AT49SN3208-90CI [ATMEL]

Flash Memory,;
AT49SN3208-90CI
型号: AT49SN3208-90CI
厂家: ATMEL    ATMEL
描述:

Flash Memory,

文件: 总38页 (文件大小:708K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
64-megabit (4M x 16) and 32-megabit (2M x 16) Flash Memories  
1.65V - 1.95V Read/Write  
High Performance  
– Random Access Time – 90 ns  
– Page Mode Read Time – 20 ns  
– Synchronous Burst Frequency – 54 MHz  
– Configurable Burst Operation  
Sector Erase Architecture  
– Eight 4K Word Sectors with Individual Write Lockout  
– 32K Word Main Sectors with Individual Write Lockout  
Typical Sector Erase Time: 32K Word Sectors – 500 ms; 4K Word Sectors – 100 ms  
32M, Dual Plane Organization, Permitting Concurrent Read while Program/Erase  
– Memory Plane A: 25% of Memory Including Eight 4K Word Sectors  
– Memory Plane B: 75% of Memory Consisting of 32K Word Sectors  
64M, Four Plane Organization, Permitting Concurrent Read in Any of the Three  
Planes not Being Programmed/Erased  
– Memory Plane A: 25% of Memory Including Eight 4K Word Sectors  
– Memory Plane B: 25% of Memory Consisting of 32K Word Sectors  
– Memory Plane C: 25% of Memory Consisting of 32K Word Sectors  
– Memory Plane D: 25% of Memory Consisting of 32K Word Sectors  
Suspend/Resume Feature for Erase and Program  
– Supports Reading and Programming Data from Any Sector by Suspending Erase  
of a Different Sector  
64-megabit  
(4M x 16) and  
32-megabit  
(2M x 16)  
Burst/Page  
Mode 1.8-volt  
Flash Memory  
– Supports Reading Any Word by Suspending Programming of Any Other Word  
Low-power Operation  
– 30 mA Active  
– 10 µA Standby  
AT49SN6416  
AT49SN6416T  
AT49SN3208  
AT49SN3208T  
Data Polling and Toggle Bit for End of Program Detection  
VPP Pin for Write Protection and Accelerated Program/Erase Operations  
RESET Input for Device Initialization  
CBGA Package  
Top or Bottom Boot Block Configuration Available  
128-bit Protection Register  
Common Flash Interface (CFI)  
Description  
Advance  
Information  
The AT49SN6416(T) and AT49SN3208(T) are 1.8-volt 64-megabit and 32-megabit  
Flash memories respectively. The memories are divided into multiple sectors and  
planes for erase operations. The devices can be read or reprogrammed off a single  
1.8V power supply, making them ideally suited for in-system programming. The  
devices can be configured to operate in the asynchronous/page read (default mode)  
or burst read mode. The burst read mode is used to achieve a faster data rate than is  
possible in the asynchronous/page read mode. If the AVD and the CLK signals are  
both tied to GND, the device will behave like a standard asynchronous Flash memory.  
In the page mode, the AVD signal can be tied to GND or can be pulsed low to latch the  
page address. In both cases the CLK can be tied to GND.  
The AT49SN3208(T) is segmented into two memory planes. Reads from memory  
plane B may be performed even while program or erase functions are being executed  
in memory plane A and vice versa. The AT49SN6416(T) is divided into four memory  
planes. A read operation can occur in any of the three planes which is not being pro-  
grammed or erased. This concurrent operation allows improved system performance  
by not requiring the system to wait for a program or erase operation to complete  
before a read is performed. To further increase the flexibility of the device, it contains  
Rev. 1605C–FLASH–03/02  
an Erase Suspend and Program Suspend feature. This feature will put the erase or program  
on hold for any amount of time and let the user read data from or program data to any of the  
remaining sectors. There is no reason to suspend the erase or program operation if the data to  
be read is in the other memory plane. The end of program or erase is detected by Data Polling  
or toggle bit.  
The VPP pin provides data protection and faster programming and erase times. When the VPP  
input is below 0.8V, the program and erase functions are inhibited. When VPP is at 1.65V or  
above, normal program and erase operations can be performed. With VPP at 12.0V, the pro-  
gram and erase operations are accelerated.  
With VPP at 12V, a six-byte command (Enter Single Pulse Program Mode) to remove the  
requirement of entering the three-byte program sequence is offered to further improve pro-  
gramming time. After entering the six-byte code, only single pulses on the write control lines  
are required for writing into the device. This mode (Single Pulse Word Program) is exited by  
powering down the device, by taking the RESET pin to GND or by a high-to-low transition on  
the VPP input. Erase, Erase Suspend/Resume, Program Suspend/Resume and Read Reset  
commands will not work while in this mode; if entered they will result in data being pro-  
grammed into the device. It is not recommended that the six-byte code reside in the software  
of the final product but only exist in external programming code.  
Pin Configurations  
CBGA  
Top View  
Pin Name  
I/O0 - I/O15  
A0 - A21  
CE  
Pin Function  
Data Inputs/Outputs  
Addresses(1)  
Chip Enable  
Output Enable  
Write Enable  
Address Latch Enable  
Clock  
1
2
3
4
5
6
7
8
OE  
A
B
C
D
E
F
WE  
AVD  
CLK  
RESET  
WP  
Reset  
Write Protect  
VPP  
Write Protection and Power Supply for  
Accelerated Program/Erase Operations  
RDY  
Ready  
G
VCCQ  
Output Power Supply  
Note:  
1. For the AT49SN6416(T), the address bits are  
A0 - A21, and for the AT49SN3208(T), the address  
bits are A0 - A20. In the following text, address bits  
A0 - A21 will be used when referring to both devices.  
*A21 is a NC for the AT49SN3208(T).  
2
AT49SN6416(T)/3208(T)  
1605C–FLASH–03/02  
AT49SN6416(T)/3208(T)  
Device  
Operation  
COMMAND SEQUENCES: The device powers on in the read mode. Command sequences  
are used to place the device in other operating modes such as program and erase. After the  
completion of a program or an erase cycle, the device enters the read mode. The command  
sequences are written by applying a low pulse on the WE input with CE low and OE high or by  
applying a low-going pulse on the CE input with WE low and OE high. Prior to the low-going  
pulse on the CE or WE signal, the address input may be latched by a low-to-high transition on  
the AVD signal or the rising edge of the first clock pulse when AVD is low, whichever occurs  
first. If the AVD is not pulsed low, the address will be latched on the falling edge of the WE or  
CE pulse whichever occurs first. Valid data is latched on the rising edge of the WE or the CE  
pulse, whichever occurs first. The addresses used in the command sequences are not  
affected by entering the command sequences.  
BURST CONFIGURATION COMMAND: The Program Burst Configuration Register command  
is used to program the burst configuration register. The burst configuration register determines  
several parameters that control the read operation of the device. Bit B15 determines whether  
synchronous burst reads are enabled or asynchronous reads are enabled. Since the page  
read operation is an asynchronous operation, bit B15 must be set for asynchronous reads to  
enable the page read feature. Bit B14 determines whether a four word page or an eight word  
page will be used. The rest of the bits in the burst configuration register are used only for the  
burst read mode. Bits B13 - B11 of the burst configuration register determine the clock latency  
for the burst mode. The latency can be set to two, three, four, five or six cycles. The clock  
latency versus input clock frequency table is shown on page 15. The “Burst Read Waveform”  
as shown on page 28 illustrates a clock latency of four; the data is output from the device four  
clock cycles after the first low-to-high clock edge following the high-to-low AVD edge. The B10  
bit of the configuration register determines the polarity of the RDY signal. The B9 bit of the  
burst configuration register determines the number of clocks that data will be held valid (see  
Figure 1). The B8 bit of the burst configuration register determines when the RDY signal will  
be asserted. When synchronous burst reads are enabled, an interleaved or linear burst  
sequence can be selected by setting bit B7. Table 4 shows the difference between the inter-  
leaved and burst sequence. Bit B6 selects whether the burst starts and the data output will be  
relative to the falling edge or the rising edge of the clock. Bits B2 - B0 of the burst configuration  
register determine whether a continuous or fixed-length burst will be used and also determine  
whether a four- or eight-word length will be used in the fixed-length mode. When a four or  
eight word burst length is selected, Bit B3 can be used to select whether burst accesses wrap  
within the burst length boundary or whether they cross word length boundaries to perform lin-  
ear accesses. Please see Table 4. All other bits in the burst configuration register should be  
programmed as shown on page 15. The default state (after power-up or reset) of the burst  
configuration register is also shown on page 15. To read the burst configuration register, the  
Product ID Entry command is given, followed by a normal read operation from address loca-  
tion 00005H. After reading the burst configuration register, the Product ID Exit command must  
be given prior to performing any other operation.  
ASYNCHRONOUS READ: There are two types of asynchronous reads – AVD pulsed and  
standard asynchronous reads. The AVD pulsed read operation of the device is controlled by  
CE, OE, and AVD inputs. The outputs are put in the high-impedance state whenever CE or OE  
is high. This dual-line control gives designers flexibility in preventing bus contention. The data  
at the address location defined by A0 - A21 and captured by the AVD signal will be read when  
CE and OE are low. The address location passes into the device when CE and AVD are low;  
the address is latched on the low-to-high transition of AVD. Low input levels on the OE and CE  
pins allow the data to be driven out of the device. The access time is measured from stable  
address, falling edge of AVD or falling edge of CE, whichever occurs last. During the AVD  
pulsed read, the CLK signal may be static high or static low. For standard asynchronous  
reads, the AVD and CLK signal should be tied to GND. The asynchronous read diagrams are  
shown on page 25.  
3
1605C–FLASH–03/02  
PAGE READ: The page read operation of the device is controlled by CE, OE, and AVD inputs.  
The CLK input is ignored during a page read operation and should be tied to GND. The page  
