
VCC  
BOOT  
0.1uF  
Q1  
2
8
APM2509  
UGATE  
PHASE  
1uH  
(1.2V)  
VOUT  
Q3  
2N7002  
7
6
COMP  
FB  
Q2  
APM2506  
ON/OFF  
4
470uFx2  
LGATE  
33nF  
8.2nF  
GND  
3
2.7K  
1K  
2K  
18R  
68nF  
Absolute Maximum Ratings  
Symbol  
VCC  
Parameter  
Rating  
Unit  
V
VCC to GND  
-0.3 ~ 16  
-0.3 ~ 16  
V
BOOT  
BOOT to PHASE  
UGATE to PHASE  
<400nS pulse width  
>400nS pulse width  
-5 ~ BOOT+5  
-0.3 ~ BOOT+0.3  
UGATE  
V
LGATE to GND  
PHASE to GND  
<400nS pulse width  
>400nS pulse width  
<400nS pulse width  
>400nS pulse width  
-5 ~ VCC+5  
-0.3 ~ VCC+0.3  
-5 ~ 21  
LGATE  
PHASE  
V
V
-0.3 ~ 16  
-0.3 ~ 7  
-20 ~ 150  
-65 ~ 150  
300  
V
COMP, FB  
TJ  
COMP, FB to GND  
oC  
oC  
oC  
kV  
Junction Temperature Range  
TSTG  
Storage Temperature  
TSDR  
Maximum Soldering Temperature, 10 Seconds  
VESD  
Minimum ESD Rating (Human Body Mode) (Note 2)  
±2  
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
Note 2: The device is ESD sensitive. Handling precautions are recommended.  
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Recommended Operating Conditions  
Symbol  
VCC  
VOUT  
VIN  
Parameter  
VCC Supply Voltage  
Range  
10.8 ~ 13.2  
0.8 ~ 5  
Unit  
V
Converter Output Voltage  
Converter Input Voltage  
V
V
2.9 ~ 13.2  
0 ~ 20  
IOUT  
TA  
A
Converter Output Current  
Ambient Temperature Range  
Junction Temperature Range  
-20 ~ 70  
-20 ~ 125  
oC  
oC  
TJ  
Electrical Characteristics  
Unless otherswise specified, these specifications apply over VCC=12V, and TA=-20~70oC. Typlcal values are at  
TA=25oC.  
APW7065  
Symbol  
Parameter  
Test Conditions  
Unit  
Min  
Typ  
Max  
SUPPLY CURRENT  
UGATE and LGATE Open  
5
1
10  
2
mA  
mA  
IVCC  
VCC Nominal Supply Current  
VCC Shutdown Supply Current UGATE, LGATE = GND  
POWER-ON RESET  
Rising VCC Threshold  
9
9.5  
8
10  
V
V
V
Falling VCC Threshold  
7.5  
8.5  
COMP Shutdown Threshold  
COMP Shutdown Hysteresis  
1.2  
0.1  
V
OSCILLATOR  
FOSC Free Running Frequency  
Ramp Amplitude  
255  
-1.0  
300  
1.6  
345  
kHz  
VP-P  
D
VOSC  
REFERENCE VOLTAGE  
VREF Reference Voltage  
Accuracy  
Measured at FB Pin  
0.8  
V
+1.0  
%
°
TA =-20~70 C  
ERROR AMPLIFIER  
Gain Open Loop Gain  
L
L
R =10k, C =10pF(Note3)  
88  
15  
6
dB  
MHz  
V/us  
uA  
GBWP  
SR  
L
L
Open Loop Bandwidth  
Slew Rate  
R =10k, C =10pF(Note3)  
L
L
R =10k, C =10pF(Note3)  
FB Input Current  
COMP High Voltage  
VFB = 0.8V(Note3)  
0.1  
5.5  
0
1
VCOMP  
V
VCOMP COMP Low Voltage  
V
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Electrical Characteristics (Cont.)  
Unless otherswise specified, these specifications apply over VCC=12V and TA =-20~70oC. Typlcal values are  
atTA=25oC.  
APW7065  
Unit  
Symbol  
Parameter  
Test Conditions  
Min Typ Max  
ERROR AMPLIFIER (Cont.)  
ICOMP  
COMP Source Current  
VCOMP=2V  
5
5
mA  
mA  
ICOMP COMP Sink Current  
VCOMP=2V  
GATE DRIVERS  
IUGATE Upper Gate Source Current  
IUGATE Upper Gate Sink Current  
BOOT = 12V, VUGATE -VPHASE = 2V  
BOOT = 12V, VUGATE -VPHASE = 2V  
2.6  
A
A
1.05  
ILGATE Lower Gate Source Current  
ILGATE Lower Gate Sink Current  
VCC = 12V, VLGATE = 2V  
VCC = 12V, VLGATE = 2V  
4.9  
1.4  
A
A
Upper Gate Source Impedance BOOT = 12V, IUGATE = 0.1A  
2
RUGATE  
RUGATE  
3
W
W
W
W
nS  
Upper Gate Sink Impedance  
BOOT = 12V, IUGATE = 0.1A  
1.6  
2.4  
RLGATE Lower Gate Source Impedance VCC = 12V, ILGATE = 0.1A  
