APW7093N [ANPEC]

3A, 1MHz, Step Down DC/DC Regulator; 3A , 1MHz时,降压型DC / DC稳压器
APW7093N
型号: APW7093N
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

3A, 1MHz, Step Down DC/DC Regulator
3A , 1MHz时,降压型DC / DC稳压器

稳压器
文件: 总20页 (文件大小:725K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7093  
3A, 1MHz, Step Down DC/DC Regulator  
General Description  
Features  
·
·
·
·
Source/Sink 3A  
The APW7093 is a reversible energy flow, constant-  
off-time, pulse-width modulated (PWM), step-down  
DC-DC converter. It is ideal for use in notebook and  
sub-notebook computers that require 1.1V to 5V  
activetermination power supplies. Thisdevice features  
an internal PMOS power switch and internal  
synchronous rectifier for high efficiency and reduced  
Up to 1MHz Switches Frequency  
Up to 94% Efficiency  
Internal PMOS/NMOS Switches  
- 70mW/40mW On-Resistance at VIN = 4.5V  
- 90mW/60mW On-Resistance at VIN = 3V  
±1% Output Accuracy  
·
·
·
·
·
·
·
·
·
component count. The internal 90mW PMOS power  
1.1V to VIN Adjustable Output Voltage  
3V to +5.5V Input Voltage Range  
<1mA Shutdown Supply Current  
switchand 60mW NMOS synchronous-rectifier switch  
easily deliver continuous load currents up to 3A. The  
APW7093 accurately tracks an external reference  
voltage, produces an adjustable output from 1.1V to  
VIN, and achieves efficiencies as high as 94%.  
Programmable Constant-Off-Time Operation  
Thermal Shutdown  
The APW7093 uses a unique current-mode,  
constant-off-time, PWM control scheme that allows  
the output to source or sink current. This feature  
allows energy to return to the input power supply that  
otherwise would be wasted. The programmable  
constant-off-timearchitecturesetsswitchingfrequencies  
upto1MHz, allowingthe user tooptimizeperformance  
trade-offs between efficiency, output switching noise,  
component size, and cost. TheAPW7093 features an  
adjustable soft-start to limit surge currents during  
startup, a 100% duty-cycle mode for low-dropout  
operation, and alow-power shutdown mode that disables  
the power switches and reduces supply current below  
1µA. TheAPW7093 is available in a 32-pin QFN with  
an exposed backside pad or a 16-pin SSOP.  
Adjustable Soft-Start Inrush Current Limiting  
Output Short-Circuit Protection  
Lead Free Available (RoHS Compliant)  
Applications  
·
·
·
·
·
·
·
Motherboard  
Graphics Cards  
Cable or DSL Modems, Set Top Boxes  
DSP Supplies  
Memory Supplies  
5V Input DC-DC Regulators  
Distributed Power Supplies  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Pin Description  
32  
25  
1
24  
PGND  
N.C  
PGND  
LX  
IN  
LX  
IN  
1
2
3
4
16  
15  
14  
13  
LX  
SHDN  
IN  
PGND  
LX  
IN  
LX  
LX  
APW7093  
PGND  
VCC  
GND  
REF  
APW7093  
PGND  
N.C  
SS  
SS  
5
6
7
8
12  
11  
10  
9
N.C  
EXTREF  
TOFF  
FB  
VCC  
N.C  
GND  
EXTREF  
8
GND  
17  
16  
9
SSOP - 16  
QFN - 32  
Ordering and Marking Information  
Package Code  
N : SSOP-16  
APW7093  
QA : QFN -32  
Operating Ambient Temp. Range  
Lead Free Code  
°
I : -45 to 85 C  
Handling Code  
Temp. Range  
Package Code  
Handling Code  
TR : Tape & Reel  
TU : Tube  
Lead Free Code  
L : Lead Free Device Blank : Original Device  
APW7093  
XXXXX  
APW7093 N :  
XXXXX - Date Code  
APW7093 QA :  
APW7093  
XXXXX  
XXXXX - Date Code  
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate  
termination finish; which are fully compliant with RoHS and compatible with both SnPb and lead-free soldiering  
operations. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C  
for MSL classification at lead-free peak reflow temperature.  
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Block Diagram  
0.01m F  
SS  
VIN  
VIN  
VCC  
FB  
IN  
+3.0V TO +5.5V  
CIN  
CURRENT  
SENSE  
+
_
PWM  
LOGIC  
AND  
L
EXTREF  
LX  
DRIVERS  
COUT  
SHDN  
REF  
REF  
TIMER  
GND  
RTOFF  
PGND  
Fig1. Block Diagram  
Absolute Maximum Ratings  
Parameter  
Rating  
-0.3 ~ +6  
Unit  
V
VCC to GND  
IN to VCC  
V
±
±
0.3  
0.3  
GND to PGND  
V
CC  
-0.3 ~ V +0.3  
V
SHDN  
, SS, FB, TOFF, VREF to GND  
EXTREF to GND  
-0.3 ~ VIN-1.7  
1.6  
V
W
W
A
Power dissipation; Part mount on 1in2 of 1oz copper; QFN-28  
