AT40K05AL-1DQL [ATMEL]

Field Programmable Gate Array, 256 CLBs, 5000 Gates, CMOS, PQFP208, 28 X 28 MM, PLASTIC, MS-129FA-1, QFP-208;
AT40K05AL-1DQL
型号: AT40K05AL-1DQL
厂家: ATMEL    ATMEL
描述:

Field Programmable Gate Array, 256 CLBs, 5000 Gates, CMOS, PQFP208, 28 X 28 MM, PLASTIC, MS-129FA-1, QFP-208

ATM 异步传输模式 栅 可编程逻辑
文件: 总55页 (文件大小:1098K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Ultra High Performance  
– System Speeds to 100 MHz  
– Array Multipliers > 50 MHz  
– 10 ns Flexible SRAM  
– Internal Tri-state Capability in Each Cell  
FreeRAM™  
– Flexible, Single/Dual Port, Synchronous/Asynchronous 10 ns SRAM  
– 2,048 - 18,432 Bits of Distributed SRAM Independent of Logic Cells  
128 - 384 PCI Compliant I/Os  
– Programmable Output Drive  
5K - 50K Gates  
Coprocessor  
FPGA with  
– Fast, Flexible Array Access Facilitates Pin Locking  
– Pin-compatible with XC4000, XC5200 FPGAs  
8 Global Clocks  
– Fast, Low Skew Clock Distribution  
– Programmable Rising/Falling Edge Transitions  
– Distributed Clock Shutdown Capability for Low Power Management  
– Global Reset/Asynchronous Reset Options  
– 4 Additional Dedicated PCI Clocks  
FreeRAM™  
Cache Logic® Dynamic Full/Partial Re-configurability In-System  
– Unlimited Re-programmability via Serial or Parallel Modes  
– Enables Adaptive Designs  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
– Enables Fast Vector Multiplier Updates  
– QuickChangeTools for Fast, Easy Design Changes  
Pin-compatible Package Options  
– Plastic Leaded Chip Carriers (PLCC)  
– Thin, Plastic Quad Flat Packs (LQFP, TQFP, PQFP)  
Industry-standard Design Tools  
– Seamless Integration (Libraries, Interface, Full Back-annotation) with  
Everest, Exemplar, Mentor®, OrCAD®, Synopsys®, Verilog®, Viewlogic®,  
Synplicity®  
– Timing Driven Placement & Routing  
– Automatic/Interactive Multi-chip Partitioning  
– Fast, Efficient Synthesis  
– Over 75 Automatic Component Generators Create 1000s  
of Reusable, Fully Deterministic Logic and RAM Functions  
Easy Migration to Atmel Gate Arrays for High Volume Production  
Supply Voltage 3.3V  
5V I/O Tolerant  
Green (Pb/Halide-free/RoHS Compliant) Package Options Available  
2818F–FPGA–07/06  
Table 1. AT40KAL Family(1)  
Device  
AT40K05AL  
AT40K10AL  
10K - 20K  
24 x 24  
576  
AT40K20AL  
20K - 30K  
32 x 32  
1,024  
AT40K40AL  
40K - 50K  
48 x 48  
2,304  
Usable Gates  
Rows x Columns  
Cells  
5K - 10K  
16 x 16  
256  
Registers  
496(1)  
2,048  
128  
954(1)  
1,520(1)  
3,048(1)  
RAM Bits  
4,608  
8,192  
18,432  
I/O (Maximum)  
192  
256  
384  
Note:  
1. Packages with FCK will have 8 less registers.  
Description  
The AT40KAL is a family of fully PCI-compliant, SRAM-based FPGAs with distributed  
10 ns programmable synchronous/asynchronous, dual-port/single-port SRAM, 8 global  
clocks, Cache Logic ability (partially or fully reconfigurable without loss of data), auto-  
matic component generators, and range in size from 5,000 to 50,000 usable gates. I/O  
counts range from 128 to 384 in industry standard packages ranging from 84-pin PLCC  
to 352-ball Square BGA, and support 3.3V designs.  
The AT40KAL is designed to quickly implement high-performance, large gate count  
designs through the use of synthesis and schematic-based tools used on a PC or Sun  
platform. Atmel’s design tools provide seamless integration with industry standard tools  
such as Synplicity, ModelSim, Exemplar and Viewlogic. See the “IDS Datasheet” avail-  
able on the Atmel web site (http://www.atmel.com/atmel/acrobat/doc1421.pdf) for a list  
of other supported tools.  
The AT40KAL can be used as a coprocessor for high-speed (DSP/processor-based)  
designs by implementing a variety of computation intensive, arithmetic functions. These  
include adaptive finite impulse response (FIR) filters, fast Fourier transforms (FFT), con-  
volvers, interpolators and discrete-cosine transforms (DCT) that are required for video  
compression and decompression, encryption, convolution and other multimedia  
applications.  
Fast, Flexible and  
Efficient SRAM  
The AT40KAL FPGA offers a patented distributed 10 ns SRAM capability where the  
RAM can be used without losing logic resources. Multiple independent, synchronous or  
asynchronous, dual-port or single-port RAM functions (FIFO, scratch pad, etc.) can be  
created using Atmel’s macro generator tool.  
Fast, Efficient Array and The AT40KAL’s patented 8-sided core cell with direct horizontal, vertical and diagonal  
cell-to-cell connections implements ultra fast array multipliers without using any busing  
Vector Multipliers  
resources. The AT40KAL’s Cache Logic capability enables a large number of design  
coefficients and variables to be implemented in a very small amount of silicon, enabling  
vast improvement in system speed at much lower cost than conventional FPGAs.  
2
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
Cache Logic Design  
The AT40KAL, AT6000 and FPSLIC families are capable of implementing Cache Logic  
(dynamic full/partial logic reconfiguration, without loss of data, on-the-fly) for building  
adaptive logic and systems. As new logic functions are required, they can be loaded into  
the logic cache without losing the data already there or disrupting the operation of the  
rest of the chip; replacing or complementing the active logic. The AT40KAL can act as a  
reconfigurable coprocessor.  
Automatic Component  
Generators  
The AT40KAL FPGA family is capable of implementing user-defined, automatically gen-  
erated, macros in multiple designs; speed and functionality are unaffected by the macro  
orientation or density of the target device. This enables the fastest, most predictable and  
efficient FPGA design approach and minimizes design risk by reusing already proven  
functions. The Automatic Component Generators work seamlessly with industry stan-  
dard schematic and synthesis tools to create the fastest, most efficient designs  
available.  
The patented AT40KAL series architecture employs a symmetrical grid of small yet  
powerful cells connected to a flexible busing network. Independently controlled clocks  
and resets govern every column of cells. The array is surrounded by programmable I/O.  
Devices range in size from 5,000 to 50,000 usable gates in the family, and have 256 to  
3,048 registers. Pin locations are consistent throughout the AT40KAL series for easy  
design migration in the same package footprint. The AT40KAL series FPGAs utilize a  
reliable 0.35µ triple-metal, CMOS process and are 100% factory-tested. Atmel’s PC-  
and workstation-based integrated development system (IDS) is used to create  
AT40KAL series designs. Multiple design entry methods are supported.  
The Atmel architecture was developed to provide the highest levels of performance,  
functional density and design flexibility in an FPGA. The cells in the Atmel array are  
small, efficient and can implement any pair of Boolean functions of (the same) three  
inputs or any single Boolean function of four inputs. The cell’s small size leads to arrays  
with large numbers of cells, greatly multiplying the functionality in each cell. A simple,  
high-speed busing network provides fast, efficient communication over medium and  
long distances.  
3
2818F–FPGA–07/06  
The Symmetrical  
Array  
At the heart of the Atmel architecture is a symmetrical array of identical cells,  
see Figure 1. The array is continuous from one edge to the other, except for bus  
repeaters spaced every four cells, see Figure 2 on page 5. At the intersection of each  
repeater row and column there is a 32 x 4 RAM block accessible by adjacent buses.  
The RAM can be configured as either a single-ported or dual-ported RAM(1), with either  
synchronous or asynchronous operation.  
Note:  
1. The right-most column can only be used as single-port RAM.  
Figure 1. Symmetrical Array Surrounded by I/O (AT40K20AL)(1)  
= FreeRAM  
= Repeater Row  
= I/O Pad  
= Repeater Column  
= AT40K Cell  
Note:  
1. AT40KAL has registered I/Os. Group enable on every sector for tri-states on obufe’s.  
4
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
Figure 2. Floor Plan (Representative Portion)(1)  
RV  
= Vertical Repeater  
= Horizontal Repeater  
RH  
= Core Cell  
RAM  
RAM  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RAM  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RAM  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RAM  
RAM  
RAM  
RAM  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RAM  
RAM  
RAM  
RAM  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RAM  
RAM  
RAM  
RAM  
Note:  
1. Repeaters regenerate signals and can connect any bus to any other bus (all path-  
ways are legal) on the same plane. Each repeater has connections to two adjacent  
