AT40KFL040KZ1-SCC [ATMEL]

Rad Hard Reprogrammable FPGAs with FreeRAM; 抗辐射FPGA的可再编程与FreeRAM
AT40KFL040KZ1-SCC
型号: AT40KFL040KZ1-SCC
厂家: ATMEL    ATMEL
描述:

Rad Hard Reprogrammable FPGAs with FreeRAM
抗辐射FPGA的可再编程与FreeRAM

文件: 总42页 (文件大小:760K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
SRAM based FPGA Dedicated to Space Use  
SEE Hardened Cells (configuration RAM, FreeRAM, DFF, JTAG, I/O buffers) Remove the  
need for Triple Modular Redundancy (TMR)  
Produced on Rad Hard 0.35µm CMOS Process  
Functionally and Pin Compatible with the Atmel Commercial and Military AT40K Series  
High Performance  
– 46K Available ASIC gates (50% typ. routable)  
– 60 MHz Internal Performance  
– 20 MHz System Performance  
– 30 MHz Array Multipliers  
Rad Hard  
– 18 ns FreeRAMaccess time  
– Internal Tri-state Capability in Each Cell  
FreeRAM  
Reprogrammable  
FPGAs with  
FreeRAM  
– 18432 Bits of Distributed SRAM Independent of Logic Cells  
– Flexible, Single/Dual Port, Synchronous/Asynchronous 32x4 RAM blocks  
8 Global Clocks and 4 Additional Dedicated PCI Clocks  
– Fast, Low Skew Clock Distribution  
– Programmable Rising/Falling Edge Transitions  
– Distributed Clock Shutdown Capability for Low Power Management  
Global Reset Option  
AT40KEL040  
AT40KFL040  
384 PCI Compliant I/Os  
– Programmable Output Drive  
– Fast, Flexible Array Access Facilitates Pin Locking  
Package Options  
– MQFPF160  
– MQFPF256  
Design Software (System Designer)  
– Combination of Atmel internally developed tools, and industry standard design  
tools  
– Fast and Efficient Synthesis  
– Efficient Integration (Libraries, Interface, Full Back-annotation)  
– Over 75 Automatic Component Generators Create Thousands  
of Speed and Area Optimized Logic and RAM Functions  
– Automatic/Interactive Multi-chip Partitioning  
Supply Voltage 3.3V  
AT40KFL040 is a 5V Tolerant Version  
No Single Event Latch-up below a LET Threshold of 70 MeV/mg/cm2  
Tested up to a Total Dose of 300 krads (Si) according to MIL STD 883 Method 1019  
Quality Grades  
– QML -Q and -V with SMD 5962-03250  
– ESCC with 9304/008  
Design Kit (AT40KEL-DK) Including:  
– A Board with the RH FPGA (MQFPF160 or MQFPF256)  
– A configuration memory (AT17 Atmel EEPROM)  
– Design software and documentation  
– ISP cable and software  
Easy Migration to Atmel Gate Arrays for High Volume Production  
Note:  
All features and characteristics described for  
AT40KEL040 in this document, also apply to the  
AT40KFL040 unless specified otherwise.  
4155I–AERO–06/06  
***  
Table 1. AT40KEL040  
Device  
AT40KEL040  
46K  
Available ASIC Gates (50% typ. routable)  
Rows x Columns  
Core Cells  
Registers  
48 x 48  
2,304  
3,056  
RAM Bits  
I/O (max)  
18,432  
384  
Description  
The AT40KEL040 is a fully PCI-compliant, SRAM-based FPGA with distributed 18 ns  
programmable synchronous/asynchronous, dual port/single port SRAM, 8 global clocks,  
Cache Logic ability (partially or fully reconfigurable without loss of data), automatic com-  
ponent generators, and 46,000 ASIC gates. I/O counts range from 129 to 384 in Aero-  
space standard packages and support 3.3V.  
The AT40KFL040 is a 5V tolerant version.  
The AT40KEL040 is designed to quickly implement high performance, large gate count  
designs through the use of synthesis and schematic-based tools used Windows® /  
Linux® platform. Atmel’s design tools provide easy integration with industry standard  
tools such as Synplicity, Modelsim and Leonardo Spectrum/Precision Synthesis. See  
the IDS datasheet for other supported tools.  
The AT40KEL040 can be used as a co-processor for high-speed (DSP/processor-  
based) designs by implementing a variety of compute-intensive, arithmetic functions.  
These include adaptive finite impulse response (FIR) filters, Fast Fourier Transforms  
(FFT), convolvers, interpolators and discrete-cosine transforms (DCT) that are required  
for video compression and decompression, encryption, convolution and other multime-  
dia applications.  
Fast, Flexible and  
Efficient SRAM  
The AT40KEL040 FPGA offers a patented distributed 18 ns SRAM capability where the  
RAM can be used without losing logic resources. Multiple independent, synchronous or  
asynchronous, dual port or single port RAM functions (FIFO, scratch pad, etc.) can be  
created using Atmel’s macro generator tool.  
Fast, Efficient Array and The AT40KEL040’s patented 8-sided core cell with direct horizontal, vertical and diago-  
nal cell-to-cell connections implements ultra fast array multipliers without using any bus-  
Vector Multipliers  
ing resources. The AT40KEL040’s Cache Logic capability enables a large number of  
design coefficients and variables to be implemented in a very small amount of silicon,  
enabling vast improvement in system speed at much lower cost than conventional  
FPGAs.  
Cache Logic Design  
The AT40KEL040 is capable of implementing Cache Logic (Dynamic full/partial logic  
reconfiguration, without loss of data, on-the-fly) for building adaptive logic and systems.  
As new logic functions are required, they can be loaded into the logic cache without los-  
ing the data already there or disrupting the operation of the rest of the chip; replacing or  
complementing the active logic. The AT40KEL040 can act as a reconfigurable co-pro-  
cessor.  
Automatic Component  
Generators  
The AT40KEL040 FPGA family is capable of implementing user-defined, automatically  
generated, macros in multiple designs; speed and functionality are unaffected by the  
macro orientation or density of the target device. This enables the fastest, most predict-  
able and efficient FPGA design approach and minimizes design risk by reusing already  
2
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
proven functions. The Automatic Component Generators work seamlessly with industry-  
standard schematic and synthesis tools to create the fastest, most efficient designs  
available.  
