APW7073A [ANPEC]

Synchronous Buck PWM Controller; 同步降压PWM控制器
APW7073A
型号: APW7073A
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

Synchronous Buck PWM Controller
同步降压PWM控制器

控制器
文件: 总20页 (文件大小:732K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7073A  
Synchronous Buck PWM Controller  
General Description  
Features  
·
·
·
·
Single 12V Power Supply Required  
0.6V Reference with 1% Accuracy  
Shutdown and Soft-Start Function  
The APW7073A is a voltage mode and synchronous  
PWM controller which drives dual N-channel MOSFETs.  
The device integrates all of the controlling, monitoring,  
and protecting functions into a single package, and pro-  
vides one controlled power output with over-current  
protection.  
Programmable Frequency Range from 50 kHz to  
1000kHz  
·
·
·
·
·
Voltage Mode PWM Control Design  
Up to 100% Duty Cycle  
The APW7073A provides excellent regulation for output  
load variation. The internal 0.6V temperature-compen-  
sated reference voltage is designed to meet the require-  
ment of low output voltage applications. The device in-  
cludes a 200kHz free-running triangle-wave oscillator that  
is adjustable from 50kHz to 1000kHz.  
Over-Current Protection (OCP)  
SOP-14 Package  
Lead Free and Green Devices Available  
(RoHS Compliant)  
The APW7073A has been equipped with excellent pro-  
tection functions: Power-On-Reset (POR) and Over-Cur-  
rent Protection (OCP). The POR circuit can monitor the  
VCC, EN, and OCSET voltages to make sure the supply  
voltages exceed their threshold voltage while the con-  
troller is running. The OCP monitors the output current  
by using the voltage drop across the upper MOSFET’s RDS  
(ON). When the output current reaches the trip point, the IC  
shuts off the converter and initiates a new soft-start  
process. After two over-current events are counted, the  
device turns off both high-side and low-side MOSFETs  
and the converter output is latched to be floating. It re-  
quires a POR of VCC to restart.  
Typical Application Circuit  
12V  
VIN  
R
OCSET  
RFS  
VOUT  
APW7073A  
L
CSS  
Applications  
Pin Configuration  
·
DC-DC Power Supply  
RT 1  
OCSET 2  
SS 3  
14 VCC  
13 PVCC  
12 LGATE  
11 PGND  
10 BOOT  
9 UGATE  
8 PHASE  
COMP 4  
FB 5  
SOP-14  
EN 6  
GND 7  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Ordering and Marking Information  
Package Code  
K : SOP - 14  
APW7073A  
Operating Ambient Temperature Range  
Assembly Material  
Handling Code  
°
E : -20 to 70 C  
Handling Code  
TR : Tape & Reel  
Temperature Range  
Package Code  
Assembly Material  
L : Lead Free Device G : Halogen and Lead Free Device  
APW7073A  
APW7073A K :  
XXXXX - Date Code  
XXXXX  
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which  
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for  
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen  
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by  
weight).  
Absolute Maximum Ratings (Note 1)  
Symbol  
VCC, VPVCC  
VBOOT  
Parameter  
Rating  
-0.3 to +16  
Unit  
V
VCC, PVCC to GND  
BOOT to PHASE  
-0.3 to +16  
V
UGATE to PHASE <400ns pulse width  
>400ns pulse width  
-5 to VBOOT +5  
-0.3 to VBOOT +0.3  
-5 to VPVCC +5  
-0.3 to VPVCC +0.3  
-10 to +30  
VUGATE  
VLGATE  
VPHASE  
V
V
V
LGATE to PGND <400ns pulse width  
>400ns pulse width  
PHASE to GND  
<400ns pulse width  
>400ns pulse width  
-0.3 to 16  
VRT, VOCSET, VEN  
RT, OCSET, EN to GND  
-0.3 to VCC+0.3  
-0.3 to 7  
V
V
VFB, VCOMP, VSS  
FB, COMP, SS to GND  
VPGND  
TJ  
PGND to GND  
-0.3 to +0.3  
-20 to 150  
V
Junction Temperature Range  
Storage Temperature  
°C  
°C  
°C  
TSTG  
TSDR  
-65 to 150  
260  
Maximum Lead Soldering Temperature, 10 Seconds  
Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are  
stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under  
"recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods  
may affect device reliability.  
Thermal Characteristics (Note 2)  
Symbol  
Parameter  
Typical Value  
Unit  