1.3 1.95  
Lower Gate Sink Impedance  
Dead Time  
VCC = 12V, ILGATE = 0.1A  
1.25  
20  
RLGATE  
TD  
1.88  
PROTECTIONS  
VOCP Over-Current Reference Voltage  
0.23 0.27 0.31  
V
TA =-20~70°C  
Under-Voltage Threshold  
Trip Point  
VUVP  
Percent of VREF  
45  
50  
55  
%
SOFT-START  
TSS Soft-Start Interval  
2
3.4  
5
ms  
Note 3: Guaranteed by design.  
Functional Pin Description  
GND (Pin 3)  
BOOT (Pin 1)  
TheGNDterminal providesreturnpathfor theIC’sbias  
current and the low-side MOSFET driver’s pull-low  
current. Connect thepin to the system ground viavery  
low impedance layout on PCBs.  
A bootstrap circuit with a diode connected to VCC is  
used to create a voltage suitable to drive a logic-level  
N-channel MOSFET.  
UGATE (Pin 2)  
LGATE(Pin 4)  
Connect thispintothehigh-sideN-channel MOSFET’s  
gate. This pin provides gate drive for the high-side  
MOSFET.  
Connect thispinto thelow-side N-channel MOSFET’s  
gate. This pin provides gate drive for the low-side  
MOSFET.  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Functional Pin Description (Cont.)  
VCC (Pin 5)  
FB pin is also monitored for under voltage events.  
Connect this pin to a 12V supply voltage. This pin  
provides bias supply for the control circuitry and the  
low-side MOSFET driver. The voltage at this pin is  
monitored for the Power-On Reset (POR) purpose. It  
is recommended that a decoupling capacitor (1 to  
10uF) be connected to GNDfor noise decoupling.  
COMP (Pin 7)  
Thispin isthe output of PWM error amplifier. It isused  
to set the compensation components. In addition, if  
the pin is pulled below 1.2V, it will disable the device.  
PHASE (Pin 8)  
FB (Pin 6)  
This pin is the return path for the upper gate driver.  
This pin is the inverting input of the internal error Connect this pin to the upper MOSFET source. This  
amplifier. Connect this pin to the output (VOUT) of the pin isalso used to monitor the voltage drop acrossthe  
converter via an external resistor divider for closed- MOSFET for over-current protection.  
loop operation. The output voltage set by the resistor  
divider is determined using the following formula :  
R1  
R2  
æ
ö
VOUT = 0.8 ´ 1+  
ç
÷
è
ø
where R1 is the resistor connected from VOUT to FB ,  
and R2 is the resistor connected from FB toGND. The  
Typical Characteristics  
Power On  
PowerOff  
VCC=12V, Vin=12V  
Vo=1.2V, L=1uH  
CH1  
CH2  
VCC=12V, Vin=12V  
Vo=1.2V, L=1uH  
CH1  
CH2  
CH3  
CH3  
CH4  
CH4  
CH1: VCC (5V/div)  
CH2: VFB (1V/div)  
CH3: Vo (1V/div)  
CH4: Ug (20/Vdiv)  
Time: 10ms/div  
CH1: VCC (5V/div)  
CH2: VFB (1V/div)  
CH3: Vo (1V/div)  
CH4: Ug (20/Vdiv)  
Time: 10ms/div  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Typical Characteristics (Cont.)  
Shutdown  
EN  
VCC=12V, Vin=12V  
Vo=1.2V, L=1uH  
VCC=12V, Vin=12V  
Vo=1.2V, L=1uH  
CH1  
CH1  
CH2  
CH3  
CH2  
CH3  
CH4  
CH4  
CH1: VCOMP (2V/div)  
CH2: Vo (1V/div)  
CH3: Ug (20V/div)  
CH4: Lg (10Vdiv)  
Time: 5ms/div  
CH1: VCOMP (2V/div)  
CH2: Vo (1V/div)  
CH3: Ug (20V/div)  
CH4: Lg (10Vdiv)  
Time: 20us/div  
UGATE Rising  
UGATE Falling  
VCC=12V, Vin=12V  
Vo=1.2V, L=1uH  
Iout=5A  
VCC=12V, Vin=12V  
Vo=1.2V, L=1uH  
Iout=5A  
CH1  
CH1  
CH2  
CH3  
CH2  
CH3  
CH1: IL (10A/div)  
CH2: Vo (1V/div)  
CH3: Ug (20V/div)  
CH4: Lg(10V/div)  
Time: 100us/div  
CH1: Ug (20V/div)  
CH2: Lg (5V/div)  
CH3: Phase (10V/div)  
