PA13A [APEX]

POWER OPERATIONAL AMPLIFIERS; 功率运算放大器
PA13A
型号: PA13A
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

POWER OPERATIONAL AMPLIFIERS
功率运算放大器

运算放大器 局域网
文件: 总4页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
�ꢀꢁꢂꢃꢄꢀ�ꢂꢃꢅꢆꢇꢀꢈꢅꢉꢄꢅꢊ�ꢉꢇꢋꢇꢂꢃꢌ  
�ꢀꢁꢂꢃꢄꢃ�ꢀꢁꢂꢀ  
�ꢀꢀꢁꢂꢃꢃꢄꢄꢄꢅꢆꢁꢇꢈꢉꢊꢋꢌꢍꢀꢇꢋ�ꢅꢋꢍꢉꢎꢎꢎꢏꢐꢑꢑꢒꢎꢓꢔꢕꢖꢆꢁꢇꢈꢎꢎꢎꢏꢐꢑꢑꢒꢎꢓꢔꢕꢖꢗꢘꢙꢚ  
FEATURES  
• LOW THERMAL RESISTANCE — 1.1°C/W  
• CURRENT FOLDOVER PROTECTION  
• EXCELLENT LINEARITY — Class A/B Output  
• WIDE SUPPLY RANGE — ±10V to ±45V  
• HIGH OUTPUT CURRENT — Up to ±15A Peak  
12-PIN SIP  
PACKAGE STYLE DP  
Formed leads avaliable  
APPLICATIONS  
See package styles ED & EE  
• MOTOR, VALVE AND ACTUATOR CONTROL  
• MAGNETIC DEFLECTION CIRCUITS UP TO 10A  
• POWER TRANSDUCERS UP TO 100kHz  
• TEMPERATURE CONTROL UP TO 360W  
• PROGRAMMABLE POWER SUPPLIES UP TO 90V  
• AUDIO AMPLIFIERS UP TO 120W RMS  
EQUIVALENT SCHEMATIC  
�ꢀ  
ꢇꢀꢅ  
ꢇꢀꢊ  
�ꢌ  
��  
ꢆ�  
ꢇ�  
ꢇꢃ  
DESCRIPTION  
The PA13 is a state of the art high voltage, very high  
output current operational amplifier designed to drive resis-  
tive, inductive and capacitive loads. For optimum linearity,  
especially at low levels, the output stage is biased for class  
A/B operation using a thermistor compensated base-emitter  
voltage multiplier circuit. The safe operating area (SOA) can  
be observed for all operating conditions by selection of user  
programmablecurrentlimitingresistors.Forcontinuousopera-  
tion under load, a heatsink of proper rating is recommended.  
The PA13 is not recommended for gains below –3 (inverting)  
or +4 (non-inverting).  
Thishybridintegratedcircuitutilizesthicklm(cermet)resis-  
tors,ceramiccapacitorsandsemiconductorchipstomaximize  
reliability, minimize size and give top performance. Ultrasoni-  
callybondedaluminumwiresprovidereliableinterconnections  
at all operating temperatures. The 12-pin power SIP package  
is electrically isolated.  
ꢇꢁ  
ꢇꢈ  
ꢇꢋꢊ  
ꢅ�  
ꢇꢋꢅ  
ꢉ�  
POWER RATING  
Not all vendors use the same method to rate the power han-  
dling capability of a Power Op Amp. APEX rates the internal  
dissipation, which is consistent with rating methods used by  
transistormanufacturersandgivesconservativeresults.Rating  