size can be four words (default value) or eight words depending on what value bit B14 of the  
burst configuration register is programmed to. During a page read, the AVD signal can transi-  
tion low and then transition high, transition low and remain low, or can be tied to GND. If a  
high to low transition on the AVD signal occurs, as shown in Page Read Cycle Waveform 1,  
the page address is latched by the low-to-high transition of the AVD signal. However, if the  
AVD signal remains low after the high-to-low transition or if the AVD signal is tied to GND, as  
shown in Page Read Cycle Waveform 2, then the page address (determined by A21 - A3 for  
an eight word page and A21 - A2 for a four word page) cannot change during a page read  
operation. The first word access of the page read is the same as the asynchronous read. The  
first word is read at an asynchronous speed of 90 ns. Once the first word is read, toggling A0  
and A1 (four word page mode) or toggling A0, A1, and A2 (eight word page mode) will result in  
subsequent reads within the page being output at a speed of 20 ns. If the AVD and the CLK  
pins are both tied to GND, the device will behave like a standard asynchronous Flash memory.  
The page read diagrams are shown on page 26.  
SYNCHRONOUS READS: Synchronous reads are used to achieve a faster data rate than is  
possible in the asynchronous/page read mode. The device can be configured for continuous  
or fixed-length burst access. The burst read operation of the device is controlled by CE, OE,  
CLK and AVD inputs. The initial read location is determined as for the AVD pulsed asynchro-  
nous read operation; it can be any memory location in the device. In the burst access, the  
address is latched on the rising edge of the first clock pulse when AVD is low or the rising edge  
of the AVD signal, whichever occurs first. The CLK input signal controls the flow of data from  
the device for a burst operation. After the clock latency cycles, the data at the next burst  
address location is read for each following clock cycle.  
CONTINUOUS BURST READ: During a continuous burst read, any number of addresses can  
be read from the memory. When a page boundary in the memory is transitioned, additional  
time may be required for the device to continue the burst read. To indicate that it is not ready  
to continue the burst, the device will drive the RDY pin low (B10 = 0) during the clock cycles in  
which new data is not being presented. Once the RDY pin is driven high (B10 = 0), the next  
data will be valid. Starting with address zero, page boundaries occur every 128 words in the  
memory. During a continuous burst read, the first page boundary transition may occur before  
128 words are read, depending on the initial burst address. The RDY signal will be tri-stated  
when the CE or OE signal is high.  
In the “Burst Read Waveform” as shown on page 28, data D0 is valid asynchronously from  
point A, the time when the addresses are latched. D0 is valid within 13.5 ns of the clock edge  
for the specified clock latency (the waveforms show a clock latency of four). The low-to-high  
transition of the clock at point C results in D1 being read. The transition of the clock at point D  
results in a burst read of the last word of the page, D127. The clock transition at point E does  
not cause new data to appear on the output lines because the RDY signal goes low (B10 and  
B8 = 0) after the clock transition, which signifies that a page boundary in the memory has been  
crossed and that new data is not available. The clock transition at point F does cause a burst  
read of data D128 because the RDY signal goes high (B10 and B8 = 0) after the clock transi-  
tion indicating that new data is available. Additional clock transitions, like at point G, will  
continue to result in burst reads until the next page boundary is crossed between words D255  
and D256.  
FIXED-LENGTH BURST READS: During a fixed-length burst mode read, four or eight words  
of data may be burst from the device, depending upon the configuration. The device supports  
a linear or interleaved burst mode. The burst sequence is shown on page 16. The RDY output  
remains high (B10 = 0) during fixed-length bursts. The “Four-word Burst Read Waveform” on  
page 28 illustrates a fixed-length burst cycle. As in the continuous burst read, the data D0 is  
valid asynchronously from point A, the time when the addresses are latched. D0 is valid within  
4
AT49SN6416(T)/3208(T)  
1605C–FLASH–03/02  
AT49SN6416(T)/3208(T)  
13.5 ns of the clock edge for the specified clock latency (shown for the case of a latency of  
four). The low-to-high transition of the clock at point C results in D1 being read. Similarly, D2  
and D3 are output following the next two clock cycles. Returning CE high ends the read cycle.  
RESET: A RESET input pin is provided to ease some system applications. When RESET is at  
a logic high level, the device is in its standard operating mode. A low level on the RESET pin  
halts the present device operation and puts the outputs of the device in a high-impedance  
state. When a high level is reasserted on the RESET pin, the device returns to read or standby  
mode, depending upon the state of the control pins.  
ERASE: Before a word can be reprogrammed it must be erased. The erased state of the  
memory bits is a logical “1”. The entire memory can be erased by using the Chip Erase com-  
mand or individual planes or sectors can be erased by using the Plane Erase or Sector Erase  
commands.  
CHIP ERASE: Chip Erase is a six-bus cycle operation. The automatic erase begins on the ris-  
ing edge of the last WE pulse. Chip Erase does not alter the data of the protected sectors.  
After the full chip erase the device will return back to the read mode. The hardware reset dur-  
ing Chip Erase will stop the erase but the data will be of unknown state. Any command during  
Chip Erase except Erase Suspend will be ignored.  
PLANE ERASE: As a alternative to a full chip erase, the device is organized into two planes  
(32M) or four planes (64M) that can be individually erased. The plane erase command is a six-  
bus cycle operation. The plane whose address is valid at the sixth falling edge of WE will be  
erased provided none of the sectors within the plane are protected.  
SECTOR ERASE: As an alternative to a full chip erase or a plane erase, the device is orga-  
nized into multiple sectors that can be individually erased. The Sector Erase command is a  
six-bus cycle operation. The sector whose address is valid at the sixth falling edge of WE will  
be erased provided the given sector has not been protected.  
WORD PROGRAMMING: The device is programmed on a word-by-word basis. Programming  
is accomplished via the internal device command register and is a four-bus cycle operation.  
The programming address and data are latched in the fourth cycle. The device will automati-  
cally generate the required internal programming pulses. Please note that a “0” cannot be  
programmed back to a “1”; only erase operations can convert “0”s to “1”s.  
FLEXIBLE SECTOR PROTECTION: The AT49SN6416(T)/3208(T) offers two sector protec-  
tion modes, the Softlock and the Hardlock. The Softlock mode is optimized as sector  
protection for sectors whose content changes frequently. The Hardlock protection mode is  
recommended for sectors whose content changes infrequently. Once either of these two  
modes is enabled, the contents of the selected sector is read-only and cannot be erased or  
programmed. Each sector can be independently programmed for either the Softlock or Hard-  
lock sector protection mode. At power-up and reset, all sectors have their Softlock protection  
mode enabled.  
SOFTLOCK AND UNLOCK: The Softlock protection mode can be disabled by issuing a two-  
bus cycle Unlock command to the selected sector. Once a sector is unlocked, its contents can  
be erased or programmed. To enable the Softlock protection mode, a six-bus cycle Softlock  
command must be issued to the selected sector.  
5
1605C–FLASH–03/02  
HARDLOCK AND WRITE PROTECT (WP): The Hardlock sector protection mode operates in  
conjunction with the Write Protection (WP) pin. The Hardlock sector protection mode can be  
enabled by issuing a six-bus cycle Hardlock software command to the selected sector. The  
state of the Write Protect pin affects whether the Hardlock protection mode can be overridden.  
• When the WP pin is low and the Hardlock protection mode is enabled, the sector cannot be  
unlocked and the contents of the sector is read-only.  
• When the WP pin is high, the Hardlock protection mode is overridden and the sector can be  
unlocked via the Unlock command.  
To disable the Hardlock sector protection mode, the chip must be either reset or power cycled.  
Table 1. Hardlock and Softlock Protection Configurations in Conjunction with WP  
Erase/  
Hard  
lock  
Soft  
lock  
Prog  
Allowed?  
VPP  
WP  
0
Comments  
V
V
CC/5V  
0
0
0
1
Yes  
No  
No sector is locked  
CC/5V  
0
Sector is Softlocked. The  
Unlock command can unlock  
the sector.  
V
CC/5V  
0
1
1
No  
Hardlock protection mode is  
enabled. The sector cannot be  
unlocked.  
V
V
CC/5V  
CC/5V  
1
1
0
0
0
1
Yes  
No  
No sector is locked.  
Sector is Softlocked. The  
Unlock command can unlock  
the sector.  
V
V
CC/5V  
CC/5V  
1
1
1
1
0
1
Yes  
No  
Hardlock protection mode is  
overridden and the sector is  
not locked.  
Hardlock protection mode is  
overridden and the sector can  
be unlocked via the Unlock  
command.  
VIL  
x
x
x
No  
Erase and Program Operations  
cannot be performed.  
SECTOR PROTECTION DETECTION: A software method is available to determine if the sec-  
tor protection Softlock or Hardlock features are enabled. When the device is in the software  
product identification mode (see Software Product Identification Entry and Exit sections) a  
read from the I/O0 and I/O1 at address location 00002H within a sector will show if the sector  
is unlocked, softlocked, or hardlocked.  
Table 2. Sector Protection Status  
I/O1  
I/O0  
Sector Protection Status  
Sector Not Locked  
0
0
1
1
0
1
0
1
Softlock Enabled  
Hardlock Enabled  
Both Hardlock and Softlock Enabled  
6
AT49SN6416(T)/3208(T)  
1605C–FLASH–03/02  
AT49SN6416(T)/3208(T)  
PROGRAM/ERASE STATUS: The device provides several bits to determine the status of a  
program or erase operation: I/O2, I/O3, I/O5, I/O6, and I/O7. The Table 3 on page 12 and the  
following four sections describe the function of these bits. To provide greater flexibility for  
