APW7068ME-TUL [ANPEC]

Synchronous Buck PWM and Linear Controller with 0.8V Reference Out Voltage; 同步降压PWM和线性控制器具有0.8V参考输出电压
APW7068ME-TUL
型号: APW7068ME-TUL
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

Synchronous Buck PWM and Linear Controller with 0.8V Reference Out Voltage
同步降压PWM和线性控制器具有0.8V参考输出电压

控制器
文件: 总26页 (文件大小:1600K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7068  
Synchronous Buck PWM and Linear Controller with 0.8V Reference Out Voltage  
General Description  
Features  
The APW7068 integrates synchronous buck  
PWM, linear controller, and 0.8V Reference Out Voltage,  
as well as the monitoring and protection functions  
into a single package. The fixed 300KHz switching  
frequency synchronous PWM controller drives  
dualN-channelMOSFETs, whichprovidesonecontrolled  
power output with over-voltage and over-current  
protections. Linear controller drives an external  
N-channel MOSFET with under-voltage protection.  
·
Two Regulated Voltages and REF_OUT  
- Synchronous Buck Converter  
- Linear Regulator  
- REF_OUT = 0.8V±1% with 3mA source current  
·
·
Single 12V Power Supply Required  
Excellent Both Output Voltage Regulation  
- 0.8V Internal Reference  
- ±1% Over Line Voltage and Temperature  
·
·
·
Integrated Soft-Start for PWM and Linear Outputs  
300KHz Fixed Switching Frequency  
The APW7068 provides excellent regulation for  
output load variation. An internal 0.8V temperature-  
compensated reference voltage is designed to meet  
the requirement of low output voltage applications.  
Voltage Mode PWM Control Design and Up to  
89%(Typ.) Duty Cycle  
·
Under-Voltage Protection Monitoring Linear  
Output  
The APW7068 with excellent protection functions:  
POR, OCP, OVP and UVP. The Power-On Reset  
(POR) circuit can monitor VCC12 supply voltage  
exceeds its threshold voltage while the controller is  
running, and a built-in digital soft-start provides both  
outputs with controlled rising voltage. The Over-Current  
Protection (OCP) monitors the output current by using  
·
·
Over-Voltage Protection Monitoring PWM Output  
Over-Current Protection for PWM Output  
- Sense Low-side MOSFET’s RDS(ON)  
SOP-14, QSOP-16 and QFN-16 packages  
·
·
Lead FreeAvailable (RoHS Compliant)  
the voltage drop across the lower MOSFET’s RDS(ON)  
,
comparing with the voltage of OCSET pin. When the out-  
put current reaches the trip point, the controller will  
shutdown the IC directly, and latch the converter’s  
output. The Under-Voltage Protection (UVP) monitors  
the voltage of FBL pin for short-circuit protection. When  
the VFBL is less than 50% of VREF, the controller will  
shutdown the IC directly. The Over-Voltage Protection  
(OVP) monitors the voltage of FB. When the VFB is  
over 135% of VREF, the controller will make Low-  
side gate signal fully turn on until the fault events are  
removed.  
Applications  
·
Graphic Cards  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Pinouts  
16 15  
14 13  
BOOT  
FS_DIS  
COMP  
FB  
UGATE  
PHASE  
PGND  
BOOT  
FS_DIS  
COMP  
FB  
UGATE  
PHASE  
PGND  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
COMP  
1
2
12  
11  
PGND  
FB  
LGATE  
Metal GND  
Pad  
(Bottom)  
LGATE  
LGATE  
DRIVE  
3
4
10  
9
OCSET  
DRIVE  
FBL  
OCSET  
OCSET  
DRIVE  
FBL  
REF_OUT  
REF_OUT  
FBL  
REF_OUT  
GND  
VCC12  
GND  
VCC12  
VCC12  
8
5
6
7
8
GND  
SOP-14  
TOP VIEW  
QSOP-16  
TOP VIEW  
QFN-16  
TOP VIEW  
Ordering and Marking Information  
Package Code  
APW7068  
K : SOP - 14 M : QSOP - 16 QA : QFN - 16  
Temp. Range  
E : -20 to 70 C  
Lead Free Code  
°
Handling Code  
TU : Tube  
TY : Tray (for QFN only)  
Lead Free Code  
L : Lead Free Device Blank : Original Device  
Handling Code  
Temp. Range  
Package Code  
TR : Tape & Reel  
APW7068  
APW7068 K :  
APW7068 M :  
XXXXX - Date Code  
XXXXX - Date Code  
XXXXX  
APW7068  
XXXXX  
XXXXX - Date Code  
APW7068 Q :  
APW7068  
XXXXX  
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate  
termination finish; which are fully compliant with RoHS and compatible with both SnPb and lead-free soldering  
operations. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C for  
MSL classification at lead-free peak reflow temperature.  
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Block Diagram  
OCSET  
VCC12  
IOCSET  
40uA  
Reference  
REF_OUT  
Buffer  
Power-On  
Reset  
Regulator  
BOOT  
GND  
UGATE  
O.C.P  
Comparator  
10V  
VREF  
(0.8V)  
Soft Start  
and  
Fault  
135%VREF  
X1.35  
O.V.P  
Comparator  
PHASE  
Logic  
Sense Low Side  
Gate Control  
LGATE  
PGND  
Error  
Amp 1  
PWM  
U.V.P  
Comparator  
Comparator  
FBL  
10V  
:
2
50%VREF  
DRIVE  
VREF  
Error  
Amp 2  
Oscillator  
FS_DIS  
VREF  
Sawtooth Wave  
(300KHz)  
COMP  
FB  
Absolute Maximum Ratings  
Symbol  
VCC12  
BOOT  
Parameter  
Rating  
Unit  
V
-0.3 to +16  
-0.3 to +16  
VCC12 to GND  
V
BOOT to PHASE  
UGATE to PHASE <400ns pulse width  
>400ns pulse width  
-5 to BOOT+5  
-0.3 to BOOT+0.3  
V
V
UGATE  
LGATE  
LGATE to PGND  
PHASE to GND  
DRIVE to GND  
<400ns pulse width  
>400ns pulse width  
-5 to VCC12+5  
-0.3 to VCC12+0.3  
<400ns pulse width  
>400ns pulse width  
-5 to +21  
-0.3 to 16  
PHASE  
DRIVE  
V
V
V
12  
FB, FBL, COMP,  
FS_DIS  
-0.3 to 7  
FB, FBL, COMP, FS_DIS to GND  
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Absolute Maximum Ratings (Cont.)  
Symbol  
Parameter  
Rating  
Unit  
PGND  
TJ  
PGND to GND  
-0.3 to +0.3  
-20 to +150  
-65 ~ 150  
300  
V
Junction Temperature Range  
Storage Temperature  
°C  
°C  
TSTG  
TSDR  
VESD  
°C  
Soldering Temperature (10 Seconds)  
Minimum ESD Rating  
KV  
±2  
NOTE1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
NOTE2: The device is ESD sensitive. Handling precautions are recommended.  
Recommended Operating Conditions  