The patented AT40KEL040 series architecture employs a symmetrical grid of small yet  
powerful cells connected to a flexible busing network. Independently controlled clocks  
and resets govern every column of cells. The array is surrounded by programmable I/O.  
Devices offer 46,000 usable ASIC gates, and have 3,056 registers. AT40K series  
FPGAs utilize a reliable 0.35µm single-poly, 4-metal CMOS process and are 100% fac-  
tory-tested. Atmel’s PC- and workstation-based integrated development system (IDS) is  
used to create AT40KEL040 series designs. Multiple design entry methods are sup-  
ported.  
The Atmel architecture was developed to provide the highest levels of performance,  
functional density and design flexibility in an FPGA. The cells in the Atmel array are  
small, efficient and can implement any pair of Boolean functions of (the same) three  
inputs or any single Boolean function of four inputs. The cell’s small size leads to arrays  
with large numbers of cells, greatly multiplying the functionality in each cell. A simple,  
high-speed busing network provides fast, efficient communication over medium and  
long distances.  
AT40KEL040  
Configurator  
Statistics extracted from configuration bitstreams show that the maximum needed size  
is 1Mbit.  
In order to keep the maximum number of pins assigned to signals, it is recommended to  
use a serial configuration interface.  
This is the reason why Atmel proposes a 1Mbit serial EEPROM for configuring the  
AT40KEL040, the AT17LV010-10DP which is also a 3.3V bias chip. It is packaged into a  
28-pin DIL Flat Pack 400mils wide.  
This memory has been tested for total dose under bias and unbiased conditions, exhib-  
iting far better results when unbiased; this is the reason why it is recommended to switch  
off the memory when it is not in the configuration mode.  
In addition, heavy ions tests have shown that the data stored in the memory cells are not  
corrupted eventhough errors may be detected while downloading the bitstream; this is  
the result of the data serialization from the parallel memory plan; therefore, it is recom-  
mended to use the FPGA CRC while configuring it, and to resume the configuration  
when an error is detected.  
3
4155I–AERO–06/06  
The Symmetrical  
Array  
At the heart of the Atmel architecture is a symmetrical array of identical cells (Figure 1).  
The array is continuous from one edge to the other, except for bus repeaters spaced  
every four cells (Figure 2 on page 5). At the intersection of each repeater row and col-  
umn is a 32 x 4 RAM block accessible by adjacent buses. The RAM can be configured  
as either a single-ported or dual-ported RAM(1), with either synchronous or asynchro-  
nous operation.  
Note:  
1. The right-most column can only be used as single-port RAM.  
Figure 1. Symmetrical Array Surrounded by I/O  
= FreeRAM  
= Repeater Row  
= Repeater Column  
= I/O Pad  
= AT40K Cell  
Note:  
AT40K has registered I/Os. Group enable every sector for tri-states on obuf’s.  
4
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
Figure 2. Floorplan (Representative Portion)(1)  
= Core Cell  
RAM  
RAM  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RAM  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RV  
RAM  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RAM  
RAM  
RAM  
RAM  
RV  
RV  
RV  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RAM  
RAM  
RAM  
RAM  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RH  
RAM  
RV  
RAM  
RAM  
RAM  
Note:  
1. Repeaters regenerate signals and can connect any bus to any other bus (all path-  
ways are legal) on the same plane. Each repeater has connections to two adjacent  
local-bus segments and two express-bus segments. This is done automatically using  
the integrated development system (IDS) tool.  
5
4155I–AERO–06/06  
The Busing Network Figure 3 on page 7 depicts one of five identical busing planes. Each plane has three bus  
resources: a local-bus resource (the middle bus) and two express-bus (both sides)  
resources. Bus resources are connected via repeaters. Each repeater has connections  
to two adjacent local-bus segments and two express-bus segments. Each local-bus  
segment spans four cells and connects to consecutive repeaters. Each express-bus  
segment spans eight cells and “leapfrogs” or bypasses a repeater. Repeaters regener-  
ate signals and can connect any bus to any other bus (all pathways are legal) on the  
same plane. Although not shown, a local bus can bypass a repeater via a programma-  
ble pass gate allowing long on-chip tri-state buses to be created. Local/Local turns are  
implemented through pass gates in the cell-bus interface (see following page).  
Express/Express turns are implemented through separate pass gates distributed  
throughout the array.  
Some of the bus resource on the AT40KEL040 is used as a dual-function resource.  
Table 2 shows which buses are used in a dual-function mode and which bus plane is  
used. The AT40KEL040 software tools are designed to accommodate dual-function  
buses in an efficient manner.  
Table 2. Dual-function Buses  
Function  
Type  
Plane(s)  
Direction  
Comments  
Cell Output Enable  
Local  
5
Horizontal and  
Vertical  
RAM Output Enable  
RAM Write Enable  
RAM Address  
Express  
Express  
Express  
2
1
Vertical  
Vertical  
Vertical  
Bus full length at array edge  
Bus in first column to left of RAM block  
Bus full length at array edge  
Bus in first column to left of RAM block  
1 - 5  
Buses full length at array edge  
Buses in second column to left of RAM block  
RAM Data In  
RAM Data Out  
Clocking  
Local  
Local  
1
2
4
5
Horizontal  
Horizontal  
Vertical  
Express  
Express  
Bus half length at array edge  
Bus half length at array edge  
Set/Reset  
Vertical  
6
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
Figure 3. Busing Plane (One of Five)  
=
AT40KEL040  
= Local/Local or Express/Express Turn Point  