system designers, the AT49SN6416(T)/3208(T) contains a programmable configuration regis-  
ter. The configuration register allows the user to specify the status bit operation. The  
configuration register can be set to one of two different values, “00” or “01”. If the configuration  
register is set to “00”, the part will automatically return to the read mode after a successful pro-  
gram or erase operation. If the configuration register is set to a “01”, a Product ID Exit  
command must be given after a successful program or erase operation before the part will  
return to the read mode. It is important to note that whether the configuration register is set to  
a “00” or to a “01”, any unsuccessful program or erase operation requires using the Product ID  
Exit command to return the device to read mode. The default value (after power-up) for the  
configuration register is “00”. Using the four-bus cycle set configuration register command as  
shown in the Command Definition table on page 13, the value of the configuration register can  
be changed. Voltages applied to the reset pin will not alter the value of the configuration regis-  
ter. The value of the configuration register will affect the operation of the I/O7 status bit as  
described below.  
DATA POLLING: The AT49SN6416(T)/3208(T) features Data Polling to indicate the end of a  
program cycle. If the status configuration register is set to a “00”, during a program cycle an  
attempted read of the last byte/word loaded will result in the complement of the loaded data on  
I/O7. Once the program cycle has been completed, true data is valid on all outputs and the  
next cycle may begin. During a chip or sector erase operation, an attempt to read the device  
will give a “0” on I/O7. Once the program or erase cycle has completed, true data will be read  
from the device. Data Polling may begin at any time during the program cycle. Please see  
Table 3 on page 12 for more details.  
If the status bit configuration register is set to a “01”, the I/O7 status bit will be low while the  
device is actively programming or erasing data. I/O7 will go high when the device has com-  
pleted a program or erase operation. Once I/O7 has gone high, status information on the other  
pins can be checked.  
The Data Polling status bit must be used in conjunction with the erase/program and VPP status  
bit as shown in the algorithm in Figures 2 and 3.  
TOGGLE BIT: In addition to Data Polling, the AT49SN6416(T)/3208(T) provides another  
method for determining the end of a program or erase cycle. During a program or erase oper-  
ation, successive attempts to read data from the memory will result in I/O6 toggling between  
one and zero. Once the program cycle has completed, I/O6 will stop toggling and valid data  
will be read. Examining the toggle bit may begin at any time during a program cycle. Please  
see Table 3 on page 12 for more details.  
The toggle bit status bit should be used in conjunction with the erase/program and VPP status  
bit as shown in the algorithm in Figures 4 and 5 on page 11.  
ERASE/PROGRAM STATUS BIT: The device offers a status bit on I/O5 that indicates  
whether the program or erase operation has exceeded a specified internal pulse count limit. If  
the status bit is a “1”, the device is unable to verify that an erase or a byte/word program oper-  
ation has been successfully performed. The device may also output a “1” on I/O5 if the system  
tries to program a “1” to a location that was previously programmed to a “0”. Only an erase  
operation can change a “0” back to a “1”. If a program (Sector Erase) command is issued to a  
protected sector, the protected sector will not be programmed (erased). The device will go to a  
status read mode and the I/O5 status bit will be set high, indicating the program (erase) opera-  
tion did not complete as requested. Once the erase/program status bit has been set to a “1”,  
the system must write the Product ID Exit command to return to the read mode. The  
erase/program status bit is a “0” while the erase or program operation is still in progress.  
Please see Table 3 on page 12 for more details.  
7
1605C–FLASH–03/02  
VPP STATUS BIT: The AT49SN6416(T)/3208(T) provides a status bit on I/O3 that provides  
information regarding the voltage level of the VPP pin. During a program or erase operation, if  
the voltage on the VPP pin is not high enough to perform the desired operation successfully,  
the I/O3 status bit will be a “1”. Once the VPP status bit has been set to a “1”, the system must  
write the Product ID Exit command to return to the read mode. On the other hand, if the volt-  
age level is high enough to perform a program or erase operation successfully, the VPP status  
bit will output a “0”. Please see Table 3 on page 12 for more details.  
ERASE SUSPEND/ERASE RESUME: The Erase Suspend command allows the system to  
interrupt a sector erase operation and then program or read data from a different sector within  
the same plane. Since this device has a dual plane architecture, there is no need to use the  
erase suspend feature while erasing a sector when you want to read data from a sector in the  
other plane. After the Erase Suspend command is given, the device requires a maximum time  
of 15 µs to suspend the erase operation. After the erase operation has been suspended, the  
plane that contains the suspended sector enters the erase-suspend-read mode. The system  
can then read data or program data to any other sector within the device. An address is not  
required during the Erase Suspend command. During a sector erase suspend, another sector  
cannot be erased. To resume the sector erase operation, the system must write the Erase  
Resume command. The Erase Resume command is a one-bus cycle command, which does  
require the plane address. The device also supports an erase suspend during a complete chip  
erase. While the chip erase is suspended, the user can read from any sector within the mem-  
ory that is protected. The command sequence for a chip erase suspend and a sector erase  
suspend are the same.  
PROGRAM SUSPEND/PROGRAM RESUME: The Program Suspend command allows the  
system to interrupt a programming operation and then read data from a different word within  
the memory. After the Program Suspend command is given, the device requires a maximum  
of 10 µs to suspend the programming operation. After the programming operation has been  
suspended, the system can then read from any other word within the device. An address is not  
required during the program suspend operation. To resume the programming operation, the  
system must write the Program Resume command. The program suspend and resume are  
one-bus cycle commands. The command sequence for the erase suspend and program sus-  
pend are the same, and the command sequence for the erase resume and program resume  
are the same.  
128-BIT PROTECTION REGISTER: The AT49SN6416(T)/3208(T) contains a 128-bit register  
that can be used for security purposes in system design. The protection register is divided into  
two 64-bit blocks. The two blocks are designated as block A and block B. The data in block A  
is non-changeable and is programmed at the factory with a unique number. The data in block  
B is programmed by the user and can be locked out such that data in the block cannot be  
reprogrammed. To program block B in the protection register, the four-bus cycle Program Pro-  
tection Register command must be used as shown in the Command Definition in Hex table on  
page 13. To lock out block B, the four-bus cycle lock protection register command must be  
used as shown in the Command Definition in Hex table. Data bit D1 must be zero during the  
fourth bus cycle. All other data bits during the fourth bus cycle are don’t cares. To determine  
whether block B is locked out, the Product ID Entry command is given followed by a read oper-  
ation from address 80H. If data bit D1 is zero, block B is locked. If data bit D1 is one, block B  
can be reprogrammed. Please see the Protection Register Addressing Table on page 14 for  
the address locations in the protection register. To read the protection register, the Product ID  
Entry command is given followed by a normal read operation from an address within the pro-  
tection register. After determining whether block B is protected or not or reading the protection  
register, the Product ID Exit command must be given prior to performing any other operation.  
8
AT49SN6416(T)/3208(T)  
1605C–FLASH–03/02  
AT49SN6416(T)/3208(T)  
CFI: Common Flash Interface (CFI) is a published, standardized data structure that may be  
read from a flash device. CFI allows system software to query the installed device to deter-  
mine the configurations, various electrical and timing parameters, and functions supported by  
the device. CFI is used to allow the system to learn how to interface to the flash device most  
optimally. The two primary benefits of using CFI are ease of upgrading and second source  
availability. The command to enter the CFI Query mode is a one-bus cycle command which  
requires writing data 98h to address 55h. The CFI Query command can be written when the  
device is ready to read data or can also be written when the part is in the product ID mode.  
Once in the CFI Query mode, the system can read CFI data at the addresses given in Table 5  
on page 34. To exit the CFI Query mode, the product ID exit command must be given. If the  
CFI Query command is given while the part is in the product ID mode, then the product ID exit  
command must first be given to return the part to the product ID mode. Once in the product ID  
mode, it will be necessary to give another product ID exit command to return the part to the  
read mode.  
HARDWARE DATA PROTECTION: Hardware features protect against inadvertent programs  
to the AT49SN6416(T)/3208(T) in the following ways: (a) VCC sense: if VCC is below 1.4V (typ-  
ical), the program function is inhibited. (b) VCC power-on delay: once VCC has reached the VCC  
sense level, the device will automatically time-out 10 ms (typical) before programming. (c) Pro-  
gram inhibit: holding any one of OE low, CE high or WE high inhibits program cycles. (d) Noise  
filter: pulses of less than 15 ns (typical) on the WE or CE inputs will not initiate a program  
cycle. (e) VPP is less than VILPP  
.
INPUT LEVELS: While operating with a 1.8V to 1.95V power supply, the address inputs and  
control inputs (OE, CE and WE) may be driven from 0 to 2.5V without adversely affecting the  