Symbol  
VCC12  
VIN1  
Parameter  
Rating  
10.8 to 13.2  
2.9 to 13.2  
0.9 to 5  
Unit  
V
IC Supply Voltage  
V
Converter Input Voltage  
Converter Output Voltage  
Converter Output Current  
Linear Output Current  
V
VOUT1  
IOUT1  
IOUT2  
TA  
0 to 30  
A
0 to 3  
A
-20 to 70  
-20 to 125  
°C  
°C  
Ambient Temperature Range  
Junction Temperature Range  
TJ  
Electrical Characteristics  
Unless otherwise specified, these specifications apply over VCC12=12V, and TA =-20~70°C. Typical values  
are at TA=25°C.  
APW7068  
Symbol  
Parameter  
Test Conditions  
Unit  
Min  
Typ Max  
INPUT SUPPLY CURRENT  
VCC12 Supply Current  
UGATE, LGATE and DRIVE  
open; FS_DIS=GND  
4
8
6
mA  
mA  
(Shutdown mode)  
ICC12  
UGATE, LGATE and DRIVE  
open  
VCC12 Supply Current  
12  
POWER-ON RESET  
Rising VCC12 Threshold  
Falling VCC12 Threshold  
OSCILLATOR  
7.7  
7.2  
7.9  
7.4  
8.1  
7.6  
V
V
Accuracy  
-15  
+15  
345  
%
FOSC  
VOSC  
Duty  
Oscillator Frequency  
255  
300  
1.5  
89  
KHz  
(nominal 1.2V to 2.7V)  
(NOTE3)  
Ramp Amplitude  
V
Maximum Duty Cycle  
%
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Electrical Characteristics (Cont.)  
Unless otherwise specified, these specifications apply over VCC12=12V, and TA =-20~70°C. Typical values  
are at TA=25°C.  
APW7068  
Symbol  
Parameter  
Test Conditions  
Unit  
Min  
Typ Max  
REFERENCE  
VREF  
Reference Voltage  
for Error Amp1 and Amp2  
0.792 0.80 0.808  
V
Reference Voltage Tolerance  
PWM Load Regulation  
-1  
+1  
1
%
%
%
IOUT1=0 to 10A  
IOUT2=0 to 3A  
Linear Load Regulation  
1
PWM ERROR AMPLIFIER  
Gain  
GBWP  
SR  
Open Loop Gain  
RL=10k, CL=10pF (NOTE3)  
RL=10k, CL=10pF (NOTE3)  
RL=10k, CL=10pF (NOTE3)  
VFB=0.8V  
93  
20  
8
dB  
MHz  
V/us  
uA  
Open Loop Bandwidth  
Slew Rate  
FB Input Current  
0.1  
5
1
VCOMP  
VCOMP  
ICOMP  
ICOMP  
COMP High Voltage  
COMP Low Voltage  
COMP Source Current  
COMP Sink Current  
V
0
V
COMP=2V  
COMP=2V  
12  
12  
mA  
mA  
GATE DRIVERS  
IUGATE  
IUGATE  
ILGATE  
ILGATE  
RUGATE  
RUGATE  
RLGATE  
RLGATE  
TD  
Upper Gate Source Current  
2.5  
2
A
A
BOOT=12V,  
UGATE-PHASE = 2V  
Upper Gate Sink Current  
Lower Gate Source Current  
Lower Gate Sink Current  
2.5  
3.5  
2.25  
0.7  
2.25  
0.4  
20  
A
A
VCC12=12V, LGATE=2V  
Upper Gate Source Impedance BOOT=12V, IUGATE=0.1A  
Upper Gate Sink Impedance BOOT=12V, IUGATE=0.1A  
Lower Gate Source Impedance VCC12=12V, ILGATE=0.1A  
3.375  
1.05  
3.375  
0.6  
W
W
W
W
nS  
Lower Gate Sink Impedance  
Dead Time  
VCC12=12V, ILGATE=0.1A  
LINEAR REGULATOR  
Open Loop Gain  
RL=10k, CL=10pF (NOTE3)  
RL=10k, CL=10pF (NOTE3)  
RL=10k, CL=10pF (NOTE3)  
VFBL=0.8V  
dB  
MHz  
V/us  
uA  
Gain  
GBWP  
SR  
70  
19  
6
Open Loop Bandwidth  
Slew Rate  
FBL Input Current  
DRIVE High Voltage  
DRIVE Low Voltage  
DRIVE Source Current  
DRIVE Sink Current  
0.1  
10  
0
1
V
VDRIVE  
VDRIVE  
IDRIVE  
IDRIVE  
V
DRIVE=5V  
DRIVE=5V  
mA  
mA  
4
3
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Electrical Characteristics (Cont.)  
Unless otherwise specified, these specifications apply over VCC12=12V, and TA =-20~70°C. Typical values  
are at TA=25°C.  
APW7068  
Symbol  
Parameter  
Test Conditions  
Unit  
Min  
Typ Max  
PROTECTION  
FB Over Voltage Protection Trip Point  
Percent of VREF  
%
%
VFB-OV  
VFBL-UV  
IOCSET  
135  
50  
FBL Under Voltage Protection Trip Point Percent of VREF  
OCSET Current Source  
36  
40  
44  
uA  
SOFT START  
TSS  
Internal Soft-Start Interval (NOTE3)  
FOSC=300kHz  
8.5  
ms  
REF_OUT  
VREF_OUT Output Voltage  
Offset Voltage  
0.800  
0.792  
-8  
0.808  
+8  
V
mV  
mA  
mA  
uF  
IREF_OUT Source Current  
Sink Current  
3
0.5  
1
1.5  
0.25  
0.4  
Output Capacitance  
2.2  
NOTE3: Guaranteed by design.  
Typical Application Circuit  
C1  
2.2nF  
VIN1  
Q3  
CIN1  
470uFx2  
12V  
ON/OFF  
2N7002  
R2  
C2  
Q1  
APM2509  
0.01uF  
3.9K  
L
VOUT1  
1.2V  
C4  
R1  
VOUT1  
1uH  
0.1uF  
1.5K  
R3  
C3  
22nF  
22W  
UGATE  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
BOOT  
FS_DIS  
COMP  
FB  
PHASE  
PGND  
RGND1  
3K  
VIN2  
3.3V  
COUT1  
470uFx2  
C6  
Q2  
2.2nF  
LGATE  
OCSET  
APM2506  
CIN2  
Q4  
APM3055  
470uF  
R6  
DRIVE  
FBL  
2.2W  
R5  
C5  
REF_OUT  
VCC12  
8
GND  
R4  
VOUT2  
2.5V  
C8  
1uF  
2.5K  
APW7068  
R7  
12V  
COUT2  
470uF  
RGND2  
1.17K  
2.2W  
R8  
C7  
1uF  
* C5, R5 for specific application  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Function Pin Descriptions  
LGATE  
VCC12  
This pin is the gate driver for the lower MOSFET of  
PWM output.  
Power supply input pin. Connect a nominal 12V power  
supplyto this pin. The power-on reset function monitors  
the input voltage at this pin. It is recommended that a  
decoupling capacitor (1 to 10mF) be connected toGND  
for noise decoupling.  
DRIVE  
This pin drives the gate of an external N-channel  
MOSFET for linear regulator. It is also used to set the  
compensation for some specific applications,for  
example, with low values of output capacitance and  
ESR.  
BOOT  
This pin provides the bootstrap voltage to the upper  
gate driver for driving the N-channel MOSFET. An  
external capacitor from PHASE to BOOT, an internal  
diode, and the power supplyvaltage VCC12, generates  
thebootstrap voltagefor theupper gatediver (UGATE).  
FBL  
This pin is the inverting input of the linear regulator  
error amplifier. It is used to set the output voltage.  
This pin is also monitored for under-voltage protection.  
When the FBL voltage is under 50% of reference  
voltage (0.4V), both outputs will be shutdown  
immediately.  
PHASE  
This pin is the return path for the upper gate driver.  
Connect this pin to the upper MOSFET source, and  
connect a capacitor to BOOT for the bootstrap voltage.  