Time: 50ns/div  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Typical Characteristics (Cont.)  
Load Transient Response  
Under Voltage Protection  
VCC=12V, Vin=12V  
Vo=1.2V, L=1uH  
VCC=12V, Vin=12V  
Vo=1.2V, L=4.7uH  
CH1  
CH2  
CH1  
0
10A  
CH3  
CH4  
0A  
CH2  
CH1: IL (10A/div)  
CH2: Vo (1V/div)  
CH3: Ug (20V/div)  
CH4: Lg (10V/div)  
Time: 100us/div  
CH1: Vo (500mV/div,AC)  
CH2:Io (5A/div)  
Time: 1ms/div  
1
2
1
2
Over Current Protection  
Short Test  
VCC=12V, Vin=12V,Vo=1.2V, L=1uH,  
L_side: APM2023, Rds(on)=17mΩ  
VCC=12V, Vin=12V  
Vo=1.2V, L=1uH  
CH1  
CH2  
CH1  
CH2  
CH3  
CH4  
CH3  
CH4  
CH1: IL (10A/div)  
CH2: Vo (2V/div)  
CH3: Ug (20V/div)  
CH4: Lg (10V/div)  
Time: 2ms/div  
CH1: IL (10A/div)  
CH2: Vo (2V/div)  
CH3: Ug (20V/div)  
CH4: Lg (10V/div)  
Time: 5ms/div  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Typical Characteristics (Cont.)  
Switching Frequency vs. Junction Temperature  
ReferenceVoltage vs. JunctionTemperature  
0.804  
310  
VCC=12V  
VCC=12V  
305  
300  
295  
290  
285  
280  
275  
0.802  
0.8  
0.798  
0.796  
0.794  
0.792  
-40 -20  
0
20 40 60 80 100 120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Junction Temperature (°C)  
Junction Temperature (°C)  
UGATE Source Current vs. UGATE Voltage  
UGATE Sink Current vs. UGATEVoltage  
3.5  
3
VBOOT=12V  
VBOOT=12V  
PHASE=2V  
2.5  
3
PHASE=2V  
2.5  
2
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
UGATEVoltage (V)  
UGATEVoltage (V)  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Typical Characteristics (Cont.)  
LGATE Sink Current vs. LGATE Voltage  
LGATE Source Current vs. LGATEVoltage  
6
3.5  
3
2.5  
2
VCC=12V  
5
VCC=12V  
4
3
2
1
0
1.5  
1
0.5  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
LGATEVoltage (V)  
LGATEVoltage (V)  
Functional Description  
Power On Reset (POR)  
seconds and then begin soft start. During soft-start,  
an internal ramp connected to the one of the positive  
inputs of the Gm amplifier rises up from 0V to 2V to  
replace the reference voltage (0.8V) until the ramp  
voltage reaches the reference voltage. The soft-start  
interval is decided by the oscillator frequency  
(300kHz). The formulation is given by:  
The Power-On Reset (POR) function of APW7065  
continually monitors the input supply voltage (VCC)  
and the COMP pin. The supply voltage (VCC) must  
exceed its rising POR threshold voltage. The POR  
function initiates soft-start operation after VCC and  
COMP voltages exceed their POR thresholds. For  
operation with a single +12V power source, VIN and  
VCC are equivalent and the +12V power source must  
exceed the rising VCC threshold. The POR function  
inhibits operation at disabled status (VCOMP is less  
than 1.2V). With both input supplies above their POR  
thresholds, the device initiates a soft-start interval.  
Tdelay = t2 - t1 = 2048/FOSC = 6.8ms  
Tsoft- start = t3 - t2 =1024/FOSC =3.4ms  
Soft-Start  
Figure 2. shows more detail of the FB voltage ramp.  
The FB voltage soft-start ramp is formed with many  
small steps of voltage. The voltage of one step is about  
12.5mV in FB, and the period of one step is about 16/  
FOSC. This method provides a controlled voltage rise  
The APW7065 has a built-in digital soft-start to con-  
trol the output voltage rise and limit the current surge  
during the start-up. In Figure 1, when VCC exceeds  