Junction-to-Ambient Thermal Resistance in Free Air  
qJA  
oC/W  
SOP-14  
160  
Note2: qJA is measured with the component mounted on a high effective the thermal conductivity test board in free air. The  
exposed pad of package is soldered directly on the PCB.  
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Recommended Operating Conditions  
Symbol  
Parameter  
Rating  
10.8 to 13.2  
2.2 to 13.2  
0.6 to 5  
Unit  
V
VCC, VPVCC IC Supply Voltage  
VIN  
VOUT  
IOUT  
TA  
Converter Input Voltage  
V
Converter Output Voltage  
Converter Output Current  
Ambient Temperature Range  
Junction Temperature Range  
V
0 to 30  
A
-20 to 70  
-20 to 125  
°C  
°C  
TJ  
Electrical Characteristics  
Unless otherwise specified, these specifications apply over VCC=12V, and TA =-20~70°C. Typical values are at TA=25°C.  
APW7073A  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
INPUT SUPPLY CURRENT  
VCC Supply Current (Shutdown Mode) UGATE, LGATE and EN = GND  
VCC Supply Current UGATE and LGATE Open  
POWER-ON-RESET  
Rising VCC Threshold  
-
0.5  
5
1
mA  
mA  
ICC  
-
10  
9
9.5  
8
10.0  
V
V
V
V
V
V
Falling VCC Threshold  
7.5  
8.5  
Rising VOCSET Threshold  
VOCSET Hysteresis Voltage  
Rising EN threshold Voltage  
EN Hysteresis Voltage  
-
-
-
-
1.3  
0.1  
1.3  
0.1  
-
-
-
-
OSCILLATOR  
Accuracy  
-15  
-
-
+15  
-
%
FOSC  
Free Running Frequency  
RT = open  
200  
kHz  
RT pin: resistor to GND;  
resistor to VCC  
Adjustment Range  
50  
-
1000  
kHz  
VOSC  
Duty  
Ramp Amplitude  
Duty Cycle Range  
(nominal 1.35V to 2.95V)  
-
1.6  
-
-
V
0
100  
%
REFERENCE  
VREF Reference Voltage  
Reference Voltage Tolerance  
PWM ERROR AMPLIFIER  
Gain Open Loop Gain  
GBWP Open Loop Bandwidth  
-
0.60  
-
-
V
-1  
+1  
%
RL = 10k, CL = 10pF(Note3)  
RL = 10k, CL = 10pF (Note3)  
RL = 10k, CL = 10pF (Note3)  
VFB = 0.6V  
-
-
-
-
-
-
-
-
88  
15  
6
-
-
dB  
MHz  
V/ms  
SR  
Slew Rate  
-
FB Input Current  
COMP High Voltage  
COMP Low Voltage  
COMP Source Current  
COMP Sink Current  
0.1  
5.5  
0
1
-
m
A
VCOMP  
VCOMP  
ICOMP  
ICOMP  
V
-
V
VCOMP = 2V  
VCOMP = 2V  
5
-
mA  
mA  
5
-
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Electrical Characteristics (Cont.)  
Unless otherwise specified, these specifications apply over VCC=12V, and TA =-20~70°C. Typical values are at TA=25°C.  
APW7073A  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
GATE DRIVERS  
IUGATE  
RUGATE Upper Gate Sink Impedance  
ILGATE Lower Gate Source Current  
RLGATE Lower Gate Sink Impedance  
TD Dead Time  
PROTECTION  
Upper Gate Source Current  
VBOOT = 12V, VUGATE -VPHASE = 2V  
VBOOT = 12V, IUGATE = 0.1A  
VPVCC = 12V, VLGATE = 2V  
-
-
-
-
-
2.6  
1.6  
3.0  
1.25  
50  
-
2.4  
-
A
W
A
VPVCC = 12V, ILGATE = 0.1A  
1.88  
-
W
ns  
IOCSET  
OCSET Source Current  
VOCSET = 11.5V  
170  
24  
200  
30  
250  
36  
mA  
mA  
ENABLE/SOFT-START  
ISS  
Soft-Start Charge Current  
Note 3 : Guaranteed by design  
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Typical Operating Characteristics  
Switching Frequency vs.  
Reference Voltage vs. Junction Temperature  
Junction Temperature  
205  
0.602  
0.601  
200  
195  
190  
185  
180  
0.6  
0.599  
0.598  
0.597  
0.596  
0.595  
0.594  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
Junction Temperature (°C)  
Junction Temperature (°C)  
Operating Waveforms  
Power On  
Power Off  
Vcc=12V, Vin=12V  
VOUT=1.5V, L=1uH  
Vcc=12V, Vin=12V  
VOUT=1.5V, L=1uH  
1
1
2
2
3
3
CH1: VCC (5V/div)  
CH2: VSS (2V/div)  
CH3: VOUT (1V/div)  
Time: 10ms/div  
CH1: VCC (5V/div)  
CH2: VSS (2V/div)  
CH3: VOUT (1V/div)  
Time: 2ms/div  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Operating Waveforms (Cont.)  
EN (VEN=VCC)  
Shutdown (VEN=VGND  
)
Vcc=12V, Vin=12V  
VOUT=1.5V, L=1uH  
Vcc=12V, Vin=12V  
VOUT=1.5V, L=1uH  
1
1
2
3
2
3
CH1: VEN (5V/div)  
CH2: VSS (5V/div)  
CH3: VOUT (1V/div)  
CH1: VEN (5V/div)  
CH2: VSS (5V/div)  
CH3: VOUT (1V/div)  
Time: 10ms/div  
Time: 10ms/div  
UGATE Rising  
UGATE Falling  