Power dissipation; Part mount on 1in2 of 1oz copper; SSOP-16  
LX Current  
1
-3.5 ~ +4.1  
-40 ~ +85  
+150  
Operating Temperature Range  
Junction Temperature  
°
°
°
°
C
C
C
C
Storage Temperature Range  
-65~+150  
+300  
Lead Temperature (soldering,10s)  
Recommend Operating Condition  
Recommend Operating Condition  
Symbol  
VIN  
Parameter  
Input Voltage Range  
Output Voltage Range  
Output Capacitor  
Input Capacitor  
MIN  
3
TYP  
MAX  
UNIT  
NOTE  
5.5  
V
V
VOUT  
1.1  
220  
22  
VIN  
VEXTREF<= VIN-1.7V  
Low ESR Capacitor  
OUT  
C
330  
33  
1
uF  
uF  
uH  
CIN  
L
Inductor  
0.56  
Refer to Application section  
for further Information.  
RTOFF Programmed off-time Resistance  
KW  
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Electrical Characteristics  
(VIN=VCC=3.3V, VEXTREF=+1.1V, TA=-45 to +85oC, unless otherwise noted, Typical values are at TA =+25oC.)  
APW7093  
Symbol  
Parameter  
Test Conditions  
Unit  
Min Typ Max  
IN  
CC  
V , V  
Input Voltage  
Feedback Voltage Accuracy  
3.0  
-12  
5.5  
V
IN  
CC  
V =V =+3.0V to +5.5V,  
+12 mV  
mV  
LOAD  
EXTREF  
I
=0,V  
=1.25V (Note2)  
FB  
EXTREF  
(V –V  
)
D
V
FB  
LOAD  
EXTREF  
Feedback Load Regulation Error  
I
=-3A to +3A, V  
=+1.25V  
20  
REF  
IN  
V -  
V
-
EXTREF  
IN  
CC  
V
External Reference Voltage Range V =V =+3.0 to +5.5V  
V
0.01  
1.7  
1.07 1.10 1.12  
REF  
V
Reference Voltage  
V
8
0
2
REF  
m
m
Reference Load Regulation  
PMOS Switch On-Resistance  
I
= -1 A to +10 A  
0.3  
2
mV  
IN  
V =+4.5V  
70 140  
90 180  
50 100  
60 120  
PMOS  
W
W
R
R
ILX=0.5A  
m
m
IN  
V =+3.0V  
IN  
V =+4.5V  
NMOS  
LX  
NMOS Switch On-Resistance  
I =0.5A  
IN  
V =+3.0V  
LIMIT  
IN  
LX  
I
Current Limit Threshold  
Switching Frequency  
V > V  
3.5 4.1 4.7  
1
A
fSW  
(Note3)  
MHz  
mA  
CC  
I
fSW =500kHz  
fSW =500kHz  
1
No Load Supply Current  
IN  
I
32  
SHDN  
CC  
IN  
m
A
I
Shutdown Supply Current  
SHDN = GND, I + I  
<1  
15  
°
°
C
Thermal Shutdown Threshold  
Hysteresis =15 C  
150  
CC  
UVLO Under Voltage Lockout Threshold  
V
falling, hysteresis = 90mV  
2.5 2.6 2.7  
V
FB  
FB  
EXTREF  
I
FB Input Current  
V =V  
+0.1V  
0
60 250 nA  
0.48  
W
TOFF  
TOFF  
TOFF  
0.40  
R
R
R
=30.1k  
0.44  
m
s
TOFF Off-Time  
W
=110k  
=499k  
1.10 1.20 1.30  
4.3 4.8 5.3  
W
´
m
s
Startup Off-Time  
On-Time  
4 TOFF  
m
s
TON  
(Note3)  
0.34  
m
A
SS  
I
SS Source Current  
SS Sink Current  
4
2
5
6
SS  
I
SS  
V =1V  
mA  
SHDN  
CC  
=0, V  
m
A
SHDN Input Current  
V
-1  
+1  
IL  
V
0.8  
V
SHDN Logic Levels  
IH  
V
2.0  
OUT(RMS)  
I
RMS  
Maximum Output RMS Current  
3.1 A  
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Electrical Characteristics (Cont.)  
(VIN=VCC=3.3V, VEXTREF=+1.1V, TA = -45 to +85oC, unless otherwise noted, Typical values are at TA =+25oC.)  
APW7093  
Unit  
Symbol  
Parameter  
Test Conditions  
Min Typ Max  
IL  
0.8  
V
V
SHDN Logic Levels  
IH  
V
2.0  
OUT(RMS)  
RMS  
I
Maximum Output RMS Current  
3.1  
A
Note2: The output voltage will have aDC-regulationlevel lower than the feedback error comparator threshold  
by 50% of the ripple.  
Note3: Recommended operating frequency, not production tested.  
Functional Pin Description  
Name  
PIN (QFN)  
PIN (QSOP)  
FUNCTION  
1,5,7,9,11,13,16,19,  
25,26,28,30,32  
N.C  
X
No Connection, Not internally connected.  
Supply Voltage Input for the internal PMOS Power Switch.  
Not internally connected. Externally connect all pins for  
proper operation.  
IN  
2,4  
2,4  
Inductor Connection. Connection for the drains of the PMOS  
power switch and NMOS synchronous-rectifier switch.  
LX  
3,21,22,27,29  
3,14,16 Connect the inductor from this node to the output filter  
capacitor and load. Not internally connected. Externally  
connect all pins for proper operation.  
Soft-Start Connect a capacitor from SS to GND to limit inrush  
current during startup.  
External Reference Input Feedback input regulates to  
VEXTREF. The PWM controller remains off until EXTREF is  
greater than REF.  
Off-Time Select Input. Sets the PMOS power switch  
constant-off-time. Connect a resistor from TOFF to GND to  
adjust the PMOS switch off-time.  
Feedback Input. Connect directly to output for fixed-voltage  