rising POR threshold voltage, it will delay 2048/Fosc  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Functional Description (Cont.)  
Soft-Start (Cont.)  
- TheMOSFET’sRDS(ON) isvariedbytemperatureand  
gate to source voltage, the user should de-  
termine the maximum RDS(ON) in manufacturer’s  
datasheet.  
and prevents the large peak current to charge output  
capacitor.  
Voltage(V)  
- The minimum Vocset should be usedin the above  
equation.  
- Note that the ILIMIT is the current flow through the  
lower MOSFET; ILIMIT must be greater than maxi-  
mum output current add the half of inductor ripple  
current.  
VCC  
VOUT  
Shutdown and Enable  
Pulling the COMP voltage to GND by an open drain  
transistor, shown in typical application circuit,  
shutdown theAPW7065PWM controller. In shutdown  
mode, the UGATE and LGATE turn off and pull to  
PHASE andGNDrespectively.  
Time  
t1  
t2 t3  
Figure 1.  
Voltage(V)  
FB  
Under Voltage Protection  
12.5mV  
The FB pin is monitored during converter operation by  
the internal Under Voltage (UV) comparator. If the FB  
voltage drops below 50% of the reference voltage (50%  
of 0.8V = 0.4V), a fault signal is internally generated,  
and the device turns off both high-side and low-side  
MOSFET and the converter’s output is latched to be  
floating.  
16/Fosc  
Time  
Figure 2.  
Over-Current Protection  
Theover-current protectionmonitorsthe output current  
by using the voltage drop acrossthe lower MOSFET’s  
Application Information  
RDS(ON) and thisvoltage dropwill be compared with the Output Voltage Selection  
internal 0.27V reference voltage. If the voltage drop  
The output voltage can be programmed with a resistive  
across the lower MOSFET’s RDS(ON) is larger than  
0.27V, an over-current condition is detected. The  
threshold of the over current limit is given by:  
divider. Use 1% or better resistors for the resistive  
divider is recommended. The FB pin is the inverter  
input of the error amplifier, and the reference voltage  
is 0.8V. The output voltage is determined by:  
0.27  
ILimit  
=
RDS(ON)  
æ
ç
è
ö
R OUT  
R GND  
ç
÷
÷
ø
VOUT = 0.8 ´ 1 +  
For the over-current is never occurred in the normal  
operating load range; the variation of all parameters in  
the above equation should be determined.  
Where ROUT is the resistor connected from VOUT to FB  
and RGND is the resistor connected from FB to GND.  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Application Information (Cont.)  
Output Inductor Selection  
capacitors are used, make sure they are surge tested  
by the manufactures. If in doubt, consult the capacitors  
manufacturer.  
The inductor value determines the inductor ripple  
current and affects the load transient response. Higher  
inductor value reduces the inductor’s ripple current and Input Capacitor Selection  
induces lower output ripple voltage. The ripple current  
The input capacitor is chosen based on the voltage  
and ripple voltage can be approximated by:  
rating and the RMS current rating. For reliable  
operation, select the capacitor voltage rating to be at  
least 1.3 times higher than the maximum input voltage.  
The maximum RMS current rating requirement is  
approximately IOUT/2, where IOUT is the load current.  
During power up, the input capacitors have to handle  
large amount of surge current. If tantalum capacitors  
are used, make sure they are surge tested by the  