Vcc=12V, Vin=12V  
VOUT=1.5V, L=1uH  
Vcc=12V, Vin=12V  
VOUT=1.5V, L=1uH  
1
1
2
3
2
3
CH1: VUGATE (20V/div)  
CH2: VLGATE (5V/div)  
CH3: VPHASE (10V/div)  
Time: 50ns/div  
CH1: VUGATE (20V/div)  
CH2: VLGATE (5V/div)  
CH3: VPHASE (10V/div)  
Time: 50ns/div  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Operating Waveforms (Cont.)  
Load Transient Response  
Short Test before Power On  
VCC =12V, VIN =12V, VOUT =1.5V, L=1 mH,  
ROCSET = 1kW , RDS(ON) = 8.5mW  
Vcc=12V, Vin=12V  
VOUT=1.5V, L=1uH  
1
1
2
3
2
4
CH1: VOUT (500mV/div)  
CH4: IOUT (5A/div)  
Time: 200ms/div  
CH1: VSS (5V/div)  
CH2: IL (10A/div)  
CH3: VOUT (1V/div)  
CH4: VUGATE (20V/div)  
Time: 20ms/div  
Short Test after Power On  
1
VCC =12V, VIN =12V, VOUT =1.5V, L=1 mH,  
ROCSET = 1kW , RDS(ON) = 8.5mW  
2
3
4
CH1: VSS (5V/div)  
CH2: IL (10A/div)  
CH3: VOUT (1V/div)  
CH4: VUGATE (20V/div)  
Time: 20ms/div  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Function Pin Description  
VCC  
SS  
Power supply input pin. Connect a nominal 12V power  
supply to this pin. The power-on-reset function monitors  
the input voltage by this pin. It is recommended that a  
decoupling capacitor (1 to 10mF) be connected to the  
GND for noise decoupling.  
Connect a capacitor to theGND and a 30mAcurrent source  
charges this capacitor to set the soft-start time.  
OCSET  
This pin serves two functions: a shutdown control and  
the setting of over current limit threshold. Pulling this pin  
below 1.3V will shutdown the controller, forcing the  
UGATE and LGATE signals to be low.  
PVCC  
This pin provides a supply voltage for the lower gate  
drive. Connect this pin to VCC pin in normal use.  
A resistor (Rocset) connected between this pin and the  
drain of the high side MOSFET will determine the over  
current limit. An internal 200mA current source will flow  
through this resistor, creating a voltage drop, which will  
be compared with the voltage across the high side  
MOSFET. The threshold of the over current limit is  
therefore given by:  
BOOT  
This pin provides the bootstrap voltage to the upper gate  
driver for driving the N-channel MOSFET.  
PHASE  
This pin is the return path for the upper gate driver.  
Connect this pin to the upper MOSFET source. This pin  
is also used to monitor the voltage drop across the  
MOSFET for over-current protection.  
IOCSET (200uA)´ ROCSET  
IPEAK  
=
RDS(ON)  
GND  
EN  
This pin is the signal ground pin. Connect the GND to a  
good ground plane.  
Pull this pin above 1.3V to enable the device and pull  
this pin below 1.2V to disable the device. In shutdown,  
the SS is discharged and the UGATE and LGATE pins  
are held low. Note that don’t leave this pin open.  
PGND  
This pin is the power ground pin for the lower gate driver.  
It should be tied to the GND on the board.  
RT  
COMP  
This pin allows adjusting the switching frequency.  
Connect a resistor from RT pin to the ground to increase  
the switching frequency. Conversely, connect a resistor  
from RT to the VCC to decrease the switching frequency.  
This pin is the output of PWM error amplifier. It is used to  
set the compensation components.  
FB  
This pin is the inverting input of the PWM error amplifier.  
It is used to set the output voltage and the compensation  
components.  
UGATE  
This pin is the gate driver for the upper MOSFET of PWM  
output.  
LGATE  
This pin is the gate driver for the lower MOSFET of PWM  
output.  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Block Diagram  
VCC  
GND  
OCSET  
Power-On-  
Reset  
EN  
IOCSET  
200mA  
BOOT  
UGATE  
ISS  
30mA  
Soft-Start  
15K  
O.C.P  
Comparator  
SS  
PHASE  
PVCC  
PWM  
Comparator  
Gate  
Control  
LGATE  
VREF  
15K  
Error Amp  
PGND  
Sawtooth  
Wave  
Oscillator  
FB  
RT  
COMP  
Typical Application Circuit  
1mF  
12V  
5.1  
1N4148  
VIN  
Zener  
15V  
1nF  
3K  
PVCC VCC  
OCSET  
BOOT  
2.2  
1mF  
10mF  
10mF  
NC  
1500mFx2  
NC  
RT  
0.1mF  
ON  
2.2  
2.2  
UGATE  
PHASE  
7.2mH  
APM2510  