operation or to a resistive-divider for adjustable operating  
modes.  
SS  
6
8
5
EXTREF  
6
7
TOFF  
10  
12  
FB  
8
9
14,17,backside pad,  
corner tabs  
Analog Ground. Connect exposed backside pad and corner  
tabs to analog GND.  
GND  
m
Reference Output. Bypass REF to GND with a 0.1 F  
capacitor.  
REF  
GND  
15  
17  
10  
11  
Tie to GND (pin 13 QFN; pin 9 SSOP)  
Analog Supply Voltage Input. Supplies internal analog  
CC  
V
18  
20,23,24  
31  
12  
13,15  
1
W
m
CC  
circuitry. Bypass V with a 10 and 1 F low-pass filter. See  
Figure2.  
Power Ground. Internally connected to the internal NMOS  
synchronous-rectifier switch.  
Shutdown control Input Drive SHDN low to disable the  
reference, control circuitry, and internal MOSFETs. Drive  
PGND  
SHDN  
CC  
high or connect to V for normal operation.  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Typical Application  
APW7093  
L
VOUT  
VIN  
LX  
PGND  
GND  
FB  
IN  
33mF  
10W  
220mF  
15mW  
VCC  
R2  
1mF  
SHDN  
VEXTREF  
REF  
SS  
EXTREF  
TOFF  
50KW  
0.1mF  
RTOFF  
0.01mF  
FORVIN =5V: L=1mH, RTOFF=100kW  
FOR VIN=3.3V: L=0.68mH, RTOFF=68kW  
Fig2. Typical Applicatin Circuit  
Typical Characteristics  
(Circuit of Figure2, VOUT=1.25V, for VIN=3.3V: L: 0.68mH, RTOFF=68kW; for VIN=5V: L=1mH, TOFF=100kW. TA=25C  
if not specially)  
Effienciency vs. Output Current  
No Load Supply Current vs. Input Voltage  
100  
95  
50  
VIN=5V, VOUT=3.3V  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
40  
30  
20  
10  
0
VOUT=1.25V  
RTOFF=68kW  
VIN=5V, VOUT=1.25V  
VIN=5V, VOUT=2.5V  
VIN=3.3V, VOUT=1.25V  
0
1
2
3
4
5
6
0
1
2
3
Output Current(A)  
Input Voltage(V)  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Typical Characteristics (Cont.)  
(Circuit of Figure2, VOUT=1.25V, for VIN=3.3V: L: 0.68mH, RTOFF=68kW; for VIN=5V: L=1mH, TOFF=100kW. TA=25C  
if not specially)  
Switching Frequency vs. Output Current  
OFF-TIME vs. RTOFF  
900  
6
5
4
800  
700  
600  
500  
400  
300  
200  
100  
0
VIN=3.3V  
VIN=5V  
3
2
1
0
0
1
2
3
0
100  
200  
300  
400  
500  
600  
RTOFF(kW)  
Output Current(A)  
Start Up and Shut Down  
VREF vs. Input Voltage  
1.114  
1.113  
1.112  
1.111  
1.110  
SHDN=2V/DIV  
VSS=2V/DIV  
IN=1A/DIV  
TIME2ms/DIV  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VIN=3.3V, VOUT=1.25V, ROUT=0.4W  
Input Voltage(V)  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Typical Characteristics (Cont.)  
(Circuit of Figure2, VOUT=1.25V, for VIN=3.3V: L= 0.68mH, RTOFF=68kW; for VIN=5V: L=1mH, TOFF=100kW. TA=25°C  
if not specially)  
Load Transient Response  
Load Transient Response  
IOUT=3A  
IOUT=3A  
IOUT=0A  
IOUT=0A  
VOUT 100mV/DIV  
VOUT 100mV/DIV  
TIME 20ms/DIV  
TIME 20ms/DIV  
di 3A  
di 3A  
=
=
VIN=5V, VOUT=2.5V,  
VIN=5V, VOUT=1.25V,  
dt  
ms  
dt  
ms  
Load Transient Response  
Line Transient Response  
IOUT=3A  
VIN=5.0V  
IOUT=0A  
VIN=3.0V  
VOUT 100mV/DIV  
VOUT 100mV/DIV  
TIME 20ms/DIV  
TIME 40ms/DIV  
VIN=3.3V, VOUT=1.25V,  
di 3A  
=
dt  
ms  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Typical Characteristics (Cont.)  
(Circuit of Figure2, VOUT=1.25V, for VIN=3.3V: L= 0.68mH, RTOFF=68kW; for VIN=5V: L=1mH, TOFF=100kW. TA=25°C  
if not specially)  
LightLoadWaveform  
HeavyLoadWaveform  
VLX 5V/DIV  
VLX 5V/DIV  
ILX 1A/DIV  
ILX 1A/DIV  
VOUT 50mV/DIV  
VOUT 50mV/DIV  
TIME1ms/DIV  
TIME1ms/DIV  
IOUT=100mA  
IOUT=3A  
VREF vs. Temperature  
Output Voltage vs. Temperature  
1.118  
1.116  
1.114  
1.112  
1.110  
1.108  
1.106  
1.104  
1.255  
1.253  
1.251  
1.249  
1.247  
VIN=3.3V  
VIN=3.3V  
IOUT=0A  
1.102  
1.100  
1.098  
1.245  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature(°C)  
Temperature(°C)  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Function Descriptions  
path for current to flow when the inductor is discharging.  
Replacing the Schottky diode with a low-resistance  
NMOS synchronous switch reduces conduction losses  
and improves efficiency. The NMOS synchronous-rectifier  
switch turns on following a short delay (typ. 20ns) af-  
ter the PMOS power switch turns off, thus preventing  
cross-conduction or “shoot-through.” In constant-off-  
time mode, the synchronous-rectifier switch turns off  