local-bus segments and two express-bus segments. This is done automatically using  
the integrated development system (IDS) tool.  
5
2818F–FPGA–07/06  
The Busing Network  
Figure 3 on page 7 depicts one of five identical busing planes. Each plane has three bus  
resources: a local-bus resource (the middle bus) and two express-bus (both sides)  
resources. Bus resources are connected via repeaters. Each repeater has connections  
to two adjacent local-bus segments and two express-bus segments. Each local-bus  
segment spans four cells and connects to consecutive repeaters. Each express-bus  
segment spans eight cells and “leapfrogs” or bypasses a repeater. Repeaters regener-  
ate signals and can connect any bus to any other bus (all pathways are legal) on the  
same plane. Although not shown, a local bus can bypass a repeater via a programma-  
ble pass gate allowing long on-chip tri-state buses to be created. Local/Local turns are  
implemented through pass gates in the cell-bus interface. Express/Express turns are  
implemented through separate pass gates distributed throughout the array.  
Some of the bus resources on the AT40KAL are used as a dual-function resources.  
Table 2 shows which buses are used in a dual-function mode and which bus plane is  
used. The AT40KAL software tools are designed to accommodate dual-function buses  
in an efficient manner.  
Table 2. Dual-function Buses  
Function  
Type  
Plane(s) Direction  
Comments  
Cell Output Enable  
Local  
5
Horizontal  
and Vertical  
RAM Output Enable Express  
2
Vertical  
Vertical  
Vertical  
Bus full length at array edge  
Bus in first column to left of  
RAM block  
RAM Write Enable  
RAM Address  
Express  
Express  
1
Bus full length at array edge  
Bus in first column to left of  
RAM block  
1 - 5  
Buses full length at array edge  
Buses in second column to left  
of RAM block  
RAM Data In  
Local  
Local  
1
2
Horizontal  
Horizontal  
Data In connects to local  
bus plane 1  
RAM Data Out  
Data out connects to local  
bus plane 2  
Clocking  
Express  
Express  
4
5
Vertical  
Vertical  
Bus half length at array edge  
Bus half length at array edge  
Set/Reset  
6
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
Figure 3. Busing Plane (One of Five)  
= AT40KAL Core Cell  
= Local/Local or Express/Express Turn Point  
= Row Repeater  
= Column Repeater  
Express  
Bus  
Express  
Bus  
Local  
Bus  
7
2818F–FPGA–07/06  
Cell Connections  
Figure 4(a) depicts direct connections between a cell and its eight nearest neighbors.  
Figure 4(b) shows the connections between a cell and five horizontal local buses (1 per  
busing plane) and five vertical local buses (1 per busing plane).  
Figure 4. Cell Connections  
CELL  
CELL  
CELL  
CELL  
CELL  
CELL  
CELL  
Plane 5⎩  
Plane 4⎩  
Horizontal  
Busing Plane  
Plane 3⎩  
Plane 2⎩  
Plane 1⎩  
WXYZL  
CELL  
W
X
Y
Z
CELL  
L
Vertical  
Busing Plane  
Diagonal  
Direct Connect  
CELL  
Orthogonal  
Direct Connect  
(a) Cell-to-cell Connections  
(b) Cell-to-bus Connections  
The Cell  
Figure 5 depicts the AT40KAL cell. Configuration bits for separate muxes and pass  
gates are independent. All permutations of programmable muxes and pass gates are  
legal. Vn (V1 - V5) is connected to the vertical local bus in plane n. Hn (H1 - H5) is con-  
nected to the horizontal local bus in plane n. A local/local turn in plane n is achieved by  
turning on the two pass gates connected to Vn and Hn. Pass gates are opened to let sig-  
nals into the cell from a local bus or to drive a signal out onto a local bus. Signals coming  
into the logic cell on one local bus plane can be switched onto another plane by opening  
two of the pass gates. This allows bus signals to switch planes to achieve greater route  
ability. Up to five simultaneous local/local turns are possible.  
The AT40KAL FPGA core cell is a highly configurable logic block based around two 3-  
input LUTs (8 x 1 ROM), which can be combined to produce one 4-input LUT. This  
means that any core cell can implement two functions of 3 inputs or one function of 4  
inputs. There is a Set/Reset D flip-flop in every cell, the output of which may be tri-stated  
and fed back internally within the core cell. There is also a 2-to-1 multiplexer in every  
cell, and an upstream AND gate in the “front end” of the cell. This AND gate is an impor-  
tant feature in the implementation of efficient array multipliers.  
With this functionality in each core cell, the core cell can be configured in several  
“modes”. The core cell flexibility makes the AT40KAL architecture well suited to most  
digital design application areas, see Figure 6.  
8
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
Figure 5. The Cell  
"1"  
N
E
S
Y
W
"1" NW NE SE SW  
"1"  
X
W
Z
X
W
Y
FB  
8X1 LUT  
OUT  
8X1 LUT  
OUT  
"1"  
"0" "1"  
V1  
H1  
V2  
H2  
V3  
H3  
V4  
H4  
V5  
H5  
Pass gates  
1
0
Z
L
"1" OE OE  
H
V
D
Q
CLOCK  
RESET/SET  
Y
X
NW NE SE SW  
N
E
S
W
X
Y
= Diagonal Direct Connect or Bus  
= Orthogonal Direct Connect or Bus  
W = Bus Connection  
= Bus Connection  
FB = Internal Feedback  
Z
9
2818F–FPGA–07/06  
Figure 6. Some Single Cell Modes  
Synthesis Mode. This mode is particularly important for  
the use of VHDL/Verilog design. VHDL/Verilog Synthesis  
tools generally will produce as their output large amounts  
of random logic functions. Having a 4-input LUT structure  
gives efficient random logic optimization without the  
delays associated with larger LUT structures. The output  
of any cell may be registered, tri-stated and/or fed back  
into a core cell.  
A
B
Q (Registered)  
and/or  
Q
D Q  
C
D
SUM  
or  
Arithmetic Mode is frequently used in many designs.  
As can be seen in the figure, the AT40KAL core cell can  
implement a 1-bit full adder (2-input adder with both Carry  
In and Carry Out) in one core cell. Note that the sum  
output in this diagram is registered. This output could then  
be tri-stated and/or fed back into the cell.  
A
B
C
D Q  
SUM (Registered)  
and/or  
CARRY  
DSP/Multiplier Mode. This mode is used to efficiently  
implement array multipliers. An array multiplier is an array  
of bitwise multipliers, each implemented as a full adder  
with an upstream AND gate. Using this AND gate and the  
diagonal interconnects between cells, the array multiplier  
structure fits very well into the AT40KAL architecture.  
PRODUCT (Registered)  
or  
PRODUCT  
D Q  
A
B
C
D
and/or  
CARRY  
Counter Mode. Counters are fundamental to almost all  
digital designs. They are the basis of state machines,  
timing chains and clock dividers. A counter is essentially  
an increment by one function (i.e., an adder), with the  
input being an output (or a decode of an output) from the  
previous stage. A 1-bit counter can be implemented in one  
core cell. Again, the output can be registered, tri-stated  
and/or fed back.  
D Q  
Q
CARRY IN  
and/or  
CARRY  
Tri-state/Mux Mode. This mode is used in many  
telecommunications applications, where data needs to be  
routed through more than one possible path. The output of  
the core cell is very often tri-statable for many inputs to  
many outputs data switching.  
A
B
C
Q
EN  
10  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
RAM  
32 x 4 dual-ported RAM blocks are dispersed throughout the array, see Figure 7. A 4-bit  
Input Data Bus connects to four horizontal local buses distributed over four sector rows  
(plane 1). A 4-bit Output Data Bus connects to four horizontal local buses distributed  
over four sector rows (plane 2). A 5-bit Input Address Bus connects to five vertical  
express buses in the same column. A 5-bit Output Address Bus connects to five vertical  
express buses in the same column. Ain (input address) and Aout (output address)  
alternate positions in horizontally aligned RAM blocks. For the left-most RAM blocks,  
Aout is on the left and Ain is on the right. For the right-most RAM blocks, Ain is on the  
left and Aout is tied off, thus it can only be configured as a single port. For single-ported  
RAM, Ain is the READ/WRITE address port and Din is the (bi-directional) data port.  
Right-most RAM blocks can be used only for single-ported memories. WEN and OEN  
connect to the vertical express buses in the same column.  
Figure 7. RAM Connections (One Ram Block)  
CLK  
CLK  
CLK  
CLK  
Din  
Dout  
Aout  
32 x 4 RAM  
Ain  
WEN  
OEN  
CLK  
11  
2818F–FPGA–07/06  
Reading and writing of the 10 ns 32 x 4 dual-port FreeRAM are independent of each  
other. Reading the 32 x 4 dual-port RAM is completely asynchronous. Latches are  
transparent; when Load is logic 1, data flows through; when Load is logic 0, data is  
latched. These latches are used to synchronize Write Address, Write Enable Not, and  
Din signals for a synchronous RAM. Each bit in the 32 x 4 dual-port RAM is also a trans-  