VOUT  
APM2510  
APM2556  
EN  
SS  
OFF  
1nF  
1nF  
1mF  
2200mFx2  
0.1mF  
LGATE  
PGND  
APM2556  
2.2  
COMP  
FB  
10nF  
3.3k  
GND  
8.2k  
1.8k  
3.3k  
10nF  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Function Description  
Power-On-Reset (POR)  
Voltage  
The Power-On-Reset (POR) function of APW7073A continu-  
ally monitors the input supply voltage (VCC), the enable  
(EN) pin, and the OCSET pin. The supply voltage (VCC)  
must exceed its rising POR threshold voltage. The volt-  
age at OCSET pin is equal to VIN less a fixed voltage  
drop (VOCSET = VIN- VROCSET). The EN pin can be pulled  
high with connecting a resistor to the VCC. The POR  
function initiates soft-start operation after VCC, EN, and  
OCSET voltages exceed their POR thresholds. For op-  
eration with a single +12V power source, VIN and Vcc are  
equivalent and the +12V power source must exceed the  
rising VCC threshold. The POR function inhibits opera-  
tion at disabled status (EN pin low). With both input sup-  
plies above their POR thresholds, the device initiates a  
soft-start interval.  
VSS  
4.2V  
VOUT  
1.8V  
Time  
t0  
t1  
t2  
Figure 1. Soft-Start Internal  
Over-Current Protection (monitor upper MOSFET)  
Soft-Start/EN  
The APW7073A monitors the voltage across the upper  
MOSFET and uses the OCSET pin to set the over-current  
trip point.  
The SS/EN pins control the soft-start and enable or  
disable the controller. Connect a soft-start capacitor  
from SS pin to GND to set the soft-start interval. Figure1.  
shows the soft-start interval. When VCC reaches its Power-  
On-Reset threshold (9.5V), internal 30mA current source  
starts to charge the capacitor. When the VSS reaches the  
enabled threshold about 1.8V, the internal 0.6V reference  
starts to rise and follows the VSS; the error amplifier  
output (VCOMP) suddenly raises to 1.35V, which is the  
valley of the triangle wave of the oscillator, leads the VOUT  
to start-up. Until the VSS reaches about 4.2V, the internal  
reference completes the soft-start interval and reaches  
to 0.6V, and then VOUT is in regulation. The SS still rises  
to 5.5V and then stops.  
A resistor (ROCSET) connected between OCSET pin and  
the drain of the upper MOSFET will determine the over  
current limit. An internal 200mA current source will flow  
through this resistor, creating a voltage drop, which will  
be compared with the voltage across the upper MOSFET.  
When the voltage across the upper MOSFET exceeds the  
voltage drop across the ROCSET, an over-current will be  
detected. The threshold of the over current limit is  
therefore given by:  
IOCSET ´ ROCSET  
ILIMIT  
=
RDS  
(ON)  
For the over-current, it is never occurred in the normal  
operating load range; the variation of all parameters in  
the above equation should be determined.  
CSS  
TSoft- Start = t2 - t1 =  
×2.4V  
ISS  
Where:  
- The MOSFET’s RDS(ON) is varied by temperature and  
gate to source voltage, the user should determine  
the maximum RDS(ON) in manufacturer’s datasheet.  
CSS = external Soft-Start capacitor  
ISS = Soft-Start current=30mA  
- The minimum IOCSET (170mA) and minimum ROCSET  
should be used in the above equation.  
- Note that the ILIMIT is the current flow through the  
upper MOSFET; ILIMIT must be greater than maximum  
output current add the half of inductor ripple current.  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Function Description (Cont.)  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Over-Current Protection (Cont.)  
An over current condition will shut down the device and  
discharge the CSS with a 30mA sink current and then  
initiate the soft-start sequence. After two over-current  
events are counted, the device turns off both high-side  
and low-side MOSFETs and the converter output is latched  
to be floating. It requires a POR of VCC to restart.  
Switching Frequency  
The APW7073A provides the oscillator switching fre-  
quency adjustment. The device includes a 200kHz free-  