just prior to the PMOS power switch turning on. While  
both switches are off, inductor current flows through  
the internal body diode of the NMOS switch.  
The APW7093 synchronous, current-mode, constant  
off-time, PWM DC-DC converter steps down input  
voltages of 3V to 5.5V to an adjustable output voltage  
from 1.1V to VIN, as set by the voltage applied at  
EXTREF. It sources and sinks up to 3A of output  
current. Internal switches composed of a 90mΩPMOS  
power switch and a 60m ΩNMOS synchronous-rectifier  
switch improve efficiency, reduce component count,  
and eliminate the need for an external Schottky diode  
across the synchronous switch.  
The APW7093 operates in a constant-off-time mode  
under all loads. A single resistor-programmable  
constant- tradeoffs in efficiency, switching noise,  
component size, and cost. When power is drawn from  
a regulated supply, constant-off-time PWM architecture  
essentially provides constant-frequency operation. This  
architecture has the inherent advantage of quick  
response to line and load transients. The APW7093’s  
current-mode, constant-off-time PWM architecture  
regulates the output voltage by changing the PMOS  
switch on-time relative to the constant off-time.  
Current Sourcing and Sinking  
By operating in a constant-off-time, pseudo-fixed-  
frequency mode, the APW7093 can both source and  
sink current. Depending on the output current  
requirement, the circuit operates in two modes. In the  
first mode the output draws current and the APW7093  
behaves as a regular buck controller, sourcing current  
to the output from the input supply rail. However, when  
the output is supplied by another source, the APW7093  
operates in a second mode as a synchronous boost,  
taking power from the output and returning it to the  
input.  
Constant-Off-TimeOperation  
In the constant-off-time architecture, the FB voltage  
comparator turns the PMOS switch on at the end of  
each off-time, keeping the device in continuous-  
conduction mode. The PMOS switch remains on until  
the feedback voltage exceeds the external reference  
voltage (VEXTREF) or the positive current limit is reached.  
When the PMOS switch turns off, it remains off for the  
programmed off-time (TOFF). To control the current  
under short-circuit conditions, the PMOS switch  
remains off for approximately 4 x TOFF when VFB <  
VEXTREF / 4.  
Thermal Resistance  
Junction-to-ambient thermal resistance, θJA, is highly  
dependent on the amount of copper area immediately  
surrounding the IC leads. The APW7093 QFN pack-  
age has 1in square of copper area and a thermal  
resistance of 50°C/W with no forced airflow. The  
APW7093 16-pin SSOP evaluation kit has 0.5 in  
square of copper area and a thermal resistance of 80°C/  
W with no forced airflow. Airflow over the board  
significantly reduces the junction-to-ambient thermal  
resistance. For heat sinking purposes, it is essential  
to connect the exposed backside pad of the QFN  
package to a large analog ground plane.  
SynchronousRectification  
In a step-down regulator without synchronous  
rectification, an external Schottky diode provides a  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Function Descriptions(Cont.)  
Shutdown  
PD(CAP) = C ´ VIN2 ´ fSW  
Drive SHDN to a logic-level low to place the APW7093  
in low-power shutdown mode and reduce supply  
current less than 1µA. In shutdown, all circuitry and  
internal MOSFETs turn off, so the LX node becomes  
where C = 500pF and fSW is the switching frequency.  
Resistive losses in the two power switches are  
approximated by:  
PD(RES) = IO2 UT ´ RPMOS  
high impedance. Drive SHDN to a logic-level high or  
connect to VCC for normal operation.  
where RPMOS is the on-resistance of the PMOS switch.  
The junction-to-ambient thermal resistance required  
to dissipate this amount of power is calculated by:  
θJA = (TJ,MAX - TA,MAX) / (PD(CAP) + PD(RES))  
where:  
Power Dissipation  
Power dissipation in the APW7093 is dominated by  
conduction losses in the two internal power switches.  
Power dissipation due to charging and discharging the  
gate capacitance of the internal switches (i.e., switching  
losses) is approximately:  