parent latch. The front-end latch and the memory latch together form an edge-triggered  
flip flop. When a nibble (bit = 7) is (Write) addressed and LOAD is logic 1 and WE is  
logic 0, data flows through the bit. When a nibble is not (Write) addressed or LOAD is  
logic 0 or WE is logic 1, data is latched in the nibble. The two CLOCK muxes are con-  
trolled together; they both select CLOCK (for a synchronous RAM) or they both select  
“1” (for an asynchronous RAM). CLOCK is obtained from the clock for the sector-column  
immediately to the left and immediately above the RAM block. Writing any value to the  
RAM clear byte during configuration clears the RAM (see the “AT40K/40KAL Configura-  
tion Seriesapplication note at www.atmel.com).  
Figure 8. RAM Logic  
CLOCK  
“1”  
“1”  
0
1
1
0
Load  
5
5
Read Address  
Write Address  
Ain  
Aout  
WEN  
Din  
Load  
Latch  
32 x 4  
Dual-port  
RAM  
“1”  
OE  
Load  
Latch  
Write Enable NOT  
Load  
Latch  
4
4
Din  
Dout  
Dout  
Clear  
RAM-Clear Byte  
Figure 9 on page 13 shows an example of a RAM macro constructed using the  
AT40KAL’s FreeRAM cells. The macro shown is a 128 x 8 dual-ported asynchronous  
RAM. Note the very small amount of external logic required to complete the address  
decoding for the macro. Most of the logic cells (core cells) in the sectors occupied by the  
RAM will be unused: they can be used for other logic in the design. This logic can be  
automatically generated using the macro generators.  
12  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
Figure 9. RAM Example: 128 x 8 Dual-ported RAM (Asynchronous)  
13  
2818F–FPGA–07/06  
Clocking Scheme  
There are eight Global Clock buses (GCK1 - GCK8) on the AT40KAL FPGA. Each of  
the eight dedicated Global Clock buses is connected to one of the dual-use Global  
Clock pins. Any clocks used in the design should use global clocks where possible: this  
can be done by using Assign Pin Locks to lock the clocks to the Global Clock locations.  
In addition to the eight Global Clocks, there are four Fast Clocks (FCK1 - FCK4), two per  
edge column of the array for PCI specification. For AT40KAL FPGAs, even the derived  
clocks can be routed through the Global network. Access points are provided in the cor-  
ners of the array to route the derived clocks into the global clock network. The IDS  
software tools handle derived clocks to global clock connections automatically if used.  
Each column of an array has a “Column Clock mux” and a “Sector Clock mux”. The Col-  
umn Clock mux is at the top of every column of an array and the Sector Clock mux is at  
every four cells. The Column Clock mux is selected from one of the eight Global Clock  
buses. The clock provided to each sector column of four cells is inverted, non-inverted  
or tied off to “0”, using the Sector Clock mux to minimize the power consumption in a  
sector that has no clocks. The clock can either come from the Column Clock or from the  
Plane 4 express bus, see Figure 10 on page 15. The extreme-left Column Clock mux  
has two additional inputs, FCK1 and FCK2, to provide fast clocking to left-side I/Os. The  
extreme-right Column Clock mux has two additional inputs as well, FCK3 and FCK4, to  
provide fast clocking to right-side I/Os.  
The register in each cell is triggered on a rising clock edge by default. Before configura-  
tion on power-up, constant “0” is provided to each register’s clock pins. After  
configuration on power-up, the registers either set or reset, depending on the user’s  
choice.  
The clocking scheme is designed to allow efficient use of multiple clocks with low clock  
skew, both within a column and across the core cell array.  
14  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
Figure 10. Clocking (for One Column of Cells)  
}
FCK (2 per Edge Column of the Array)  
GCK1 - GCK8  
Column Clock Mux  
“1”  
Sector Clock Mux  
Global Clock Line  
(Buried)  
Express Bus  
(Plane 4; Half Length at Edge)  
“1”  
“1”  
“1”  
Repeater  
Sector Clock Mux  
15  
2818F–FPGA–07/06  
Set/Reset Scheme  
The AT40KAL family reset scheme is essentially the same as the clock scheme except  
that there is only one Global Reset. A dedicated Global Set/Reset bus can be driven by  
any User I/O, except those used for clocking (Global Clocks or Fast Clocks). The auto-  
matic placement tool will choose the reset net with the most connections to use the  
global resources. You can change this by using an RSBUF component in your design to  
indicate the global reset. Additional resets will use the express bus network.  
The Global Set/Reset is distributed to each column of the array. Like Sector Clock mux,  
there is Sector Set/Reset mux at every four cells. Each sector column of four cells is  
set/reset by a Plane 5 express bus or Global Set/Reset using the Sector Set/Reset mux,  
see Figure 11 on page 17. The set/reset provided to each sector column of four cells is  
either inverted or non-inverted using the Sector Reset mux.  
The function of the Set/Reset input of a register is determined by a configuration bit in  
each cell. The Set/Reset input of a register is active low (logic 0) by default. Setting or  
Resetting of a register is asynchronous. Before configuration on power-up, a logic 1 (a  
high) is provided by each register (i.e., all registers are set at power-up).  
16  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
Figure 11. Set/Reset (for One Column of Cells)  
Each Cell has a Programmable Set or Reset  
Sector Set/Reset Mux  
Repeater  
“1”  
“1”  
“1”  
Global Set/Reset Line (Buried)  
Express Bus  
(Plane 5; Half Length at Edge)  
“1”  
Any User I/O can Drive Global Set/Reset Lone  
17  
2818F–FPGA–07/06  
I/O Structure  
The AT40KAL has registered I/Os and group enable every sector for tri-states on obuf’s.  
PAD  
The I/O pad is the one that connects the I/O to the outside world. Note that not all I/Os  
have pads: the ones without pads are called Unbonded I/Os. The number of unbonded  
I/Os varies with the device size and package. These unbonded I/Os are used to perform  
a variety of bus turns at the edge of the array.  
PULL-UP/PULL-DOWN  
Each pad has a programmable pull-up and pull-down attached to it. This supplies a  
weak “1” or “0” level to the pad pin. When all other drivers are off, this control will dictate  
the signal level of the pad pin.  
The input stage of each I/O cell has a number of parameters that can be programmed  
either as properties in schematic entry or in the I/O Pad Attributes editor in IDS.  
CMOS  
The threshold level is a CMOS-compatible level.  
SCHMITT  
A Schmitt trigger circuit can be enabled on the inputs. The Schmitt trigger is a regenera-  
tive comparator circuit that adds 1V hysteresis to the input. This effectively improves the  
rise and fall times (leading and trailing edges) of the incoming signal and can be useful  
for filtering out noise.  
DELAYS  
DRIVE  
The input buffer can be programmed to include four different intrinsic delays as specified  
in the AC timing characteristics. This feature is useful for meeting data hold require-  
ments for the input signal.  
The output drive capabilities of each I/O are programmable. They can be set to FAST,  
MEDIUM or SLOW (using IDS tool). The FAST setting has the highest drive capability  
(20 mA at 5V) buffer and the fastest slew rate. MEDIUM produces a medium drive  
(14 mA at 5V) buffer, while SLOW yields a standard (6 mA at 5V) buffer.  
TRI-STATE  
The output of each I/O can be made tri-state (0, 1 or Z), open source (1 or Z) or open  
drain (0 or Z) by programming an I/O’s Source Selection mux. Of course, the output can  
be normal (0 or 1), as well.  
SOURCE SELECTION MUX  
The Source Selection mux selects the source for the output signal of an I/O.  
18  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
Primary, Secondary and The AT40KAL has three kinds of I/Os: Primary I/O, Secondary I/O and a Corner I/O.  
Every edge cell except corner cells on the AT40KAL has access to one Primary I/O and  
two Secondary I/Os.  
Corner I/Os  
Primary I/O  
Every logic cell at the edge of the FPGA array has a direct orthogonal connection to and  
from a Primary I/O cell. The Primary I/O interfaces directly to its adjacent core cell. It  
also connects into the repeaters on the row immediately above and below the adjacent  
core cell. In addition, each Primary I/O also connects into the busing network of the  
three nearest edge cells. This is an extremely powerful feature, as it provides logic cells  
toward the center of the array with fast access to I/Os via local and express buses. It can  
be seen from the diagram that a given Primary I/O can be accessed from any logic cell  
on three separate rows or columns of the FPGA. See Figure 12 on page 20.  