This pin is also used to monitor the voltage drop across  
the lower MOSFET for over-current protection.  
OCSET  
Connect a resistor (Rocset) from this pin to GND, an  
internal 40uA current source will flow through this  
resistor and create a voltage drop. When VCC12  
reaches the POR rising threshold voltage, the voltage  
drop of Rocset will be memoried and compared with  
the voltage across the lower MOSFET. The threshold  
of the over current limit is therefore given by:  
GND  
This pin is the signal ground pin. Connect theGNDpin  
to a good ground plane.  
PGND  
This pin is the power ground pin for the lower gate  
driver. It should be tied to GND pin on the board.  
I
OCSET ´ ROCSET  
I
LIMIT  
=
COMP  
RDS(ON)(LOW - Side)  
This pin is the output of PWM error amplifier. It is used  
to set the compensation components.  
REF_OUT  
This pin provides a buffed voltage, which is from internal  
reference voltage. It is recommended that a 1uF  
capacitor is connected to ground for stability.  
FB  
ThispinistheinvertinginputofthePWMerror amplifier.  
It is used to set the output voltage and the compensation  
components. This pin is also monitored for over-voltage FS_DIS  
protection. When the FB voltage is over 135% of  
This pin provides shutdown function. Use an open drain  
reference voltage, the controller will make Low-side  
gate signal fully turn on until the fault events are  
removed.  
logic signal to pull this pin low to disable both outputs,  
leave open to enable both outputs.  
UGATE  
This pin is the gate driver for the upper MOSFET of  
PWM output.  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Typical Characteristics  
PowerOff  
Power On  
VCC12=12V,Vin1=12V,Vin2=3.3V  
VCC12=12V,Vin1=12V,Vin2=3.3V  
Vo1=1.2V,Vo2=2.5V,L=1uH  
Vo1=1.2V,Vo2=2.5V,L=1uH  
CH1  
CH1  
CH2  
CH2  
CH3  
CH3  
CH1: VCC12 (10V/div)  
CH2: Vo1 (1V/div)  
CH3: Vo2 (2V/div)  
Time: 10ms/div  
CH1: VCC12 (10V/div)  
CH2: Vo1 (1V/div)  
CH3: Vo2 (2V/div)  
Time: 10ms/div  
EN  
Shutdown(FS_DIS=GND)  
VCC12=12V,Vin1=12V,Vin2=3.3V  
Vo1=1.2V,Vo2=2.5V,L=1uH  
VCC12=12V,Vin1=12V,Vin2=3.3V  
Vo1=1.2V,Vo2=2.5V,L=1uH  
CH1  
CH2  
CH1  
CH2  
CH3  
CH4  
CH3  
CH4  
CH1: FS_DIS (1V/div)  
CH2: Drive (5V/div)  
CH3: Vo1 (1V/div)  
CH4: Vo2 (2V/div)  
Time: 10ms/div  
CH1: FS_DIS (1V/div)  
CH2: Drive (5V/div)  
CH3: Vo1 (1V/div)  
CH4: Vo2 (2V/div)  
Time: 10ms/div  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Typical Characteristics  
(Cont.)  
UGATE Falling  
UGATE Rising  
Vcc12=12V,Vin1=12V, Vo1=1.2V  
Vcc12=12V,Vin1=12V,Vo1=1.2V  
CH1  
CH1  
CH2  
CH3  
CH2  
CH3  
CH1: Ug (20V/div)  
CH1: Ug (20V/div)  
CH2: Phase (10V/div)  
CH3: Lg (10V/div)  
Time: 50ns/div  
CH2: Phase (10V/div)  
CH3: Lg (10V/div)  
Time: 50ns/div  
OVP_PWM Controller (FB > 135% VREF  
)
UVP_Linear Regulator (FBL< 50% VREF)  
Vcc12=12V,Vin1=12V  
VCC12=12V,Vin2=3.3V  
Vo2=2.5V,Io2=3A  
Vo1=1.2V,Vo2=2.5V,L=1uH  
CH1  
CH2  
CH1  
CH2  
CH3  
CH3  
CH4  
CH1: VCC (20V/div)  
CH2: LG (10V/div)  
CH3: Vo1 (500mV/div)  
CH4: Vo2 (2V/div)  
Time: 10ms/div  
CH1: FBL (1V/div)  
CH2: Drive (5V/div)  
CH3: Vo2 (2V/div)  
Time: 100us/div  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Typical Characteristics  
(Cont.)  
Load Transient Response(PWM Controller)  
- VCC12=12V, Vin1=12V, Vo1=2V, Fosc=300KHz  
- Io1 slew rate= ± 10 A/us  
Io1=0Aà10Aà0A  
Io1=10Aà0A  
Io1=0Aà10A  
CH1  
CH1  
CH1  
CH2  
CH3  
CH2  
CH3  
CH2  
CH3  
CH1: Vo1 (100mV/div,AC)  
CH2: Ug (20V/div)  
CH1: Vo1 (100mV/div,AC)  
CH2: Ug (20V/div)  
CH1: Vo1 (100mV/div,AC)  
CH2: Ug (20V/div)  
CH3: Io1(10A/div)  
CH3: Io1(10A/div)  
CH3: Io1(10A/div)  
Time: 20us/div  
Time: 50us/div  
Time: 20us/div  
Load Transient Response(Linear Regulator)  
- VCC12=12V, Vin2=3.3V, Vo2=2.5V  
- Io2 slew rate= ± 3A/us  
Io2=0Aà3Aà0A  
Io2=3Aà0A  
Io2=0Aà3A  
CH1  
CH1  
CH1  
CH2  
CH2  
CH2  
CH1: Vo2 (100mV/div,AC)  
CH2: Io2(2A/div)  
CH1: Vo2 (100mV/div,AC)  
CH2: Io2(2A/div)  
CH1: Vo2 (100mV/div,AC)  
CH2: Io2(2A/div)  
Time: 1us/div  
Time: 10us/div  
Time: 1us/div  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Typical Characteristics  
(Cont.)  
Short Test after Power Ready  
Over Current Protection  
VCC12=12V, Vin1=12V,  
Vo1=1.2V,Vin2=3.3V,  
Vo2=2.5V, L=1uH,  
COUT=470uFx2  
Rocset=1KΩ , Rds(on)=4mΩ  
VCC12=12V, Vin1=12V,  
Vo1=1.2V,Vin2=3.3V,  
COUT=470uFx2  
Vo2=2.5V, L=1uH,  
Rocset=1KΩ , Rds(on)=4mΩ  
CH1  
CH2  
CH1  
CH2  
CH3  
CH4  
CH3  
CH4  
CH1: Vo1 (1V/div)  
CH2:Drive (5V/div)  
CH3: Ug (20V/div)  
CH4: IL (10A/div)  
Time: 50us/div  
CH1: Vo1 (1V/div)  
CH2:Drive (5V/div)  
CH3: Ug (20V/div)  
CH4: IL (10A/div)  
Time: 50us/div  
Short Test before Power On  
VREF vs. Junction Temperature  
0.804  
0.8035  
0.803  
VCC12=12V, Vin1=12V,Vin2=3.3V  
Vo1=1.2V,Vo2=2.5V,L=1uH  
COUT=470uFx2  
CH1  
CH2  
0.8025  
0.802  
VREF  
CH3  
CH4  
0.8015  
0.801  
0.8005  
-40  
-20  
0
20  
40  
60  
80  
100 120  
CH1: VCC12 (10V/div)  
CH2: Vo1 (1V/div)  
CH3: Ug (20V/div)  
CH4: IL (10A/div)  
Time: 2ms/div  
Junction Temperature (°C )  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Typical Characteristics  
(Cont.)  
UGATE Source Current vs. UGATE Voltage  
UGATE Sink Current vs. UGATE Voltage  
3
3.5  
3
2.5  
2
VBOOT=12V  
PHASE=0V  
VBOOT=12V  
PHASE=0V  
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
2
4
6
8
10  
12  
0
0.5  
1
1.5  
2
2.5  
3
UGATE Voltage (V)  
UGATE Voltage (V)  
LGATE Source Current vs. LGATE Voltage  
LGATE Sink Current vs. LGATE Voltage  
7
3
6
2.5  
VCC=12V  
VCC=12V  
5
4
3
2
1
0
2
1.5  
1
0.5  
0
0
2
4
6
8
10  
12  
0
1
2
3
4
LGATE Voltage (V)  
LGATE Voltage (V)  
Copyright ã ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Function Descriptions  
Power On Reset (POR)  
Voltage(V)  
The Power-On Reset (POR) function of APW7068  