θJA = junction-to-ambient thermal resistance  
TJ,MAX = maximum junction temperature  
TA,MAX = maximum ambient temperature  
Application Information  
For typical applications, use the recommended  
component values in Figure 2. For other applications,  
take the following steps:  
Setting the Output Voltage  
An external voltage applied to the EXTREF pin sets  
the output voltage of the APW7093. This can come  
directly from another voltage source or external  
reference. When FB is directly tied to the output  
(Figure 4), the output voltage range is limited by the  
external reference’s input voltage limits. VEXTREF  
should be limited to less than VIN-1.7V. Failure to  
comply can cause the part to operate abnormally and  
may cause part damage. Alternatively, the output can  
be adjusted up to VIN by connecting FB to a resistor-  
divider between the output voltage and ground (Figure  
5). Use 50k Ωfor R1. R2 is given by:  
1. Select the desired PWM-mode switching frequency.  
See Figure 3 for maximum operating frequency.  
2. Select the constant off-time as a function of input  
voltage, output voltage, and switching frequency.  
3. Select RTOFF as a function of off-time.  
4. Select the inductor as a function of output voltage,  
off-time, and peak-to-peak inductor current.  
1400  
VOUT=2.5V  
1200  
VOUT=3.3V  
1000  
800  
600  
400  
200  
0
V
æ
è
ö
÷
ø
OUT  
R2 = R1×  
- 1  
ç
V
EXTREF  
VOUT=1.1V  
VOUT=1.25V  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
Input Voltage(V)  
Fig3.Maximum RecommendedOperationFrequency  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Application Information(Cont.)  
Setting the Output Voltage (Cont.)  
VOUT=VEXTREF where:  
(
fSW  
V
- VOUT - VPMOS  
)
IN  
TOFF  
=
(
)
V - VPMOS + VNMOS  
IN  
TOFF = the programmed off-time  
VIN = the input voltage  
LX  
APW7093  
VOUT = the output voltage  
VPMOS = the voltage drop across the internal PMOS  
power switch |IOUT X RPMOS|  
VNMOS = the voltage drop across the internal NMOS  
synchronous-rectifier switch |IOUT X RNMOS|  
VEXTREF  
EXTREF  
FB  
fSW = switching frequency  
1.1V £ V  
£ V - 1.7V  
EXTREF  
IN  
Make sure that TON and TOFF are greater than 400ns  
when sourcing current. Select RTOFF according to the  
formula:  
FIG.4 Adjsting the Output Voltage using EXTREF  
VOUT  
RTOFF = (TOFF - 0.18 ms) ´ (109k W/1.00 ms)  
LX  
Recommended values for RTOFF range from 24k Ωto  
410k Ωfor off-times of 0.4µs to 4µs. Often the switching  
frequency is set as high as possible, and the inductor value  
is reduced to minimize the energy transferred from  
inductor to capacitor during load-step recovery.  
The operating frequency of the APW7093 is determined  
primarily by TOFF (set by RTOFF), VIN, and VOUT as  
shown in the following formula:  
APW7093  
R2  
FB  
EXTREF  
REF  
R1  
æ
ö
(
V
- VOUT - VPMOS  
)
V
OUT  
IN  
ç
÷
R2 = R1×  
- 1  
fSW  
=
ç
÷
V
TOFF  
(
V
- VPMOS + VNMOS  
)
EXTREF  
è
ø
IN  
where VEXTREF = VREF = 1.1V  
However, as the output current increases, the voltage  
drop across the NMOS and PMOS switches increases  
and the voltage across the inductor decreases. This  
causes the frequency to drop. Assuming RPMOS =  
RNMOS, the change in frequency can be approximated  
with the following formula:  
FIG.5 Adjsting the Output Voltage using FB  
Programming the Switching Frequency and  
Off-Time and On-Time  
The APW7093 features a programmable PWM-mode  
switching frequency, which is set by the input and  
output voltage and the value of RTOFF, connected from  
TOFF to GND. RTOFF sets the PMOS power switch  
off-time in PWM mode. Use the following equation to  
select the off-time while sourcing current according to  
the desired switching frequency in PWM mode:  
- DIOUT ´ RPMOS  
DfSW  
=
V ´ TOFF  
IN  
where RPMOS is the resistance of the internal  
MOSFETs (70m Ωtyp).  
Copyright ã ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Application Information(Cont.)  
Programming the Switching Frequency and Low-ESR and low-ESL Tantalum or ceramic capacitor  
Off-Time and On-Time (Cont.)  
should be suitable.  
When sinking current, the switching frequency  
increases due to the on-resistances of the internal  