manufactures. If in doubt, consult the capacitors  
manufacturer. For high frequency decoupling, a ceramic  
capacitor 1uF can be connected between the drain of  
upper MOSFET and the source of lower MOSFET.  
VIN - VOUT  
FS ´ L  
VOUT  
VIN  
IRIPPLE  
=
´
DVOUT = IRIPPLE ´ ESR  
where FS is the switching frequency of the regulator.  
Although increase of the inductor value reduces the  
ripple current and voltage, a tradeoff willexist between  
the inductor’s ripple current and the regulator load  
transient response time.  
A smaller inductor will give the regulator a faster load  
transient response at the expense of higher ripple  
current. The maximum ripple current occurs at the  
maximum input voltage. A good starting point is to  
choose the ripple current to be approximately 30%  
of the maximum output current. Once the inductance  
value has been chosen, select an inductor that is ca-  
pable of carrying the required peak current without  
going into saturation. In some types of inductors, es-  
pecially core that is made of ferrite, the ripple current  
will increase abruptly when it saturates. This will re-  
sult in a larger output ripple voltage.  
MOSFET Selection  
The selection of the N-channel power MOSFETs are  
determined by the RDS(ON), reverse transfer capacitance  
(CRSS)andmaximumoutputcurrentrequirement. There  
are two components of loss in the MOSFETs:  
conduction loss and transition loss. For the upper  
and lower MOSFET, the losses are approximately  
given by the following:  
PUPPER = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FS  
PLOWER = IOUT (1+ TC)(RDS(ON))(1-D)  
Output Capacitor Selection  
Where IOUT is the load current  
Higher capacitor value and lower ESR reduce the  
output ripple and the load transient drop. Therefore,  
selecting high performance low ESR capacitors is  
intended for switching regulator applications. In some  
applications, multiple capacitors have to be parallel to  
achieve the desired ESR value. A small decoupling  
capacitor in parallel for bypassing the noise is also  
recommended, and the voltage rating of the output  
capacitors also must be considered. If tantalum  
TC is the temperature dependency of RDS(ON)  
FS is the switching frequency  
tSW is the switching interval  
D is the duty cycle  
Note that both MOSFETs have conduction loss while  
the upper MOSFET include an additional transition  
loss. The switching internal, tSW, is a function of the  
reverse transfer capacitance CRSS. The (1+TC) term is  
12 www.anpec.com.tw  
Copyright ã ANPEC Electronics Corp.  
Rev. A.1 - Feb., 2006  
APW7065  
Application Information (Cont.)  
MOSFET Selection (Cont.)  
FLC  
to factor in the temperature dependency of the RDS(ON)  
and can be extracted from the “RDS(ON) vs Temperature”  
curve of the power MOSFET.  
-40dB/dec  
PWM Compensation  
FESR  
The output LC filter of a step down converter introduces  
a double pole, which contributes with -40dB/decade  
gain slope and 180 degrees phase shift in the control  
loop. A compensation network among COMP, FB and  
VOUT should be added. The compensation network is  
shown in Fig. 6. The output LC filter consists of the  
output inductor and output capacitors. The transfer  
-20dB/dec  
Frequency(Hz)  
Figure 4. The LC Filter GAIN and Frequency  
function of the LC filter is given by:  
The PWM modulator is shown in Figure 5. The input  