continually monitors the input supply voltage (VCC12),  
ensures the supply voltage exceed its rising POR  
threshold voltage. The POR function initiates soft-start  
interval operation while VCC12 voltages exceed their  
POR threshold and inhibits operation under disabled  
status.  
VCC12  
POR  
VOUT1  
VOUT2  
Soft-Start  
Figure 1. shows the soft-start interval. When VCC12  
reaches the rising POR threshold voltage, the internal  
reference voltage is controlled to follow a voltage pro-  
portional to the soft-start voltage. The soft-start inter-  
val is variable by the oscillator frequency. The formu-  
lation is given by:  
t0  
t1  
t2  
Time  
Figure 1. Soft-Start Interval  
Voltage(V)  
FB  
1
TSS = D(t2 - t1) =  
´ 2560  
FOSC  
FBL  
20mV  
32/Fosc  
Figure 2. shows more detail of the FB and FBL voltage  
ramps. The FB and FBL voltage soft-start ramps are  
formed with many small steps of voltage. The voltage  
of one step is about 20mV in FB and FBL, and the  
period of one step is about 64/FOSC. This method pro-  
vides a controlled voltage rise and prevents the large  
peak current to charge output capacitor. The FB volt-  
age compares the FBLvoltage to shift to an earlier time  
theestablishmentasFigure2.Thevoltageestabilishment  
32/Fosc  
20mV  
Time  
t3  
t4  
Figure 2. The Controlled Stepped FB and FBL  
Voltage during Soft-Start  
Over-Current Protection  
time difference for FB and FBL is variable by the Connect a resistor (Rocset) from this pin to GND, an  
internal 40uA current source will flow through this  
resistor and create a voltage drop, which will be  
compared with the voltage across the lower MOSFET.  
When the voltage across the lower MOSFET exceeds  
the voltage drop across the ROCSET, an over-current  
condition is detected and the controller will shut-  
down the IC directly, and the converter's output is  
latched.  
oscillator. The formulation is given by:  
1
1
D(t4 - t3) =  
´ 640 = ´ TSS  
FOSC  
4
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Function Descriptions  
Over-Current Protection (Cont.)  
voltage is over 135% of the reference voltage, the  
controller will make Low-Side gate signal fully turn on  
until the fault events are removed.  
The threshold of the over current limit is therefore  
given by:  
Under Voltage Protection  
I
OCSET ´ ROCSET  
I
LIMIT  
=
R
DS(ON)(LOW - Side)  
The FBL pin is monitored during converter opera-  
tion by its own Under Voltage(UV) comparator. If  
the FBL voltage drop below 50% of the reference  
voltage (50% of 0.8V = 0.4V), a fault signal is inter-  
nally generated, and the device turns off both high-  
side and low-side MOSFET and the converter’s out-  
put is latched to be floating. The controller will shut-  
down the IC directly.  
For the over-current is never occurred in the normal  
operating load range; the variation of all parameters in  
the above equation should be determined.  
· The MOSFET’s RDS(ON) is varied by temperature and  
gate to source voltage, the user should determine the  
maximum RDS(ON) in manufacturer’s datasheet.  
· The minimum IOCSET (36uA) and minimum ROCSET  
should be used in the above equation.  
Shutdown and Enable  
Pulling the FS_DIS voltage to GND by an open drain  
transistor, shown in typical application circuit,  
· Note that the ILIMIT is the current flow through the  
lower MOSFET; ILIMIT must be greater than maximum  
output current add the half of inductor ripple current.  
shutdown theAPW7068 PWM controller. In shutdown  
mode, the UGATE and LGATE turn off and pull to  
PHASE and GND respectively.  
Over Voltage Protection  
The FB pin is monitored during converter operation  
by its own Over Voltage(OV) comparator. If the FB  
Application Information  
Output Voltage Selection  
The linear regulator output voltage VOUT2 is also set by  
means of an external resistor divider. The FBL pin is  
the inverter input of the error amplifier, and the reference  
voltage is 0.8V. The output voltage is determined by:  
TheoutputvoltageofPWMconvertercanbeprogrammed  
with a resistive divider. Use 1% or better resistors for  
the resistive divider is recommended. The FB pin is  
the inverter input of the error amplifier, and the reference  
voltage is 0.8V. The output voltage is determined by:  
æ
ç
è
ö
÷
÷
ø
R4  
ç
VOUT2 = 0.8 ´ 1+  
RGND2  
æ
ç
è
ö
÷
÷
ø
R1  
ç
VOUT1 = 0.8 ´ 1+  
RGND1  
Where R4 is the resistor connected from VOUT2 to  
FBL and RGND2 is the resistor connected from FBL to  
GND.  
Where R1 is the resistor connected from VOUT1 to FB  
and RGND1 is the resistor connected from FB to GND.  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Application Information (Cont.)  
Linear Regulator Input/Output Capacitor Selection  
loop. A compensation network among COMP, FB and  
VOUT1 should be added. The compensation network is  
shown in Fig. 9. The output LC filter consists of the  
output inductor and output capacitors. The transfer  
function of the LC filter is given by:  
The input capacitor is chosen based on its voltage  
rating. Under load transient condition, the input  
capacitor will momentarily supply the required transient  
current. The output capacitor for the linear regulator is  
chosen to minimize any droop during load transient  
condition. In addition, the capacitor is chosen based  
on its voltage rating.  
1+ s´ ESR´ COUT1  
GAINLC  
=
s2 ´ L´ COUT1 + s´ ESR´ COUT1 +1  
The poles and zero of this transfer functions are:  
Linear Regulator Input/Output MOSFET Selection  
The maximum DRIVE voltage is about 10V when  
VCC12 is equal 12V. Since this pin drives an external  
N-channel MOSFET, therefore the maximum output  
voltage of the linear regulator is dependent upon the  
1
FLC  
=
2 ´ p ´ L ´ COUT1  
1
FESR  
=
2 ´ p ´ ESR ´ COUT1  
VGS.  
= 10 - VGS  