operation of the device. The I/O lines can be driven from 0 to VCCQ + 0.6V.  
OUTPUT LEVELS: For the AT49SN6416(T)/3208(T), output high levels are equal to VCCQ  
-
0.1V (not VCC). VCCQ must be regulated between 1.8V - 2.25V.  
Figure 1. Output Configuration  
CLK  
1 CLK  
VALID  
OUTPUT  
VALID  
VALID  
Data Hold  
(B9 = 0)  
I/00 - I/015  
I/00 - I/015  
OUTPUT  
OUTPUT  
2 CLK  
Data Hold  
(B9 = 1)  
VALID  
OUTPUT  
VALID  
OUTPUT  
9
1605C–FLASH–03/02  
Figure 2. Data Polling Algorithm  
Figure 3. Data Polling Algorithm  
(Configuration Register = 00)  
(Configuration Register = 01)  
START  
START  
Read I/O7 - I/O0  
Addr = VA  
Read I/O7 - I/O0  
Addr = VA  
NO  
YES  
I/O7 = 1?  
I/O7 = Data?  
NO  
YES  
NO  
NO  
I/O3, I/O5 = 1?  
I/O3, I/O5 = 1?  
YES  
YES  
Read I/O7 - I/O0  
Addr = VA  
Program/Erase  
Operation Not  
Successful, Write  
Product ID  
Program/Erase  
Operation  
Successful,  
Write Product ID  
Exit Command  
Exit Command  
YES  
I/O7 = Data?  
NO  
Note:  
1. VA = Valid address for programming. During a sec-  
Program/Erase  
Program/Erase  
Operation Not  
Successful, Write  
Product ID  
tor erase operation, a valid address is any sector  
address within the sector being erased. During  
chip erase, a valid address is any non-protected  
sector address.  
Operation  
Successful,  
Device in  
Read Mode  
Exit Command  
Notes: 1. VA = Valid address for programming. During a sec-  
tor erase operation, a valid address is any sector  
address within the sector being erased. During chip  
erase, a valid address is any non-protected sector  
address.  
2. I/O7 should be rechecked even if I/O5 = “1”  
because I/O7 may change simultaneously with  
I/O5.  
10  
AT49SN6416(T)/3208(T)  
1605C–FLASH–03/02  
AT49SN6416(T)/3208(T)  
Figure 5. Toggle Bit Algorithm  
Figure 4. Toggle Bit Algorithm  
(Configuration Register = 01)  
(Configuration Register = 00)  
START  
START  
Read I/O7 - I/O0  
Read I/O7 - I/O0  
Read I/O7 - I/O0  
Read I/O7 - I/O0  
NO  
NO  
Toggle Bit =  
Toggle?  
Toggle Bit =  
Toggle?  
YES  
YES  
NO  
NO  
I/O3, I/O5 = 1?  
I/O3, I/O5 = 1?  
YES  
YES  
Read I/O7 - I/O0  
Twice  
Read I/O7 - I/O0  
Twice  
Toggle Bit =  
Toggle?  
NO  
Toggle Bit =  
Toggle?  
NO  
YES  
YES  
Program/Erase  
Operation Not  
Successful, Write  
Product ID  
Program/Erase  
Operation  
Successful,  
Write Product ID  
Exit Command  
Program/Erase  
Operation Not  
Successful, Write  
Product ID  
Program/Erase  
Operation  
Successful,  
Device in  
Exit Command  
Exit Command  
Read Mode  
Note:  
1. The system should recheck the toggle bit even  
if I/O5 = “1” because the toggle bit may stop  
toggling as I/O5 changes to “1”.  
Note:  
1. The system should recheck the toggle bit even if  
I/O5 = “1” because the toggle bit may stop toggling  
as I/O5 changes to “1”.  
11  
1605C–FLASH–03/02  
Table 3. Status Bit Table(1)  
I/O7  
I/O6  
I/O2  
Configuration  
Register:  
00/01  
00/01  
00/01  
00/01  
00/01  
00/01  
00/01  
00/01  
00/01  
00/01  
00/01  
00/01  
Read Address  
In  
Plane A  
Plane B  
Plane C  
Plane D  
Plane A  
Plane B  
Plane C  
Plane D  
Plane A  
Plane B  
Plane C  
Plane D  
While  
Programming  
in Plane A  
I/O7/0  
DATA  
DATA  
DATA  
0/0  
DATA  
I/O7/0  
DATA  
DATA  
DATA  
0/0  
DATA  
DATA  
I/O7/0  
DATA  
DATA  
DATA  
0/0  
DATA  
DATA  
DATA  
I/O7/0  
DATA  
DATA  
DATA  
0/0  
TOGGLE  
DATA  
DATA  
TOGGLE  
DATA  
DATA  
DATA  
DATA  
DATA  
1
DATA  
1
DATA  
DATA  
1
DATA  
DATA  
DATA  
1
Programming  
in Plane B  
DATA  
DATA  
DATA  
TOGGLE  
DATA  
DATA  
DATA  
Programming  
in Plane C  
DATA  
TOGGLE  
DATA  
DATA  
DATA  
DATA  
DATA  
TOGGLE  
DATA  
DATA  
Programming  
in Plane D  
DATA  
DATA  
TOGGLE  
DATA  
DATA  
DATA  
DATA  
Erasing in  
Plane A  
TOGGLE  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
TOGGLE  
Erasing in  
Plane B  
DATA  
DATA  
DATA  
TOGGLE  
DATA  
DATA  
DATA  
Erasing in  
Plane C  
DATA  
DATA  
DATA  
TOGGLE  
DATA  
DATA  
TOGGLE  
DATA  
Erasing in  
Plane D  
DATA  
DATA  
DATA  
TOGGLE  
Erase  
Suspended &  
Read Erasing  
Sector  
1
1
1
1
1
1
1
1
TOGGLE  
DATA  
TOGGLE  
DATA  
TOGGLE  
DATA  
TOGGLE  
DATA  
Erase  
Suspended &  
Read Non-  
erasing Sector  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
Erase  
Suspended &  
Program Non-  
erasing Sector  
in Plane A  
I/O7/0  
DATA  
DATA  
DATA  
DATA  
I/O7/0  
DATA  
DATA  
DATA  
DATA  
I/O7/0  
DATA  
DATA  
DATA  
DATA  
I/O7/0  
TOGGLE  
DATA  
DATA  
TOGGLE  
DATA  
DATA  
DATA  
DATA  
DATA  
TOGGLE  
DATA  
DATA  
TOGGLE  
DATA  
DATA  
DATA  
DATA  
DATA  
Erase  
Suspended &  
Program Non-  
erasing Sector  
in Plane B  
Erase  
Suspended &  
Program Non-  
erasing Sector  
in Plane C  
DATA  
TOGGLE  
DATA  
DATA  
TOGGLE  
DATA  
DATA  
Erase  
Suspended &  
Program Non-  
erasing Sector  
in Plane D  
DATA  
DATA  
DATA  
TOGGLE  
DATA  
DATA  
TOGGLE  
Note:  
1. For the AT49SN3208(T) only plane A and plane B apply in the table above.  
12  
AT49SN6416(T)/3208(T)  
1605C–FLASH–03/02  
AT49SN6416(T)/3208(T)  
Command Definition in (Hex)(1)  
1st Bus  
2nd Bus  
Cycle  
3rd Bus  
Cycle  
4th Bus  
Cycle  
5th Bus  
Cycle  
6th Bus  
Cycle  
Cycle  
Bus  
Command Sequence  
Read  
Cycles  
Addr  
Addr  
555  
Data  
DOUT  
AA  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
1
6
6
6
4
Chip Erase  
AAA(2)  
AAA  
55  
55  
55  
55  
555  
555  
555  
555  
80  
80  
80  
A0  
555  
555  
555  
Addr  
AA  
AA  
AA  
DIN  
AAA  
AAA  
AAA  
55  
55  
55  
555  
PA(6)  
SA(4)  
10  
20  
30  
Plane Erase  
Sector Erase  
Word Program  
555  
AA  
555  
AA  
AAA  
555  
AA  
AAA  
Enter Single-pulse Program  
Mode  
6
1
555  
AA  
DIN  
AAA  
55  
555  
80  
555  
AA  
AAA  
55  
555  
A0  
Single-pulse Word Program  
Mode  
Addr  
Sector Softlock  
6
2
6
1
1
3
3
1
555  
555  
555  
xxx  
AA  
AA  
AA  
B0  
30  
AAA  
SA(4)  
AAA  
55  
70  
55  
555  
555  
80  
80  
555  
555  
AA  
AA  
AAA  
AAA  
55  
55  
SA(4)  
40  
60  
Sector Unlock  
Sector Hardlock  
SA(4)(5)  
Erase/Program Suspend  
Erase/Program Resume  
Product ID Entry  
Product ID Exit(3)  
Product ID Exit(3)  
PA(6)  
555  
555  
xxx  
AA  
AA  
FX  
AAA  
AAA  
55  
55  
xxx(7)  
555  
90  
F0  
Program Burst  
Configuration Register  
(8)  
4
4
4
4
4
555  
555  
555  
555  
555  
AA  
AA  
AA  
AA  
AA  
AAA  
AAA  
AAA  
AAA  
55  
55  
55  
55  
555  
xxx(7)  
555  
D0  
90  
xxx  
005  
Addr  
080  
Read Burst Configuration  
Register  
DOUT  
DIN  
Program Protection  
Register – Block B  
C0  
C0  
Lock Protection  
Register – Block B  
555  
X0  
Status of Block B  
Protection  
(9)  
AAA  
AAA  
55  
55  
555  
555  
90  
80  
DOUT  
Set Configuration Register  
CFI Query  
4
1
555  
X55  
AA  
98  
E0  
xxx  
00/01(10)  
Notes:  
1. The DATA FORMAT in each bus cycle is as follows: I/O15 - I/O8 (Don’t Care); I/O7 - I/O0 (Hex). The ADDRESS FORMAT in each bus cycle  
is as follows: A11 - A0 (Hex), A11 - A21 (Don’t Care).  
2. Since A11 is a Don’t Care, AAA can be replaced with 2AA.  
3. Either one of the Product ID Exit commands can be used.  
4. SA = sector address. Any word address within a sector can be used to designate the sector address (see pages 17 - 22 for details).  
5. Once a sector is in the Hardlock protection mode, it cannot be disabled unless the chip is reset or power cycled.  
6. PA is the plane address (A21 - A20 for the AT49SN6416(T), A20 - A19 for the AT49SN3208(T)).  
7. For the AT49SN3208:  
For the AT49SN3208T:  
xxx = 0XX555 Status Read from Plane A  
xxx = 1XX555 Status Read from Plane B  
xxx = 1XX555 Status Read from Plane A  
xxx = 0XX555 Status Read from Plane B  
For the AT49SN6416:  
For the AT49SN6416T:  
xxx = 0XX555 Status Read from Plane A  
xxx = 1XX555 Status Read from Plane B  
xxx = 2XX555 Status Read from Plane C  
xxx = 3XX555 Status Read from Plane D  
8. See “Burst Configuration Register” on page 15.  
xxx = 3XX555 Status Read from Plane A  
xxx = 2XX555 Status Read from Plane B  
xxx = 1XX555 Status Read from Plane C  
xxx = 0XX555 Status Read from Plane D  
9. If data bit D1 is “0”, block B is locked. If data bit D1 is “1”, block B can be reprogrammed.  
10. The default state (after power-up) of the configuration register is “00”.  
13  
1605C–FLASH–03/02  
Absolute Maximum Ratings*  
*NOTICE:  
Stresses beyond those listed under “Absolute  
Maximum Ratings” may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or any  
other conditions beyond those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device  
reliability.  
Temperature under Bias ................................ -55°C to +125°C  
Storage Temperature ..................................... -65°C to +150°C  
All Input Voltages Except VPP  
(including NC Pins)  
with Respect to Ground ...................................-0.6V to +6.25V  
V
PP Input Voltage  
with Respect to Ground .........................................0V to 13.0V  
All Output Voltages  
with Respect to Ground ...........................-0.6V to VCCQ + 0.6V  
Voltage on OE  
with Respect to Ground ...................................-0.6V to +13.5V  
Protection Register Addressing Table  
Word  
Use  
Factory  
Factory  
Factory  
Factory  
User  
Block  
A7  
A6  
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
A0  
1
0
1
2
3
4
5
6
7
A
A
A
A
B
B
B
B
1
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
1
User  
1
0
0
0
0
1
1
0
User  
1
0
0
0
0
1
1
1
User  
1
0
0
0
1
0
0
0
Note:  
1. All address lines not specified in the above table must be 0 when accessing the Protection Register, i.e., A21 - A8 = 0.  
14  
AT49SN6416(T)/3208(T)  
1605C–FLASH–03/02  
AT49SN6416(T)/3208(T)  
Burst Configuration Register  
B15  
0
1(1)  
Synchronous Burst Reads Enabled  
Asynchronous Reads Enabled  
B14  
0(1)  
1
Four Word Page  
Eight Word Page  
B13 - B11:  
010  
Clock Latency of Two  
Clock Latency of Three  
Clock Latency of Four  
Clock Latency of Five  
Clock Latency of Six  
011  
100  
101  
110(1)  
B10  
B9  
B8  
B7  
B6  
0
RDY Signal is Active Low  
RDY Signal is Active High  
1(1)  
0
1(1)  
Hold Data for One Clock  
Hold Data for Two Clocks  
0
1(1)  
RDY Asserted during Clock Cycle in which Data is Valid  
RDY Asserted One Clock Cycle before Data is Valid  
0
1(1)  
Interleaved Burst Sequence  
Linear Burst Sequence  
0
1(1)  
Burst Starts and Data Output on Falling Clock Edge  
Burst Starts and Data Output on Rising Clock Edge  
B5 - B4  
B3  
00(1)  
Reserved for Future Use  
0
1(1)  
Wrap Burst Within Burst length set by B2 - B0  
Don’t Wrap Accesses Within Burst Length set by B2 - B0  
B2 - B0  