Secondary I/O  
Every logic cell at the edge of the FPGA array has two direct diagonal connections to a  
Secondary I/O cell. The Secondary I/O is located between core cell locations. This I/O  
connects on the diagonal inputs to the cell above and the cell below. It also connects to  
the repeater of the cell above and below. In addition, each Secondary I/O also connects  
into the busing network of the two nearest edge cells. This is an extremely powerful fea-  
ture, as it provides logic cells toward the center of the array with fast access to I/Os via  
local and express buses. It can be seen from the diagram that a given Secondary I/O  
can be accessed from any logic cell on two rows or columns of the FPGA. See  
Figure 13 on page 20.  
Corner I/O  
Logic cells at the corner of the FPGA array have direct-connect access to five separate  
I/Os: 2 Primary, 2 Secondary and 1 Corner I/O. Corner I/Os are like an extra Secondary  
I/O at each corner of the array. With the inclusion of Corner I/Os, an AT40KAL FPGA  
with n x n core cells always has 8n I/Os. As the diagram shows, Corner I/Os can be  
accessed both from the corner logic cell and the horizontal and vertical busing networks  
running along the edges of the array. This means that many different edge logic cells  
can access the Corner I/Os. See Figure 14 on page 21.  
19  
2818F–FPGA–07/06  
Figure 12. West Primary I/O (Mirrored for East I/O)  
CELL  
"0"  
"1"  
PULL-UP  
PAD  
"0"  
"1"  
OCLK  
CELL  
PULL-DOWN  
CELL  
Figure 13. West Secondary I/O (Mirrored for East I/O)  
"0"  
"1"  
CELL  
PULL-UP  
"0"  
"1"  
PAD  
PULL-DOWN  
CELL  
20  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
Figure 14. Northwest Corner I/O (Similar NE/SE/SW Corners)  
PAD  
PAD  
VCC  
GND  
VCC  
GND  
TTL/CMOS  
DRIVE  
TTL/CMOS  
SCHMITT  
DELAY  
DRIVE  
TRI-STATE  
SCHMITT  
DELAY  
TRI-STATE  
ICLK  
ICLK  
OCLK  
RST  
OCLK  
RST  
RST  
RST  
RST  
"0"  
"1"  
PULL-UP  
PAD  
"0"  
"1"  
CELL  
CELL  
PULL-DOWN  
CELL  
21  
2818F–FPGA–07/06  
Absolute Maximum Ratings – 3.3V Commercial/Industrial*  
*NOTICE:  
Stresses beyond those listed under Absolute  
Operating Temperature.................................. -55°C to +125°C  
Maximum Ratings may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or any  
other conditions beyond those listed under oper-  
ating conditions is not implied. Exposure to Abso-  
lute Maximum Rating conditions for extended  
periods of time may affect device reliability.  
Storage Temperature..................................... -65°C to +150°C  
Voltage on Any Pin  
with Respect to Ground.................................-0.5V to VCC +7V  
Supply Voltage (VCC) .........................................-0.5V to +7.0V  
Maximum Soldering Temp. (10 sec. @ 1/16 in.).............250°C  
ESD (RZAP = 1.5K, CZAP = 100 pF)................................. 2000V  
DC and AC Operating Range – 3.3V Operation  
Commercial  
Industrial  
-40°C - 85°C  
3.3V 0.3V  
Operating Temperature (Case)  
VCC Power Supply  
0°C - 70°C  
3.3V 0.3V  
High (VIHC  
)
70% - 100% VCC  
0 - 30% VCC  
70% - 100% VCC  
0 - 30% VCC  
Input Voltage Level (CMOS)  
Low (VILC  
)
22  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
DC Characteristics – 3.3V Operation Commercial/Industrial  
Symbol  
Parameter  
Conditions  
Minimum  
0.7 VCC  
-0.3  
Typical  
Maximum  
5.5V  
Units  
VIH  
High-level Input Voltage  
Low-level Input Voltage  
CMOS  
V
V
V
VIL  
CMOS  
30% VCC  
I
OH = 4 mA  
2.1  
VCC = VCC minimum  
I
OH = 12 mA  
2.1  
2.1  
V
V
V
V
V
VOH  
High-level Output Voltage  
Low-level Output Voltage  
VCC = 3.0V  
I
OH = 16 mA  
VCC = 3.0V  
I
OL = -4 mA  
0.4  
0.4  
0.4  
VCC = 3.0V  
I
OL = -12 mA  
VOL  
VCC = 3.0V  
I
OL = -16 mA  
VCC = 3.0V  
V
IN = VCC Maximum  
With pull-down, VIN = VCC  
IN = VSS  
10.0  
µA  
µA  
µA  
µA  
µA  
IIH  
High-level Input Current  
Low-level Input Current  
75.0  
-10.0  
-300.0  
150.0  
300.0  
V
IIL  
With pull-up, VIN = VSS  
-150.0  
-75.0  
10.0  
Without pull-down,  
VIN = VCC Maximum  
High-level Tri-state Output  
Leakage Current  
IOZH  
With pull-down,  
75.0  
150.0  
300.0  
µA  
VIN = VCC Maximum  
Without pull-up, VIN = VSS  
With pull-up, VIN = VSS  
-10.0  
mA  
Low-level Tri-state Output  
Leakage Current  
IOZL  
CON = -500 µA  
TO -125 µA  
-150.0  
0.6  
CON = -500 µA  
TO -125 µA  
µA  
ICC  
Standby Current  
Consumption  
Standby, unprogrammed  
1.0  
mA  
CIN  
Input Capacitance  
All pins  
10.0  
pF  
Note:  
1. Parameter based on characterization and simulation; it is not tested in production.  
23  
2818F–FPGA–07/06  
Power-On Power  
Supply Requirements  
Atmel FPGAs require a minimum rated power supply current capacity to insure proper  
initialization, and the power supply ramp-up time does affect the current required. A fast  
ramp-up time requires more current than a slow ramp-up time.  
Table 3. Power-On Power Supply Requirements(1)  
Device  
Description  
Maximum Current(2)(3)  
AT40K05AL  
AT40K10AL  
Maximum Current Supply  
50 mA  
AT40K20AL  
AT40K40AL  
Maximum Current Supply  
100 mA  
Notes: 1. This specification applies to Commercial and Industrial grade products only.  
2. Devices are guaranteed to initialize properly at 50% of the minimum current listed  
above. A larger capacity power supply may result in a larger initialization current.  
3. Ramp-up time is measured from 0 V DC to 3.6 V DC. Peak current required lasts less  
than 2 ms, and occurs near the internal power on reset threshold voltage.  
24  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
AC Timing Characteristics – 3.3V Operation  
Delays are based on fixed loads and are described in the notes.  
Maximum times based on worst case: VCC = 3.00V, temperature = 70°C  
Minimum times based on best case: VCC = 3.60V, temperature = 0°C  
Maximum delays are the average of tPDLH and tPDHL  
.
Cell Function  
Core  
Parameter  
Path  
-1  
Units  
Notes  
2-input Gate  
3-input Gate  
3-input Gate  
4-input Gate  
Fast Carry  
Fast Carry  
Fast Carry  
Fast Carry  
Fast Carry  
Fast Carry  
Fast Carry  
Fast Carry  
DFF  
tPD (Maximum)  
tPD (Maximum)  
tPD (Maximum)  
x/y -> x/y  
x/y/z -> x/y  
x/y/w -> x/y  
x/y/w/z -> x/y  
y -> y  
1.8  
2.1  
2.2  
2.2  
1.4  
1.7  
1.8  
1.5  
2.2  
2.3  
2.3  
1.7  
1.8  
2.2  
2.2  
1.8  
1.5  
1.4  
1.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
t
PD (Maximum)  
tPD (Maximum)  
tPD (Maximum)  
x -> y  
t
PD (Maximum)  
y -> x  
tPD (Maximum)  
tPD (Maximum)  
x -> x  
w -> y  
t
PD (Maximum)  
w -> x  
tPD (Maximum)  
tPD (Maximum)  
z -> y  
z -> x  
t
PD (Maximum)  
q -> x/y  
R -> x/y  
S -> x/y  
q -> w  
DFF  
tPD (Maximum)  
tPD (Maximum)  
DFF  
DFF  
tPD (Maximum)  
Incremental -> L  
Local Output Enable  
Local Output Enable  
tPD (Maximum)  
tPZX (Maximum)  
x/y -> L  
oe -> L  
oe -> L  
1 unit load  
1 unit load  
tPXZ (Maximum)  
25  
2818F–FPGA–07/06  
AC Timing Characteristics – 3.3V Operation  
Delays are based on fixed loads and are described in the notes.  
Maximum times based on worst case: VCC = 3.0V, temperature = 70°C  
Minimum times based on best case: VCC = 3.6V, temperature = 0°C  
Maximum delays are the average of tPDLH and tPDHL  
.
All input IO characteristics measured from a VIH of 50% of VDD at the pad (CMOS threshold) to the internal VIH of 50% of  
VDD. All output IO characteristics are measured as the average of tPDLH and tPDHL to the pad VIH of 50% of VDD.  
Cell Function  
Repeaters  
Repeater  
Repeater  
Repeater  
Repeater  
Repeater  
Repeater  
Parameter  
Path  
-1  
Units  
Notes  
t
PD (Maximum)  
L -> E  
E -> E  
L -> L  
1.3  
1.3  
1.3  
1.3  
0.8  
0.8  
ns  
ns  
ns  
ns  
ns  
ns  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
tPD (Maximum)  
tPD (Maximum)  
t
PD (Maximum)  
E -> L  
E -> IO  
L -> IO  
tPD (Maximum)  
tPD (Maximum)  
All input IO characteristics measured from a VIH of 50% of VDD at the pad (CMOS threshold) to the internal VIH of 50% of  
DD. All output IO characteristics are measured as the average of tPDLH and tPDHL to the pad VIH of 50% of VDD  
V
.
Cell Function  
Parameter  
Path  
-1  
Units  
Notes  
IO  
Input  
tPD (Maximum)  
pad -> x/y  
pad -> x/y  
pad -> x/y  
pad -> x/y  
x/y/E/L -> pad  
x/y/E/L -> pad  
x/y/E/L -> pad  
oe -> pad  
1.2  
3.6  
7.3  
10.8  
5.9  
4.8  
3.9  
6.2  
1.3  
4.8  
1.9  
3.7  
1.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
No extra delay  
1 extra delay  
2 extra delays  
3 extra delays  
50 pf load  
Input  
tPD (Maximum)  
Input  
tPD (Maximum)  
tPD (Maximum)  
Input  
Output, Slow  
Output, Medium  
Output, Fast  
Output, Slow  
Output, Slow  
Output, Medium  
Output, Medium  
Output, Fast  
Output, Fast  
tPD (Maximum)  
tPD (Maximum)  
tPD (Maximum)  
50 pf load  
50 pf load  
t
PZX (Maximum)  
50 pf load  