The FLC is the double poles of the LC filter, and FESR is  
the zero introduced by the ESR of the output capacitor.  
VOUT2MAX  
Another criterion is its efficiency of heat removal. The  
power dissipated by the MOSFET is given by:  
PHASE  
L
OUTPUT1  
Pd = IOUT2 x (VIN – VOUT2  
)
COUT1  
Where IOUT2 is the maximum load current, VOUT2 is the  
nominal output voltage.  
ESR  
In some applications, heatsink might be required to  
help maintain the junction temperature of the MOSFET  
below its maximum rating.  
Figure 6. The Output LC Filter  
Linear Regulator Compensation Selection  
FLC  
The linear regulator is stable over all loads current.  
However, thetransientresponsecanbefurtherenhanced  
by connecting a RC network between the FBL and  
DRIVE pin. Depending on the output capacitance and  
load current of the application, the value of this RC  
network is then varied.  
-40dB/dec  
FESR  
-20dB/dec  
PWM Compensation  
The output LC filter of a step down converter introduces  
a double pole, which contributes with -40dB/decade  
gain slope and 180 degrees phase shift in the control  
Frequency(Hz)  
Figure 7. The LC Filter GAIN and Frequency  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Application Information (Cont.)  
PWM Compensation (Cont.)  
C1  
The PWM modulator is shown in Figure 8. The input  
is the output of the error amplifier and the output is the  
R3  
C3  
R2  
C2  
VOUT1  
PHASE node. The transfer function of the PWM  
modulator is given by:  
FB  
VCOMP  
R1  
VREF  
V
IN1  
GAINPWM  
=
Figure 9. Compensation Network  
DVOSC  
VIN  
The closed loop gain of the converter can be written  
as:  
Driver  
OSC  
PWM  
ΔVOSC  
Comparator  
GAINLC X GAINPWM X GAINAMP  
PHASE  
Output of  
Error Amplifier  
Figure 10. shows the asymptotic plot of the closed  
loop converter gain, and the following guidelines will  
help to design the compensation network. Using the  
below guidelines should give a compensation similar  
to the curve plotted. A stable closed loop has a -20dB/  
decade slope and a phase margin greater than 45  
degree.  
Driver  
Figure 8. The PWM Modulator  
The compensation network is shown in Figure 9. It  
provides a close loop transfer function with the highest  
zero crossover frequency and sufficient phase margin.  
The transfer function of error amplifier is given by:  
1.Choose a value for R1, usually between 1K and 5K.  
2.Select the desired zero crossover frequency FO:  
(1/5 ~ 1/10) X FS >FO>FESR  
1
1
æ
ö
÷
// R2+  
ç
VCOMP  
VOUT1  
sC1  
sC2  
è
ø
GAINAMP  
=
=
1
æ
ö
Use the following equation to calculate R2:  
R1// R3 +  
ç
÷
sC3  
è
ø
DVOSC FO  
æ
ö
1
1
æ
ö
÷
R2 =  
´
´ R1  
s +  
´ çs +  
÷
÷
ç
ç
VIN  
FLC  
R2 ´ C2  
(
R1+ R3  
)
´ C3  
R1+ R3  
è
ø
è
ø
=
´
C1+ C2  
1
R1´ R3 ´ C1  
æ
ö
æ
ö
3.Place the first zero FZ1 before the output LC filter  
double pole frequency FLC.  
s s +  
´ s +  
÷ ç  
ç
÷
R2 ´ C1´ C2  
R3 ´ C3  
è
ø
è
ø
FZ1 = 0.75 X FLC  
The poles and zeros of the transfer function are:  
1
Calculate the C2 by the equation:  
FZ1  
=
2 ´ p ´ R2 ´ C2  
1
1
C2 =  
FZ2  
=
2 ´ p ´ R2 ´ FLC ´ 0.75  
2 ´ p ´  
(
R1 + R3 ´ C3  
)
1
4.Set the pole at the ESR zero frequency FESR  
FP1 = FESR  
:
FP1  
=
C1´ C2  
æ
ö
÷
2´ p ´ R2 ´  
ç
C1+ C2  
è
ø
Calculate the C1 by the equation:  
1
FP2  
=
C2  
C1 =  
2 ´ p ´ R3 ´ C3  
2 ´ p ´ R2 ´ C2 ´ FESR - 1  
Copyright ã ANPEC Electronics Corp.  
16  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Application Information (Cont.)  
PWM Compensation (Cont.)  
and ripple voltage can be approximated by:  
IN1 - VOUT1 VOUT1  
5.Set the second pole FP2 at the half of the switching  
frequency and also set the second zero FZ2 at the  
output LC filter double pole FLC. The compensation  
gain should not exceed the error amplifier open loop  
gain, check the compensation gain at FP2 with the  
capabilities of the error amplifier.  
V
IRIPPLE  
=
´
FS ´ L  
DVOUT1 = IRIPPLE ´ ESR  
V
IN1  
where Fs is the switching frequency of the regulator.  
Although increase of the inductor value and frequency  
reduces the ripple current and voltage, a tradeoff will  
exist between the inductor’s ripple current and the  
regulator load transient response time.  
FP2 = 0.5 X FS  
FZ2 = FLC  
Combine the two equations will get the following A smaller inductor will give the regulator a faster load  
component calculations:  
transient response at the expense of higher ripple  
current. Increasing the switching frequency (FS) also  
reduces the ripple current and voltage, but it will  
increase the switching loss of the MOSFET and the  
power dissipation of the converter. The maximum ripple  
current occurs at the maximum input voltage. A good  
starting point is to choose the ripple current to be  
approximately 30% of the maximum output current.  
Once the inductance value has been chosen, select  
an inductor that is capable of carrying the required  
peak current without going into saturation. In some  
types of inductors, especially core that is made of  
ferrite, the ripple current will increase abruptly when it  
saturates. This will result in a larger output ripple  
voltage.  
R1  
R3 =  
FS  
- 1  
2 ´ FLC  
1
C3 =  
p ´ R3 ´ FS  
FZ1 FZ2 FP1  
FP2  
Compensation  
Gain  
20log  
(R2/R1)  
20log  
(VIN/ΔVOSC)  
Output Capacitor Selection  
FLC  
FESR  
Converter  
Gain  
Higher capacitor value and lower ESR reduce the  
output ripple and the load transient drop. Therefore,  
selecting high performance low ESR capacitors is  
intended for switching regulator applications. In some  
applications, multiple capacitors have to be parallel to  
achieve the desired ESR value. A small decoupling  
capacitor in parallel for bypassing the noise is also  
recommended, and the voltage rating of the output  
capacitors also must be considered. If tantalum  