switches adding to the voltage across the inductor,  
reducing the on-time. Calculate TON when sinking  
current using the equation:  
Output Capacitor Selection  
The output filter capacitor affects the output voltage  
ripple, output load-transient response, and feedback  
loop stability. The output filter capacitor must have low  
enough ESR to meet output ripple and load transient  
requirements, yet have high enough ESR to satisfy  
stability requirements. Also, the capacitance value must  
be high enough to guarantee stability and absorb the  
inductor energy going from a full-load sourcing to full  
load sinking condition without exceeding the maximum  
output tolerance.  
æ
ö
VOUT - VNMOS  
ç
ç
÷
÷
TON = TOFF  
V
- VOUT + VPMOS  
IN  
è
ø
Inductor Selection  
The key inductor parameters must be specified: inductor  
value (L) and peak current (IPEAK). A lower value of  
inductor allows smaller size but results in higher losses  
and ripple. A good compromise between size and  
losses is found at approximately a 25% ripple current  
In applications where the output is subject to large  
load transients, the output capacitor’s size typically  
depends on how much ESR is needed to prevent the  
output from dipping too low under a load transient.  
to load current ratio (DI/IOUT = 0.25).  
VOUT ´ TOFF  
L =  
IOUT ´ 0.25  
RESR £ DVOUT /DIOUT(MAX)  
The peak inductor current at full load is calculated by:  
The actual microfarad capacitance value required is  
defined by the physical size needed to achieve low  
ESR, and by the chemistry of the capacitor technology.  
Thus, the capacitor is usually selected by ESR, size  
and voltage rating rather than by capacitance value.  
When using low-capacity filter capacitors such as  
ceramic or polymer types, capacitor size is usually  
determined by the capacity needed to prevent overshoot  
and undershoot from causing problems during load  
transients. Generally, once enough capacitance is  
added to meet the overshoot requirement, undershoot  
at the rising-load edge is no longer a problem.  
VOUT ´ TOFF  
IPEAK = IOUT  
+
2 ´ L  
where IOUT is the maximum source or sink current.  
Choose an inductor with a saturation current at least  
as high as the peak inductor current. Additionally, verify  
the peak inductor current while sourcing output  
current (IOUT = ISOURCE) does not exceed the positive  
current limit. The inductor selected should exhibit low  
losses at the chosen operating frequency.  
Input Capacitor Selection  
The input filter capacitor reduces peak currents and  
noise at the voltage source. A 22µF to 47µF capacitor  
may be required for higher power and dynamic loads.  
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Application Information(Cont.)  
Soft-Start  
Input Source  
The output of the APW7093 can accept current due  
to the reversible properties of the buck and the boost  
converter. When voltage at the output of the APW7093  
(low-voltage port) exceeds or equals the output set  
voltage the flow of energy reverses, going from the  
output to the input (high-voltage port). If the input (high  
voltage port) is not connected to a low-impedance  
source capable of absorbing energy, the voltage at  
the input will rise. This voltage can violate the abso-  
lute maximum voltage at the input of the APW7093  
and destroy the part. This occurs when sinking current  
because the topology acts as a boost converter,  
pumping energy from the low-voltage side (the output),  
to the high-voltage side (the input). The input (high-  
voltage side) voltage is limited only by the clamping  
effect of the voltage source connected there. To avoid  
this problem, make sure the input to the APW7093 is  
connected to a low impedance, two quadrant supply  
or that the load (excluding the APW7093) connected  
to that supply consumes more power than the amount  
being transferred from the APW7093 output to the  
input.  
Soft-start allows a gradual increase of the internal  
current limit to reduce input surge currents at startup  
and at exit from shutdown. A timing capacitor, CSS,  
placed from SS to GND sets the rate at which the  
internal current limit is changed. Upon power-up, when  
the device comes out of under-voltage lockout (2.6V  