tPXZ (Maximum)  
tPZX (Maximum)  
oe -> pad  
50 pf load  
oe -> pad  
50 pf load  
t
PXZ (Maximum)  
oe -> pad  
50 pf load  
tPZX (Maximum)  
tPXZ (Maximum)  
oe -> pad  
50 pf load  
oe -> pad  
50 pf load  
26  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
AC Timing Characteristics – 3.3V Operation  
Delays are based on fixed loads and are described in the notes.  
Maximum times based on worst case: VCC = 3.0V, temperature = 70°C  
Minimum times based on best case: VCC = 3.6V, temperature = 0°C  
Maximum delays are the average of tPDLH and tPDHL  
Clocks and Reset Input buffers are measured from a VIH of 1.5V at the input pad to the internal VIH of 50% of VCC  
Maximum times for clock input buffers and internal drivers are measured for rising edge delays only.  
.
.
Cell Function  
Global Clocks and Set/Reset  
tPD  
Parameter  
Path  
Device  
-1  
Units  
Notes  
GCLK Input Buffer  
FCLK Input Buffer  
Clock Column Driver  
Clock Sector Driver  
GSRN Input Buffer  
Global Clock to Output  
pad -> clock  
pad -> clock  
pad -> clock  
pad -> clock  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
1.1  
1.2  
1.2  
1.4  
ns  
ns  
ns  
ns  
Rising edge clock  
(Maximum)  
tPD  
(Maximum)  
pad -> clock  
pad -> clock  
pad -> clock  
pad -> clock  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
0.7  
0.8  
0.8  
0.8  
ns  
ns  
ns  
ns  
Rising edge clock  
Rising edge clock  
Rising edge clock  
tPD  
clock -> colclk  
clock -> colclk  
clock -> colclk  
clock -> colclk  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
0.8  
0.9  
1.0  
1.1  
ns  
ns  
ns  
ns  
(Maximum)  
tPD  
(Maximum)  
colclk -> secclk  
colclk -> secclk  
colclk -> secclk  
colclk -> secclk  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
tPD  
(Maximum)  
pad -> GSRN  
pad -> GSRN  
pad -> GSRN  
pad -> GSRN  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
3.0  
3.7  
4.3  
5.6  
ns  
ns  
ns  
ns  
From any pad to Global  
Set/Reset network  
tPD  
clock pad -> out  
clock pad -> out  
clock pad -> out  
clock pad -> out  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
8.3  
8.4  
8.6  
8.8  
ns  
ns  
ns  
ns  
Rising edge clock  
Fully loaded clock tree  
Rising edge DFF  
20 mA output buffer  
50 pf pin load  
(Maximum)  
Fast Clock to Output  
tPD  
(Maximum)  
clock pad -> out  
clock pad -> out  
clock pad -> out  
clock pad -> out  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
7.9  
8.0  
8.1  
8.3  
ns  
ns  
ns  
ns  
Rising edge clock  
Fully loaded clock tree  
Rising edge DFF  
20 mA output buffer  
50 pf pin load  
27  
2818F–FPGA–07/06  
AC Timing Characteristics – 3.3V Operation  
Delays are based on fixed loads and are described in the notes.  
Maximum times based on worst case: VCC = 3.0V, temperature = 70°C  
Minimum times based on best case: VCC = 3.6V, temperature = 0°C  
Cell Function  
Async RAM  
Write  
Parameter  
Path  
-1  
Units  
Notes  
t
WECYC (Minimum)  
tWEL (Minimum)  
WEH (Minimum)  
cycle time  
12.0  
5.0  
5.0  
5.3  
0.0  
5.0  
0.0  
8.7  
6.3  
2.9  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write  
we  
Pulse width low  
Pulse width high  
Write  
t
we  
Write  
tAWS (Minimum)  
tAWH (Minimum)  
wr addr setup -> we  
wr addr hold -> we  
din setup -> we  
din hold -> we  
din -> dout  
rd addr -> dout  
oe -> dout  
Write  
Write  
tDS (Minimum)  
Write  
tDH (Minimum)  
tDD (Maximum)  
Write/Read  
Read  
rd addr = wr addr  
t
AD (Maximum)  
Read  
tOZX (Maximum)  
tOXZ (Maximum)  
Read  
oe -> dout  
Sync RAM  
Write  
tCYC (Minimum)  
tCLKL (Minimum)  
cycle time  
12.0  
5.0  
5.0  
3.2  
0.0  
5.0  
0.0  
3.9  
0.0  
5.8  
6.3  
2.9  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write  
clk  
Pulse width low  
Pulse width high  
Write  
t
CLKH (Minimum)  
clk  
Write  
tWCS (Minimum)  
tWCH (Minimum)  
we setup -> clk  
we hold -> clk  
wr addr setup -> clk  
wr addr hold -> clk  
wr data setup -> clk  
wr data hold -> clk  
clk -> dout  
Write  
Write  
tACS (Minimum)  
Write  
tACH (Minimum)  
tDCS (Minimum)  
Write  
Write  
t
DCH (Minimum)  
tCD (Maximum)  
AD (Maximum)  
Write/Read  
Read  
rd addr = wr addr  
t
rd addr -> dout  
oe -> dout  
Read  
tOZX (Maximum)  
tOXZ (Maximum)  
Read  
oe -> dout  
Notes: 1. CMOS buffer delays are measured from a VIH of 1/2 VCC at the pad to the internal VIH at A. The input buffer load is constant.  
2. Buffer delay is to a pad voltage of 1.5V with one output switching.  
3. Parameter based on characterization and simulation; not tested in production.  
4. Exact power calculation is available in Atmel FPGA Designer software.  
28  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
FreeRAM Asynchronous Timing Characteristics  
Single-port Write/Read  
t
WEL  
WE  
t
AWS  
t
AWH  
0
1
2
3
ADDR  
OE  
t
OH  
t
t
DS  
t
t
AD  
t
OXZ  
OZX  
DH  
DATA  
Dual-port Write with  
Read  
t
WECYC  
t
t
WEH  
WEL  
WE  
t
AWS  
t
t
AWH  
0
1
2
WR ADDR  
WR DATA  
DH  
PREV.  
NEW  
t
DD  
RD ADDR = WR ADDR 1  
t
WD  
OLD  
PREV.  
NEW  
RD DATA  
Dual-port Read  
0
1
RD ADDR  
OE  
t
t
AD  
t
OXZ  
OZX  
DATA  
29  
2818F–FPGA–07/06  
FreeRAM Synchronous Timing Characteristics  
Single-port Write/Read  
t
CLKH  
CLK  
WE  
t
t
WCS  
WCH  
t
t
ACH  
ACS  
0
1
2
3
ADDR  
OE  
t
t
OZX  
t
AD  
OXZ  
t
t
DCS  
DCH  
DATA  
Dual-port Write with  
Read  
t
CYC  
t
t
CLKH  
CLKL  
CLK  
t
t
WCH  
WCS  
WE  
WR ADDR  
WR DATA  
t
t
ACS  
ACH  
0
1
2
t
t
DCS  
DCH  
RD ADDR = WR ADDR 1  
RD DATA  
t
CD  
Dual-port Read  
0
1
RD ADDR  
OE  
t
t
AD  
t
OXZ  
OZX  
DATA  
30  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
Left Side (Top to Bottom)  
240  
84  
128 I/O  
192 I/O  
256 I/O  
384 I/O  
PLCC  
100 TQFP 144 LQFP 208 PQFP  
PQFP  
GND  
GND  
GND  
GND  
12  
13  
1
1
2
1
I/O1,  
GCK1  
(A16)  
I/O1,  
GCK1  
(A16)  
I/O1,  
GCK1  
(A16)  
I/O1,  
GCK1  
(A16)  
2
2
4
2
3
I/O2  
(A17)  
I/O2  
(A17)  
I/O2  
(A17)  
I/O2  
(A17)  
14  
3
3
5
I/O3  
I/O4  
I/O3  
I/O4  
I/O3  
I/O4  
I/O3  
I/O4  
4
5
6
7
4
5
I/O5  
(A18)  
I/O5  
(A18)  
I/O5  
(A18)  
I/O5  
(A18)  
15  
16  
4
5
6
7
8
9
6
7
I/O6  
(A19)  
I/O6  
(A19)  
I/O6  
(A19)  
I/O6  
(A19)  
GND  
I/O7  
I/O8  
I/O9  
I/O10  
I/O11  
I/O12  
VCC  
I/O7  
I/O8  
VCC  
GND  
GND  
I/O13  
I/O14  
I/O15  
I/O16  
I/O17  
I/O18  
GND  
I/O19  
I/O20  
I/O21  
I/O22  
I/O23  
I/O24  
GND  
I/O7  
I/O8  
I/O7  
I/O8  
I/O9  
I/O10  
I/O11  
I/O12  
10  
11  
12  
13  
8
9
I/O9  
10  
11  
I/O10  
I/O11  
I/O12  
I/O13  
I/O14  
I/O15  
I/O16  
GND  
12  
13  
GND  
GND  
8
14  
14  
Note:  
1. On-chip tri-state  
31  
2818F–FPGA–07/06  
AT40K05AL  
128 I/O  
AT40K10AL  
192 I/O  
AT40K20AL  
256 I/O  
AT40K40AL  
384 I/O  
Left Side (Top to Bottom)  
240  
PQFP  
84  
PLCC  
100 TQFP 144 LQFP 208 PQFP  
I/O9,  
FCK1  
I/O13,  
FCK1  
I/O17,  
FCK1  
I/O25,  
FCK1  
9
15  
16  
17  
15  
16  
17  
I/O10  
I/O14  
I/O18  
I/O26  
10  
11  
I/O11  
(A20)  
I/O15  
(A20)  
I/O19  
(A20)  
I/O27  
(A20)  
17  
18  
6
7
I/O12  
(A21)  
I/O16  
(A21)  
I/O20  
(A21)  
I/O28  
(A21)  
12  
18  
18  
VCC  
I/O17  
I/O18  
VCC  
I/O21  
I/O22  
VCC  
I/O29  
I/O30  
GND  
I/O31  
I/O32  
I/O33  
I/O34  
I/O35  
I/O36  
GND  
VCC  
19  
20  
21  
I/O23  
I/O24  
GND  
22  
I/O37  
I/O38  
I/O39  
I/O40  
I/O41  
I/O42  
GND  
I/O43  
I/O44  
I/O45  
I/O46  
I/O25  
I/O26  
I/O27  
I/O28  
I/O19  
I/O20  
19  
20  
23  
24  
I/O13  
I/O14  
I/O21  
I/O22  
I/O29  
I/O30  
13  
14  
21  
22  
25  
26  
8
I/O15  
(A22)  
I/O23  
(A22)  
I/O31  
(A22)  
I/O47  
(A22)  
19  
20  
9
15  
16  
23  
24  
27  
28  
I/O16  
(A23)  
I/O24  
(A23)  
I/O32  
(A23)  
I/O48  
(A23)  
10  
GND  
VCC  
GND  
VCC  
GND  
VCC  
GND  
VCC  
21  
22  
11  
12  
17  
18  
25  
26  
29  
30  
Note:  
1. On-chip tri-state  
32  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
Left Side (Top to Bottom)  
240  
84  
128 I/O  
I/O17  
192 I/O  
I/O25  
256 I/O  
I/O33  
384 I/O  
I/O49  
I/O50  
I/O51  
I/O52  
I/O53  
I/O54  
GND  
I/O55  
I/O56  
I/O57  
I/O58  
I/O59  
I/O60  
VCC  
PLCC  
100 TQFP 144 LQFP 208 PQFP  
PQFP  
23  
24  
13  
14  
19  
20  
27  
28  
31  
I/O18  
I/O26  
I/O34  
32  
I/O19  
I/O20  
I/O27  
I/O28  
I/O35  
I/O36  
15  
21  
22  
29  
30  
33  
34  
I/O29  
I/O30  
I/O37  
I/O38  
I/O39  
I/O40  
31  
32  
35  
36  
GND  
I/O41  
I/O42  
GND  
I/O61  
I/O62  
I/O63  
I/O64  
I/O65  
I/O66  
GND  
I/O67  
I/O68  
VCC  
37  
I/O31  
I/O32  
VCC  
I/O43  
I/O44  
VCC  
38  
39  
40  
41  
42  
43  
I/O21  
I/O22  
I/O23  
I/O33  
I/O34  
I/O35  
I/O45  
I/O46  
I/O47  
I/O69  
I/O70  
I/O71  
25  
26  
16  
17  
23  
24  
25  
33  
34  
35  
I/O24,  
FCK2  
I/O36,  
FCK2  
I/O48,  
FCK2  
I/O72,  
FCK2  
26  
27  
36  
37  
44  
45  
GND  
GND  
GND  
I/O49  
I/O50  
I/O51  
GND  
I/O73  
I/O74  
I/O75  
I/O37  