delivered power is highly application dependent and therefore  
canbemisleading.Forexample,the135Winternaldissipation  
rating of the PA13 could be expressed as an output rating  
of 260W for audio (sine wave) or as 440W if using a single  
ended DC load. Please note that all vendors rate maximum  
power using an infinite heatsink.  
TYPICAL APPLICATION  
ꢕꢐꢖꢀ  
THERMAL STABILITY  
ꢏꢐꢑꢒ  
ꢓꢅꢑꢒ  
APEX has eliminated the tendency of class A/B output  
stages toward thermal runaway and thus has vastly increased  
amplifierreliability.Thisfeature,notfoundinmostotherPower  
Op Amps, was pioneered by APEX in 1981 using thermistors  
which assure a negative temperature coefficient in the quies-  
cent current. The reliability benefits of this added circuitry far  
outweigh the slight increase in component count.  
ꢘꢃꢕ  
ꢓꢔꢗ  
ꢅꢅꢞꢅꢔ  
ꢪꢞꢅꢚ  
ꢔꢓꢙꢀꢜꢝꢜ  
ꢜꢣꢅꢖ  
ꢘꢃ�  
ꢓꢔꢗ  
ꢐꢓꢠꢡꢢ  
ꢏꢗ  
ꢙꢣꢛꢝꢛ  
ꢐꢞꢠ  
ꢋ  
ꢙꢞꢟ  
ꢏꢐꢑꢒ  
ꢔꢉ  
EXTERNAL CONNECTIONS  
ꢓꢅꢑꢒ  
ꢒ  
�ꢈ  
�� �ꢀ  
�ꢔꢔꢀ  
ꢙꢚꢛꢒ  
ꢑꢒꢍꢒ  
ꢒ  
ꢅꢉ  
ꢉꢓꢗ  
ꢉꢖꢔꢕ  
ꢉꢔꢕ  
ꢌꢔꢕ  
ꢤ  
ꢓꢙꢗ  
ꢃꢁ ꢁꢁꢁꢅ  
ꢇꢈꢉꢊꢁꢋꢌꢍꢀꢊꢌꢎ �ꢀꢁꢂ  
ꢉꢊꢋ ꢌꢊꢋ  
ꢁꢁꢆ  
ꢗ  
ꢌꢖꢔꢕ  
ꢢꢍꢥꢢꢁꢘꢦꢌꢌꢊꢧꢨꢁꢣꢤꢇꢩꢩꢊꢨꢌꢍꢘꢣꢃꢁꢤꢦꢜꢜꢃꢇ  
ꢍꢎꢏꢐꢎꢏ  
APEX MICROTECHNOLOGY CORPORATION • TELEPHONE (520) 690-8600 • FAX (520) 888-3329 • ORDERS (520) 690-8601 • EMAIL prodlit@apexmicrotech.com  
1
ABSOLUTE MAXIMUM RATINGS  
SPECIFICATIONS  
PA13  
PA13/PA13A  
100V  
15A  
135W  
±VS –3V  
±VS  
ABSOLUTE MAXIMUM RATINGS  
SUPPLY VOLTAGE, +Vs to –Vs  
OUTPUT CURRENT, within SOA  
POWER DISSIPATION, internal  
INPUT VOLTAGE, differential  
INPUT VOLTAGE, common mode  
TEMPERATURE, pin solder -10s max.  
TEMPERATURE, junction1  
260°C  
175°C  
TEMPERATURE RANGE, storage  
OPERATING TEMPERATURE RANGE, case  
–40 to +85°C  
–25 to +85°C  
SPECIFICATIONS  
PA13  
TYP  
PA13A  
TYP  
PARAMETER  
TEST CONDITIONS2, 5  
MIN  
MAX  
MIN  
MAX  
UNITS  
INPUT  
OFFSET VOLTAGE, initial  
OFFSET VOLTAGE, vs. temperature  
OFFSET VOLTAGE, vs. supply  
OFFSET VOLTAGE, vs. power  
BIAS CURRENT, initial  
T = 25°C  
±2  
±6  
±65  
±200  
±1  
*
*
*
±10  
*
*
±5  
*
*
±4  
±40  
*
mV  
µV/°C  
µV/V  
µV/W  
nA  
pA/°C  
pA/V  
nA  
pA/°C  
MΩ  
pF  
V
dB  
FuC ll temperature range  
T = 25°C  
±10  
±30  
±20  
±12  
±50  
±10  
±12  
±50  
200  
3
TC = 25°C  
TC = 25°C  
±30  