is the output of the error amplifier and the output is the  
PHASE node. The transfer function of the PWM  
modulator is given by:  
VIN  
GAIN  
=
PWM  
DVOSC  
1 + s ´ ESR ´ COUT  
s2 ´ L ´ COUT + s ´ ESR ´ COUT + 1  
GAIN  
=
LC  
VIN  
Driver  
The poles and zero of this transfer functions are:  
1
OSC  
PWM  
Comparator  
ΔVOSC  
FLC  
=
2 ´ p ´ L ´ COUT  
PHASE  
Output of  
Error Amplifier  
1
FESR  
=
2 ´ p ´ ESR ´ COUT  
Driver  
The FLC is the double poles of the LC filter, and FESR is  
the zero introduced by the ESR of the output capacitor.  
Figure 5. The PWM Modulator  
The compensation network is shown in Figure 6. It  
provides a close loop transfer function with the highest  
zero crossover frequency and sufficient phase margin.  
The transfer function of error amplifier is given by:  
PHASE  
L
OUTPUT  
COUT  
1
1
sC2  
1
æ
ö
÷
// R2 +  
ç
VCOMP  
VOUT  
sC1  
è
æ
ø
GAIN  
=
=
AMP  
ö
ESR  
R1// R3 +  
ç
÷
sC3  
è
ø
æ
ö
ö
1
1
æ
s +  
´ çs +  
÷
÷
ç
÷
ç
R2 ´ C2  
(
R1+ R3  
)
´ C3  
R1+ R3  
è
ø
è
ø
=
´
Figure 3. The Output LC Filter  
C1+ C2  
1
R1´ R3 ´ C1  
æ
ö æ  
ö
s s +  
´
s +  
ç
÷ ç  
÷
R2 ´ C1´ C2  
R3 ´ C3  
è
ø è  
ø
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Application Information (Cont.)  
PWM Compensation (Cont.)  
Calculate the C2 by the equation:  
1
The poles and zeros of the transfer function are:  
1
C2 =  
2 ´ p ´ R2 ´ FLC ´ 0.75  
FZ1  
=
4.Set the pole at the ESR zero frequency FESR  
FP1 = FESR  
:
2 ´ p ´ R2 ´ C2  
1
FZ2  
=
2 ´ p ´  
(
R1 + R3 ´ C3  
)
Calculate the C1 by the equation:  
C2  
1
FP1  
=
C1 =  
C1´ C2  
C1 + C2  
æ
ö
÷
2 ´ p ´ R2 ´ C2 ´ FESR - 1  
2 ´ p ´ R2 ´  
ç
è
ø
5.Set the second pole FP2 at the half of the switching  
frequency and also set the second zero FZ2 at the  
output LC filter double pole FLC. The compensation  
gain should not exceed the error amplifier open loop  
gain, check the compensation gain at FP2 with the  
capabilities of the error amplifier.  
1
FP2  
=
2 ´ p ´ R3 ´ C3  
C1  
R3  
C3  
C2  
R2  
VOUT  
FB  
VCOMP  
R1  
FP2 = 0.5 X FO  
FZ2 = FLC  
VREF  
Figure 6. Compensation Network  
Combine the two equations will get the following  
component calculations:  
The closed loop gain of the converter can be written  
as:  
R1  
FS  
R3 =  
GAINLC X GAINPWM X GAINAMP  
- 1  
2 ´ FLC  
Figure 7. shows the asymptotic plot of the closed loop  
converter gain, and the following guidelines will help  
to design the compensation network. Using the below  
guidelines should give a compensation similar to the  
curve plotted. A stable closed loop has a -20dB/ decade  
slope and a phase margin greater than 45 degree.  
1
C3 =  
p ´ R3 ´ FS  
FZ1 FZ2 FP1  
FP2  
1.Choose a value for R1, usually between 1K and 5K.  
2.Select the desired zero crossover frequency FO:  
(1/5 ~ 1/10) X FS >FO>FESR  
Compensation  
Gain  
20log  
(R2/R1)  
20log  
(VIN/ΔVOSC)  
Use the following equation to calculate R2:  
FLC  
DVOSC FO  
FESR  
R2 =  
´
´ R1  
Converter  
Gain  
VIN  
F
LC  
PWM & Filter  
Gain  
3.Place the first zero FZ1 before the output LC filter  
double pole frequency FLC.  
Frequency(Hz)  
Figure 7. Converter Gain and Frequency  
FZ1 = 0.75 X FLC  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Application Information (Cont.)  
the resistor dividers, and boot capacitors should  
be close their pins. (For example, place the  
decoupling ceramic capacitor near the drain of the  