= Row Repeater  
= Column  
Express  
bus  
Express  
bus  
Local  
bus  
7
4155I–AERO–06/06  
Cell Connections  
Figure 4(a) depicts direct connections between a cell and its eight nearest neighbors.  
Figure 4(b) shows the connections between a cell and five horizontal local buses (1 per  
busing plane) and five vertical local buses (1 per busing plane).  
Figure 4. Cell Connections  
CEL  
CEL  
CEL  
CEL  
CEL  
plane 5  
plane 4  
Horizontal  
plane 3  
busing plane  
plane 2  
plane 1  
WXYZL  
W
X
Y
CEL  
CEL  
CEL  
Z
L
Vertical  
busing plane  
Diagonal  
direct connect  
CEL  
CEL  
Orthogonal  
direct connect  
(a) Cell-to-cell Connections  
(b) Cell-to-bus Connections  
8
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
The Cell  
Figure 5 depicts the AT40KEL040 cell. Configuration bits for separate muxes and pass  
gates are independent. All permutations of programmable muxes and pass gates are  
legal. Vn (V1 - V5) is connected to the vertical local bus in plane n. Hn (H1 - H5) is con-  
nected to the horizontal local bus in plane n. A local/local turn in plane n is achieved by  
turning on the two pass gates connected to Vn and Hn. Pass gates are opened to let sig-  
nals into the cell from a local bus or to drive a signal out onto a local bus. Signals coming  
into the logic cell on one local bus plane can be switched onto another plane by opening  
two of the pass gates. This allows bus signals to switch planes to achieve greater  
routability. Up to five simultaneous local/local turns are possible.  
The AT40KEL040 FPGA core cell is a highly configurable logic block based around two  
3-input LUTs (8 x 1 ROM), which can be combined to produce one 4-input LUT. This  
means that any core cell can implement two functions of 3 inputs or one function of 4  
inputs. There is a Set/Reset D flip-flop in every cell, the output of which may be tri-stated  
and fed back internally within the core cell. There is also a 2-to-1 multiplexer in every  
cell, and an upstream AND gate in the “front end” of the cell. This AND gate is an impor-  
tant feature in the implementation of efficient array multipliers.  
Figure 5. The Cell  
"1"  
N
E
S
Y
W
"1" NW NE SE SW  
"1"  
X
W
Z
X
W
Y
FB  
8X1 LUT  
OUT  
8X1 LUT  
OUT  
"1"  
"0" "1"  
V1  
H1  
V2  
H2  
V3  
H3  
V4  
H4  
V5  
H5  
Pass gates  
1
0
Z
L
"1" OE OE  
H
V
D
Q
CLOCK  
RESET/SET  
X = Diagonal Direct connect or Bus  
Y = Orthogonal Direct Connector Bus  
W = Bus Connection  
Y
X
Z = Bus Connection  
NW NE SE SW  
N
E
S
W
FB = Internal Feed back  
With this functionality in each core cell, the core cell can be configured in several  
“modes”. The core cell flexibility makes the AT40KEL040 architecture well suited to  
most digital design application areas (see Figure 6).  
9
4155I–AERO–06/06  
Figure 6. Some Single Cell Modes  
Synthesis Mode. This mode is particularly important for  
the use of VHDL design. VHDL Synthesis tools generally  
will produce as their output large amounts of random logic  
functions. Having a 4-input LUT structure gives efficient  
random logic optimization without the delays associated  
with larger LUT structures. The output of any cell may be  
registered, tri-stated and/or fed back into a core cell.  
A
B
Q (Registered)  
and/or  
Q
D Q  
C
D
SUM  
or  
Arithmetic Mode is frequently used in many designs.  
As can be seen in the figure, the AT40KEL040 core cell  
can implement a 1-bit full adder (2-input adder with both  
Carry In and Carry Out) in one core cell. Note that the  
sum output in this diagram is registered. This output could  
then be tri-stated and/or fed back into the cell.  
A
B
C
D Q  
SUM (Registered)  
and/or  
CARRY  
DSP/Multiplier Mode. This mode is used to efficiently  
implement array multipliers. An array multiplier is an array  
of bitwise multipliers, each implemented as a full adder  
with an upstream AND gate. Using this AND gate and the  
diagonal interconnects between cells, the array multiplier  
structure fits very well into the AT40K architecture.  
PRODUCT (Registered)  
or  
PRODUCT  
D Q  
A
B
C
D
and/or  
CARRY  
Counter Mode. Counters are fundamental to almost all  
digital designs. They are the basis of state machines,  
timing chains and clock dividers. A counter is essentially  
an increment by one function (i.e., an adder), with the  
input being an output (or a decode of an output) from the  
previous stage. A 1-bit counter can be implemented in one  
core cell. Again, the output can be registered, tri-stated  
and/or fed back.  
D Q  
Q
CARRY IN  
and/or  
CARRY  
Tri-state/Mux Mode. This mode is used in many  
telecommunications applications, where data needs to be  
routed through more than one possible path. The output of  
the core cell is very often tri-statable for many inputs to  
many outputs data switching.  
A
B
C
Q
EN  
10  
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
RAM  
32 x 4 dual-ported RAM blocks are dispersed throughout the array as shown in Figure 7.  
A 4-bit Input Data Bus connects to four horizontal local buses distributed over four sec-  
tor rows (plane 1). A 4-bit Output Data Bus connects to four horizontal local buses dis-  
tributed over four sector rows (plane 2). A 5-bit Input Address Bus connects to five  
vertical express buses in same column. A 5-bit Output Address Bus connects to five ver-  
tical express buses in same column. Ain (input address) and Aout (output address)  
alternate positions in horizontally aligned RAM blocks. For the left-most RAM blocks,  
Aout is on the left and Ain is on the right. For the right-most RAM blocks, Ain is on the  
left and Aout is tied off, thus it can only be configured as a single port. For single-ported  
RAM, Ain is the READ/WRITE address port and Din is the (bi-directional) data port.  
Right-most RAM blocks can be used only for single-ported memories. WEN and OEN  
connect to the vertical express buses in the same column.  
Figure 7. RAM Connections (One Ram Block)  
