AT83C24-TISIM [ATMEL]

Smart Card Reader Interface with Power Management; 与电源管理智能卡读卡器接口
AT83C24-TISIM
型号: AT83C24-TISIM
厂家: ATMEL    ATMEL
描述:

Smart Card Reader Interface with Power Management
与电源管理智能卡读卡器接口

文件: 总42页 (文件大小:726K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Smart Card Interface  
– Compliance with ISO 7816, EMV2000, GIE-CB, GSM and WHQL Standards  
Card Clock Stop High or Low for Card Power-down Modes  
Support Synchronous Cards with C4 and C8 Contacts  
Card Detection and Automatic de-activation Sequence  
Programmable Activation Sequence  
– Direct Connection to the Smart Card  
Logic Level Shifters  
Short Circuit Current Limitation (see electrical characteristics)  
8kV+ ESD Protection (MIL/STD 883 Class 3)  
– Programmable Voltage  
Smart Card  
Reader  
5V ±5% at 65 mA (Class A)  
3V ±0.2V at 65 mA (Class B)  
1.8V ±0.14V at 40 mA  
Interface with  
Power  
– Low Ripple Noise: < 200 mV  
Versatile Host Interface  
– ICAM (Conditional Access) Compatible  
– Two Wire Interface (TWI) Link  
Programmable Address Allow up to 8 Devices  
– Programmable Interrupt Output  
Management  
– Automatic Level Shifter (1.6V to VCC  
)
Reset Output Includes  
– Power-On Reset (POR)  
– Power-Fail Detector (PFD)  
AT83C24  
High-efficiency Step-up Converter: 80 to 98% Efficiency  
Extended Voltage Operation: 3V to 5.5V  
Low Power Consumption  
AT83C24NDS  
– 180 mA Maximum In-rush Current  
– 30 µA Typical Power-down Current (without Smart Card)  
4 to 48 MHz Clock Input, 7 MHz Min for Step-up Converter (for AT83C24)  
18 to 48MHz Clock input (for AT83C24NDS)  
Industrial Temperature Range: -40 to +85°C  
Packages: SO28 and QFN28  
Description  
The AT83C24 is a smart card reader interface IC for smart card reader/writer applica-  
tions such as EFT/POS terminals and set top boxes. It enables the management of  
any type of smart card from any kind of host. Up to 8 AT83C24 can be connected in  
parallel using the programmable TWI address.  
Its high efficiency DC/DC converter, low quiescent current in standby mode makes it  
particularly suited to low power and portable applications. The reduced bill of material  
allows reducing significantly the system cost. A sophisticated protection system guar-  
antees timely and controlled shutdown upon error conditions.  
The AT83C24NDS is a dedicated version approved by NDS for use with NDS Video-  
Guard conditional access software in set-top boxes. All AT83C24 datasheet is  
applicable to AT83C24NDS. The main differences between AT83C24 and  
AT83C24NDS are listed below:  
1/ CLASS A card supplied with CVCC = 4.75 to 5.25V for AT83C24NDS,  
CLASS A card supplied with CVCC = 4.6 to 5.25V for AT83C24  
2/ 18MHz minimum on input clock for AT83C24NDS  
3/ Up to 10µF for capacitor connected on CVCC pin for AT83C24,  
3.3µF mandatory for AT83C24NDS  
4234E–SCR–09/04  
1
Acronyms  
TWI: Two-wire Interface  
POR: Power On Reset  
PFD: Power Fail Detect  
ART: Automatic Reset Transition  
ATR: Answer To Reset  
MSB: Most Significant Bit  
LSB: Least Significant bit  
SCIB: Smart Card Interface Bus  
Block Diagram  
VCC  
VSS  
CVSS  
LI  
DVCC  
CVCC  
Voltage  
supervisor  
POR/PFD  
DC/DC  
Converter  
CVCCIN  
EVCC  
RESET  
PRES/ INT  
A2/CK, A1/RST, A0/3V, CMDVCC  