001  
Four-word Burst  
Eight-word Burst  
Continuous Burst  
010  
111(1)  
Note:  
1. Default State  
Clock Latency versus Input Clock Frequency  
Minimum Clock Latency  
(Minimum Number of Clocks Following Address Latch)  
Input Clock Frequency  
54 MHz  
6
4
2
40 MHz  
20 MHz  
15  
1605C–FLASH–03/02  
Table 4. Sequence and Burst Length  
Burst Addressing Sequence (Decimal)  
4-word Burst Length  
B2 – B0 = 001  
8-word Burst Length  
B2 – B0 = 010  
Continuous Burst  
B2 – B0 = 111  
Start Addr.  
(Decimal)  
Wrap  
B3 = 0  
Wrap  
B3 = 1  
Linear  
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
Interleaved  
Linear  
Interleaved  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
...  
Linear  
0
1
0
0
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
...  
0-1-2-3-4-5-6...  
1-2-3-4-5-6-7...  
2-3-4-5-6-7-8...  
3-4-5-6-7-8-9...  
4-5-6-7-8-9-10...  
5-6-7-8-9-10-11...  
6-7-8-9-10-11-12...  
7-8-9-10-11-12-13...  
...  
2
0
3
0
4
0
5
0
6
0
7
0
...  
14  
15  
...  
0
...  
0
...  
...  
...  
14-15-16-17-18-19-20  
15-16-17-18-19-20-21  
...  
0
...  
...  
1
1
1
1
1
1
...  
...  
...  
...  
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
N/A  
N/A  
N/A  
N/A  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9  
3-4-5-6-7-8-9-10  
4-5-6-7-8-9-10-11  
5-6-7-8-9-10-11-12  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0-1-2-3-4-5-6...  
1-2-3-4-5-6-7...  
2-3-4-5-6-7-8...  
3-4-5-6-7-8-9...  
4-5-6-7-8-9-10...  
5-6-7-8-9-10-11...  
1
2
3
4
5
6-7-8-9-10-11-12-  
13  
6
7
1
1
N/A  
6-7-8-9-10-11-12...  
7-8-9-10-11-12-13...  
7-8-9-10-11-12-13-  
14  
N/A  
...  
...  
...  
...  
1
...  
...  
...  
...  
14  
15  
14-15-16-17-18-19-20  
15-16-17-18-19-20-21  
1
16  
AT49SN6416(T)/3208(T)  
1605C–FLASH–03/02  
AT49SN6416(T)/3208(T)  
Memory Organization – AT49SN3208 (Continued)  
Memory Organization – AT49SN3208  
x16  
x16  
Plane  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
Sector  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
Size (Words)  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
Address Range (A20 - A0)  
E8000 - EFFFF  
Plane  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
Sector  
SA0  
Size (Words)  
4K  
Address Range (A20 - A0)  
00000 - 00FFF  
01000 - 01FFF  
02000 - 02FFF  
03000 - 03FFF  
04000 - 04FFF  
05000 - 05FFF  
06000 - 06FFF  
07000 - 07FFF  
08000 - 0FFFF  
10000 - 17FFF  
18000 - 1FFFF  
20000 - 27FFF  
28000 - 2FFFF  
30000 - 37FFF  
38000 - 3FFFF  
40000 - 47FFF  
48000 - 4FFFF  
50000 - 57FFF  
58000 - 5FFFF  
60000 - 67FFF  
68000 - 6FFFF  
70000 - 77FFF  
78000 - 7FFFF  
80000 - 87FFF  
88000 - 8FFFF  
90000 - 97FFF  
98000 - 9FFFF  
A0000 - A7FFF  
A8000 - AFFFF  
B0000 - B7FFF  
B8000 - BFFFF  
C0000 - C7FFF  
C8000 - CFFFF  
D0000 - D7FFF  
D8000 - DFFFF  
E0000 - E7FFF  
F0000 - F7FFF  
SA1  
4K  
F8000 - FFFFF  
SA2  
4K  
100000 - 107FFF  
108000 - 10FFFF  
110000 - 117FFF  
118000 - 11FFFF  
120000 - 127FFF  
128000 - 12FFFF  
130000 - 137FFF  
138000 - 13FFFF  
140000 - 147FFF  
148000 - 14FFFF  
150000 - 157FFF  
158000 - 15FFFF  
160000 - 167FFF  
168000 - 16FFFF  
170000 - 177FFF  
178000 - 17FFFF  
180000 - 187FFF  
188000 - 18FFFF  
190000 - 197FFF  
198000 - 19FFFF  
1A0000 - 1A7FFF  
1A8000 - 1AFFFF  
1B0000 - 1B7FFF  
1B8000 - 1BFFFF  
1C0000 - 1C7FFF  
1C8000 - 1CFFFF  
1D0000 - 1D7FFF  
1D8000 - 1DFFFF  
1E0000 - 1E7FFF  
1E8000 - 1EFFFF  
1F0000 - 1F7FFF  
1F8000 - 1FFFFF  
SA3  
4K  
SA4  
4K  
SA5  
4K  
SA6  
4K  
SA7  
4K  
SA8  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
17  
1605C–FLASH–03/02  
Memory Organization – AT49SN3208T  
Memory Organization – AT49SN3208T (Continued)  
x16  
x16  
Plane  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
Sector  
SA0  
Size (Words)  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
Address Range (A20 - A0)  
00000 - 07FFF  
08000 - 0FFFF  
10000 - 17FFF  
18000 - 1FFFF  
20000 - 27FFF  
28000 - 2FFFF  
30000 - 37FFF  
38000 - 3FFFF  
40000 - 47FFF  
48000 - 4FFFF  
50000 - 57FFF  
58000 - 5FFFF  
60000 - 67FFF  
68000 - 6FFFF  
70000 - 77FFF  
78000 - 7FFFF  
80000 - 87FFF  
88000 - 8FFFF  
90000 - 97FFF  
98000 - 9FFFF  
A0000 - A7FFF  
A8000 - AFFFF  
B0000 - B7FFF  
B8000 - BFFFF  
C0000 - C7FFF  
C8000 - CFFFF  
D0000 - D7FFF  
D8000 - DFFFF  
E0000 - E7FFF  
E8000 - EFFFF  
F0000 - F7FFF  
F8000 - FFFFF  
100000 - 107FFF  
108000 - 10FFFF  
110000 - 117FFF  
118000 - 11FFFF  
Plane  
B
B
B
B
B
B
B
B
B
B
B
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Sector  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
Size (Words)  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
4K  
Address Range (A20 - A0)  
120000 - 127FFF  
128000 - 12FFFF  
130000 - 137FFF  
138000 - 13FFFF  
140000 - 147FFF  
148000 - 14FFFF  
150000 - 157FFF  
158000 - 15FFFF  
160000 - 167FFF  
168000 - 16FFFF  
170000 - 177FFF  
178000 - 17FFFF  
180000 - 187FFF  
188000 - 18FFFF  
190000 - 197FFF  
198000 - 19FFFF  
1A0000 - 1A7FFF  
1A8000 - 1AFFFF  
1B0000 - 1B7FFF  
1B8000 - 1BFFFF  
1C0000 - 1C7FFF  
1C8000 - 1CFFFF  
1D0000 - 1D7FFF  
1D8000 - 1DFFFF  
1E0000 - 1E7FFF  
1E8000 - 1EFFFF  
1F0000 - 1F7FFF  
1F8000 - 1F8FFF  
1F9000 - 1F9FFF  
1FA000 - 1FAFFF  
1FB000 - 1FBFFF  
1FC000 - 1FCFFF  
1FD000 - 1FDFFF  
1FE000 - 1FEFFF  
1FF000 - 1FFFFF  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
18  
AT49SN6416(T)/3208(T)  
1605C–FLASH–03/02  
AT49SN6416(T)/3208(T)  
Memory Organization – AT49SN6416  
Memory Organization – AT49SN6416 (Continued)  
x16  
x16  
Plane  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
Sector  
SA0  
Size (Words)  
4K  
Address Range (A21 - A0)  
00000 - 00FFF  
01000 - 01FFF  
02000 - 02FFF  
03000 - 03FFF  
04000 - 04FFF  
05000 - 05FFF  
06000 - 06FFF  
07000 - 07FFF  
08000 - 0FFFF  
10000 - 17FFF  
18000 - 1FFFF  
20000 - 27FFF  
28000 - 2FFFF  
30000 - 37FFF  
38000 - 3FFFF  
40000 - 47FFF  
48000 - 4FFFF  
50000 - 57FFF  
58000 - 5FFFF  
60000 - 67FFF  
68000 - 6FFFF  
70000 - 77FFF  
78000 - 7FFFF  
80000 - 87FFF  
88000 - 8FFFF  
90000 - 97FFF  
98000 - 9FFFF  
A0000 - A7FFF  
A8000 - AFFFF  
B0000 - B7FFF  
B8000 - BFFFF  
C0000 - C7FFF  
C8000 - CFFFF  
D0000 - D7FFF  
D8000 - DFFFF  
E0000 - E7FFF  
E8000 - EFFFF  
F0000 - F7FFF  
F8000 - FFFFF  
100000 - 107FFF  
108000 - 10FFFF  
110000 - 117FFF  
118000 - 11FFFF  
120000 - 127FFF  
Plane  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Sector  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
Size (Words)  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
Address Range (A21 - A0)  
128000 - 12FFFF  
130000 - 137FFF  
138000 - 13FFFF  
140000 - 147FFF  
148000 - 14FFFF  
150000 - 157FFF  
158000 - 15FFFF  
160000 - 167FFF  
168000 - 16FFFF  
170000 - 177FFF  
178000 - 17FFFF  
180000 - 187FFF  
188000 - 18FFFF  
190000 - 197FFF  
198000 - 19FFFF  
1A0000 - 1A7FFF  
1A8000 - 1AFFFF  
1B0000 - 1B7FFF  
1B8000 - 1BFFFF  
1C0000 - 1C7FFF  
1C8000 - 1CFFFF  
1D0000 - 1D7FFF  
1D8000 - 1DFFFF  
1E0000 - 1E7FFF  
1E8000 - 1EFFFF  
1F0000 - 1F7FFF  
1F8000 - 1FFFFF  
200000 - 207FFF  
208000 - 20FFFF  
210000 - 217FFF  
218000 - 21FFFF  
220000 - 227FFF  
228000 - 22FFFF  
230000 - 237FFF  
238000 - 23FFFF  
240000 - 247FFF  
248000 - 24FFFF  
250000 - 257FFF  
258000 - 25FFFF  
260000 - 267FFF  
268000 - 26FFFF  
270000 - 277FFF  
278000 - 27FFFF  
280000 - 287FFF  
SA1  
4K  
SA2  
4K  
SA3  
4K  
SA4  
4K  
SA5  
4K  
SA6  
4K  
SA7  
4K  
SA8  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
19  
1605C–FLASH–03/02  
Memory Organization – AT49SN6416 (Continued)  
Memory Organization – AT49SN6416 (Continued)  
x16  
x16  
Plane  
D
Sector  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
Size (Words)  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
Address Range (A21 - A0)  
348000 - 34FFFF  
350000 - 357FFF  
358000 - 35FFFF  
360000 - 367FFF  
368000 - 36FFFF  
370000 - 377FFF  
378000 - 37FFFF  
380000 - 387FFF  
388000 - 38FFFF  
390000 - 397FFF  
398000 - 39FFFF  
3A0000 - 3A7FFF  
3A8000 - 3AFFFF  
3B0000 - 3B7FFF  
3B8000 - 3BFFFF  
3C0000 - 3C7FFF  
3C8000 - 3CFFFF  
3D0000 - 3D7FFF  
3D8000 - 3DFFFF  
3E0000 - 3E7FFF  
3E8000 - 3EFFFF  
3F0000 - 3F7FFF  
3F8000 - 3FFFFF  
Plane  
C
Sector  
SA88  
Size (Words)  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
Address Range (A21 - A0)  
288000 - 28FFFF  
290000 - 297FFF  
298000 - 29FFFF  
2A0000 - 2A7FFF  
2A8000 - 2AFFFF  
2B0000 - 2B7FFF  
2B8000 - 2BFFFF  
2C0000 - 2C7FFF  
2C8000 - 2CFFFF  
2D0000 - 2D7FFF  
2D8000 - 2DFFFF  
2E0000 - 2E7FFF  
2E8000 - 2EFFFF  
2F0000 - 2F7FFF  
2F8000 - 2FFFFF  
300000 - 307FFF  
308000 - 30FFFF  
310000 - 317FFF  
318000 - 31FFFF  
320000 - 327FFF  
328000 - 32FFFF  
330000 - 337FFF  
338000 - 33FFFF  
340000 - 347FFF  
D
C
SA89  
D
C
SA90  
D
C
SA91  
D
C
SA92  
D
C
SA93  
D
C
SA94  
D
C
SA95  
D
C
SA96  
D
C
SA97  
D
C
SA98  
D
C
SA99  
D
C
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
D
C
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
20  
AT49SN6416(T)/3208(T)  
1605C–FLASH–03/02  
AT49SN6416(T)/3208(T)  
Memory Organization – AT49SN6416T  
Memory Organization – AT49SN6416T (Continued)  
x16  
x16  
Plane  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
C
C
C
C
C
C
C
C
C
C
C
C
Sector  
SA0  
Size (Words)  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
Address Range (A21 - A0)  
00000 - 07FFF  
08000 - 0FFFF  
10000 - 17FFF  
18000 - 1FFFF  
20000 - 27FFF  
28000 - 2FFFF  
30000 - 37FFF  
38000 - 3FFFF  
40000 - 47FFF  
48000 - 4FFFF  
50000 - 57FFF  
58000 - 5FFFF  
60000 - 67FFF  
68000 - 6FFFF  
70000 - 77FFF  
78000 - 7FFFF  
80000 - 87FFF  
88000 - 8FFFF  
90000 - 97FFF  
98000 - 9FFFF  
A0000 - A7FFF  
A8000 - AFFFF  
B0000 - B7FFF  
B8000 - BFFFF  
C0000 - C7FFF  
C8000 - CFFFF  
D0000 - D7FFF  
D8000 - DFFFF  
E0000 - E7FFF  
E8000 - EFFFF  
F0000 - F7FFF  
F8000 - FFFFF  
100000 - 107FFF  
108000 - 10FFFF  
110000 - 117FFF  
118000 - 11FFFF  
120000 - 127FFF  
128000 - 12FFFF  
130000 - 137FFF  
138000 - 13FFFF  
140000 - 147FFF  
148000 - 14FFFF  
150000 - 157FFF  
158000 - 15FFFF  
160000 - 167FFF  
Plane  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
Sector  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
Size (Words)  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
Address Range (A21 - A0)  
168000 - 16FFFF  
170000 - 177FFF  
178000 - 17FFFF  
180000 - 187FFF  
188000 - 18FFFF  
190000 - 197FFF  
198000 - 19FFFF  
1A0000 - 1A7FFF  
1A8000 - 1AFFFF  
1B0000 - 1B7FFF  
1B8000 - 1BFFFF  
1C0000 - 1C7FFF  
1C8000 - 1CFFFF  
1D0000 - 1D7FFF  
1D8000 - 1DFFFF  
1E0000 - 1E7FFF  