46  
Note:  
1. On-chip tri-state  
33  
2818F–FPGA–07/06  
AT40K05AL  
128 I/O  
AT40K10AL  
AT40K20AL  
AT40K40AL  
Left Side (Top to Bottom)  
240  
PQFP  
84  
PLCC  
192 I/O  
256 I/O  
384 I/O  
I/O76  
I/O77  
I/O78  
GND  
I/O79  
I/O80  
I/O81  
I/O82  
I/O83  
I/O84  
GND  
VCC  
100 TQFP 144 LQFP 208 PQFP  
I/O38  
I/O52  
47  
I/O39  
I/O40  
I/O41  
I/O42  
I/O53  
I/O54  
I/O55  
I/O56  
GND  
VCC  
38  
39  
40  
41  
48  
49  
50  
51  
I/O25  
I/O26  
I/O57  
I/O58  
I/O85  
I/O86  
I/O87  
I/O88  
I/O89  
I/O90  
GND  
I/O91  
I/O92  
I/O93  
I/O94  
I/O27  
I/O28  
I/O43  
I/O44  
I/O59  
I/O60  
27  
18  
19  
28  
29  
42  
43  
52  
53  
I/O29  
I/O30  
I/O45  
I/O46  
I/O61  
I/O62  
30  
31  
44  
45  
54  
55  
I/O31  
(OTS)(1)  
I/O47  
(OTS)(1)  
I/O63  
(OTS)(1)  
I/O95  
(OTS)(1)  
28  
29  
20  
21  
32  
33  
46  
47  
56  
57  
I/O32,  
GCK2  
I/O48,  
GCK2  
I/O64,  
GCK2  
I/O96,  
GCK2  
M1  
GND  
M0  
M1  
GND  
M0  
M1  
GND  
M0  
M1  
GND  
M0  
30  
31  
32  
22  
23  
24  
34  
35  
36  
48  
49  
50  
58  
59  
60  
Note:  
1. On-chip tri-state  
34  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
Bottom Side (Left to Right)  
240  
84  
128 I/O  
VCC  
M2  
192 I/O  
VCC  
M2  
256 I/O  
VCC  
M2  
384 I/O  
VCC  
M2  
PLCC  
100 TQFP 144 LQFP 208 PQFP  
PQFP  
33  
34  
25  
26  
37  
38  
55  
56  
61  
62  
I/O33,  
GCK3  
I/O49,  
GCK3  
I/O65,  
GCK3  
I/O97,  
GCK3  
35  
36  
27  
28  
39  
40  
57  
58  
63  
64  
I/O34  
(HDC)  
I/O50  
(HDC)  
I/O66  
(HDC)  
I/O98  
(HDC)  
I/O35  
I/O36  
I/O37  
I/O51  
I/O52  
I/O53  
I/O67  
I/O68  
I/O69  
I/O99  
I/O100  
I/O101  
41  
42  
43  
59  
60  
61  
65  
66  
67  
29  
30  
I/O38  
(LDC)  
I/O54  
(LDC)  
I/O70  
(LDC)  
I/O102  
(LDC)  
37  
44  
62  
68  
GND  
I/O103  
I/O104  
I/O105  
I/O106  
I/O107  
I/O108  
VCC  
I/O71  
I/O72  
VCC  
GND  
I/O73  
I/O74  
I/O75  
I/O76  
GND  
I/O39  
I/O40  
I/O55  
I/O56  
I/O57  
I/O58  
I/O109  
I/O110  
I/O111  
I/O112  
I/O113  
I/O114  
GND  
63  
64  
65  
66  
69  
70  
71  
72  
I/O77  
I/O78  
I/O79  
I/O80  
I/O115  
I/O116  
I/O117  
I/O118  
I/O119  
I/O120  
GND  
I/O59  
I/O60  
73  
74  
GND  
I/O41  
GND  
GND  
I/O81  
45  
46  
67  
68  
75  
76  
I/O61  
I/O121  
35  
2818F–FPGA–07/06  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
Bottom Side (Left to Right)  
84  
240  
128 I/O  
I/O42  
I/O43  
I/O44  
192 I/O  
I/O62  
I/O63  
I/O64  
VCC  
256 I/O  
I/O82  
I/O83  
I/O84  
VCC  
384 I/O  
I/O122  
I/O123  
I/O124  
VCC  
PLCC  
100 TQFP 144 LQFP 208 PQFP  
PQFP  
47  
48  
49  
69  
70  
71  
77  
78  
79  
80  
81  
82  
38  
39  
31  
32  
I/O65  
I/O66  
I/O85  
I/O86  
I/O125  
I/O126  
GND  
72  
73  
I/O127  
I/O128  
I/O129  
I/O130  
I/O131  
I/O132  
GND  
I/O87  
I/O88  
GND  
83  
VCC  
I/O89  
I/O90  
I/O91  
I/O92  
I/O93  
I/O94  
I/O133  
I/O134  
I/O135  
I/O136  
I/O137  
I/O138  
GND  
I/O67  
I/O68  
I/O69  
I/O70  
84  
85  
86  
87  
I/O45  
I/O46  
33  
34  
50  
51  
74  
75  
I/O139  
I/O140  
I/O141  
I/O142  
I/O47  
(D15)  
I/O71  
(D15)  
I/O95  
(D15)  
I/O143  
(D15)  
40  
41  
35  
36  
52  
53  
76  
77  
88  
89  
I/O48  
(INIT)  
I/O72  
(INIT)  
I/O96  
(INIT)  
I/O144  
(INIT)  
VCC  
GND  
VCC  
GND  
VCC  
GND  
VCC  
GND  
42  
43  
37  
38  
54  
55  
78  
79  
90  
91  
I/O49  
(D14)  
I/O73  
(D14)  
I/O97  
(D14)  
I/O145  
(D14)  
44  
45  
39  
40  
56  
57  
80  
81  
92  
93  
I/O50  
(D13)  
I/O74  
(D13)  
I/O98  
(D13)  
I/O146  
(D13)  
36  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
AT40K05AL  
128 I/O  
AT40K10AL  
192 I/O  
AT40K20AL  
256 I/O  
AT40K40AL  
Bottom Side (Left to Right)  
240  
84  
PLCC  
384 I/O  
I/O147  
I/O148  
I/O149  
I/O150  
GND  
100 TQFP 144 LQFP 208 PQFP  
PQFP  
I/O51  
I/O52  
I/O75  
I/O76  
I/O77  
I/O78  
I/O99  
I/O100  
I/O101  
I/O102  
I/O103  
I/O104  
I/O151  
I/O152  
I/O153  
I/O154  
I/O155  
I/O156  
VCC  
41  
42  
58  
59  
82  
83  
84  
85  
94  
95  
96  
97  
GND  
I/O105  
I/O106  
GND  
98  
I/O157  
I/O158  
I/O159  
I/O160  
I/O161  
I/O162  
GND  
I/O79  
I/O80  
VCC  
I/O107  
I/O108  
VCC  
I/O163  
I/O164  
VCC  
99  
100  
101  
I/O53  
(D12)  
I/O81  
(D12)  
I/O109  
(D12)  
I/O165  
(D12)  
46  
47  
43  
44  
60  
61  
86  
87  
102  
103  
I/O54  
(D11)  
I/O82  
(D11)  
I/O110  
(D11)  
I/O166  
(D11)  
I/O55  
I/O56  
GND  
I/O83  
I/O84  
GND  
I/O111  
I/O112  
GND  
I/O167  
I/O168  
GND  
62  
63  
64  
88  
89  
90  
104  
105  
106  
I/O113  
I/O114  
I/O115  
I/O116  
I/O169  
I/O170  
I/O171  
I/O172  
I/O173  
I/O85  
I/O86  
107  
108  
37  
2818F–FPGA–07/06  
AT40K05AL  
128 I/O  
AT40K10AL  
192 I/O  
AT40K20AL  
256 I/O  
AT40K40AL  
Bottom Side (Left to Right)  
84  
PLCC  
240  
PQFP  
384 I/O  
I/O174  
GND  
100 TQFP 144 LQFP 208 PQFP  
I/O175  
I/O176  
I/O177  
I/O178  
I/O179  
I/O180  
GND  
I/O87  
I/O88  
I/O89  
I/O90  
I/O117  
I/O118  
I/O119  
I/O120  
GND  
91  
92  
93  
94  
109  
110  
111  
112  
I/O57  
I/O58  
VCC  
VCC  
I/O121  
I/O122  
I/O181  
I/O182  
I/O59  
(D10)  
I/O91  
(D10)  
I/O123  
(D10)  
I/O183  
(D10)  
48  
49  
45  
46  
65  
66  
95  
96  
113  
114  
I/O60  
(D9)  
I/O92  
(D9)  
I/O124  
(D9)  
I/O184  
(D9)  
I/O185  
I/O186  
GND  
I/O187  
I/O188  
I/O189  
I/O190  
I/O61  
I/O62  
I/O93  
I/O94  
I/O125  
I/O126  
67  
68  
97  
98  
115  
116  
I/O63  
(D8)  
I/O95  
(D8)  
I/O127  
(D8)  
I/O191  
(D8)  
50  
51  
47  
48  
69  
70  
99  
117  
118  
I/O64,  
GCK4  
I/O96,  
GCK4  
I/O128,  
GCK4  
I/O192,  
GCK4  
100  
GND  
CON  
GND  
CON  
GND  
CON  
GND  
CON  
52  
53  
49  
50  
71  
72  
101  
103  
119  
120  
38  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
Right Side (Bottom to Top)  
240  
84  
128 I/O  
VCC  
192 I/O  
VCC  
256 I/O  
VCC  
384 I/O  
VCC  
PLCC  
100 TQFP 144 LQFP 208 PQFP  
PQFP  
54  
55  
51  
52  
73  
74  
106  
108  
121  
122  
RESET  
RESET  
RESET  
RESET  
I/O65  
(D7)  
I/O97  
(D7)  
I/O129  
(D7)  
I/O193  
(D7)  
56  
57  
53  
54  
75  
76  
109  
110  
123  
124  
I/O66,  
GCK5  
I/O98,  
GCK5  
I/O130,  
GCK5  
I/O194,  
GCK5  
I/O67  
I/O68  
I/O99  
I/O131  
I/O132  
I/O133  
I/O134  
I/O195  
I/O196  
I/O197  
I/O198  
GND  
77  
78  
111  
112  
125  
126  
I/O100  
I/O101  
I/O102  
I/O135  
I/O136  
I/O199  
I/O200  
I/O201  
I/O202  
I/O203  
I/O204  
VCC  
127  
128  
VCC  
GND  
GND  
I/O69  
(D6)  
I/O103  
(D6)  
I/O137  
(D6)  
I/O205  
(D6)  
58  
55  
56  
79  
80  
113  
129  
I/O70  
I/O71  
I/O72  
I/O104  
I/O105  
I/O106  
I/O138  
I/O139  
I/O140  
I/O206  
I/O207  
I/O208  
I/O209  
I/O210  
GND  
114  
115  
116  
130  
131  
132  
I/O211  
I/O212  
I/O213  
I/O214  
I/O215  
I/O216  
GND  
I/O107  
I/O108  
I/O141  
I/O142  
I/O143  
I/O144  
GND  
117  
118  
133  
134  
GND  
GND  
I/O109  
I/O110  
81  
119  
135  
136  
137  
I/O145  
I/O146  
I/O217  
I/O218  
39  
2818F–FPGA–07/06  
AT40K05AL  
128 I/O  
AT40K10AL  
192 I/O  
AT40K20AL  
256 I/O  
AT40K40AL  
384 I/O  
Right Side (Bottom to Top)  
84  
PLCC  
240  
PQFP  
100 TQFP 144 LQFP 208 PQFP  
I/O73,  
FCK3  
I/O111,  
FCK3  
I/O147,  
FCK3  
I/O219,  
FCK3  
82  
83  
120  
121  
138  
I/O74  
I/O112  
VCC  
I/O148  
VCC  
I/O220  
VCC  
139  
140  
I/O75  
(D5)  
I/O113  
(D5)  
I/O149  
(D5)  
I/O221  
(D5)  
59  
60  
57  
58  
84  
85  
122  
123  
141  
142  
I/O76  
(CS0)  
I/O114  
(CS0)  
I/O150  
(CS0)  
I/O222  
(CS0)  
GND  
I/O223  
I/O224  
I/O225  
I/O226  
I/O227  
I/O228  
GND  
I/O151  
I/O152  
GND  
143  
VCC  
I/O229  
I/O230  
I/O231  
I/O232  
I/O233  
I/O234  
GND  
I/O153  
I/O154  
I/O155  
I/O156  
I/O115  
I/O116  
124  
125  
144  
145  
I/O77  
I/O78  
I/O117  
I/O118  
I/O157  
I/O158  
I/O235  
I/O236  
I/O237  
I/O238  
I/O239(D4)  
I/O240  
VCC  
59  
60  
86  
87  
126  
127  
146  
147  
I/O79(D4)  
I/O80  
I/O119(D4)  
I/O120  
VCC  
I/O159(D4)  
I/O160  
VCC  
61  
62  
63  
64  
61  
62  
63  
64  
88  
89  
90  
91  
128  
129  
130  
131  
148  
149  
150  
151  
VCC  
GND  
GND  
GND  
GND  
I/O81  
(D3)  
I/O121  
(D3)  
I/O161  
(D3)  
I/O241  
(D3)  
65  
66  
65  
66  
92  
93  
132  
133  
152  
153  
I/O82  
I/O122  
I/O162  
I/O242  
(CHECK)  
(CHECK)  
(CHECK)  
(CHECK)  
40  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
AT40K05AL  
128 I/O  
AT40K10AL  
192 I/O  
AT40K20AL  
256 I/O  
AT40K40AL  
Right Side (Bottom to Top)  
240  
84  
PLCC  
384 I/O  
I/O243  
I/O244  
I/O245  
I/O246  
GND  
100 TQFP 144 LQFP 208 PQFP  
PQFP  
I/O83  
I/O84  
I/O123  
I/O124  
I/O163  
I/O164  
67  
94  
95  
134  
135  
154  
155  
I/O125  
I/O126  
I/O165  
I/O166  
I/O167  
I/O168  
I/O247  
I/O248  
I/O249  
I/O250  
I/O251  
I/O252  
VCC  
136  
137  
156  
157  
GND  
I/O169  
I/O170  
GND  
158  
I/O253  
I/O254  
I/O255  