±500  
±20  
*
BIAS CURRENT, vs. temperature  
BIAS CURRENT, vs. supply  
OFFSET CURRENT, initial  
OFFSET CURRENT, vs. temperature  
INPUT IMPEDANCE, DC  
FuC ll temperature range  
T = 25°C  
TC = 25°C  
±30  
±10  
FuC ll temperature range  
T = 25°C  
INPUT CAPACITANCE  
TC = 25°C  
*
*
*
COMMON MODE VOLTAGE RANGE3  
COMMON MODE REJECTION, DC  
FuC ll temperature range  
Full temp. range, VCM = ±VS –6V  
±VS –5 ±VS –3  
*
*
74  
100  
GAIN  
OPEN LOOP GAIN at 10Hz  
OPEN LOOP GAIN at 10Hz  
GAIN BANDWIDTH PRODUCT @ 1MHz  
POWER BANDWIDTH  
PHASE MARGIN , AV = +4  
T = 25°C, 1KΩ load  
FuC ll temp. range, 8Ω load  
T = 25°C, 8Ω load  
110  
108  
4
20  
20  
*
*
*
*
*
dB  
dB  
MHz  
kHz  
°
96  
13  
*
*
TC = 25°C, 8Ω load  
FuC ll temp. range, 8Ω load  
OUTPUT  
VOLTAGE SWING3  
VOLTAGE SWING3  
VOLTAGE SWING3  
CURRENT, peak  
SETTLING TIME to .1%  
SLEW RATE  
T
= 25°C, PA13 = 10A, PA13A = 15A  
±V –6  
±VS –5  
±VSS–5  
10  
*
*
*
V
V
V
TC = 25°C, IO = 5A  
FuC ll temp. range, IO = 80mA  
T = 25°C  
15  
A
TC = 25°C, 2V step  
2
4
*
*
µs  
V/µs  
nF  
TC = 25°C  
2.5  
*
CAPACITIVE LOAD  
CAPACITIVE LOAD  
FuC ll temperature range, A = 4  
1.5  
SOA  
*
*
Full temperature range, AVV > 10  
POWER SUPPLY  
VOLTAGE  
CURRENT, quiescent  
Full temperature range  
TC = 25°C  
±10  
±40  
25  
±45  
50  
*
*
*
*
*
V
mA  
THERMAL  
RESISTANCE, AC, junction to case4  
RESISTANCE, DC, junction to case  
RESISTANCE, DC, junction to air  
TEMPERATURE RANGE, case  
T = –55 to +125°C, F > 60Hz  
TC = –55 to +125°C  
.6  
.9  
30  
.7  
1.1  
*
*
*
*
*
°C/W  
°C/W  
°C/W  
°C  
TCC = –55 to +125°C  
Meets full range specification  
–25  
+85  
*
*
NOTES:  
* The specification of PA13A is identical to the specification for PA13 in the applicable column to the left  
1. Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to  
achieve high MTTF.  
2. The power supply voltage for all tests is ±40, unless otherwise noted as a test condition.  
3. +V and –VS denote the positive and negative supply rail respectively. Total V is measured from +VS to –VS.  
4. RaSting applies if the output current alternates between both output transistorsSat a rate faster than 60Hz.  
5. Full temperature range specifications are guaranteed but not 100% tested.  