capacitors are used, make sure they are surge tested  
PWM & Filter  
Gain  
Frequency(Hz)  
Figure 10. Converter Gain and Frequency  
Output Inductor Selection  
The inductor value determines the inductor ripple  
current and affects the load transient response. Higher  
inductor value reduces the inductor’s ripple current and  
induces lower output ripple voltage. The ripple current  
Copyright ã ANPEC Electronics Corp.  
17  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Application Information (Cont.)  
Output Capacitor Selection (Cont.)  
by the manufactures. If in doubt, consult the capacitors  
manufacturer.  
capacitor 1uF can be connected between the drain of  
upper MOSFET and the source of lower MOSFET.  
MOSFET Selection  
Input Capacitor Selection  
The selection of the N-channel power MOSFETs are  
determined by the RDS(ON), reverse transfer capacitance  
(CRSS) and maximum output current requirement. There  
are two components of loss in the MOSFETs:  
conduction loss and transition loss. For the upper  
and lower MOSFET, the losses are approximately  
given by the following:  
The input capacitor is chosen based on the voltage  
rating and the RMS current rating. For reliable  
operation, select the capacitor voltage rating to be at  
least 1.3 times higher than the maximum input voltage.  
The maximum RMS current rating requirement is  
approximately IOUT1/2, where IOUT1 is the load current.  
During power up, the input capacitors have to handle  
large amount of surge current. If tantalum capacitors  
are used, make sure they are surge tested by the  
manufactures. If in doubt, consult the capacitors  
manufacturer. For high frequency decoupling, a ceramic  
capacitor 1uF can be connected between the drain of  
upper MOSFET and the source of lower MOSFET.  
applications, multiple capacitors have to be parallel to  
achieve the desired ESR value. A small decoupling  
capacitor in parallel for bypassing the noise is also  
recommended, and the voltage rating of the output  
capacitors also must be considered. If tantalum  
capacitors are used, make sure they are surge tested  
by the manufactures. If in doubt, consult the capacitors  
manufacturer.  
PUPPER = IOUT1 (1+ TC)(RDS(ON))D + (0.5)( IOUT1)(V )( tSW)FS  
IN1  
PLOWER = IOUT1 (1+ TC)(RDS(ON))(1-D)  
Where IOUT1 is the load current  
TC is the temperature dependency of RDS(ON)  
FS is the switching frequency  
tSW is the switching interval  
D is the duty cycle  
Note that both MOSFETs have conduction loss while  
the upper MOSFET include an additional transition  
loss. The switching internal, tSW, is a function of the  
reverse transfer capacitance CRSS. The (1+TC) term is  
to factor in the temperature dependency of the RDS(ON)  
and can be extracted from the “R DS(ON) vs Temperature”  
curve of the power MOSFET.  
Input Capacitor Selection  
Layout Considerations  
The input capacitor is chosen based on the voltage  
rating and the RMS current rating. For reliable  
operation, select the capacitor voltage rating to be at  
least 1.3 times higher than the maximum input voltage.  
The maximum RMS current rating requirement is  
approximately IOUT1/2, where IOUT1 is the load current.  
During power up, the input capacitors have to handle  
large amount of surge current. If tantalum capacitors  
are used, make sure they are surge tested by the  
manufactures. If in doubt, consult the capacitors  
manufacturer. For high frequency decoupling, a ceramic  
In any high switching frequency converter, a correct  
layout is important to ensure proper operation of the  
regulator. With power devices switching at 300KHz or  
above, the resulting current transient will cause volt-  
age spike across the interconnecting impedance and  
parasitic circuit elements. As an example, consider  
the turn-off transition of the PWM MOSFET. Before  
turn-off, the MOSFET is carrying the full load current.  
During turn-off, current stops flowing in the MOSFET  
and is free-wheeling by the lower MOSFET and para-  
sitic diode. Any parasitic inductance of the circuit gen-  
Copyright ã ANPEC Electronics Corp.  
18  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Application Information (Cont.)  
Layout Considerations (Cont.)  
the upper MOSFET; the output capacitor should be  
erates a large voltage spike during the switching  
interval. In general, using short, wide printed circuit  
traces should minimize interconnecting imped-  
ances and the magnitude of voltage spike. And signal  
and power grounds are to be kept separate till com-  
bined using ground plane construction or single point  
grounding. Figure 11. illustrates the layout, with bold  
lines indicating high current paths; these traces must  
be short and wide. Components along the bold lines  
should be placed lose together. Below is a checklist  
for your layout:  
near the loads. The input capacitor GND should  
be close to the output capacitor GND and the lower  
MOSFET GND.  
- The drain of the MOSFETs (VIN1 and PHASE nodes)  
should be a large plane for heat sinking.  
APW7068  
VIN1  
VCC12  
VIN2  
BOOT  
L
DRIVE  
O
A
D
UGATE  
- The metal plate of the bottom of the packages  
(QFN-16) must be soldered to the PCB and con-  
nected to the GND plane on the backside through  
several thermal vias.  
VOUT2  
PHASE  
FBL  
L
O
A
D
LGATE  
VOUT1  
REF_OUT  
- Keep the switching nodes (UGATE, LGATE and  
PHASE) away from sensitive small signal nodes  
since these nodes are fast moving signals.  
Therefore, keep traces to these nodes as short as  
possible.  
Figure 11. Layout Guidelines  
- The traces from the gate drivers to the MOSFETs  
(UG, LG, DRIVE) should be short and wide.  
- Place the source of the high-side MOSFET and  
the drain of the low-side MOSFET as close as  
possible. Minimizing the impedance with wide  