1E8000 - 1EFFFF  
1F0000 - 1F7FFF  
1F8000 - 1FFFFF  
200000 - 207FFF  
208000 - 20FFFF  
210000 - 217FFF  
218000 - 21FFFF  
220000 - 227FFF  
228000 - 22FFFF  
230000 - 237FFF  
238000 - 23FFFF  
240000 - 247FFF  
248000 - 24FFFF  
250000 - 257FFF  
258000 - 25FFFF  
260000 - 267FFF  
268000 - 26FFFF  
270000 - 277FFF  
278000 - 27FFFF  
280000 - 287FFF  
288000 - 28FFFF  
290000 - 297FFF  
298000 -29FFFF  
2A0000 - 2A7FFF  
2A8000 - 2AFFFF  
2B0000 - 2B7FFF  
2B8000 - 2BFFFF  
2C0000 - 2C7FFF  
2C8000 - 2CFFFF  
2D0000 - 2D7FFF  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
21  
1605C–FLASH–03/02  
Memory Organization – AT49SN6416T (Continued)  
Memory Organization – AT49SN6416T (Continued)  
x16  
x16  
Plane  
A
Sector  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
Size (Words)  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
32K  
4K  
Address Range (A21 - A0)  
380000 - 387FFF  
388000 - 38FFFF  
390000 - 397FFF  
398000 - 39FFFF  
3A0000 - 3A7FFF  
3A8000 - 3AFFFF  
3B0000 - 3B7FFF  
3B8000 - 3BFFFF  
3C0000 - 3C7FFF  
3C8000 - 3CFFFF  
3D0000 - 3D7FFF  
3D8000 - 3DFFFF  
3E0000 - 3E7FFF  
3E8000 - 3EFFFF  
3F0000 - 3F7FFF  
3F8000 - 3F8FFF  
3F9000 - 3F9FFF  
3FA000 - 3FAFFF  
3FB000 - 3FBFFF  
3FC000 - 3FCFFF  
3FD000 - 3FDFFF  
3FE000 - 3FEFFF  
3FF000 - 3FFFFF  
Plane  
B
Sector  
SA91  
Size (Words)  
32K  
Address Range (A21 - A0)  
2D8000 - 2DFFFF  
2E0000 - 2E7FFF  
2E8000 - 2EFFFF  
2F0000 - 2F7FFF  
2F8000 - 2FFFFF  
300000 - 307FFF  
308000 - 30FFFF  
310000 - 317FFF  
318000 - 31FFFF  
320000 - 327FFF  
328000 - 32FFFF  
330000 - 337FFF  
338000 - 33FFFF  
340000 - 347FFF  
348000 - 34FFFF  
350000 - 357FFF  
358000 - 35FFFF  
360000 - 367FFF  
368000 - 36FFFF  
370000 - 377FFF  
378000 - 37FFFF  
A
B
SA92  
32K  
A
B
SA93  
32K  
A
B
SA94  
32K  
A
B
SA95  
32K  
A
A
SA96  
32K  
A
A
SA97  
32K  
A
A
SA98  
32K  
A
A
SA99  
32K  
A
A
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
32K  
A
A
32K  
A
A
32K  
A
A
32K  
A
A
32K  
A
A
32K  
A
A
32K  
A
4K  
A
32K  
A
4K  
A
32K  
A
4K  
A
32K  
A
4K  
A
32K  
A
4K  
A
32K  
A
4K  
A
4K  
22  
AT49SN6416(T)/3208(T)  
1605C–FLASH–03/02  
AT49SN6416(T)/3208(T)  
DC and AC Operating Range  
AT49SN6416(T)/3208(T) - 90  
Operating  
Temperature (Case)  
Industrial  
-40°C - 85°C  
1.65V - 1.95V  
VCC Power Supply  
Operating Modes  
(6)  
Mode  
CE  
VIL  
VIL  
VIL  
OE  
VIL  
WE  
VIH  
VIH  
VIL  
RESET  
VIH  
VPP  
Ai  
Ai  
Ai  
Ai  
I/O  
DOUT  
DOUT  
DIN  
Read  
X
X
Burst Read  
Program/Erase(3)  
VIL  
VIH  
VIH  
(7)  
VIH  
VIHPP  
Standby/Program  
Inhibit  
VIH  
X(1)  
X
VIH  
X
X
High Z  
X
X
X
X
X
X
VIL  
X
VIH  
X
VIH  
VIH  
X
X
X
Program Inhibit  
(8)  
X
VILPP  
Output Disable  
Reset  
VIH  
X
X
VIH  
VIL  
X
X
High Z  
High Z  
X
X
Product Identification  
Manufacturer  
Code(4)  
A1 - A21 = VIL, A9 = VH(3), A0 = VIL  
A1 - A21 = VIL, A9 = VH(3), A0 = VIH  
A0 = VIL, A1 - A21 = VIL  
Hardware  
VIL  
VIL  
VIH  
VIH  
Device Code(4)  
Manufacturer  
Code(4)  
Software(5)  
VIH  
A0 = VIH, A1 - A21 = VIL  
Device Code(4)  
Notes:  
1. X can be VIL or VIH.  
2. Refer to AC programming waveforms.  
3. VH = 12.0V 0.5V.  
4. Manufacturer Code: 001FH; Device Code: 00DB – AT49SN3208; 00D1 – AT49SN3208T; 00DC - AT49SN6416;  
00D8H - AT49SN6416T.  
5. See details under “Software Product Identification Entry/Exit” on page 32.  
6. The VPP pin can be tied to VCC. For faster program/erase operations, VPP can be set to 12.0V 0.5V.  
7. VIHPP (min) = 1.2V.  
8. VILPP (max) = 0.8V.  
23  
1605C–FLASH–03/02  
DC Characteristics  
Symbol  
Parameter  
Condition  
Min  
Max  
1
Units  
µA  
ILI  
Input Load Current  
VIN = 0V to VCC  
ILO  
Output Leakage Current  
VCC Standby Current CMOS  
VCC Active Current  
VI/O = 0V to VCC  
1
µA  
ISB1  
CE = VCCQ - 0.3V to VCC  
f = 54 MHz; IOUT = 0 mA  
f = 54 MHz; IOUT = 0 mA  
f = 54 MHz; IOUT = 0 mA  
10  
30  
50  
50  
0.4  
µA  
(1)  
ICC  
mA  
mA  
mA  
V
ICCRE  
ICCRW  
VIL  
VCC Read While Erase Current  
VCC Read While Write Current  
Input Low Voltage  
VIH  
Input High Voltage  
VCCQ - 0.4  
V
IOL = 100 µA  
IOL = 2.1 mA  
0.1  
0.25  
VOL  
Output Low Voltage  
V
V
IOH = -100 µA  
VCCQ - 0.1  
1.4  
VOH  
Note:  
Output High Voltage  
IOH = -400 µA  
1. In the erase mode, ICC is 30 mA.  
Input Test Waveforms and Measurement Level  
1.4V  
AC  
DRIVING  
LEVELS  
AC  
MEASUREMENT  
LEVEL  
0.9V  
0.4V  
tR, tF < 5 ns  
Output Test Load  
VCCQ  
1.8K  
OUTPUT  
PIN  
1.3K  
30 pF  
Pin Capacitance  
f = 1 MHz, T = 25°C(1)  
Typ  
4
Max  
Units  
pF  
Conditions  
VIN = 0V  
CIN  
6
COUT  
8
12  
pF  
VOUT = 0V  
Note:  
1. This parameter is characterized and is not 100% tested.  
24  
AT49SN6416(T)/3208(T)  
1605C–FLASH–03/02  
AT49SN6416(T)/3208(T)  
AC Asynchronous Read Timing Characteristics  
Symbol  
tACC1  
tACC2  
tCE  
Parameter  
Min  
Max  
90  
Units  
ns  
Access, AVD To Data Valid  
Access, Address to Data Valid  
Access, CE to Data Valid  
OE to Data Valid  
90  
ns  
90  
ns  
tOE  
45  
ns  
tAHAV  
tAVLP  
tAVHP  
tAAV  
Address Hold from AVD  
AVD Low Pulse Width  
AVD High Pulse Width  
Address Valid to AVD  
CE, OE High to Data Float  
RESET to Output Delay  
9
ns  
10  
10  
10  
ns  
ns  
ns  
tDF  
25  
ns  
tRO  
150  
ns  
AVD Pulsed Asynchronous Read Cycle Waveform(1)(2)  
t
CE  
CE  
t
t
DF  
DF  
DATA VALID  
I/O0-I/O15  
A0 -A21  
t
ACC2  
t
t
AHAV  
AAV  
t
AVHP  
AVD(1)  
t
AVLP  
t
ACC1  
t
OE  
OE  
t
RO  
RESET  
Notes: 1. After the high-to-low transition on AVD, AVD may remain low as long as the address is stable.  
2. CLK may be static high or static low.  
Asynchronous Read Cycle Waveform(1)(2)(3)(4)  
tRC  
A0 - A21  
ADDRESS VALID  
CE  
tCE  
tOE  
OE  
tDF  
tOH  
tACC2  
tRO  
RESET  
HIGH Z  
OUTPUT  
VALID  
I/O0 - I/O15  
Notes: 1. CE may be delayed up to tACC - tCE after the address transition without impact on tACC  
2. OE may be delayed up to tCE - tOE after the falling edge of CE without impact on tCE or by tACC - tOE after an address change  
without impact on tACC  
.
.
3. tDF is specified from OE or CE, whichever occurs first (CL = 5 pF).  
4. AVD and CLK should be tied low.  
25  
1605C–FLASH–03/02  
AC Asynchronous Read Timing Characteristics  
Symbol  
tACC1  
tACC2  
tCE  
Parameter  
Min  
Max  
90  
Units  
ns  
Access, AVD To Data Valid  
Access, Address to Data Valid  
Access, CE to Data Valid  
OE to Data Valid  
90  
ns  
90  
ns  
tOE  
45  
ns  
tAHAV  
tAVLP  
tAVHP  
tAAV  
Address Hold from AVD  
AVD Low Pulse Width  
AVD High Pulse Width  
Address Valid to AVD  
CE, OE High to Data Float  
RESET to Output Delay  
Page Address Access Time  
9
ns  
10  
10  
10  
ns  
ns  
ns  
tDF  
25  
150  
20  
ns  
tRO  
ns  
tPAA  
ns  
Page Read Cycle Waveform 1(1)(2)  
t
CE  
CE  
t
t
DF  
DF  
I/O0-I/O15  
DATA VALID  
t
ACC2  
(2)  
A2 -A21  
t
t
AHAV  
AAV  
t
PAA  
t
ACC2  
(2)  
A0 -A1  
t
t
AHAV  
AAV  
t
AVHP  
AVD(1)  
t
AVLP  
t
ACC1  
t
OE  
OE  
t
RO  
RESET  
Notes: 1. After the high-to-low transition on AVD, AVD may remain low as long as the page address is stable.  
2. The diagram shown is for a four-word page read. For an eight-word page read A0 - A1 becomes A0 - A2 and A2 - A21  
becomes A3 - A21.  
Page Read Cycle Waveform 2(1)(2)  
t
CE  
CE  
t
t
DF  
DF  
I/O0-I/O15  
DATA VALID  
t
ACC2  
(2)  
A2 -A21  
t
PAA  
t
ACC2  
(2)  
A0 -A1  
AVD(1)  
V
IL  
t
OE  
OE  
t
RO  
RESET  
Notes: 1. AVD may remain low as long as the page address is stable.  
2. The diagram shown is for a four-word page read. For an eight-word page read A0 - A1 becomes A0 - A2 and A2 - A21  
becomes A3 - A21.  
26  
AT49SN6416(T)/3208(T)  
1605C–FLASH–03/02  
AT49SN6416(T)/3208(T)  
AC Burst Read Timing Characteristics  
Symbol  
Parameter  
Min  
18.5  
4
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLK  
CLK Period  
tCKH  
CLK High Time  
tCKL  
CLK Low Time  
4
tCKRT  
tCKFT  
tACK  
CLK Rise Time  
5
5
CLK Fall Time  
Address Valid to Clock  
AVD Low to Clock  
CE Low to Clock  
7
7
tAVCK  
tCECK  
tCKAV  
tQHCK  
tAHCK  
tCKRY  
tCEAV  
tAAV  
7
Clock to AVD High  
Output Hold from Clock  
Address Hold from Clock  
Clock to RDY Delay  
CE Setup to AVD  
Address Valid to AVD  
Address Hold From AVD  
CLK to Data Delay  
CE High to Output High-Z  
3
5
10  
13.5  
10  
10  
9
tAHAV  
tCKQV  
tCEQZ  
13.5  
10  
Burst Read Cycle Waveform  
t
t
CLK  
CKH  
...  
...  
CLK  
...  
t
CKL  
t
AHCK  
t
CECK  
CE  
t
CE  
t
CEAV  
t
AVCK  
AVD(2)  
t
t
t
CKQV  
CKAV  
CEQZ  
t
ACK  
t
AHAV  
t
t
AAV  
QHCK  
...  
I/O0-I/O15  
D0  
D127  
D126  
D128  
D1  
D129  
A0-A21  
OE  
t
CKRY  
t
CKRY  
RDY(1)  
Notes: 1. The RDY signal (solid line) shown is for a burst configuration register setting of B10 and B8 = 0. The RDY Signal (dashed  
line) shown is for a burst configuration setting of B10 = 1 and B8 = 0.  
2. After the high-to-low transition on AVD, AVD may remain low.  
27  
1605C–FLASH–03/02  
Burst Read Waveform (Clock Latency of 4)  
G
D
E
F
B
C
A
...  
CLK  
CE  
AVD  
OE  
VALID  
A0-A21  
...  
D128  
D129  
I/O0-I/O15  
RDY  
D0  
D1  
D126  
D127  
(1)  
Note:  
1. Solid line reflects a B10 and B8 setting of 0 in the configuration register. Dashed line reflects a B10 setting of 0 and B8 set-  
ting of 1 in the configuration register.  
Four-word Burst Read Waveform (Clock Latency of 4)  
B
C
A
CLK  
CE  
AVD  
OE  
VALID  
A0-A21  
I/O0-I/O15  
D0  
D1  
D2 D3  
28  
AT49SN6416(T)/3208(T)  
1605CFLASH03/02  
AT49SN6416(T)/3208(T)  
AC Word Load Characteristics 1  
Symbol  
Parameter  
Min  
10  
9
Max  
Units  
ns  
tAS  
Address, CE Setup Time to AVD High  
Address Hold Time from AVD High  
AVD Low Pulse Width  
Data Setup Time  
tAHAV  
tAVLP  
tDS  
ns  
10  
15  
0
ns  
ns  
tDH  
Data Hold Time  
ns  
tCEAV  
tWP  
CE Setup to AVD  
10  
70  
25  
25  
25  
ns  
CE or WE Low Pulse Width  
CE or WE High Pulse Width  
WE High Time to AVD Low  
CE High Time to AVD Low  
ns  
tWPH  
tWEAV  
tCEAV  
ns  
ns  
ns  
AC Word Load Waveforms 1  
WE Controlled(1)  
CE  
I/O0-I/O15  
A0 -A21  
DATA VALID  
t
AS  
t
AHAV  
AVD  
t
DS  
t
AVLP  
t
DH  
t
WEAV  
t
WP  
WE  
Note:  
1. After the high-to-low transition on AVD, AVD may remain low as long as the CLK input does not toggle.  
CE Controlled(1)  
WE  
I/O0-I/O15  
A0 -A21  
AVD  
DATA VALID  
t
AS  
t
AHAV  
t
DS  
t
AVLP  
t
DH  
t
CEAV  
t
CEAV  
t
WP  
CE  
Note:  
1. After the high-to-low transition on AVD, AVD may remain low as long as the CLK input does not toggle.  
29  
1605CFLASH03/02  
AC Word Load Characteristics 2  
Symbol  
Parameter  
Min  
0
Max  
Units  
ns  
tAS  