CLK  
CLK  
CLK  
CLK  
Din  
Dout  
Aout  
32 x 4 RAM  
Ain  
WEN  
OEN  
CLK  
Reading and writing of the 18 ns 32 x 4 dual-port FreeRAM are independent of each  
other. Reading the 32 x 4 dual-port RAM is completely asynchronous. Latches are  
transparent; when Load is logic 1, data flows through; when Load is logic 0, data is  
latched. These latches are used to synchronize Write Adress, Write Enable Not, and Din  
signals for a synchronous RAM. Each bit in the 32 x 4 dual-port RAM is also a transpar-  
ent latch. The front-end latch and the memory latch together form an edge-triggered flip  
flop. When a nibble (bit = 7) is (Write) addressed and LOAD is logic 1 and WE is logic 0,  
11  
4155I–AERO–06/06  
data flows through the bit. When a nibble is not (Write) addressed or LOAD is logic 0 or  
WE is logic 1, data is latched in the nibble. The two CLOCK muxes are controlled  
together; they both select CLOCK (for a synchronous RAM) or they both select “1” (for  
an asynchronous RAM). CLOCK is obtained from the clock for the sector-column imme-  
diately to the left and immediately above the RAM block. Writing any value to the RAM  
clear byte during configuration clears the RAM (see the “AT40K/40KAL Configuration  
Series” application note at www.atmel.com).  
Figure 8. RAM Logic  
CLOCK  
“1”  
“1”  
0
1
1
0
Load  
5
Read Address  
Write Address  
Ain  
Load  
Latch  
5
Aout  
32 x 4  
Dual-port  
RAM  
1”  
OE  
Load  
Latch  
WEN  
Write Enable NOT  
Load  
Latch  
4
4
Din  
Din  
Dout  
Dout  
Clear  
RAM-Clear Byte  
Figure 9 on page 13 shows an example of a RAM macro constructed using  
AT40KEL040’s FreeRAM cells. The macro shown is a 128 x 8 dual-ported asynchro-  
nous RAM. Note the very small amount of external logic required to complete the  
address decoding for the macro. Most of the logic cells (core cells) in the sectors occu-  
pied by the RAM will be unused: they can be used for other logic in the design. This  
logic can be automatically generated using the macro generators.  
12  
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
Figure 9. RAM Example: 128 x 8 Dual-ported RAM (Asynchronous)  
13  
4155I–AERO–06/06  
Clocking Scheme  
There are eight Global Clock buses (GCK1 - GCK8) on the AT40KEL040 FPGA. Each  
of the eight dedicated Global Clock buses is connected to one of the dual-use Global  
Clock pins. Any clocks used in the design should use global clocks where possible: this  
can be done by using Assign Pin Locks to lock the clocks to the Global Clock locations.  
In addition to the eight Global Clocks, there are four Fast Clocks (FCK1 - FCK4), two per  
edge column of the array for PCI specification. Even the derived clocks can be routed  
through the Global network. Access points are provided in the corners of the array to  
route the derived clocks into the global clock network. The IDS software tools handle  
derived clocks to global clock connections automatically if used.  
Each column of an array has a “Column Clock mux” and a “Sector Clock mux”. The Col-  
umn Clock mux is at the top of every column of an array and the Sector Clock mux is at  
every four cells. The Column Clock mux is selected from one of the eight Global Clock  
buses. The clock provided to each sector column of four cells is inverted, non-inverted  
or tied off to “0”, using the Sector Clock mux to minimize the power consumption in a  
sector that has no clocks. The clock can either come from the Column Clock or from the  
Plane 4 express bus (see Figure 10 on page 15). The extreme-left Column Clock mux  
has two additional inputs, FCK1 and FCK2, to provide fast clocking to left-side I/Os. The  
extreme-right Column Clock mux has two additional inputs as well, FCK3 and FCK4, to  
provide fast clocking to right-side I/Os.  
The register in each cell is triggered on a rising clock edge by default. Before configura-  
tion on power-up, constant “0” is provided to each register’s clock pins. After configura-  
tion on power-up, the registers either set or reset, depending on the user’s choice.  
The clocking scheme is designed to allow efficient use of multiple clocks with low clock  
skew, both within a column and across the core cell array.  
14  
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
Figure 10. Clocking (for One Column of Cells)  
}
FCK (2 per Edge Column of the Array)  
GCK1 - GCK8  
Column Clock Mux  
“1”  
Sector Clock Mux  
Global Clock Line  
(Buried)  
Express Bus  
(Plane 4; Half length at edge)  
“1”  
“1”  
“1”  
Repeater  
Sector Clock Mux  
15  
4155I–AERO–06/06  
Set/Reset Scheme  
The AT40KEL040 family reset scheme is essentially the same as the clock scheme  
except that there is only one Global Reset. A dedicated Global Set/Reset bus can be  
driven by any User I/O, except those used for clocking (Global Clocks or Fast Clocks).  
The automatic placement tool will choose the reset net with the most connections to use  
the global resources. You can change this by using an RSBUF component in your  
design to indicate the global reset. Additional resets will use the express bus network.  
The Global Set/Reset is distributed to each column of the array. Like Sector Clock mux,  
there is Sector Set/Reset mux at every four cells. Each sector column of four cells is  
set/reset by a Plane 5 express bus or Global Set/Reset using the Sector Set/Reset mux  
(Figure 11 on page 17). The set/reset provided to each sector column of four cells is  
either inverted or non-inverted using the Sector Reset mux.  
The function of the Set/Reset input of a register is determined by a configuration bit in  
each cell. The Set/Reset input of a register is active low (logic 0) by default. Setting or  
Resetting of a register is asynchronous. Before configuration on power-up, a logic 1 (a  
high) is provided by each register (i.e., all registers are set at power-up).  
16  
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