typ.) or after the SHDN pin is pulled high, a 4.7µA  
constant current source charges the soft-start capacitor  
and the voltage on SS increases. When the voltage  
on SS is less than approximately 0.7V, the current  
limit is set to zero. As the voltage increases from  
0.7V to approximately VIN, the current limit is adjusted  
from 0V to the current-limit threshold. The voltage  
across the soft-start capacitor changes with time  
according to the equation:  
4.7mA ´ t  
VSS  
=
CSS  
The output current limit during soft-start varies with  
the voltage on the soft-start pin, SS, according to the  
equation:  
(V - 0.7V)  
SS  
ILIIM(SS)  
=
´ ILIMIT ,VSS£1.8V  
1.1V  
Current Limit and Short Circuit Protection  
where ILIMIT is the current-limit threshold from the  
Electrical Characteristics. The constant-current source  
stops charging once the voltage across the soft-start  
capacitor reaches 1.8V.  
The APW7093 monitors sourcing and sinking current,  
and limits the maximum output current to prevent  
damages during overload or short-circuit.  
Circuit Layout and Grounding  
SHDN  
Good layout is necessary to achieve the APW7093’s  
intended output power level, high efficiency, and low  
noise. Good layout includes the use of ground planes,  
careful component placement, and correct routing of  
traces using appropriate trace widths. The following  
points are in order of decreasing importance:  
0
VIN  
VSS(A)  
1.8V  
0.7V  
0
ILIMIT(A)  
0
ILIMIT  
t
Fig6. Soft-Start Current Limit  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Application Information(Cont.)  
Circuit Layout and Grounding (Cont.)  
1. Minimize switched-current and high-current ground  
loops. Connect the input capacitor’s ground, the  
output capacitor’s ground, and PGND close  
together. Split the ground connections. Use separate  
tracesor planesfor thePGNDandGNDand tie them  
together at a single point.  
2. The output capacitor should be placed close to the  
output terminals to obtain better smoothing effect  
on the output ripple.  
3. Connect the input filter capacitor less than 5mm  
away from IN. The connecting copper trace carries  
large currents and must be at least 1mm wide,  
preferably 2.5mm.  
4.Place the LX node components as close together  
and as near to the device as possible. This reduces  
resistive and switching losses as well as noise.  
5.Ground planes are essential for optimum  
performance. In most applications, the circuit is  
located on a multilayer board and full use of the four  
or more layers is recommended. For heat  
dissipation, connect the exposed backside pad of  
the QFN package to a large analog ground plane,  
preferably on a surface of the board that receives  
good airflow. If the ground plane is located on the  
top layer, make use of the N.C. pins adjacent to  
GND to lower thermal resistance to the ground plane.  
If the ground is located elsewhere, use several vias  
to lower thermal resistance. Typical applications use  
multiple ground planes to minimize thermal  
resistance. Avoid large AC currents through the  
analog ground plane.  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Packaging Information  
SSOP-16  
S
D
N
GAUGE  
PLANE  
H
E
1
2
3
A
L
1
A1  
B
e
Millimeters  
Inches  
Dim  
Min.  
Max.  
1.75  
0.25  
0.30  
5.05  
4.05  
Min.  
0.053  
0.004  
0.008  
0.187  
0.147  
Max.  
0.069  
0.010  
0.012  
0.199  
0.160  
A
A1  
B
1.350  
0.10  
0.20  
4.75  
3.75  
D
E
e
0.625 TYP.  
0.025 TYP.  
5.75  
0.4  
6.25  
1.27  
0.18  
H
L
0.226  
0.016  
0.002  
0.246  
0.050  
0.007  
S
0.05  
f
°
0
°
8
°
0
°
8
1
Copyright ã ANPEC Electronics Corp.  
16  
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Packaging Information  
QFN-32  
D
D2  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
24  
23  
31 32  
L
1
2
3
4
22  
21  
20  
19  
E
E2  
5
6
18  
17  
7
8
9
10  
11  
12  
13  
14  
15  
16  
e
b
A
A3  
A1  
Millimeters  
Inches  
Dim  
Min.  
-
Max.  
0.84  
0.04  
Min.  
-
Max.  
0.033  
0.0015  
A
A1  
A3  
D
0.00  
0.00  
0.20 REF.  
0.008 REF.  
4.90  
4.90  
0.18  
3.50  
3.50  
5.10  
5.10  
0.28  
3.60  
3.60  
0.192  
0.192  
0.007  
0.138  
0.138  
0.200  
0.200  
0.011  
0.142  
0.142  