Address Setup Time to WE and CE Low  
Address Hold Time  
tAH  
20  
20  
0
ns  
tDS  
Data Setup Time  
ns  
tDH  
Data Hold Time  
ns  
tWP  
CE or WE Low Pulse Width  
CE or WE High Pulse Width  
35  
25  
ns  
tWPH  
ns  
AC Word Load Waveforms 2  
WE Controlled(1)  
CE  
I/O0-I/O15  
A0 -A21  
DATA VALID  
t
DS  
t
DH  
t
AH  
t
t
WP  
AS  
WE  
AVD  
V
IL  
Note:  
1. The CLK input should not toggle.  
CE Controlled(1)  
WE  
I/O0-I/O15  
A0 -A21  
DATA VALID  
t
DS  
t
DH  
t
AH  
t
AS  
t
WP  
CE  
AVD  
V
IL  
Note:  
1. The CLK input should not toggle.  
30  
AT49SN6416(T)/3208(T)  
1605CFLASH03/02  
AT49SN6416(T)/3208(T)  
Program Cycle Characteristics  
Symbol  
Parameter  
Min  
Typ  
22  
Max  
Units  
µs  
tBP  
Word Programming Time (Vpp = VCC  
)
tBPVPP  
tSEC1  
tSEC2  
tES  
Word Programming Time (VPP > 11.5V)  
Sector Erase Cycle Time (4K word sectors)  
Sector Erase Cycle Time (32K word sectors)  
Erase Suspend Time  
10  
µs  
100  
500  
ms  
ms  
µs  
15  
10  
tPS  
Program Suspend Time  
µs  
Program Cycle Waveforms  
(1)  
OE  
CE  
INPUT  
DATA  
XXAA  
I/O0 -I/O15  
A0 -A21  
XX55  
XXA0  
555  
AAA  
555  
ADDR  
AVD  
WE  
Sector, Plane or Chip Erase Cycle Waveforms  
OE(1)  
CE  
Note3  
XXAA  
XXAA  
XX55  
I/O0 -I/O15  
A0 -A21  
XX55  
XX80  
Note2  
555  
AAA  
555  
555  
AAA  
AVD  
WE  
Notes: 1. OE must be high only when WE and CE are both low.  
2. For chip erase, the address should be 555. For plane or sector erase, the address depends on what plane or sector is to be  
erased. (See note 3 and 5 under Command Definitions on page 13.)  
3. For chip erase, the data should be XX10H, for plane erase, the data should be XX20H, and for sector erase, the data should  
be XX30H  
4. The waveforms shown above use the WE controlled AC Word Load Waveforms 1.  
31  
1605CFLASH03/02  
Data Polling Characteristics  
Symbol  
Parameter  
Min  
10  
Typ  
Max  
Units  
ns  
tDH  
Data Hold Time  
tOEH  
tOE  
OE Hold Time  
10  
ns  
OE to Output Delay(2)  
Write Recovery Time  
ns  
tWR  
0
ns  
Notes: 1. These parameters are characterized and not 100% tested.  
2. See tOE spec in page 25.  
Data Polling Waveforms  
WE  
CE  
OE  
I/O7  
A0-A21  
Toggle Bit Characteristics(1)  
Symbol  
Parameter  
Min  
10  
Typ  
Max  
Units  
ns  
tDH  
Data Hold Time  
tOEH  
tOE  
tOEHP  
tWR  
OE Hold Time  
10  
ns  
OE to Output Delay(2)  
OE High Pulse  
ns  
50  
0
ns  
Write Recovery Time  
ns  
Notes: 1. These parameters are characterized and not 100% tested.  
2. See tOE spec in page 25.  
Toggle Bit Waveforms(1)(2)(3)  
Notes: 1. Toggling either OE or CE or both OE and CE will operate toggle bit.  
The tOEHP specification must be met by the toggling input(s).  
2. Beginning and ending state of I/O6 will vary.  
3. Any address location may be used but the address should not vary.  
32  
AT49SN6416(T)/3208(T)  
1605CFLASH03/02  
AT49SN6416(T)/3208(T)  
Software Product Identification  
Entry(1)  
Software Product Identification Exit(1)(6)  
OR  
LOAD DATA AA  
TO  
LOAD DATA F0  
TO  
LOAD DATA AA  
TO  
ADDRESS 555  
ANY ADDRESS  
ADDRESS 555  
EXIT PRODUCT  
IDENTIFICATION  
MODE(4)  
LOAD DATA 55  
TO  
LOAD DATA 55  
TO  
ADDRESS AAA  
ADDRESS AAA  
LOAD DATA F0  
TO  
ADDRESS 555  
LOAD DATA 90  
TO  
ADDRESS xxx(7)  
EXIT PRODUCT  
IDENTIFICATION  
MODE(4)  
ENTER PRODUCT  
IDENTIFICATION  
MODE(2)(3)(5)  
Notes:  
1. Data Format: I/O15 - I/O8 (Dont Care); I/O7 - I/O0 (Hex) Address Format: A11 - A0 (Hex); A12 - A21 (Dont Care).  
2. A1 - A21 = VIL.  
Manufacturer Code is read for A0 = VIL;  
Device Code is read for A0 = VIH.  
3. The device does not remain in identification mode if powered down.  
4. The device returns to standard operation mode.  
5. Manufacturer Code: 001FH  
Device Code: 00DB - AT49SN3208; 00D1 - AT49SN3208T;  
00DC - AT49SN6416; 00D8H - AT49SN6416T.  
6. Either one of the Product ID Exit commands can be used.  
7. For the AT49SN3208:  
For the AT49SN3208T:  
xxx = 0XX555 Status Read from Plane A  
xxx = 1XX555 Status Read from Plane B  
xxx = 1XX555 Status Read from Plane A  
xxx = 0XX555 Status Read from Plane B  
For the AT49SN6416:  
For the AT49SN6416T:  
xxx = 0XX555 Status Read from Plane A  
xxx = 1XX555 Status Read from Plane B  
xxx = 2XX555 Status Read from Plane C  
xxx = 3XX555 Status Read from Plane D  
xxx = 3XX555 Status Read from Plane A  
xxx = 2XX555 Status Read from Plane B  
xxx = 1XX555 Status Read from Plane C  
xxx = 0XX555 Status Read from Plane D  
If a read status has been entered for a plane, any read from this plane will be a status read while any read of another plane  
will be a memory read, either random or burst. Program or erase operations cannot be performed while one of the planes is  
in the read status mode.  
33  
1605CFLASH03/02  
Table 5. Common Flash Interface Definition for AT49SN6416(T)/3208(T)  
Address  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
AT49SN3208(T)  
0051h  
0052h  
0059h  
0002h  
0000h  
0041h  
0000h  
0000h  
0000h  
0000h  
0000h  
0016h  
0019h  
00B5h  
00C5h  
0004h  
0000h  
0009h  
000Fh  
0004h  
0000h  
0003h  
0003h  
0016h  
0001h  
0000h  
0000h  
0000h  
0002h  
003Eh  
0000h  
0000h  
0001h  
0007h  
0000h  
0020h  
0000h  
AT49SN6416(T)  
0051h  
0052h  
0059h  
0002h  
0000h  
0041h  
0000h  
0000h  
0000h  
0000h  
0000h  
0016h  
0019h  
00B5h  
00C5h  
0004h  
0000h  
0009h  
0010h  
0004h  
0000h  
0003h  
0003h  
0017h  
0001h  
0000h  
0000h  
0000h  
0002h  
007Eh  
0000h  
0000h  
0001h  
0007h  
0000h  
0020h  
0000h  
Comments  
Q”  
R”  
Y”  
VCC min write/erase  
VCC max write/erase  
VPP min voltage  
VPP max voltage  
Typ word write 16 µs  
Typ block erase 500 ms  
Typ chip erase, 32M bytes 32,300 ms, 64M bytes 64,300 ms  
Max word write/typ time  
n/a  
Max block erase/typ block erase  
Max chip erase/ typ chip erase  
Device size  
x16 device  
x16 device  
Multiple byte write not supported  
Multiple byte write not supported  
2 regions, x = 2  
64K bytes, 32M Y = 62, 64M Y = 126  
64K bytes, 32M Y = 62, 64M Y = 126  
64K bytes, Z = 256  
64K bytes, Z = 256  
8K bytes, Y = 7  
8K bytes, Y = 7  
8K bytes, Z = 32  
8K bytes, Z = 32  
34  
AT49SN6416(T)/3208(T)  
1605CFLASH03/02  
AT49SN6416(T)/3208(T)  
Table 5. Common Flash Interface Definition for AT49SN6416(T)/3208(T) (Continued)  
Address  
AT49SN3208(T)  
AT49SN6416(T)  
Comments  
VENDOR SPECIFIC EXTENDED QUERY  
41h  
42h  
43h  
44h  
45h  
46h  
0050h  
0052h  
0049h  
0031h  
0030h  
00BFh  
0050h  
0052h  
0049h  
0031h  
0030h  
00BFh  
P”  
R”  
I”  
Major version number, ASCII  
Minor version number, ASCII  
Bit 0 chip erase supported, 0 no, 1 yes  
Bit 1 erase suspend supported, 0 no, 1 yes  
Bit 2 program suspend supported, 0 no, 1 yes  
Bit 3 simultaneous operations supported, 0 no, 1 yes  
Bit 4 burst mode read supported, 0 no, 1 yes  
Bit 5 page mode read supported, 0 no, 1 yes  
Bit 6 queued erase supported, 0 no, 1 yes  
Bit 7 protection bits supported, 0 no, 1 yes  
47h  
0000h  
AT49SN3208T or  
0001h  
0000h  
AT49SN6416T or  
0001h  
Bit 8 top (0) or bottom (1) boot block device undefined bits are 0”  
AT49SN3208  
AT49SN6416  
48h  
49h  
0007h  
0007h  
Bit 0 4 word linear burst with wrap around, 0 no, 1 yes  
Bit 1 8 word linear burst with wrap around, 0 no, 1 yes  
Bit 2 continuos burst undefined bits are 0”  
0003h  
0003h  
Bit 0 4 word page, 0 no, 1 yes  
Bit 1 8 word page, 0 no, 1 yes  
Undefined bits are 0”  
4Ah  
4Bh  
4Ch  
0080h  
0003h  
0003h  
0080h  
0003h  
0003h  
Location of protection register lock byte, the section's first byte  
# of bytes in the factory prog section of prot register 2*n  
# of bytes in the user prog section of prot register 2*n  
35  
1605CFLASH03/02  
AT49SN6416(T) Ordering Information  
I
CC (mA)  
tACC  
(ns)  
Active  
Standby  
Ordering Code  
Package  
Operation Range  
90  
25  
0.01  
0.01  
AT49SN6416-90CI  
55C1  
Industrial  
(-40° to 85°C)  
90  
25  
AT49SN6416T-90CI  
55C1  
Industrial  
(-40° to 85°C)  
Package Type  
55C1  
55-ball, Plastic Chip-size Ball Grid Array Package (CBGA)  
36  
AT49SN6416(T)/3208(T)  
1605CFLASH03/02  
AT49SN6416(T)/3208(T)  
Packaging Information – AT49SN6416(T)  
55C1 – CBGA  
D
0.12  
C
C Seating Plane  
E
Side View  
A1  
Top View  
A
D1  
1.375 mm Ref  
8
7
6
5
4
3
2 1  
A
B
C
D
E
F
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.00  
NOM  
NOTE  
SYMBOL  
E1  
A
A1  
D
0.23  
7.90  
G
8.00  
8.10  
e
D1  
E
5.25 TYP  
11.00  
10.90  
11.10  
3.25 mm Ref  
e
E1  
e
4.50 TYP  
0.75 TYP  
0.35 TYP  
Øb  
Bottom View  
Øb  
3/20/02  
DRAWING NO. REV.  
55C1  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
55C1, 55-ball (8 x 7 Array), 8 x 11 x 1.0 mm Body, 0.75 mm Ball Pitch  
Ceramic Ball Grid Array Package (CBGA)  
A
R
37  
1605CFLASH03/02  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
Atmel Corporate  
Atmel Heilbronn  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 436-4270  
FAX 1(408) 436-4314  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
Europe  
Atmel SarL  
Microcontrollers  
Route des Arsenaux 41  
Casa Postale 80  
CH-1705 Fribourg  
Switzerland  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
Atmel Corporate  
Atmel Colorado Springs  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 436-4270  
FAX 1(408) 436-4314  
FAX 1(719) 540-1759  
Atmel Nantes  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Atmel Grenoble  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
Asia  
Atmel Asia, Ltd.  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
Hong Kong  
TEL (852) 2721-9778  
ASIC/ASSP/Smart Cards  
Atmel Rousset  
FAX (852) 2722-1369  
Zone Industrielle  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
Atmel Japan K.K.  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Atmel Colorado Springs  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
FAX 1(719) 540-1759  
Atmel Smart Card ICs  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
© Atmel Corporation 2002.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Companys standard warranty  
which is detailed in Atmels Terms and Conditions located on the Companys web site. The Company assumes no responsibility for any errors  
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does  
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted  
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmels products are not authorized for use as critical  
components in life support devices or systems.  
ATMEL® is the registered trademark of Atmel.  
Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
1605CFLASH03/02  
xM  