high-side MOSFET as close as possible. The bulk  
capacitors are also placed near the drain).  
LayoutConsiderations  
In any high switching frequency converter, a correct  
layout is important to ensure proper operation of the  
regulator. With power devices switching at 300KHz,  
the resulting current transient will cause voltage spike  
across the interconnecting impedance and parasitic  
circuit elements. As an example, consider the turn-off  
transition of the PWM MOSFET. Before turn-off, the  
MOSFET is carrying the full load current. During  
turn-off, current stops flowing in the MOSFETand is  
free-wheeling by the lower MOSFET and parasitic  
diode. Any parasitic inductance of the circuit generates  
a large voltage spike during the switching interval. In  
general, using short, wide printed circuit traces  
should minimize interconnecting impedances and  
the magnitude of voltage spike. And signal and power  
grounds are to be kept separate till combined using  
ground plane construction or single point grounding.  
Figure 8. illustrates the layout, with bold lines indicating  
high current paths; these traces must be short and  
wide. Components along the bold lines should be  
placed lose together. Below is a checklist for your  
layout:  
- The input capacitor should be near the drain of  
the upper MOSFET; the output capacitor should  
be near the loads. The input capacitor GND should  
be close to the output capacitor GND and the lower  
MOSFETGND.  
- The drain of the MOSFETs (VIN and PHASE  
nodes) should be a large plane for heat sinking.  
APW7065  
VIN  
VCC  
BOOT  
L
O
A
D
UGATE  
PHASE  
LGATE  
VOUT  
Figure 8.Layout Guidelines  
- Keep the switching nodes (UGATE, LGATE and  
PHASE) away from sensitive small signal nodes  
since these nodes are fast moving signals.  
Therefore, keep traces to these nodes as short as  
possible.  
- The traces from the gate drivers to the MOSFETs  
(UG, LG) should be short and wide.  
- Place the source of the high-side MOSFET and  
the drain of the low-side MOSFET as close  
possible. Minimizing the impedance with wide  
layout plane between the two pads reduces the  
voltage bounce of the node.  
- Decoupling capacitor, compensation component,  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Package Information  
SOP-8 pin (Reference JEDEC Registration MS-012)  
E
H
e1  
e2  
D
A1  
A
1
L
0.004max.  
Millimeters  
Inches  
Dim  
Min.  
1.35  
0.10  
4.80  
3.80  
5.80  
0.40  
0.33  
Max.  
1.75  
0.25  
5.00  
4.00  
6.20  
1.27  
0.51  
Min.  
Max.  
0.069  
0.010  
0.197  
0.157  
0.244  
0.050  
0.020  
A
A1  
D
0.053  
0.004  
0.189  
0.150  
0.228  
0.016  
0.013  
E
H
L
e1  
e2  
1.27BSC  
0.50BSC  
0°  
8°  
0°  
8°  
f
1
Copyright ã ANPEC Electronics Corp.  
16  
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Physical Specifications  
Terminal Material  
Lead Solderability  
Solder-Plated Copper (Solder Material : 90/10 or 63/37 SnPb), 100%Sn  
Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3.  
Reflow Condition (IR/Convection or VPR Reflow)  
tp  
TP  
Critical Zone  
TL to TP  
Ramp-up  
TL  
tL  
Tsmax  
Tsmin  
Ramp-down  
ts  
Preheat  
25  
°
t 25 C to Peak  
Time  
Classificatin Reflow Profiles  
Profile Feature  
Average ramp-up rate  
(TL to TP)  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
°
°
3 C/second max.  
3 C/second max.  
Preheat  
°
°
150 C  
100 C  
-
-
-