I/O256  
I/O257  
I/O258  
GND  
I/O85  
(D2)  
I/O127  
(D2)  
I/O171  
(D2)  
I/O259  
(D2)  
67  
68  
68  
69  
96  
97  
138  
139  
159  
I/O86  
I/O128  
VCC  
I/O172  
VCC  
I/O260  
VCC  
160  
161  
162  
I/O87  
I/O129  
I/O173  
I/O261  
98  
99  
140  
141  
I/O88,  
FCK4  
I/O130,  
FCK4  
I/O174,  
FCK4  
I/O262,  
FCK4  
163  
I/O131  
I/O132  
GND  
I/O175  
I/O176  
GND  
I/O263  
I/O264  
GND  
164  
165  
166  
GND  
100  
142  
I/O177  
I/O178  
I/O179  
I/O180  
I/O265  
I/O266  
I/O267  
I/O268  
I/O269  
I/O133  
I/O134  
167  
168  
41  
2818F–FPGA–07/06  
AT40K05AL  
128 I/O  
AT40K10AL  
192 I/O  
AT40K20AL  
256 I/O  
AT40K40AL  
Right Side (Bottom to Top)  
84  
PLCC  
240  
PQFP  
384 I/O  
I/O270  
GND  
100 TQFP 144 LQFP 208 PQFP  
I/O135  
I/O136  
I/O137  
I/O138  
I/O181  
I/O182  
I/O183  
I/O184  
I/O271  
I/O272  
I/O273  
I/O274  
I/O275  
I/O276  
GND  
143  
144  
145  
146  
169  
170  
171  
172  
I/O89  
I/O90  
GND  
VCC  
VCC  
I/O91  
(D1)  
I/O139  
(D1)  
I/O185  
(D1)  
I/O277  
(D1)  
69  
70  
70  
71  
101  
102  
147  
148  
173  
174  
I/O92  
I/O140  
I/O186  
I/O278  
I/O279  
I/O280  
I/O281  
I/O282  
GND  
I/O187  
I/O188  
I/O189  
I/O190  
I/O283  
I/O284  
I/O285  
I/O286  
I/O93  
I/O94  
I/O141  
I/O142  
103  
104  
149  
150  
175  
176  
I/O95  
(D0)  
I/O143  
(D0)  
I/O191  
(D0)  
I/O287  
(D0)  
71  
72  
72  
73  
105  
151  
177  
I/O96,  
GCK6  
I/O144,  
GCK6  
I/O192,  
GCK6  
I/O288,  
GCK6  
106  
152  
178  
(CSOUT)  
(CSOUT)  
(CSOUT)  
(CSOUT)  
CCLK  
VCC  
CCLK  
VCC  
CCLK  
VCC  
CCLK  
VCC  
73  
74  
75  
74  
75  
76  
107  
108  
109  
153  
154  
159  
179  
180  
181  
TSTCLK  
TSTCLK  
TSTCLK  
TSTCLK  
42  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
Top Side (Right to Left)  
240  
84  
128 I/O  
192 I/O  
256 I/O  
384 I/O  
PLCC  
100 TQFP 144 LQFP 208 PQFP  
PQFP  
GND  
GND  
GND  
GND  
76  
77  
77  
78  
110  
111  
160  
161  
182  
I/O97  
(A0)  
I/O145  
(A0)  
I/O193  
(A0)  
I/O289  
(A0)  
183  
184  
I/O98,  
GCK7  
(A1)  
I/O146,  
GCK7  
(A1)  
I/O194,  
GCK7  
(A1)  
I/O290,  
GCK7  
(A1)  
78  
79  
112  
162  
I/O99  
I/O147  
I/O148  
I/O195  
I/O196  
I/O291  
I/O292  
I/O293  
I/O294  
GND  
113  
114  
163  
164  
185  
186  
I/O100  
I/O295  
I/O296  
I/O101  
I/O149  
I/O197  
I/O297  
79  
80  
80  
81  
115  
116  
165  
166  
187  
188  
(CS1,A2)  
(CS1,A2)  
(CS1,A2)  
(CS1,A2)  
I/O102  
(A3)  
I/O150  
(A3)  
I/O198  
(A3)  
I/O298  
(A3)  
I/O199  
I/O200  
VCC  
I/O299  
I/O300  
VCC  
GND  
GND  
75(1)  
NC  
76(1)  
NC  
189(1)  
NC  
I/O151(1)  
I/O201(1)  
I/O301(1)  
109(1) NC  
117  
159(1) NC  
I/O152  
I/O153  
I/O154  
I/O202  
I/O203  
I/O204  
I/O302  
I/O303  
I/O304  
I/O305  
I/O306  
GND  
190  
191  
192  
I/O103  
167  
168  
I/O104(1)  
I/O307  
I/O308  
I/O309  
I/O310  
I/O311  
I/O312  
GND  
I/O155  
I/O156  
I/O205  
I/O206  
I/O207  
I/O208  
GND  
169  
170  
193  
194  
195  
GND  
GND  
118  
171  
196  
Note:  
1. Shared with TSTCLK. No Connect.  
43  
2818F–FPGA–07/06  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
Top Side (Right to Left)  
84  
240  
128 I/O  
I/O105  
I/O106  
192 I/O  
I/O157  
I/O158  
I/O159  
I/O160  
VCC  
256 I/O  
I/O209  
I/O210  
I/O211  
I/O212  
VCC  
384 I/O  
I/O313  
I/O314  
I/O315  
I/O316  
VCC  
PLCC  
100 TQFP 144 LQFP 208 PQFP  
PQFP  
119  
120  
172  
173  
197  
198  
199  
200  
201  
I/O213  
I/O214  
I/O317  
I/O318  
GND  
I/O319  
I/O320  
I/O321  
I/O322  
I/O323  
I/O324  
GND  
I/O215  
I/O216  
GND  
VCC  
I/O107  
(A4)  
I/O161  
(A4)  
I/O217  
(A4)  
I/O325  
(A4)  
81  
82  
82  
83  
121  
122  
174  
175  
202  
203  
I/O108  
(A5)  
I/O162  
(A5)  
I/O218  
(A5)  
I/O326  
(A5)  
I/O163  
I/O164  
I/O165  
I/O166  
I/O219  
I/O220  
I/O221  
I/O222  
I/O327  
I/O328  
I/O329  
I/O330  
GND  
176  
177  
178  
179  
205  
206  
207  
208  
I/O109  
I/O110  
84  
85  
123  
124  
I/O331  
I/O332  
I/O333  
I/O334  
I/O111  
(A6)  
I/O167  
(A6)  
I/O223  
(A6)  
I/O335  
(A6)  
83  
84  
86  
87  
125  
126  
180  
181  
209  
210  
I/O112  
(A7)  
I/O168  
(A7)  
I/O224  
(A7)  
I/O336  
(A7)  
GND  
VCC  
GND  
VCC  
GND  
VCC  
GND  
VCC  
1
2
88  
89  
127  
128  
182  
183  
211  
212  
Note:  
1. Shared with TSTCLK. No Connect.  
44  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
AT40K05AL  
128 I/O  
AT40K10AL  
192 I/O  
AT40K20AL  
256 I/O  
AT40K40AL  
384 I/O  
Top Side (Right to Left)  
240  
84  
PLCC  
100 TQFP 144 LQFP 208 PQFP  
PQFP  
I/O113  
(A8)  
I/O169  
(A8)  
I/O225  
(A8)  
I/O337  
(A8)  
3
4
90  
91  
129  
130  
184  
185  
213  
I/O114  
(A9)  
I/O170  
(A9)  
I/O226  
(A9)  
I/O338  
(A9)  
214  
I/O339  
I/O340  
I/O341  
I/O342  
GND  
I/O115  
I/O116  
I/O171  
I/O172  
I/O173  
I/O174  
I/O227  
I/O228  
I/O229  
I/O230  
I/O343  
I/O344  
I/O345  
I/O346  
92  
93  
131  
132  
186  
187  
188  
189  
215  
216  
217  
218  
I/O117  
(A10)  
I/O175  
(A10)  
I/O231  
(A10)  
I/O347  
(A10)  
5
6
94  
95  
133  
134  
190  
191  
220  
221  
I/O118  
(A11)  
I/O176  
(A11)  
I/O232  
(A11)  
I/O348  
(A11)  
VCC  
GND  
GND  
I/O233  
I/O234  
I/O349  
I/O350  
I/O351  
I/O352  
I/O353  
I/O354  
GND  
I/O235  
I/O236  
VCC  
I/O355  
I/O356  
VCC  
VCC  
I/O177  
I/O178  
I/O179  
I/O180  
GND  
222  
223  
224  
225  
226  
227  
I/O237  
I/O238  
I/O239  
I/O240  
GND  
I/O357  
I/O358  
I/O359  
I/O360  
GND  
I/O119  
I/O120  
GND  
135  
136  
137  
192  
193  
194  
I/O241  
I/O361  
Note:  
1. Shared with TSTCLK. No Connect.  
45  
2818F–FPGA–07/06  
AT40K05AL  
128 I/O  
AT40K10AL  
192 I/O  
AT40K20AL  
AT40K40AL  
Top Side (Right to Left)  
84  
PLCC  
240  
PQFP  
256 I/O  
I/O242  
I/O243  
I/O244  
384 I/O  
I/O362  
I/O363  
I/O364  
I/O365  
I/O366  
GND  
100 TQFP 144 LQFP 208 PQFP  
I/O181  
I/O182  
195  
196  
228  
229  
I/O367  
I/O368  
I/O369  
I/O370  
I/O121  
I/O122  
I/O183  
I/O184  
I/O245  
I/O246  
197  
198  
230  
231  
I/O123  
(A12)  
I/O185  
(A12)  
I/O247  
(A12)  
I/O371  
(A12)  
7
8
96  
97  
138  
139  
199  
200  
232  
233  
I/O124  
(A13)  
I/O186  
(A13)  
I/O248  
(A13)  
I/O372  
(A13)  
GND  
VCC  
GND  
VCC  
I/O249  
I/O250  
I/O373  
I/O374  
I/O375  
I/O376  
I/O377  
I/O378  
GND  
I/O187  
I/O188  
I/O189  
I/O190  
I/O251  
I/O252  
I/O253  
I/O254  
I/O379  
I/O380  
I/O381  
I/O382  
234  
235  
236  
237  
I/O125  
I/O126  
140  
141  
201  
202  
I/O127  
(A14)  
I/O191  
(A14)  
I/O255  
(A14)  
I/O383  
(A14)  
9
98  
142  
203  
238  
I/O128,  
GCK8  
(A15)  
I/O192,  
GCK8  
(A15)  
I/O256,  
GCK8  
(A15)  
I/O384,  
GCK8  
(A15)  
10  
11  
99  
143  
144  
204  
205  
239  
240  
VCC  
VCC  
VCC  
VCC  
100  
Note:  
1. Shared with TSTCLK. No Connect.  
46  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
Part/Package Availability and User I/O Counts (including Dual-function Pins)  
Package(1)  
AT40K05AL  
AT40K10AL  
AT40K20AL  
AT40K40AL  
84 PLCC  
62  
78  
62  
78  
78  
62  
100 TQFP  
144 LQFP  
208 PQFP  
240 PQFP  
114  
128  
114  
161  
114  
161  
114  
161  
193  
Note:  
1. Devices in same package are pin-to-pin compatible.  
Package Type  
84J  
84-lead, Plastic J-leaded Chip Carrier (PLCC)  
100T1  
100-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)  
144-lead, Low-profile (1.4 mm) Plastic Quad Flat Package (LQFP)  
208-lead, Plastic Quad Flat Package (PQFP)  
144L1  
208Q1  
240Q1  
240-lead, Plastic Quad Flat Package (PQFP)  
47  
2818F–FPGA–07/06  
AT40K05AL Ordering Information  
Usable Gates  
Operating Voltage Speed Grade (ns)  
Ordering Code  
Package  
Operation Range(1)  
AT40K05AL-1AJC  
AT40K05AL-1AQC  
AT40K05AL-1BQC  
AT40K05AL-1DQC  
84J  
100T1  
144L1  
208Q1  
Commercial  
(0°C to 70°C)  
5,000 - 10,000  
3.3V  
3.3V  
1
1
AT40K05AL-1AJI  
AT40K05AL-1AQI  
AT40K05AL-1BQI  
AT40K05AL-1DQI  
84J  
100T1  
144L1  
208Q1  
Industrial  
(-40°C to 85°C)  
5,000 - 10,000  
AT40K10AL Ordering Information  
Usable Gates  
Operating Voltage Speed Grade (ns)  
Ordering Code  
Package  
Operation Range(1)  
AT40K10AL-1AJC  
AT40K10AL-1AQC  
AT40K10AL-1BQC  
AT40K10AL-1DQC  
84J  
100T1  
144L1  
208Q1  
Commercial  
(0°C to 70°C)  
10,000 - 20,000  
3.3V  
3.3V  
1
1
AT40K10AL-1AJI  
AT40K10AL-1AQI  
AT40K10AL-1BQI  
AT40K10AL-1DQI  
84J  
100T1  
144L1  
208Q1  
Industrial  
(-40°C to 85°C)  
10,000 - 20,000  
AT40K20AL Ordering Information  
Usable Gates  
Operating Voltage Speed Grade (ns)  
Ordering Code  
Package  
Operation Range(1)  
20,000 - 30,000  
3.3V  
1
AT40K20AL-1AJC  
AT40K20AL-1AQC  
AT40K20AL-1BQC  
AT40K20AL-1DQC  
84J  
100T1  
144L1  
208Q1  
Commercial  
(0°C to 70°C)  
20,000 - 30,000  
3.3V  
1
AT40K20AL-1AJI  
AT40K20AL-1AQI  
AT40K20AL-1BQI  
AT40K20AL-1DQI  
84J  
100T1  
144L1  
208Q1  
Industrial  