running triangle wave oscillator. If operating in higher  
frequency than 200kHz, connect a resistor from RT pin  
to the ground to increase the switching frequency.  
Conversely, if operating in lower frequency than 200kHz,  
connect a resistor from RT to the VCC to decrease the  
switching frequency.  
10  
1000  
Frequency (kHz)  
Figure 2. Oscillator Frequency vs. RT Resistance  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
Figure 2. shows how to select the resistor for the desired  
frequency. Figure 3 shows more detail for the higher  
frequencies and Figure 4 shows the lower frequency  
detail.  
0
200 300 400 500 600 700 800 900 1000  
Frequency (kHz)  
Figure 3. Oscillator Frequency vs. RT Resistance  
(High Frequency)  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
50  
70  
90  
110  
130  
150  
170  
Frequency (kHz)  
Figure 4. Oscillator Frequency vs. RT Resistance  
(Low Frequency)  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Application Information  
Output Voltage Selection  
Output Capacitor Selection  
The output voltage can be programmed with a resistive  
divider. Use 1% or better resistors for the resistive divider  
is recommended. The FB pin is the inverter input of the  
error amplifier, and the reference voltage is 0.6V. The  
output voltage is determined by:  
Higher capacitor value and lower ESR reduce the output  
ripple and the load transient drop. Therefore, selecting high  
performance low ESR capacitors is intended for switch-  
ing regulator applications. In some applications, mul-  
tiple capacitors have to be parallelled to achieve the  
desired ESR value. A small decoupling capacitor in  
parallel for bypassing the noise is also recommended,  
and the voltage rating of the output capacitors also must  
be considered. If tantalum capacitors are used, make  
sure they are surge tested by the manufactures. If in doubt,  
consult the capacitors manufacturer.  
æ
ç
è
ö
÷
÷
ø
ROUT  
RGND  
ç
VOUT = 0.6´ 1+  
Where ROUT is the resistor connected from VOUT to FB, and  
RGND is the resistor connected from FB to GND.  
Output Inductor Selection  
Input Capacitor Selection  
The inductor value determines the inductor ripple current  
and affects the load transient response. Higher inductor  
value reduces the inductor’s ripple current and induces  
lower output ripple voltage. The ripple current and ripple  
voltage can be approximated by:  
The input capacitor is chosen based on the voltage rating  
and the RMS current rating. For reliable operation, select  
the capacitor voltage rating to be at least 1.3 times higher  
than the maximum input voltage. The maximum RMS  
current rating requirement is approximately IOUT/2,  
where IOUT is the load current. During power up, the input  
capacitors have to handle large amount of surge current.  
If tantalum capacitors are used, make sure they are surge  
tested by the manufactures. If in doubt, consult the  
capacitors manufacturer. For high frequency decoupling,  
a ceramic capacitor 1mF can be connected between the  
drain of upper MOSFET and the source of lower MOSFET.  
V - VOUT VOUT  
IN  
IRIPPLE  
=
´
FS ´ L  
V
IN  
DVOUT = IRIPPLE ´ ESR  
where Fs is the switching frequency of the regulator.  
Although increase of the inductor value and frequency  
reduces the ripple current and voltage, a tradeoff will  
exist between the inductor’s ripple current and the  
regulator load transient response time.  
MOSFET Selection  
The selection of the N-channel power MOSFETs are  
determined by the RDS(ON), reverse transfer capacitance  
(CRSS) and maximum output current requirement. There  
are two components of loss in the MOSFETs: conduction  
loss and transition loss. For the upper and lower  
MOSFET, the losses are approximately given by the fol-  
lowing equations:  
A smaller inductor will give the regulator a faster load  
transient response at the expense of higher ripple current.  
Increasing the switching frequency (FS) also reduces the  
ripple current and voltage, but it will increase the  