The exposed substrate contains beryllia (BeO). Do not crush, machine, or subject to temperatures in excess of 850°C to  
avoid generating toxic fumes.  
CAUTION  
2APEX MICROTECHNOLOGY CORPORATION • 5980 NORTH SHANNON ROAD • TUCSON, ARIZONA 85741 • USA • APPLICATIONS HOTLINE: 1 (800) 546-2739  
TYPICAL PERFORMANCE  
GRAPHS  
PA13  
ꢍꢎꢓꢇꢆꢃꢐꢇꢆꢁꢉꢀꢈꢌ  
�ꢀꢁꢂꢃꢄꢅꢆꢆꢇꢈꢉ  
ꢄꢅꢆꢆꢇꢈꢉꢃꢋꢀꢊꢀꢉ  
ꢂꢈꢁ  
ꢆꢃꢀ  
ꢆꢃꢆ  
ꢂꢄꢃꢀ  
ꢂꢆꢁ  
ꢂꢁꢁ  
ꢨꢁ  
ꢂꢀꢃꢁ  
ꢂꢆꢃꢀ  
ꢂꢁꢃꢁ  
ꢄꢃꢀ  
ꢔꢌꢑꢟꢔꢴꢔꢃꢁꢥꢵꢓꢔꢌꢋꢜꢔꢴꢔ  
ꢂꢃꢅ  
ꢂꢃꢥ  
ꢔꢌꢑꢟꢔꢴꢔꢃꢂꢨꢵꢓꢔꢌꢋꢜꢔꢴꢔꢁ  
ꢥꢁ  
ꢂꢃꢇ  
ꢂꢃꢁ  
ꢚꢠꢂꢇ  
ꢈꢁ  
ꢀꢃꢁ  
ꢆꢁ  
ꢃꢄ  
ꢃꢈ  
ꢆꢃꢀ  
ꢆꢁ ꢈꢁ ꢥꢁ ꢨꢁ ꢂꢁꢁ ꢂꢆꢁ ꢂꢈꢁ  
ꢑꢠꢝꢍꢔꢛꢍꢊꢚꢍꢌꢠꢛꢏꢌꢍꢓꢔꢛꢔꢕꢲꢑꢘ  
�ꢀꢁ �ꢆꢀ  
ꢆꢀ ꢀꢁ ꢄꢀ ꢂꢁꢁ ꢂꢆꢀ  
�ꢀꢁ �ꢆꢀ  
ꢆꢀ ꢀꢁ ꢄꢀ ꢂꢁꢁ ꢂꢆꢀ  
ꢑꢠꢝꢍꢔꢛꢍꢊꢚꢍꢌꢠꢛꢏꢌꢍꢓꢔꢛꢔꢕꢲꢑꢘ  
ꢑꢠꢝꢍꢔꢛꢍꢊꢚꢍꢌꢠꢛꢏꢌꢍꢓꢔꢛꢔꢕꢲꢑꢘ  
ꢍꢎꢓꢇꢆꢃꢆꢇꢂꢍꢎꢈꢂꢇ  
ꢔꢷꢔꢸꢞꢔꢷꢔꢸꢔꢷꢔ�ꢞꢔꢷꢔꢴꢔꢂꢁꢁꢞ  
ꢂꢊꢁꢋꢋꢃꢂꢀꢌꢈꢁꢋꢃꢆꢇꢂꢍꢎꢈꢂꢇ  
ꢍꢏꢁꢂꢇꢃꢆꢇꢂꢍꢎꢈꢂꢇ  
ꢂꢆꢁ  
ꢂꢁꢁ  
ꢨꢁ  
ꢂꢁꢁ  
ꢥꢨ  
�ꢇꢁ  
�ꢥꢁ  
ꢈꢥ  
ꢇꢆ  
ꢥꢁ  
ꢈꢁ  
�ꢅꢁ  
ꢔꢷꢔꢸꢞꢔꢷꢔ�ꢔꢷꢔ�ꢞꢔꢷꢔꢴꢔꢨꢁꢞ  
ꢷꢔꢸꢞꢔꢷꢔꢸꢔꢷꢔ�ꢞꢔꢷꢔꢴꢔꢇꢁꢞ  
ꢆꢆ  
ꢂꢀ  
�ꢂꢆꢁ  
�ꢂꢀꢁ  
ꢆꢁ  
ꢂꢁ  
�ꢂꢨꢁ  
�ꢆꢂꢁ  
ꢥꢃꢨ  
ꢈꢃꢥ  
�ꢆꢁ  
ꢂꢁ ꢂꢁꢁ ꢂꢉ ꢂꢁꢉ ꢃꢂꢊ ꢂꢊ ꢂꢁꢊ  
ꢋꢌꢍꢎꢏꢍꢐꢑꢒꢓꢔꢋꢔꢕꢖꢗꢘ  
ꢂꢁ ꢂꢁꢁ ꢂꢉ ꢂꢁꢉ ꢃꢂꢊ ꢂꢊ ꢂꢁꢊ  
ꢋꢌꢍꢎꢏꢍꢐꢑꢒꢓꢔꢋꢔꢕꢖꢗꢘ  
ꢂꢁꢉ  
ꢆꢁꢉ ꢇꢁꢉ  
ꢀꢁꢉ ꢄꢁꢉ ꢃꢂꢊ  
ꢋꢌꢍꢎꢏꢍꢐꢑꢒꢓꢔꢋꢔꢕꢖꢗꢘ  
ꢄꢎꢊꢊꢎꢈꢃꢊꢎꢐꢇꢃꢆꢇꢔꢇꢄꢉꢀꢎꢈ  
ꢍꢅꢋꢂꢇꢃꢆꢇꢂꢍꢎꢈꢂꢇ  
ꢀꢈꢍꢅꢉꢃꢈꢎꢀꢂꢇ  
ꢂꢁꢁ  
ꢄꢁ  
ꢂꢆꢁ  
ꢂꢁꢁ  
ꢨꢁ  
ꢙꢐꢔꢴꢔꢀꢞꢓꢔꢯꢔꢴꢔꢂꢁꢁꢢꢱ  
ꢀꢁ  
ꢈꢁ  
ꢥꢁ  
ꢇꢁ  
ꢩꢆ  
ꢩꢈ  
ꢈꢁ  
ꢆꢁ  
ꢆꢁ  
ꢩꢥ  
ꢩꢨ  
ꢂꢁ  
ꢂꢁ  
ꢂꢁ ꢂꢆ  
ꢂꢁꢁ  
ꢂꢉ  
ꢂꢁꢉ  
ꢃꢂꢊ  
ꢂꢁ ꢂꢁꢁ ꢂꢉ ꢂꢁꢉ ꢃꢂꢊ ꢂꢊ  
ꢋꢌꢍꢎꢏꢍꢐꢑꢒꢓꢔꢋꢔꢕꢖꢗꢘ  
ꢛꢙꢊꢍꢓꢔꢯꢔꢕꢰꢱꢘ  
ꢋꢌꢍꢎꢏꢍꢐꢑꢒꢓꢔꢋꢔꢕꢖꢗꢘ  
ꢏꢁꢆꢊꢎꢈꢀꢄꢃꢐꢀꢂꢉꢎꢆꢉꢀꢎꢈ  
ꢑꢅꢀꢇꢂꢄꢇꢈꢉꢃꢄꢅꢆꢆꢇꢈꢉ  
ꢎꢅꢉꢍꢅꢉꢃꢒꢎꢋꢉꢁꢌꢇꢃꢂꢓꢀꢈꢌ  
ꢂꢃꢥ  
ꢂꢃꢈ  
ꢂꢃꢆ  
ꢔꢴꢂꢁ  
ꢔꢴꢔꢇꢄꢞ  
ꢔꢴꢔꢈꢵ  
�ꢞꢜ  
ꢃꢇ  
ꢃꢂ  
ꢂꢃꢁ  
ꢃꢨ  
ꢃꢁꢇ  
ꢸꢞꢜ  
ꢃꢁꢂ  
ꢃꢥ  
ꢃꢈ  
ꢃꢁꢁꢇ  
ꢂꢁꢁ ꢇꢁꢁ ꢂꢉ  
ꢇꢉ ꢂꢁꢉ ꢇꢁꢉ ꢃꢂꢊ  
ꢈꢁ  
ꢀꢁ  
ꢥꢁ  
ꢄꢁ  
ꢨꢁ  
ꢅꢁ ꢂꢁꢁ  
ꢂꢆ  
ꢂꢀ  
ꢋꢌꢍꢎꢏꢍꢐꢑꢒꢓꢔꢋꢔꢕꢖꢗꢘ  
ꢛꢜꢛꢠꢟꢔꢝꢏꢚꢚꢟꢒꢔꢞꢜꢟꢛꢠꢡꢍꢓꢔꢞꢔꢕꢞꢘ  
ꢜꢏꢛꢚꢏꢛꢔꢔꢑꢏꢌꢌꢍꢐꢛꢓꢔꢙꢔꢕꢠꢘ  
APEX MICROTECHNOLOGY CORPORATION • TELEPHONE (520) 690-8600 • FAX (520) 888-3329 • ORDERS (520) 690-8601 • EMAIL prodlit@apexmicrotech.com  
3
OPERATING  
CONSIDERATIONS  
PA13  
GENERAL  
load and short circuits to the supply rail or common if the  
current limits are set as follows at TC = 25°C:  
Please read Application Note 1 "General Operating Con-  
siderations" which covers stability, supplies, heat sinking,  
mounting, current limit, SOA interpretation, and specification  