layout plane between the two pads reduces the  
voltage bounce of the node.  
- Decoupling capacitor, compensation component,  
the resistor dividers, boot capacitors, and  
REF_OUT capacitors should be close their pins.  
(For example, place the decoupling ceramic  
capacitor near the drain of the high-side MOSFET  
as close as possible. The bulk capacitors are also  
placed near the drain).  
- The input capacitor should be near the drain of  
Copyright ã ANPEC Electronics Corp.  
19  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Package Information  
SOP – 14 (150mil)  
C
D
A
GAUGE PLANE  
SEATING PLANE  
e
B
A1  
L
Millimeters  
Inches  
Dim  
Min.  
1.477  
0.102  
0.331  
0.191  
8.558  
3.82  
Max.  
Min.  
0.058  
0.004  
0.013  
0.0075  
0.336  
0.150  
Max.  
0.068  
0.010  
0.020  
0.0098  
0.344  
0.157  
A
A1  
B
1.732  
0.255  
0.509  
0.2496  
8.762  
3.999  
C
D
E
e
1.274  
0.050  
H
L
5.808  
0.382  
0°  
6.215  
1.274  
8°  
0.228  
0.015  
0°  
0.244  
0.050  
8°  
q°  
Copyright ã ANPEC Electronics Corp.  
20  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Package Information  
QSOP-16  
D
GAUGE  
PLANE  
E
E1  
1
2
3
A
L
1
A1  
b
e
Millimeters  
Inches  
Dim  
Min.  
1.35  
0.10  
0.20  
4.80  
5.79  
3.81  
Max.  
1.75  
0.25  
0.30  
5.00  
6.20  
3.99  
Min.  
0.053  
0.004  
0.008  
0.189  
0.228  
0.150  
Max.  
A
A1  
b
0.069  
0.010  
0.012  
0.197  
0.244  
0.157  
D
E
E1  
e
0.635 TYP.  
0.025 TYP.  
0.41  
1.27  
L
0.016  
0.050  
f 1  
0°  
8°  
0°  
8°  
Copyright ã ANPEC Electronics Corp.  
21  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Packaging Information  
QFN-16  
e
b
D
D2  
Millimeters  
Inches  
Dim  
Min.  
Max.  
0.84  
0.04  
0.63  
Min.  
0.030  
0.00  
Max.  
0.033  
0.0015  
0.025  
A
A1  
A2  
A3  
D
0.76  
0.00  
0.57  
0.022  
0.20 REF.  
0.650 BSC  
0.008 REF.  
0.0257BSC  
3.90  
3.90  
0.25  
2.05  
2.05  
4.10  
4.10  
0.35  
2.15  
2.15  
0.154  
0.154  
0.010  
0.081  
0.081  
0.161  
0.161  
0.014  
0.085  
0.085  
E
b
D2  
E2  
e
L
0.50  
0.60  
0.002  
0.024  
Copyright ã ANPEC Electronics Corp.  
22  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Physical Specifications  
Terminal Material  
Lead Solderability  
Solder-Plated Copper (Solder Material : 90/10 or 63/37 SnPb), 100%Sn  
Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3.  
Reflow Condition (IR/Convection or VPR Reflow)  
tp  
TP  
Critical Zone  
TL to TP  
Ramp-up  
TL  
tL  
Tsmax  
Tsmin  
Ramp-down  
ts  
Preheat  
25  
°
t 25 C to Peak  
Time  
Classification Reflow Profiles  
Profile Feature  
Average ramp-up rate  
(TL to TP)  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
3°C/second max.  
3°C/second max.  
Preheat  
100°C  
150°C  
60-120 seconds  
150°C  
200°C  
60-180 seconds  
- Temperature Min (Tsmin)  
- Temperature Max (Tsmax)  
- Time (min to max) (ts)  
Time maintained above:  
- Temperature (TL)  
183°C  
60-150 seconds  
217°C  
60-150 seconds  
- Time (tL)  
Peak/Classificatioon Temperature (Tp)  
See table 1  
See table 2  
Time within 5°C of actual  
Peak Temperature (tp)  
10-30 seconds  
20-40 seconds  
Ramp-down Rate  
6°C/second max.  
6°C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to Peak Temperature  
Notes: All temperatures refer to topside of the package. Measured on the body surface.  
Copyright ã ANPEC Electronics Corp.  
23  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Classification Reflow Profiles(Cont.)  
Table 1. SnPb Entectic Process – Package Peak Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350  
<2.5 mm  
³ 2.5 mm  
240 +0/-5°C  
225 +0/-5°C  
225 +0/-5°C  
225 +0/-5°C  
Table 2. Pb-free Process – Package Classification Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350-2000  
Volume mm3  
>2000  
<1.6 mm  
1.6 mm – 2.5 mm  
³ 2.5 mm  
260 +0°C*  
260 +0°C*  
250 +0°C*  
260 +0°C*  
250 +0°C*  
245 +0°C*  
260 +0°C*  
245 +0°C*  
245 +0°C*  
*Tolerance: The device manufacturer/supplier shall assure process compatibility up to and  
including the stated classification temperature (this means Peak reflow temperature +0°C.  
For example 260°C+0°C) at the rated MSL level.  
Reliability Test Program  
Test item  
SOLDERABILITY  
HOLT  
PCT  
TST  
ESD  
Method  
MIL-STD-883D-2003  
MIL-STD-883D-1005.7  
JESD-22-B,A102  
MIL-STD-883D-1011.9  
MIL-STD-883D-3015.7  
JESD 78  
Description  
245°C, 5 SEC  
1000 Hrs Bias @125°C  
168 Hrs, 100%RH, 121°C  
-65°C~150°C, 200 Cycles  
VHBM > 2KV, VMM > 200V  
10ms, 1tr > 100mA  
Latch-Up  
Carrier Tape & Reel Dimensions  
t
D
P
Po  
E
F
P1  
Bo  
W
Ko  
Ao  
D1  
Copyright ã ANPEC Electronics Corp.  
24  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
Carrier Tape & Reel Dimensions(Cont.)  
T2  
J
C
A
B
T1  
Application  
A
B
C
J
T1  
T2  
W
P
8
t
E
13.0 + 0.5  
- 0.2  
330REF 100REF  
2 ± 0.5 16.5REF 2.5 ± 025 16.0 ± 0.3  
1.75  
SOP-14  
(150mil)  
F
D
D1  
Po  
P1  
Ao  
Ko  
7.5  
4.0  
2.0  
6.5  
T2  
2.10  
W
f 0.50 + 0.1 f 1.50 (MIN)  
0.3±0.05  
Application  
QSOP- 16  
A
B
C
J
T1  
P
E
330 ± 1 62 +1.5 12.75+ 0.15 2 ± 0.5 12.4 ± 0.2  
D1 Po P1  
2 ± 0.2  
12± 0. 3  
8± 0.1 1.75±0.1  
Ko  
F
D
Ao  
Bo  
t
5.5± 1 1.55 +0.1 1.55+ 0.25 4.0 ± 0.1 2.0 ± 0.1 6.4 ± 0.1 5.2± 0. 1 2.1± 0.1 0.3±0.013  
(mm)  
4x4 Shipping Tray  
Copyright ã ANPEC Electronics Corp.  
25  
www.anpec.com.tw  
Rev. A.2 - Jun., 2006  
APW7068  
4x4 Shipping Tray (Cont.)  
Cover Tape Dimensions  
Application  
SOP- 14  
Carrier Width  
Cover Tape Width  
Devices Per Reel  
24  
12  
21.3  
9.3  
2500  
2500  
QSOP- 16  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
7F, No. 137, Lane 235, Pac Chiao Rd.,  
Hsin Tien City, Taipei Hsien, Taiwan, R. O. C.  
Tel : 886-2-89191368  
Fax : 886-2-89191369  
Copyright ã ANPEC Electronics Corp.  
Rev. A.2 - Jun., 2006  
26  
www.anpec.com.tw  