Figure 11. Set/Reset (for One Column of Cells)  
Each Cell has a programmable Set or Reset  
Sector Set/Reset Mux  
Repeater  
“1”  
“1”  
“1”  
Global Set/Reset Line (Buried)  
Express Bus  
(Plane 5; Half length at edge)  
“1”  
Any User I/O can drive Global Set/Reset line  
17  
4155I–AERO–06/06  
I/O Structure  
AT40K has registered I/Os and group enable every sector for tri-states on obuf’s.  
Pad  
The I/O pad is the one that connects the I/O to the outside world. Note that not all I/Os  
have pads: the ones without pads are called Unbonded I/Os. The number of unbonded  
I/Os varies with the device size and package. These unbonded I/Os are used to perform  
a variety of bus turns at the edge of the array.  
Pull-up/Pull-down  
Each pad has a programmable pull-up and pull-down attached to it. This supplies a  
weak “1” or “0” level to the pad pin. When all other drivers are off, this control will dictate  
the signal level of the pad pin.  
The input stage of each I/O cell has a number of parameters that can be programmed  
either as properties in schematic entry or in the I/O Pad Attributes editor in IDS.  
CMOS  
The threshold level is a CMOS-compatible level.  
Schmitt  
A Schmitt trigger circuit can be enabled on the inputs. The Schmitt trigger is a regenera-  
tive comparator circuit that adds 1V hysteresis to the input. This effectively improves the  
rise and fall times (leading and trailing edges) of the incoming signal and can be useful  
for filtering out noise.  
Delays  
Drive  
The input buffer can be programmed to include four different intrinsic delays as specified  
in the AC timing characteristics. This feature is useful for meeting data hold require-  
ments for the input signal.  
The output drive capabilities of each I/O are programmable. They can be set to FAST,  
MEDIUM or SLOW (using IDS tool). The FAST setting has the highest drive capability  
(16 mA at 3.3V) buffer and the fastest slew rate. MEDIUM produces a medium drive  
(12 mA at 3.3V) buffer, while SLOW yields a standard (4 mA at 3.3V) buffer.  
Tri-State  
The output of each I/O can be made tri-state (0, 1 or Z), open source (1 or Z) or open  
drain (0 or Z) by programming an I/O’s Source Selection mux. Of course, the output can  
be normal (0 or 1), as well.  
Source Selection Mux  
The Source Selection mux selects the source for the output signal of an I/O. See  
Figure 12 on page 21.  
Primary, Secondary and  
Corner I/Os  
The AT40KEL040 has three kinds of I/Os: Primary I/O, Secondary I/O and a Corner I/O.  
Every edge cell except corner cells on the AT40KEL040 has access to one Primary I/O  
and two Secondary I/Os.  
Primary I/O  
Every logic cell at the edge of the FPGA array has a direct orthogonal connection to and  
from a Primary I/O cell. The Primary I/O interfaces directly to its adjacent core cell. It  
also connects into the repeaters on the row immediately above and below the adjacent  
core cell. In addition, each Primary I/O also connects into the busing network of the  
three nearest edge cells. This is an extremely powerful feature, as it provides logic cells  
toward the center of the array with fast access to I/Os via local and express buses. It can  
be seen from the diagram that a given Primary I/O can be accessed from any logic cell  
on three separate rows or columns of the FPGA. See Figures 12a and 13a.  
Secondary I/O  
Every logic cell at the edge of the FPGA array has two direct diagonal connections to a  
Secondary I/O cell. The Secondary I/O is located between core cell locations. This I/O  
18  
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
connects on the diagonal inputs to the cell above and the cell below. It also connects to  
the repeater of the cell above and below. In addition, each Secondary I/O also connects  
into the busing network of the two nearest edge cells. This is an extremely powerful fea-  
ture, as it provides logic cells toward the center of the array with fast access to I/Os via  
local and express buses. It can be seen from the diagram that a given Secondary I/O  
can be accessed from any logic cell on two rows or columns of the FPGA. See Figure  
12a and Figure 13b.  
Corner I/O  
Logic cells at the corner of the FPGA array have direct-connect access to five separate  
I/Os: 2 Primary, 2 Secondary and 1 Corner I/O. Corner I/Os are like an extra Secondary  
I/O at each corner of the array. With the inclusion of Corner I/Os, an AT40KEL040  
FPGA with n x n core cells always has 8n I/Os. As the diagram shows, Corner I/Os can  
be accessed both from the corner logic cell and the horizontal and vertical busing net-  
works running along the edges of the array. This means that many different edge logic  
cells can access the Corner I/Os. See Figure 14.  
19  
4155I–AERO–06/06  
Figure 12. South I/O (Mirrored for North I/O)  
CELL  
CELL  
CELL  
“0”  
“1”  
“0”  
“1”  
PULL-UP  
PAD  
PULL-DOWN  
(a) Primary I/O  
“0”  
“1”  
CELL  
“0”  
“1”  
PULL-UP  
PAD  
PULL-DOWN  
CELL  
(b) Secondary I/O  
20  
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
Figure 13. West I/O (Mirrored for East I/O)  
a. Primary I/0  
"0"  
"1"  
CELL  
PULL-UP  
PAD  
"0"  
"1"  
PULL-DOWN  
CELL  
b. Secondary I/O  
21  
4155I–AERO–06/06  
Figure 14. Northwest Corner I/O (Similar NE/SE/SW Corners)  
PAD  
PAD  
VCC  
GND  
VCC  
GND  
TTL/CMOS  
DRIVE  
TTL/CMOS  
SCHMITT  
DELAY  
DRIVE  
TRI-STATE  
SCHMITT  
DELAY  
TRI-STATE  
ICLK  
ICLK  
OCLK  
RST  
OCLK  
RST  
RST  
RST  
RST  
"0"  
"1"  
PULL-UP  
PAD  
"0"  
"1"  
CELL  
CELL  
PULL-DOWN  
CELL  
22  
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
Electrical Characteristics  
Absolute Maximum Ratings*  
*Note:  
Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or any  
other conditions beyond those listed under oper-  
ating conditions is not implied. Exposure to Abso-  
lute Maximum Rating conditions for extended  
periods of time may affect device reliability.  