switching loss of the MOSFET and the power dissipation  
of the converter. The maximum ripple current occurs at  
the maximum input voltage. A good starting point is to  
choose the ripple current to be approximately 30% of  
the maximum output current. Once the inductance value  
has been chosen, select an inductor that is capable of  
carrying the required peak current without going into  
saturation. In some types of inductors, especially core  
that is made of ferrite, the ripple current will increase  
abruptly when it saturates. This will result in a larger  
output ripple voltage.  
PUPPER = IOUT 2 ( 1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FS  
PLOWER = IOUT 2 (1+ TC)(RDS(ON))(1-D)  
Where IOUT is the load current  
TC is the temperature dependency of RDS(ON)  
FS is the switching frequency  
tSW is the switching interval  
D is the duty cycle  
Copyright ã ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Application Information (Cont.)  
MOSFET Selection (Cont.)  
The PWM modulator is shown in Figure 7. The input is  
the output of the error amplifier and the output is the  
PHASE node. The transfer function of the PWM modula-  
tor is given by:  
Note that both MOSFETs have conduction loss while the  
upper MOSFET includes an additional transition loss.  
The switching internal, tSW, is the function of the reverse  
transfer capacitance CRSS. The (1+TC) term is to factor  
in the temperature dependency of the RDS(ON) and can be  
extracted from the “RDS(ON) vs Temperature” curve of the  
power MOSFET.  
V
IN  
GAINPWM  
=
DVOSC  
VIN  
Driver  
OSC  
PWM  
Comparator  
PWM Compensation  
ΔVOSC  
The output LC filter of a step down converter introduces a  
double pole, which contributes with -40dB/decade gain  
slope and 180 degrees phase shift in the control loop. A  
compensation network among COMP, FB, and VOUT  
should be added. The compensation network is shown in  
Figure 8. The output LC filter consists of the output induc-  
tor and output capacitors. The transfer function of the LC  
PHASE  
Output of  
Error Amplifier  
Driver  
Figure 7. The PWM Modulator  
The compensation network is shown in Figure 8. It  
provides a close loop transfer function with the highest  
zero crossover frequency and sufficient phase margin.  
The transfer function of error amplifier is given by:  
filter is given by:  
1
F
=
ESR  
2´ p ´ ESR´ COUT  
1
1
æ
ö
The FLC is the double poles of the LC filter, and FESR is the  
zero introduced by the ESR of the output capacitor.  
// R2 +  
ç
÷
VCOMP  
VOUT  
sC1  
sC2  
è
ø
GAINAMP  
=
=
1
æ
ö
R1// R3 +  
ç
÷
VPHASE  
L
VOUT  
sC3  
è
ø
æ
ö
ö
1
1
æ
ç
´ s +  
÷
÷
s +  
ç
÷
ç
R2´ C2  
(
R1+ R3  
)
´ C3  
R1+ R3  
è
ø
è
C1+ C2  
ø
COUT  
ESR  
=
´
1
R1´ R3´ C1  
æ
ö æ  
ö
s s +  
´
s +  
ç
÷ ç  
÷
R2´ C1´ C2  
R3´ C3  
è
ø è  
ø
The poles and zeros of the transfer function are:  
1
FZ1  
=
Figure 5. The Output LC Filter  
FLC  
2´ p ´ R2´ C2  
1
FZ2  
=
2´ p ´  
(
R1+ R3  
)
´ C3  
-40dB/dec  
1
F
=
=
P1  
C1´ C2  
æ
ö
÷
ø
2´ p ´ R2´  
ç
C1+ C2  
è
1
F
FESR  
P2  
2´ p ´ R3´ C3  
C1  
-20dB/dec  
R3  
C3  
R2  
C2  
VOUT  
FB  
VCOMP  
R1  
Frequency(Hz)  
VREF  
Figure 6. The LC Filter GAIN and Frequency  
Figure 8. Compensation Network  
www.anpec.com.tw  
Copyright ã ANPEC Electronics Corp.  
13  
Rev. A.5 - Nov., 2012  
APW7073A  
Application Information (Cont.)  
PWM Compensation (Cont.)  
The poles and zero of this transfer functions are:  
1
The closed loop gain of the converter can be written as:  
F
=
LC  
2´ p ´ L´ COUT  
GAINLC X GAINPWM X GAINAMP  
R1  
FS  
Figure 9. shows the asymptotic plot of the closed loop  
converter gain, and the following guidelines will help to  
design the compensation network. Using the below  
guidelines should give a compensation similar to the  
curve plotted. A stable closed loop has a -20dB/ decade  
slope and a phase margin greater than 45 degree.  
R3 =  
C3 =  
- 1  
2´ F  
LC  
1
p ´ R3´ FS  
1. Choose a value for R1, usually between 1K and 5K.  