相关型号:

AT49SN3208T-90CI

Flash Memory
ATMEL

AT49SN6416

64-megabit (4M x 16) Burst/Page Mode 1.8-volt Flash Memory
ATMEL

AT49SN6416(T)

AT49SN6416(T)/3208(T) Advance Information [Updated 3/02. 38 Pages] 64M bit and 32M. 1.8-Volt Burst and Page Mode Flash Memory
ETC

AT49SN6416-70CI

64-megabit (4M x 16) Burst/Page Mode 1.8-volt Flash Memory
ATMEL

AT49SN6416-70CJ

暂无描述
ATMEL

AT49SN6416-90CI

Flash, 4MX16, 90ns, CBGA55, 8 X 11 MM, 1 MM HEIGHT, 0.75 MM PITCH, CERAMIC, BGA-55
ATMEL

AT49SN6416-90CJ

Flash, 4MX16, 90ns, CBGA55, 8 X 11 MM, 1 MM HEIGHT, 0.75 MM PITCH, CERAMIC, BGA-55
ATMEL

AT49SN6416T

64-megabit (4M x 16) Burst/Page Mode 1.8-volt Flash Memory
ATMEL

AT49SN6416T-70CI

64-megabit (4M x 16) Burst/Page Mode 1.8-volt Flash Memory
ATMEL

AT49SN6416T-90CI

Flash, 4MX16, 90ns, CBGA55, 8 X 11 MM, 1 MM HEIGHT, 0.75 MM PITCH, CERAMIC, BGA-55
ATMEL

AT49SN6416T-90CJ

Flash, 4MX16, 90ns, CBGA55, 8 X 11 MM, 1 MM HEIGHT, 0.75 MM PITCH, CERAMIC, BGA-55
ATMEL

AT49SV12804

128-megabit (8M x 16) Burst/Page Mode 1.8-volt Flash Memory
ATMEL