E
b
D2  
E2  
e
0.500 BSC  
0.020 BSC  
L
0.35  
0.45  
0.014  
0.018  
Copyright ã ANPEC Electronics Corp.  
17  
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Physical Specifications  
Terminal Material  
Lead Solderability  
Packaging  
Solder-Plated Copper (Solder Material : 90/10 or 63/37 SnPb  
Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3.  
2500 devices per reel  
Reflow Condition (IR/Convection or VPR Reflow)  
tp  
TP  
Critical Zone  
TL to TP  
Ramp-up  
TL  
tL  
Tsmax  
Tsmin  
Ramp-down  
ts  
Preheat  
25  
°
t 25 C to Peak  
Time  
Classificatin Reflow Profiles  
Profile Feature  
Average ramp-up rate  
(TL to TP)  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
°
°
3 C/second max.  
3 C/second max.  
Preheat  
°
°
150 C  
100 C  
-
-
-
Temperature Min (Tsmin)  
Temperature Max (Tsmax)  
Time (min to max) (ts)  
°
°
150 C  
200 C  
60-120 seconds  
60-180 seconds  
Time maintained above:  
°
°
183 C  
217 C  
-
Temperature (TL)  
Time (tL)  
60-150 seconds  
60-150 seconds  
-
Peak/Classificatioon Temperature (Tp)  
See table 1  
See table 2  
°
Time within 5 C of actual  
10-30 seconds  
20-40 seconds  
Peak Temperature (tp)  
Ramp-down Rate  
°
°
6 C/second max.  
6 C/second max.  
6 minutes max.  
8 minutes max.  
°
Time 25 C to Peak Temperature  
Notes: All temperatures refer to topside of the package .Measured on the body surface.  
Copyright ã ANPEC Electronics Corp.  
18  
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Classificatin Reflow Profiles(Cont.)  
Table 1. SnPb Entectic Process – Package Peak Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350  
<2.5 mm  
°
°
225 +0/-5 C  
240 +0/-5 C  
³
°
°
2.5 mm  
225 +0/-5 C  
225 +0/-5 C  
Table 2. Pb-free Process – Package Classification Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350-2000  
Volume mm3  
>2000  
<1.6 mm  
1.6 mm – 2.5 mm  
³ 2.5 mm  
260 +0°C*  
260 +0°C*  
250 +0°C*  
260 +0°C*  
250 +0°C*  
245 +0°C*  
260 +0°C*  
245 +0°C*  
245 +0°C*  
*Tolerance: The device manufacturer/supplier shall assure process compatibility up to and  
including the stated classification temperature (this means Peak reflow temperature +0°C.  
For example 260°C+0°C) at the rated MSL level.  
Reliability test program  
Test item  
SOLDERABILITY  
HOLT  
PCT  
TST  
Method  
MIL-STD-883D-2003  
MIL-STD-883D-1005.7  
JESD-22-B, A102  
MIL-STD-883D-1011.9  
MIL-STD-883D-3015.7  
JESD 78  
Description  
245°C , 5 SEC  
1000 Hrs Bias @ 125 °C  
168 Hrs, 100 % RH , 121°C  
-65°C ~ 150°C, 200 Cycles  
VHBM > 2KV, VMM > 200V  
10ms , Itr > 100mA  
ESD  
Latch-Up  
Carrier Tape & Reel Dimension  
t
D
P
Po  
E
P1  
Bo  
F
W
Ao  
D1  
Ko  
Copyright ã ANPEC Electronics Corp.  
19  
www.anpec.com.tw  
Rev. A.5 - Jun., 2005  
APW7093  
Carrier Tape & Reel Dimension  
T2  
J
C
A
B
T1  
Application  
SSOP-16  
A
6.95  
B
D0  
D1  
E
F
P0  
P1  
P2  
5.4  
T2  
2.2  
1.55±0.05 1.55±0.1 1.75±0.1 5.5±0.05 4.0±0.1  
8.0±0.1 2.0±0.05  
T
W
W1  
C1  
C2  
T1  
T2  
C
0.3±0.05  
12.0±0.3  
9.5  
13±0.3  
21±0.8  
13.5±0.5 2.0±0.2  
80±1  
(mm)  
Cover Tape Dimensions  
Application  
SSOP- 16  
Carrier Width  
Cover Tape Width  
Devices Per Reel  
16.8  
12.3  
2500  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
5F, No. 2 Li-Hsin Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
7F, No. 137, Lane 235, Pac Chiao Rd.,  
Hsin Tien City, Taipei Hsien, Taiwan, R. O. C.  
Tel : 886-2-89191368  
Fax : 886-2-89191369  
Copyright ã ANPEC Electronics Corp.  
Rev. A.5 - Jun., 2005  
20  
www.anpec.com.tw  

相关型号:

APW7093NI-TR

3A, 1MHz, Step Down DC/DC Regulator
ANPEC

APW7093NI-TRL

3A, 1MHz, Step Down DC/DC Regulator
ANPEC

APW7093NI-TU

3A, 1MHz, Step Down DC/DC Regulator
ANPEC

APW7093NI-TUL

3A, 1MHz, Step Down DC/DC Regulator
ANPEC

APW7093QA

3A, 1MHz, Step Down DC/DC Regulator
ANPEC

APW7093QAI-TR

3A, 1MHz, Step Down DC/DC Regulator
ANPEC

APW7093QAI-TRL

3A, 1MHz, Step Down DC/DC Regulator
ANPEC

APW7093QAI-TU

3A, 1MHz, Step Down DC/DC Regulator
ANPEC

APW7093QAI-TUL

3A, 1MHz, Step Down DC/DC Regulator
ANPEC

APW7095

6-Channel DC/DC Converter Control IC
ANPEC

APW7095A

6-Channel DC/DC Converter Control IC
ANPEC

APW7095AQBE-TY

6-Channel DC/DC Converter Control IC
ANPEC