2. Select the desired zero crossover frequency  
FO: (1/5 ~ 1/10) X FS >FO>FESR  
FZ1 FZ2 FP1 FP2  
Use the following equation to calculate R2:  
Compensation  
Gain  
20log  
(R2/R1)  
DVOSC FO  
R2 =  
´
´ R1  
20log  
(VIN/ΔVOSC  
V
F
LC  
IN  
)
3. Place the first zero FZ1 before the output LC filter double  
pole frequency FLC.  
FLC  
FZ1 = 0.75 X FLC  
FESR  
Converter  
Gain  
Calculate the C2 by the equation:  
PWM & Filter  
Gain  
1
C2 =  
2´ p ´ R2´ FLC ´ 0.75  
Frequency(Hz)  
Figure 9. Converter Gain and Frequency  
4. Set the pole at the ESR zero frequency FESR  
FP1 = FESR  
:
Calculate the C1 by the equation:  
C2  
C1=  
2´ p ´ R2´ C2´ FESR - 1  
5. Set the second pole FP2 at the half of the switching  
frequency and also set the second zero FZ2 at the output  
LC filter double pole FLC. The compensation gain should  
not exceed the error amplifier open loop gain, check the  
compensation gain at FP2 with the capabilities of the error  
amplifier.  
FP2 = 0.5 X FS  
FZ2 = FLC  
Combine the two equations will get the following component  
calculations:  
1+ s´ ESR´ COUT  
s2 ´ L´ COUT + s´ ESR´ COUT +1  
GAINLC  
=
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Layout Consideration  
Layout Consideration  
the loads. The input capacitor GND should be close  
to the output capacitor GND and the lower MOSFET  
GND.  
In any high switching frequency converter, a correct layout  
is important to ensure proper operation of the regulator.  
With power devices switching at 300kHz, the resulting  
current transient will cause voltage spike across  
the interconnecting impedance and parasitic circuit  
elements. As an example, consider the turn-off transition  
of the PWM MOSFET. Before turn-off, the MOSFET is  
carrying the full load current. During turn-off, current  
stops flowing in the MOSFET and is free-wheeling by  
the lower MOSFET and parasitic diode. Any parasitic  
inductance of the circuit generates a large voltage spike  
during the switching interval. In general, using short, wide,  
and printed circuit traces should minimize interconnect-  
ing impedances and the magnitude of voltage spike.  
And signal and power grounds are to be kept separating  
till combined using ground plane construction or single  
point grounding. Figure 10 illustrates the layout, with  
bold lines indicating high current paths; these traces  
must be short and wide. Components along the bold  
lines should be placed lose together. Below is a check-  
list for your layout:  
- The drain of the MOSFETs (VIN and PHASE nodes)  
should be a large plane for heat sinking.  
APW7073A  
VIN  
VCC  
PVCC  
BOOT  
L
O
A
D
UGATE  
PHASE  
LGATE  
VOUT  
Figure 10. Layout Guidelines  
- Keep the switching nodes (UGATE, LGATE, and  
PHASE) away from sensitive small signal nodes  
since these nodes are fast moving signals. Therefore,  
keep traces to these nodes as short as possible.  
- The traces from the gate drivers to the MOSFETs  
(UGATE, LGATE) should be short and wide.  
- Place the source of the high-side MOSFET and the  
drain of the low-side MOSFET as close as possible.  
Minimizing the impedance with wide layout plane  
between the two pads reduces the voltage bounce of  
the node.  
- Decoupling capacitor, compensation component,  
the resistor dividers, boot capacitors, and SS capacitors  
should be close their pins. (For example, place the  
decoupling ceramic capacitor near the drain of the  
high-side MOSFET as close as possible. The bulk  
capacitors are also placed near the drain).  
- The input capacitor should be near the drain of the  
upper MOSFET; the output capacitor should be near  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Package Information  
SOP–14  
D
SEE VIEW A  
°
c
e
b
GAUGE PLANE  
SEATING PLANE  
L
VIEW A  
SOP-14  
S
Y
M
B
O
L
MILLIMETERS  
INCHES  
MIN.  
MAX.  
1.75  
0.25  
MIN.  
MAX.  
A
0.069  
0.010  
0.004  
0.049  
0.012  
0.007  
A1  
A2  
b
0.10  
1.25  
0.31  
0.17  
8.55  
5.80  
3.80  
0.020  
0.010  
0.51  
0.25  