interpretation. Visit www.apexmicrotech.com for design tools  
that help automate tasks such as calculations for stability,  
internal power dissipation, current limit; heat sink selection;  
Apex’s complete Application Notes library; Technical Seminar  
Workbook; and Evaluation Kits.  
SHORT TO ±VS  
C, L, OR EMF LOAD  
SHORT TO  
COMMON  
±VS  
45V  
40V  
35V  
30V  
25V  
20V  
15V  
.43A  
.65A  
1.0A  
1.7A  
2.7A  
3.4A  
4.5A  
3.0A  
3.4A  
3.9A  
4.5A  
5.4A  
6.7A  
9.0A  
SAFE OPERATING AREA (SOA)  
The output stage of most power amplifiers has three distinct  
limitations:  
1. The current handling capability of the transistor geometry  
and the wire bonds.  
These simplified limits may be exceeded with further analysis  
using the operating conditions for a specific application.  
2. The second breakdown effect which occurs whenever the  
simultaneouscollectorcurrentandcollector-emittervoltage  
exceeds specified limits.  
3. The junction temperature of the output transistors.  
TheSOAcurvescombinetheeffectofalllimitsforthisPower  
CURRENT LIMITING  
Refer to Application Note 9, "Current Limiting", for details of  
bothxedandfoldovercurrentlimitoperation.VisittheApexweb  
site at www.apexmicrotech.com for a copy of Power_design.  
exewhichplotscurrentlimitsvs.steadystateSOA.Bewarethat  
current limit should be thought of as a +/–20% function initially  
and varies about 2:1 over the range of –55°C to 125°C.  
For fixed current limit, leave pin 4 open and use equations  
1 and 2.  
�ꢀꢁ  
ꢌꢄ  
ꢌꢈ  
ꢪꢉꢈ  
RCL = 0.65/LCL (1)  
ICL = 0.65/RCL (2)  
ꢙꢉꢈ  
ꢚꢉꢈ  
Where:  
ꢃꢉꢈ  
ICL is the current limit in amperes.  
RCL is the current limit resistor in ohms.  
ꢌꢉꢈ  
For certain applications, foldover current limit adds a slope  
to the current limit which allows more power to be delivered  
to the load without violating the SOA. For maximum foldover  
slope, ground pin 4 and use equations 3 and 4.  
ꢉꢪ  
ꢉꢙ  
ꢌꢈ  
ꢃꢈ  
ꢚꢈ  
ꢙꢈ ꢄꢈ  
ꢗꢈ  
ꢘꢈ  
ꢛꢜꢝꢝꢒꢞꢁ�ꢟꢁꢟꢜ�ꢝꢜ�ꢁꢠꢡꢢꢢꢎꢏꢎꢣ�ꢡꢑꢒꢁꢤꢟꢒ�ꢑꢥꢎꢦꢁꢤꢁꢧꢁꢤꢁꢨꢤꢩ  
0.65 + (Vo * 0.014)  
ICL  
=
(3)  
(4)  
RCL  
0.65 + (Vo * 0.014)  
ICL  
Op Amp. For a given application, the direction and magnitude  
of the output current should be calculated or measured and  