Operating Temperature.................................. -55°C to +125°C  
Storage Temperature..................................... -65°C to +150°C  
Junction Temperature .................................................. +150°C  
Voltage on Any Input Pin  
with Respect to Ground (1) ......-0.5V to 5.5V DC (KEL version)  
................................................-0.5V to 7.0V DC (KFL version)  
Voltage on Any Output Pin  
with Respect to Ground.................................-0.5V to 5.5V DC  
Supply Voltage (VCC) ...........................................-0.5V to 5.5V  
ESD (RZAP = 1.5K, CZAP = 100 pF)................................. 4000V  
1.  
For DC Input Voltage (VI) Minimum voltage of -0.5V DC, which may undershoot to -2.0V for pulses of less than 20 ns.  
DC and AC Operating Range  
Operating Temperature  
-55°C to +125°C  
VCC Power Supply  
3.3V ± 0.3V  
High (VIHC  
Low (VILC  
)
70% VCC to VCC + 0.3V DC (KEL version)  
70% VCC to 5.5V DC (KFL version)  
Input Voltage Level (CMOS)  
)
-0.3V to 30% VCC DC  
23  
4155I–AERO–06/06  
DC Characteristics  
Symbol  
Parameter  
Conditions  
CMOS  
TTL  
Min  
70% VCC  
2.0  
Typ  
Max  
Unit  
V
V
VIH  
High-level Input Voltage  
CMOS  
TTL  
IOH = -4 mA  
VCC = 3.3V  
IOH = -12 mA  
VCC = 3.3V  
IOH = -16 mA  
VCC = 3.3V  
IOL = +4 mA  
VCC = 3.3V  
IOL = +12 mA  
VCC = 3.3V  
IOL = +16 mA  
VCC = 3.3V  
-0.3  
-0.3  
2.4  
30% VCC  
0.8  
V
V
V
VIL  
Low-level Input Voltage  
High-level Output Voltage  
2.4  
2.4  
V
V
V
V
V
VOH  
0.4  
0.4  
0.4  
VOL  
Low-level Output Voltage  
VIN = VCC max  
With pull-down, VIN = VCC  
VIN = VSS  
With pull-up, VIN = VSS  
Without pull-down, VOUT  
VCC max  
-5  
20  
-5  
-300.0  
-5  
5
300  
5
-20  
5
µA  
µA  
µA  
µA  
µA  
IIH  
IIL  
High-level Input Current  
Low-level Input Current  
75  
-50  
=
High-level Tri-state Output  
Leakage Current  
IOZH  
With pull-down, VOUT = VCC  
max  
20  
300  
µA  
Without pull-up, VOUT = VSS  
With pull-up, VOUT = VSS  
for CON  
-5  
-500  
mA  
µA  
Low-level Tri-state Output  
Leakage Current  
IOZL  
ICC  
-150.0  
1
-110  
5
Standby Current  
Consumption  
Input Capacitance(1)  
Standby, unprogrammed  
mA  
pF  
CIN  
All pins  
10  
Note:  
1. Parameter based on characterization and simulation; it is not tested in production.  
Power-On Supply  
Requirements  
Atmel FPGAs require a minimum rated power supply current capacity to ensure proper  
initialization, and the power supply ramp-up time does not affect the current required. A  
fast ramp-up time requires more current than a slow ramp-up time.  
Table 3. Power-on Supply Requirements  
Description  
Maximum Current(1)(2)  
Maximum Current Supply  
1.2 A  
Note:  
1. Devices are guaranteed to initialize properly at 50% of the minimum current listed  
above. A larger capacity power supply may result in a larger initiallization current.  
2. Ramp-up time is measured from 0V DC to 3.6V DC. Peak current required lasts less  
than 2 ms, and occurs near the internal power on reset threshold voltage.  
24  
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
AC Timing  
Characteristics  
Delays are based on fixed loads which are described in the notes.  
Maximum timing based on worst case: Vcc = 3.0V, temperature = 125°C.  
Minimum timing based on best case: Vcc = 3.6V, temperature = -55°C.  
Maximum delays are the average of tPDLH and tPDHL  
.
Cell Function  
Core  
Parameter  
Path  
Value  
Unit  
Notes  
2-input gate  
3-input gate  
3-input gate  
4-input gate  
Fast carry  
Fast carry  
Fast crry  
Fast carry  
Fast carry  
Fast carry  
Fast carry  
Fast carry  
DFF  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPZX (max)  
tPXZ (max)  
x/y -> x/y  
x/y/z -> x/y  
x/y/w -> x/y  
x/y/w/z -> x/y  
y -> y  
x -> y  
y -> x  
x -> x  
w -> y  
w -> x  
z -> y  
z -> x  
Clk -> x/y  
R -> x/y  
S -> x/y  
q -> w  
x/y -> L  
oe -> L  
oe -> L  
2.9  
3.1  
3.5  
3.5  
2.8  
2.6  
2.8  
2.9  
3.5  
3.5  
3.1  
3.0  
4.3  
4.1  
2.8  
4.3  
2.5  
2.9  
0.9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
DFF  
DFF  
DFF  
Incremental -> L  
Local output enable  
Local output enable  
1 unit load  
1 unit load  
AC Timing  
Characteristics  
All input I/O characteristics measured from VIH of 50% of VDD at the pad (CMOS threshold) to the internal VIH of 50% of VDD  
.
All output I/O characteristics are measured as the average of tPDLH and tPDHL to the pad VIH of 50% of VDD  
.
Cell Function  
Repeaters  
Repeater  
Repeater  
Repeater  
Repeater  
Repeater  
Repeater  
Parameter  
Path  
Value  
Unit  
Notes  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
L -> E  
E -> E  
L -> L  
E -> L  
E -> IO  
L -> IO  
1.3  
1.3  
1.3  
1.3  
0.7  
0.7  
ns  
ns  
ns  
ns  
ns  
ns  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
1 unit load  
tPD (max)  
25  
4155I–AERO–06/06  
Cell Function  
I/O  
Parameter  
Path  
Value  
Unit  
Notes  
Input  
tPD (max)  
pad -> x/y  
pad -> x/y  
pad -> x/y  
pad -> x/y  
x/y/E/L -> pad  
x/y/E/L -> pad  
x/y/E/L -> pad  
oe -> pad  
5.4  
7.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
no extra delay  
1 extra delay  
2 extra delays  
3 extra delays  
50 pf load  
Input  
t
PD (max)  
tPD (max)  
PD (max)  
Input  
11.4  
14.9  
16.0  
14.8  
11.2  
16.4  
5.1  
Input  
t
Output, slow  
Output, medium  
Output, fast  
Output, slow  
Output, slow  
Output, medium  
Output, medium  
Output, fast  
Output, fast  
tPD (max)  
tPD (max)  
50 pf load  
tPD (max)  
50 pf load  
tPZX (max)  
tPXZ (max)  
50 pf load  
oe -> pad  
50 pf load  
tPZX (max)  
oe -> pad  
14.1  
9.1  
50 pf load  
tPXZ (max)  
tPZX (max)  
oe -> pad  
50 pf load  
oe -> pad  
11.4  
9.5  
50 pf load  
tPXZ (max)  
oe -> pad  
50 pf load  
26  
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
AC Timing  
Characteristics  
Clocks and Reset Input buffers are measured from a VIH of 1.5V at the input pad to the internal VIH of 50% of VCC  