Temperature Min (Tsmin)  
Temperature Max (Tsmax)  
Time (min to max) (ts)  
°
°
150 C  
200 C  
60-120 seconds  
60-180 seconds  
Time maintained above:  
°
°
183 C  
217 C  
-
Temperature (TL)  
Time (tL)  
60-150 seconds  
60-150 seconds  
-
Peak/Classificatioon Temperature (Tp)  
See table 1  
See table 2  
°
Time within 5 C of actual  
10-30 seconds  
20-40 seconds  
Peak Temperature (tp)  
Ramp-down Rate  
°
°
6 C/second max.  
6 C/second max.  
6 minutes max.  
8 minutes max.  
°
Time 25 C to Peak Temperature  
Notes: All temperatures refer to topside of the package .Measured on the body surface.  
Copyright ã ANPEC Electronics Corp.  
17  
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Classification Reflow Profiles (Cont.)  
Table 1. SnPb Entectic Process – Package Peak Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350  
<2.5 mm  
°
°
240 +0/-5 C  
225 +0/-5 C  
³ 2.5 mm  
225 +0/-5°C  
225 +0/-5°C  
Table 2. Pb-free Process – Package Classification Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350-2000  
Volume mm3  
>2000  
<1.6 mm  
1.6 mm – 2.5 mm  
³ 2.5 mm  
°
°
°
260 +0 C*  
260 +0 C*  
260 +0 C*  
260 +0°C*  
250 +0°C*  
250 +0°C*  
245 +0°C*  
245 +0°C*  
245 +0°C*  
*Tolerance: The device manufacturer/supplier shall assure process compatibility up to and  
°
including the stated classification temperature (this means Peak reflow temperature +0 C.  
°
°
For example 260 C+0 C) at the rated MSL level.  
Reliability Test Program  
Test item  
SOLDERABILITY  
HOLT  
PCT  
Method  
MIL-STD-883D-2003  
MIL-STD-883D-1005.7  
JESD-22-B,A102  
Description  
245 C, 5 SEC  
1000 Hrs Bias @125 C  
°
°
%
°
168 Hrs, 100 RH, 121 C  
TST  
ESD  
Latch-Up  
MIL-STD-883D-1011.9  
MIL-STD-883D-3015.7  
JESD 78  
°
°
-65 C~150 C, 200 Cycles  
VHBM > 2KV, VMM > 200V  
10ms, 1tr > 100mA  
Carrier Tape & Reel Dimensions  
t
D
P
Po  
E
P1  
Bo  
F
W
Ko  
Ao  
D1  
Copyright ã ANPEC Electronics Corp.  
18  
www.anpec.com.tw  
Rev. A.1 - Feb., 2006  
APW7065  
Carrier Tape & Reel Dimensions (Cont.)  
T2  
J
C
A
B
T1  
Reel Dimensions  
Application  
A
B
C
J
T1  
330 ± 1 62 +1.5 12.75+ 0.15 2 ± 0.5 12.4 ± 0.2 2 ± 0.2  
D1 Po P1 Ao  
T2  
W
P
E
12± 0. 3  
8± 0.1 1.75±0.1  
Ko  
SOP- 8  
F
D
Bo  
t
5.5± 1 1.55 +0.1 1.55+ 0.25 4.0 ± 0.1 2.0 ± 0.1 6.4 ± 0.1 5.2± 0. 1 2.1± 0.1 0.3±0.013  
(mm)  
Cover Tape Dimensions  
Application  
SOP- 8  
Carrier Width  
Cover Tape Width  
Devices Per Reel  
12  
9.3  
2500  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
7F, No. 137, Lane 235, Pac Chiao Rd.,  
Hsin Tien City, Taipei Hsien, Taiwan, R. O. C.  
Tel : 886-2-89191368  
Fax : 886-2-89191369  
Copyright ã ANPEC Electronics Corp.  
Rev. A.1 - Feb., 2006  
19  
www.anpec.com.tw  

相关型号:

APW7065C

Synchronous Buck PWM Controller
ANPEC

APW7065CKE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7065CKE-TRL

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TR

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TRL

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TU

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TUL

Synchronous Buck PWM Controller
ANPEC

APW7065_09

Synchronous Buck PWM Controller
ANPEC

APW7066

Dual Synchronous Buck PWM Controllers and One Linear Controller
ANPEC

APW7066QAC-TR

Dual Synchronous Buck PWM Controllers and One Linear Controller
ANPEC

APW7066QAC-TRG

Dual Synchronous Buck PWM Controllers and One Linear Controller
ANPEC