(-40°C to 85°C)  
AT40K40AL Ordering Information  
Usable Gates  
Operating Voltage Speed Grade (ns)  
Ordering Code  
Package  
Operation Range(1)  
AT40K40AL-1BQC  
AT40K40AL-1DQC  
AT40K40AL-1EQC  
144L1  
208Q1  
240Q1  
Commercial  
(0°C to 70°C)  
40,000 - 50,000  
3.3V  
3.3V  
1
1
AT40K40AL-1BQI  
AT40K40AL-1DQI  
AT40K40AL-1EQI  
144L1  
208Q1  
240Q1  
Industrial  
(-40°C to 85°C)  
40,000 - 50,000  
Note:  
1. For military parts, contact Atmel at fpga@atmel.com.  
Green Package Options (Pb/Halide-free/RoHS Compliant)  
Usable Gates  
Operating Voltage Speed Grade (ns)  
Ordering Code  
Package  
Operation Range  
5,000 - 10,000  
10,000 - 20,000  
20,000 - 30,000  
4,000 - 50,000  
AT40K05AL-1BQU  
AT40K10AL-1BQU  
AT40K20AL-1BQU  
AT40K40AL-1BQU  
Industrial  
(-40°C to 85°C)  
3.3V  
1
144L1  
48  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
Packaging Information  
84J – PLCC  
1.14(0.045) X 45˚  
PIN NO. 1  
1.14(0.045) X 45˚  
0.318(0.0125)  
0.191(0.0075)  
IDENTIFIER  
D2/E2  
E1  
E
B1  
B
e
A2  
A1  
D1  
D
A
0.51(0.020)MAX  
45˚ MAX (3X)  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
4.191  
MAX  
4.572  
3.048  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
2.286  
0.508  
30.099  
29.210  
30.099  
29.210  
30.353  
D1  
E
29.413 Note 2  
30.353  
Notes:  
1. This package conforms to JEDEC reference MS-018, Variation AF.  
2. Dimensions D1 and E1 do not include mold protrusion.  
Allowable protrusion is .010"(0.254 mm) per side. Dimension D1  
and E1 include mold mismatch and are measured at the extreme  
material condition at the upper or lower parting line.  
E1  
29.413 Note 2  
28.702  
D2/E2 27.686  
B
0.660  
0.330  
0.813  
3. Lead coplanarity is 0.004" (0.102 mm) maximum.  
B1  
e
0.533  
1.270 TYP  
10/04/01  
DRAWING NO. REV.  
84J  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
84J, 84-lead, Plastic J-leaded Chip Carrier (PLCC)  
B
R
49  
2818F–FPGA–07/06  
100T1 – TQFP  
D
D1  
XX  
e
E
E1  
N
b
Bottom View  
Top View  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
0.05  
0.95  
MAX  
0.15  
1.05  
NOM  
NOTE  
SYMBOL  
A2  
A1  
6
A2  
D
1.00  
16.00 BSC  
14.00 BSC  
16.00 BSC  
14.00 BSC  
0.50 BSC  
0.22  
A1  
D1  
E
2, 3  
2, 3  
4, 5  
L1  
Side View  
E1  
e
b
0.17  
0.27  
L1  
1.00 REF  
Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-153, Variation AA, for proper dimensions, tolerances,  
datums, etc.  
2. The top package body size may be smaller than the bottom package size by as much as 0.15 mm.  
3. Dimensions D1 and E1 do not include mold protrusions. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic  
body size dimensions, including mold mismatch.  
4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall not cause the lead width to exceed the maximum  
b dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and  
an adjacent lead is 0.07 mm for 0.4 and 0.5 mm pitch packages.  
5. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.  
6. A1 is defined as the distance from the seating place to the lowest point on the package body.  
11/30/01  
TITLE  
100T1, 100-lead (14 x 14 x 1.0 mm Body), Thin Plastic  
Quad Flat Pack (TQFP)  
DRAWING NO.  
REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
100T1  
A
R
50  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
144L1 – LQFP  
D1  
D
XX  
e
E1  
E
N
b
Bottom View  
Top View  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
0.05  
1.35  
MAX  
0.15  
1.45  
NOM  
NOTE  
SYMBOL  
A1  
A2  
D
6
A2  
1.40  
22.00 BSC  
20.00 BSC  
22.00 BSC  
20.00 BSC  
0.50 BSC  
0.22  
A1  
D1  
E
2, 3  
2, 3  
4, 5  
L1  
Side View  
E1  
e
b
0.17  
0.27  
L1  
1.00 REF  
1. This drawing is for general information only; refer to JEDEC Drawing MS-026 for additional information.  
2. The top package body size may be smaller than the bottom package size by as much as 0.15 mm.  
Notes:  
3. Dimensions D1 and E1 do not include mold protrusions. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic  
body size dimensions including mold mismatch.  
4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall not cause the lead width to exceed the maximum  
b dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and  
an adjacent lead is 0.07 mm for 0.4 and 0.5 mm pitch packages.  
5. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.  
6. A1 is defined as the distance from the seating place to the lowest point on the package body.  
11/30/01  
TITLE  
144L1, 144-lead (20 x 20 x 1.4 mm Body), Low Profile  
Plastic Quad Flat Pack (LQFP)  
DRAWING NO.  
REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
144L1  
A
R
51  
2818F–FPGA–07/06  
208Q1 – PQFP  
D1  
A2  
L1  
A1  
E1  
Side View  
e
b
Top View  
D
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
0.25  
3.20  
MAX  
0.50  
3.60  
NOM  
NOTE  
SYMBOL  
A1  
A2  
D
3.40  
E
30.60 BSC  
28.00 BSC  
30.60 BSC  
28.00 BSC  
0.50 BSC  
D1  
E
2, 3  
2, 3  
4
E1  
e
b
0.17  
0.27  
L1  
1.30 REF  
Bottom View  
Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-129, Variation FA-1, for proper dimensions, tolerances, datums, etc.  
2. The top package body size may be smaller than the bottom package size by as much as 0.15 mm.  
3. Dimensions D1 and E1 do not include mold protrusions. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic  
body size dimensions including mold mismatch.  
4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall not cause the lead width to exceed the maximum b  
dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion  
and an adjacent lead is 0.07 mm.  
03/10/05  
TITLE  
DRAWING NO.  
REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
208Q1, 208-lead (28 x 28 mm Body, 2.6 Form Opt.),  
Plastic Quad Flat Pack (PQFP)  
208Q1  
C
R
52  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
AT40KAL Series FPGA  
240Q1 – PQFP  
D1  
D
E1  
E
Top View  
Bottom View  
A2  
A1  
e
b
L1  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
Side View  
MIN  
0.25  
3.20  
MAX  
0.50  
3.60  
NOM  
NOTE  
SYMBOL  
A1  
A2  
D
Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing  
MS-029, Variation GA, for additional information.  
3.40  
34.60 BSC  
32.00 BSC  
34.60 BSC  
32.00 BSC  
0.50 BSC  
3
2. All dimensioning and tolerancing conforms to ASME Y14.5M-1994.  
3. To be determined at seating plane.  
4. Dimensions D1 and E1 do not include mold protrusions. Allowable  
protrusion is 0.25 mm per side. D1 and E1 are maximum plastic body size  
dimensions including mold mismatch. Dimensions D1 and E1 shall be  
determined at datum plane.  
5. Dimension b does not include Dambar protrusion. Allowable Dambar  
protrusion shall not cause the lead width to exceed the maximum b  
dimension by more than 0.08 mm. Dambar cannot be located on the lower  
radius or the foot. The minimum space between protrusion and an adjacent  
lead shall not be less than 0.07 mm.  
D1  
E
2, 4  
3
E1  
e
2, 4  
b
0.17  
0.27  
5
L1  
1.30 REF  
3/29/02  
TITLE  
DRAWING NO.  
REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
240Q1, 240-lead, 32 x 32 mm Body, 2.6 Form Opt.,  
Plastic Quad Flat Pack (PQFP)  
240Q1  
A
R
53  
2818F–FPGA–07/06  
Revision History  
Revision Level – Release Date History  
F – July 2006  
Added Green (Pb/Halide-free/RoHS Compliant) 144-lead LQFP.  
54  
AT40KAL Series FPGA  
2818F–FPGA–07/06  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Microcontrollers  
Regional Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High-Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2006 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, Cache Logic®, FreeRAMand  
QuickChangeare registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Verilog® and OrCAD® are the registered trade-  
marks of Cadence Design Systems, Inc. Mentor® is the registered trademark, and Exemplaris the trademark of Mentor Graphics. Synopsys® is  
the registered trademark of Synopsis, Inc. Viewlogicis the trademark of Viewlogic Systems, Inc. Synplicity® is the registered trademark of Syn-  
plify, Inc. Other terms and product names may be the trademarks of others.  
2818F–FPGA–07/06  

相关型号:

AT40K05LV

5K - 50K Gates Coprocessor FPGA with FreeRAM
ATMEL

AT40K05LV-1AJC

Field Programmable Gate Array (FPGA)
ETC

AT40K05LV-1AJI

Field Programmable Gate Array (FPGA)
ETC

AT40K05LV-1AQC

Field Programmable Gate Array (FPGA)
ETC

AT40K05LV-1AQI

Field Programmable Gate Array (FPGA)
ETC

AT40K05LV-1BQC

Field Programmable Gate Array (FPGA)
ETC

AT40K05LV-1BQI

Field Programmable Gate Array, 256-Cell, CMOS, PQFP144
ATMEL

AT40K05LV-1DQC

Field Programmable Gate Array (FPGA)
ETC

AT40K05LV-1DQI

Field Programmable Gate Array (FPGA)
ETC

AT40K05LV-2AJC

Field Programmable Gate Array (FPGA)
ETC

AT40K05LV-2AJI

Field Programmable Gate Array (FPGA)
ETC

AT40K05LV-2AQC

Field Programmable Gate Array (FPGA)
ETC