Maximum timings for clock input buffers and internal drivers are measured for rising edge delays only.  
.
Cell Function  
Parameter  
Path  
Value  
Unit  
Notes  
Global Clocks and Set/Reset  
GCK Input buffer  
FCK Input buffer  
Clock column driver  
Clock sector driver  
GSRN Input buffer  
Global clock to output  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
tPD (max)  
pad -> clock  
pad -> clock  
clock -> colclk  
colclk -> secclk  
colclk -> secclk  
clock pad -> out  
3.3  
1.9  
1.7  
0.8  
10.3  
21.3  
ns  
ns  
ns  
ns  
ns  
ns  
rising edge clock  
rising edge clock  
rising edge clock  
rising edge clock  
rising edge clock  
fully loaded clock tree  
rising edge DFF  
20 mA output buffer  
50 pf pin load  
Fast clock to output  
tPD (max)  
clock pad -> out  
19.9  
ns  
rising edge clock  
fully loaded clock tree  
rising edge DFF  
20 mA output buffer  
50 pf pin load  
Notes: 1. CMOS buffer delays are measured from a VIH of 1/2 VCC at the pad to the internal VIH at A. The input buffer load is constant.  
2. Buffer delay is to a pad voltage of 1.5V with one output switching.  
3. Parameter based on characterization and simulation; not tested in production.  
4. Exact power calculation is available in Atmel FPGA Designer software.  
27  
4155I–AERO–06/06  
AC Timing  
Characteristics  
Cell Function  
Asynchronous RAM  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write/Read  
Read  
Read  
Read  
Parameter  
Path  
Value  
Unit  
Notes  
tWECYC (min)  
tWEL (min)  
tWEH (min)  
tsetup (min)  
thold (min)  
tsetup (min)  
thold (min)  
thold (min)  
tPD (max)  
tPD (max)  
tPZX (max)  
tPXZ (max)  
cycle time  
we  
we  
28  
6.5  
6.5  
7.0  
0.0  
6.5  
0.0  
0.0  
14.1  
13.1  
4.5  
4.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pulse width low  
pulse width high  
wr addr setup -> we  
wr addr hold -> we  
din setup -> we  
din hold -> we  
oe hold -> we  
din -> dout  
rd addr -> dout  
oe -> dout  
oe -> dout  
rd addr = wr addr  
Synchronous RAM  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
tCYC (min)  
tCLKL (min)  
tCLKH (min)  
tsetup (min)  
thold (min)  
tsetup (min)  
thold (min)  
tsetup (min)  
thold (min)  
tPD (max)  
tPD (max)  
tPD (max)  
tPZX (max)  
tPXZ (max)  
cycle time  
clk  
clk  
28  
6.5  
6.5  
5.0  
0.0  
6.5  
0.0  
5.1  
0.0  
14.1  
7.9  
13.1  
4.5  
4.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pulse width low  
pulse width high  
we setup -> clk  
we hold -> clk  
wr addr setup -> clk  
wr addr hold -> clk  
wr data setup -> clk  
wr data hold -> clk  
din -> dout  
clk -> dout  
rd addr -> dout  
oe -> dout  
Write  
Write/Read  
Write/Read  
Read  
Read  
Read  
rd addr = wr addr  
rd addr = wr addr  
oe -> dout  
28  
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
FreeRAM Asynchronous  
Timing Characteristics  
Single Port Write/Read  
Dual Port Write with Read  
Dual Port Read  
29  
4155I–AERO–06/06  
FreeRAM Synchronous  
Timing Characteristics  
Single Port Write/Read  
t
CLKH  
CLK  
t
t
WCS  
WCH  
WE  
t
t
ACH  
ACS  
0
1
2
3
ADDR  
OE  
t
t
OZX  
t
OXZ  
AD  
t
t
DCS  
DCH  
DATA  
Dual Port Write with Read  
t
CYC  
t
t
CLKH  
CLKL  
CLK  
t
t
WCH  
WCS  
WE  
WR ADDR  
WR DATA  
t
t
ACS  
ACH  
0
1
2
t
t
DCS  
DCH  
RD ADDR = WR ADDR 1  
RD DATA  
t
CD  
30  
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
Dual Port Read  
0
1
RD ADDR  
OE  
t
t
t
OXZ  
OZX  
AD  
DATA  
31  
4155I–AERO–06/06  
Table 4. MQFP F-160  
Pin  
Pin  
Number  
Signal  
I/O297_CS1_A2  
I/O292  
Number  
Signal  
I/O220  
Pin  
Number  
Signal  
VCC  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
1
I/O219_FCK3  
GND  
2
I/O384_GCK8_A15  
I/O383_A14  
I/O382  
I/O291  
3
I/O290_GCK7_A1  
I/O289_A0  
GND  
I/O208  
4
I/O207  
5
I/O381  
I/O206  
6
I/O372_A13  
I/O371_A12  
I/O370  
TESTCLOCK  
VCC  
I/O205_D6  
I/O196  
7
8
CCLK  
I/O195  
9
I/O369  
I/O288_GCK6  
I/O287_D0  
I/O286  
I/O194_GCK5  
I/O193_D7  
RESETN  
VCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
GND  
I/O360  
I/O359  
I/O285  
I/O348_A11  
I/O347_A10  
I/O344  
I/O278  
CON  
I/O277_D1  
I/O274  
GND  
I/O192_GCK4  
I/O191_D8  
I/O190  
I/O343  
I/O273  
I/O338_A9  
I/O337_A8  
VCC  
GND  
I/O262_FCK4  
I/O261  
I/O189  
I/O184_D9  
I/O183_D10  
I/O180  
GND  
I/O260  
I/O336_A7  
I/O335_A6  
I/O330  
I/O259_D2  
I/O246  
I/O179  
I/O245  
GND  
I/O329  
I/O242_CHECK  
I/O241_D3  
GND  
I/O168  
I/O328  
I/O167  
I/O326_A5  
I/O325_A4  
I/O314  
I/O166_D11  
I/O165_D12  
I/O152  
VCC  
I/O240  
I/O313  
I/O239_D4  
I/O236  
I/O151  
GND  
I/O146_D13  
I/O145_D14  
GND  
I/O304  
I/O235  
I/O303  
I/O222_CS0  
I/O221_D5  
I/O298_A3  
VCC  
AT40KEL040  
32  
4155E–AERO–06/04  
Pin  
Pin  
Number  
Signal  
I/O144_INIT  
I/O143_D15  
I/O138  
I/O137  
I/O124  
I/O123  
I/O122  
I/O121  
GND  
Number  
Signal  
I/O69  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
I/O54  
I/O53  
I/O50  
I/O49  
VCC  
GND  
I/O48_A23  
I/O47_A22  
I/O44  
I/O110  
I/O109  
I/O102_LDC  
I/O101  
I/O100  
I/O99  
I/O43  
I/O28_A21  
I/O27_A20  
I/O26  
I/O25_FCK1  
GND  
I/O98_HDC  
I/O97_GCK3  
M2  
I/O16  
I/O15  
VCC  
I/O6_A19  
I/O5_A18  
I/O4  
M0  
GND  
M1  
I/O3  
I/O96_GCK2  
I/O95_OTS  
I/O94  
I/O2_A17  
I/O1_GCLK1_A16  
GND  
I/O93  
I/O90  
I/O89  
I/O84  
I/O83  
GND  
I/O72_FCK2  
I/O71  
I/O70  
AT40KEL040  
33  
4155E–AERO–06/04  
Table 5. MQFP - F256  
Pin  
Pin  
Number  
Signal  
IO335_A6  
IO334  
Number  
Signal  
IO286  
Pin  
Number  
Signal  
IO384_GCK8_A15  
IO383_A14  
IO382  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
1
IO285  
2
IO330  
IO282  
3
IO329  
GND  
4
IO381  
IO328  
VCC  
5
IO378  
IO326_A5  
IO325_A4  
IO324  
IO278  
6
IO377  
IO277_D1  
IO276  
7
GND  
8
VCC  
IO323  
IO274  
9
IO375  
IO321  
IO273  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
IO374  
IO320  
IO272  
IO372_A13  
IO371_A12  
IO370  
IO318  
IO270  
IO317  
IO269  
IO314  
IO267  
IO369  
IO313  
IO266  
IO366  
IO312  