8.75  
6.20  
4.00  
c
D
0.337  
0.228  
0.150  
0.344  
0.244  
0.157  
E
E1  
e
1.27 BSC  
0.050 BSC  
0.010  
0.016  
0.020  
0.050  
0.25  
0.40  
0.50  
1.27  
h
L
°
°
°
°
0
0
8
0
8
Note: 1. Follow JEDEC MS-012 AB.  
2. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.  
3. Dimension “E” does not include inter-lead flash or protrusions.  
Inter-lead flash and protrusions shall not exceed 10 mil per side.  
Copyright ã ANPEC Electronics Corp.  
16  
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Carrier Tape & Reel Dimensions  
P0  
P2  
P1  
OD0  
A
K0  
A0  
A
OD1  
B
B
SECTION A-A  
SECTION B-B  
d
T1  
Application  
SOP-14  
A
H
T1  
C
d
D
W
E1  
F
16.4+2.00 13.0+0.50  
330.0±  
2.00  
50 MIN.  
1.5 MIN. 20.2 MIN. 16.0±0.30 1.75±0.10 7.50±0.10  
-0.00  
P2  
-0.20  
D0  
P0  
P1  
D1  
T
A0  
B0  
K0  
1.5+0.10  
-0.00  
0.6+0.00  
-0.40  
4.0±0.10 8.0±0.10 2.0±0.10  
1.5 MIN.  
6.40±0.20 9.00±0.20 2.10±0.20  
(mm)  
Devices Per Unit  
Package Type  
SOP- 14  
Unit  
Tape & Reel  
Quantity  
2500  
Copyright ã ANPEC Electronics Corp.  
17  
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Taping Direction Information  
SOP–14  
USER DIRECTION OF FEED  
Classification Profile  
Copyright ã ANPEC Electronics Corp.  
18  
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Classification Reflow Profiles  
Profile Feature  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
Preheat & Soak  
100 °C  
150 °C  
60-120 seconds  
150 °C  
200 °C  
60-120 seconds  
Temperature min (Tsmin  
)
Temperature max (Tsmax  
)
Time (Tsmin to Tsmax) (ts)  
Average ramp-up rate  
(Tsmax to TP)  
3 °C/second max.  
3°C/second max.  
Liquidous temperature (TL)  
Time at liquidous (tL)  
183 °C  
60-150 seconds  
217 °C  
60-150 seconds  
Peak package body Temperature  
(Tp)*  
See Classification Temp in table 1  
20** seconds  
See Classification Temp in table 2  
30** seconds  
Time (tP)** within 5°C of the specified  
classification temperature (Tc)  
Average ramp-down rate (Tp to Tsmax  
)
6 °C/second max.  
6 °C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to peak temperature  
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.  
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.  
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)  
Volume mm3  
350  
Package  
Thickness  
<2.5 mm  
³ 2.5 mm  
Volume mm3  
<350  
235 °C  
220 °C  
220 °C  
220 °C  
Table 2. Pb-free Process – Classification Temperatures (Tc)  
Package  
Thickness  
<1.6 mm  
Volume mm3  
Volume mm3  
350-2000  
260 °C  
Volume mm3  
<350  
260 °C  
260 °C  
250 °C  
>2000  
260 °C  
245 °C  
245 °C  
1.6 mm – 2.5 mm  
³ 2.5 mm  
250 °C  
245 °C  
Reliability Test Program  
Test item  
SOLDERABILITY  
HOLT  
Method  
JESD-22, B102  
JESD-22, A108  
JESD-22, A102  
JESD-22, A104  
MIL-STD-883-3015.7  
JESD-22, A115  
JESD 78  
Description  
5 Sec, 245°C  
1000 Hrs, Bias @ Tj=125°C  
168 Hrs, 100%RH, 2atm, 121°C  
500 Cycles, -65°C~150°C  
VHBM2KV  
PCT  
TCT  
HBM  
MM  
VMM200V  
10ms, 1tr100mA  
Latch-Up  
Copyright ã ANPEC Electronics Corp.  
19  
www.anpec.com.tw  
Rev. A.5 - Nov., 2012  
APW7073A  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,  
Sindian City, Taipei County 23146, Taiwan  
Tel : 886-2-2910-3838  
Fax : 886-2-2917-3838  
Copyright ã ANPEC Electronics Corp.  
Rev. A.5 - Nov., 2012  
20  
www.anpec.com.tw  

相关型号:

APW7073AKE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7073AKE-TRL

Synchronous Buck PWM Controller
ANPEC

APW7073KE-TR

Synchronous Buck PWM Controller
ANPEC

APW7073KE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7073KE-TRL

Synchronous Buck PWM Controller
ANPEC

APW7073KE-TU

Synchronous Buck PWM Controller
ANPEC

APW7073KE-TUL

Synchronous Buck PWM Controller
ANPEC

APW7073KE-TY

Synchronous Buck PWM Controller
ANPEC

APW7073KE-TYL

Synchronous Buck PWM Controller
ANPEC

APW7073QE-TR

Synchronous Buck PWM Controller
ANPEC

APW7073QE-TRL

Synchronous Buck PWM Controller
ANPEC

APW7073QE-TU

Synchronous Buck PWM Controller
ANPEC