相关型号:

APW7068ME-TY

Synchronous Buck PWM and Linear Controller with 0.8V Reference Out Voltage
ANPEC

APW7068ME-TYL

Synchronous Buck PWM and Linear Controller with 0.8V Reference Out Voltage
ANPEC

APW7068NE-TRG

Synchronous Buck PWM and Linear Controller with 0.8V Reference Out Voltage
ANPEC

APW7068QAE-TR

Synchronous Buck PWM and Linear Controller with 0.8V Reference Out Voltage
ANPEC

APW7068QAE-TRG

Synchronous Buck PWM and Linear Controller with 0.8V Reference Out Voltage
ANPEC

APW7068QAE-TRL

Synchronous Buck PWM and Linear Controller with 0.8V Reference Out Voltage
ANPEC

APW7068QAE-TU

Synchronous Buck PWM and Linear Controller with 0.8V Reference Out Voltage
ANPEC

APW7068QAE-TUL

Synchronous Buck PWM and Linear Controller with 0.8V Reference Out Voltage
ANPEC

APW7068QAE-TY

Synchronous Buck PWM and Linear Controller with 0.8V Reference Out Voltage
ANPEC

APW7068QAE-TYL

Synchronous Buck PWM and Linear Controller with 0.8V Reference Out Voltage
ANPEC

APW7068_09

Synchronous Buck PWM and Linear Controller with 0.8V Reference Out Voltage
ANPEC

APW7071

White LED DC/DC Step-Up Converter
ANPEC