IO262_FCK4  
IO261  
IO365  
IO311  
IO362  
IO308  
IO260  
IO360  
IO307  
IO259_D2  
IO258  
IO359  
IO304  
IO358  
IO303  
IO257  
IO356  
IO301  
IO254  
IO355  
IO298_A3  
GND  
IO253  
IO353  
IO252  
IO352  
VCC  
IO251  
IO349  
IO297_CS1_A2  
IO291  
IO248  
IO348_A11  
IO347_A10  
IO346  
IO246  
IO292  
IO245  
IO290_GCK7_A1  
IO289_A0  
TESTCLOCK  
CCLK  
IO242_CHECK  
IO241_D3  
IO240  
IO344  
IO343  
IO338_A9  
IO337_A8  
IO336_A7  
IO239_D4  
IO236  
IO288_GCK6  
IO287_D0  
IO235  
AT40KEL040  
34  
4155E–AERO–06/04  
Pin  
Pin  
Pin  
Number  
Signal  
IO234  
Number  
Signal  
VCC  
Number  
Signal  
IO131  
IO129  
IO128  
IO124  
IO123  
IO122  
IO121  
IO120  
IO119  
IO116  
IO115  
IO113  
IO110  
IO109  
IO101  
GND  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
IO232  
IO184_D9  
IO183_D10  
IO181  
IO230  
IO228  
IO227  
IO180  
IO225  
IO179  
IO224  
IO177  
IO222_CS0  
IO221_D5  
IO220  
IO174  
IO173  
IO171  
IO219_FCK3  
IO216  
IO168  
IO167  
IO215  
IO166_D11  
IO165_D12  
IO163  
IO212  
IO208  
IO207  
IO162  
IO206  
IO161  
VCC  
IO205_D6  
IO204  
IO158  
IO102_LDC  
IO99  
IO157  
GND  
IO156  
IO100  
IO98_HDC  
IO97_GCK3  
M2  
VCC  
IO152  
IO203  
IO151  
IO196  
IO150  
IO195  
IO149  
M0  
IO194_GCK5  
IO193_D7  
RESETN  
CON  
IO146_D13  
IO145_D14  
IO144_INIT  
IO143_D15  
IO141  
M1  
IO96_GCK2  
IO95_OTS  
IO94  
IO192_GCK4  
IO191_D8  
IO190  
IO93  
IO138  
GND  
IO137  
VCC  
IO189  
IO136  
IO90  
IO186  
IO134  
IO89  
GND  
IO132  
IO86  
AT40KEL040  
35  
4155E–AERO–06/04  
Pin  
Pin  
Number  
Signal  
IO85  
Number  
Signal  
IO29  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
IO84  
IO28_A21  
IO27_A20  
IO26  
IO83  
IO80  
IO79  
IO25_FCK1  
IO21  
IO77  
IO76  
IO20  
IO72_FCK2  
IO71  
IO18  
IO16  
IO70  
IO15  
IO69  
IO13  
IO67  
GND  
IO66  
VCC  
IO63  
IO6_A19  
IO5_A18  
IO4  
IO62  
IO60  
IO59  
IO3  
IO57  
IO2_A17  
IO1_GCLK1_A16  
IO56  
IO54  
IO53  
IO50  
IO49  
IO48_A23  
IO47_A22  
IO44  
IO43  
IO41  
IO39  
IO36  
IO35  
IO34  
IO33  
IO30  
AT40KEL040  
36  
4155E–AERO–06/04  
AT40KEL040  
Part/Package  
Availability and User  
I/O Counts (Including  
Dual-function Pins)  
Package  
AT40KEL040  
MQFPF 160  
MQFPF 256  
129  
233  
37  
4155I–AERO–06/06  
Ordering Information  
Part Number  
Package  
Version  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
Temperature Range  
25°C  
Quality Flow  
Engineering Samples  
QML Q  
QML V  
ESCC  
Engineering Samples  
QML Q  
AT40KEL040KW1-E  
5962-0325001QXC  
5962-0325001VXC  
930400801  
AT40KEL040KZ1-E  
5962-0325001QYC  
5962-0325001VYC  
930400802  
MQFPF160  
MQFPF160  
MQFPF160  
MQFPF160  
MQFPF256  
MQFPF256  
MQFPF256  
MQFPF256  
-55° to +125°C  
-55° to +125°C  
-55° to +125°C  
25°C  
-55° to +125°C  
-55° to +125°C  
-55° to +125°C  
QML V  
ESCC  
AT40KFL040KW1-E  
5962-0325002QXC  
5962-0325002VXC  
AT40KFL040KW1-SCC  
AT40KFL040KZ1-E  
5962-0325002QYC  
5962-0325002VYC  
AT40KFL040KZ1-SCC  
MQFPF160  
MQFPF160  
MQFPF160  
MQFPF160  
MQFPF256  
MQFPF256  
MQFPF256  
MQFPF256  
3.3V, 5V Tolerant  
3.3V, 5V Tolerant  
3.3V, 5V Tolerant  
3.3V, 5V Tolerant  
3.3V, 5V Tolerant  
3.3V, 5V Tolerant  
3.3V, 5V Tolerant  
3.3V, 5V Tolerant  
25°C  
Engineering Samples  
QML Q  
QML V  
ESCC  
Engineering Samples  
QML Q  
-55° to +125°C  
-55° to +125°C  
-55° to +125°C  
25°C  
-55° to +125°C  
-55° to +125°C  
-55° to +125°C  
QML V  
ESCC  
38  
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
Package Drawing  
Multilayer Quad Flat Pack (MQFP) 160-pin - Front View  
39  
4155I–AERO–06/06  
Multilayer Quad Flat Pack (MQFP) 256-pin - Front View  
40  
AT40KEL040  
4155I–AERO–06/06  
AT40KEL040  
Datasheet Change Log  
Changes from 4155B -  
06/03 to 4155C 04/04  
1. Addition of MQFP F256 package information  
2. Pad/ Pin assignment updated. Table 4 on page 31.  
3. Ordering information updated  
4. Reference to design tools  
Changes from 4155C -  
06/03 to 4155D 04/04  
1. Update of radiation hardness performance, page 1.  
Changes from 4155D  
04/04 - to 4155E 06/04  
1. Updated FreeRAM timing characteristics, Section “FreeRAM Asynchronous Tim-  
ing Characteristics”, page 29.  
Changes from 4155E  
06/04 to 4155F 06/04  
1. Minor changes throughout the document.  
1. Minor changes.  
Changes from 4155F  
06/04 to 4155G 05/05  
Changes from 4155G  
05/05 to 4155H 02/06  
1. Added MQFP256 package.  
Changes from 4155H  
02/06 to 4155I 06/06  
1. Adding AT40KFL040 5V tolerant version.  
2. Corrections on matrix decription.  
41  
4155I–AERO–06/06  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Asia  
Room 1219  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard  
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any  
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and  
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are  
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use  
as critical components in life support devices or systems.  
© Atmel Corporation 2006. All rights reserved. Atmel®, logo and combinations thereof are registered trademarks, and Everywhere You Are® are the  
trade marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
Printed on recycled paper.  
4155I–AERO–06/06  

相关型号:

AT40KLV

5K - 50K Gates Coprocessor FPGA with FreeRAM
ATMEL

AT40KXX

5K - 50K Gates Coprocessor FPGA with FreeRAM
ATMEL

AT413A

Distinctive Characteristics
ETC

AT41400

TRANSISTOR | BJT | NPN | 60MA I(C) | CHIP
ETC

AT41410

TRANSISTOR | BJT | NPN | 60MA I(C) | SOT-100VAR
ETC

AT41411

TRANSISTOR | BJT | NPN | 50MA I(C) | SOT-143
ETC

AT41435-3

TRANSISTOR | BJT | NPN | 60MA I(C) | MICRO-X
ETC

AT41435-5

TRANSISTOR | BJT | NPN | 60MA I(C) | MICRO-X
ETC

AT41470

NPN SILICON BIPOLAR TRANSISTOR
ASI

AT41472

TRANSISTOR | BJT | NPN | 60MA I(C) | TO-72
ETC

AT41485

Up to 6 GHz Low Noise Silicon Bipolar Transistor
AGILENT

AT41486

Up to 6 GHz Low Noise Silicon Bipolar Transistor
AGILENT