checked against the SOA curves. This is simple for resistive  
loads but more complex for reactive and EMF generating  
loads. However, the following guidelines may save extensive  
analytical efforts.  
RCL  
=
Where:  
Vo is the output voltage in volts.  
Most designers start with either equation 1 to set RCL for the  
desired current at 0v out, or with equation 4 to set R at the  
maximum output voltage. Equation 3 should then beCuLsed to  
plot the resulting foldover limits on the SOA graph. If equa-  
tion 3 results in a negative current limit, foldover slope must  
be reduced. This can happen when the output voltage is the  
opposite polarity of the supply conducting the current.  
In applications where a reduced foldover slope is desired,  
this can be achieved by adding a resistor (RFO) between pin  
4 and ground. Use equations 4 and 5 with this new resistor  
in the circuit.  
1. Capacitive and dynamic* inductive loads up to the following  
maximum are safe with the current limits set as specified.  
CAPACITIVE LOAD  
INDUCTIVE LOAD  
±VS  
ILIM = 5A  
ILIM = 10A  
ILIM = 5A  
ILIM = 10A  
50V  
40V  
35V  
30V  
25V  
20V  
15V  
200µF  
500µF  
2.0mF  
7.0mF  
25mF  
60mF  
150mF  
125µF  
350µF  
850µF  
2.5mF  
10mF  
20mF  
60mF  
5mH  
15mH  
50mH  
150mH  
500mH  
1,000mH  
2,500mH  
2.0mH  
3.0mH  
5.0mH  
10mH  
20mH  
30mH  
50mH  
Vo 0.14  
10.14 + RFO  
*
0.65 +  
ICL  
=
(5)  
(6)  
*If the inductive load is driven near steady state conditions,  
allowing the output voltage to drop more than 12.5V below the  
supply rail with ILIM = 10A or 27V below the supply rail with ILIM  
= 5A while the amplifier is current limiting, the inductor must  
be capacitively coupled or the current limit must be lowered  
to meet SOA criteria.  
RCL  
Vo 0.14  
10.14 + RFO  
*
0.65 +  
RCL  
=
ICL  
Where:  
RFO is in K ohms.  
2. The amplifier can handle any EMF generating or reactive  
This data sheet has been carefully checked and is believed to be reliable, however, no responsibility is assumed for possible inaccuracies or omissions. All specifications are subject to change without notice.  
4ACOTLCOAT9TAORA• TO, RO5A LCTOL: 1 (0) 529  
PA13U REV K NOVEMBER 2003 © 2003 Apex Microtechnology Corp.  

相关型号:

PA13ADP

Operational Amplifier, 1 Func, 4000uV Offset-Max, BIPolar, ROHS COMPLIANT, SIP-12
CIRRUS

PA13DP

Operational Amplifier, 1 Func, 6000uV Offset-Max, BIPolar, ROHS COMPLIANT, SIP-12
CIRRUS

PA13_09

Power Operational Amplifier
CIRRUS

PA13_10

Power Operational Amplifier
CIRRUS

PA140

HIGH VOLTAGE POWER OPERATIONAL AMPLIFIER
APEX

PA140

Plate Capacitors with Contoured Rim - Class 1 Ceramic
VISHAY

PA14012KVP3000PF+-20%R85

CAP,CERAMIC,3NF,12KVDC,20% -TOL,20% +TOL,N750 TC CODE,-750PPM TC
VISHAY

PA14013KVP2000PF+-10%R85

CAP,CERAMIC,2NF,13KVDC,10% -TOL,10% +TOL,N750 TC CODE,-750PPM TC
VISHAY
VISHAY

PA14014KVP1200PF+-20%R85

CAP,CERAMIC,1.2NF,14KVDC,20% -TOL,20% +TOL,N750 TC CODE,-750PPM TC
VISHAY

PA14014KVP1600PF+-10%R85

CAP,CERAMIC,1.6NF,14KVDC,10% -TOL,10% +TOL,N750 TC CODE,-750PPM TC
VISHAY

PA14014KVP1600PF+-20%R85

CAP,CERAMIC,1.6NF,14KVDC,20% -TOL,20% +TOL,N750 TC CODE,-750PPM TC
VISHAY