Main  
Control  
& Logic Unit  
TWI  
Controller  
Timer  
16 Bits  
SCL  
SDA  
Clocks Controller  
Analog  
Drivers  
CPRES  
CRST  
CLK  
CIO, CC4, CC8  
CCLK  
I/O, C4, C8  
2
AT83C24  
4234E–SCR–09/04  
AT83C24  
Pin Description  
Pinouts (Top View)  
28-pin SOIC Pinout  
QFN28 pinout  
CLK  
C8  
28  
1
2
DVCC  
27  
26  
25  
PRES/INT  
C4  
RESET  
3
4
24  
25  
26  
23 22  
21  
27  
28  
EVCC  
1
I/O  
CMDVCC  
CMDVCC  
VSS  
20  
19  
18  
EVCC  
2
3
4
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
VCC  
5
6
A2  
A1  
/CK  
/RST  
/3V  
/CK  
A2  
VCC  
CVSS  
LI  
QFN 28  
/RST  
/3V  
A1  
A0  
7
8
CVSS  
LI  
A0  
TOP VIEW  
17  
16  
5
6
7
SCL  
SDA  
NC  
9
SCL  
SDA  
CVCC  
CVCC  
10  
CVCCin  
15  
CVCCin  
8
9
14  
12 13  
11  
11  
12  
13  
NC  
CIO  
10  
CRST  
CCLK  
NC  
CC8  
16  
15  
CPRES  
14  
CC4  
Note:  
1. NC = Not Connected  
2. SOIC and QFN packages are available for AT83C24 and for AT83C24NDS  
Signals  
Table 1. Ports Description  
Pad Name  
Pad Internal  
ESD  
Pad  
Power Supply  
Limits  
Type  
Description  
Microcontroller Interface Function:  
TWI bus slave address selection input.  
A2/CK and A1/RST pins are respectively connected to CCLK and CRST signals in  
“transparent mode” (see page 18 ).  
A2/CK-  
A1/RST-  
A0/3V  
EVCC  
3 kV  
I
A0/3V is used for hardware activation to select CVCC voltage (3V or 5V).  
The slave address of the device is based on the value present on A2, A1, A0 on the  
rising edge of RESET pin (see Table 2). In fact, the address is taken internally at the 11th  
CLK rising edge.  
Microcontroller Interface Function:  
Depending on IT_SEL value (see CONFIG4 register),  
PRES/INT outputs card presence status or interruptions (page 9)  
O
3 kV  
PRES/INT  
EVCC  
open-  
drain  
An internal Pull-up (typ 330kΩ,see Table 18)to EVCC can be activated in the pad if  
necessary using INT_PULLUP bit (CONFIG4 register).  
Remark: during power up and before registers configuration, the PRES/INT signal must  
be ignored.  
Microcontroller Interface Function:  
Power-on reset  
A low level on this pin keeps the AT83C24 under reset even if applied on power-on.  
It also resets the AT83C24 if applied when the AT83C24 is running (see Power  
monitoring §).  
I/O  
3 kV  
open-  
drain  
RESET  
VCC  
Asserting RESET when the chip is in Shut-down mode returns the chip to normal  
operation.  
AT83C24 is driving the Reset pin Low on power-on-reset or if power fail on VCC or  
DVCC (see POWERMON bit in CONFIG4 register), this can be used to reset or  
interrupt other devices. After reset, AT83C24 needs to be reconfigured before  
starting a new card session.  
3
4234E–SCR–09/04  
Table 1. Ports Description (Continued)  
Pad Name  
Pad Internal  
ESD  
Pad  
Power Supply  
Limits  
Type  
Description  
I/O  
3 kV  
3 kV  
Microcontroller Interface Function  
TWI serial data  
SDA  
SCL  
VCC  
VCC  
open-  
drain  
I/O  
Microcontroller Interface Function  
TWI serial clock  
open-  
drain  
Microcontroller Interface Function  
Copy of CIO pin and high level reference for EVCC.  
An external pull up to EVCC is needed on IO pin.  
I/O is the reference level for EVCC if EVCC is connected to a capacitor.  
This feature is unused if EVCC is connected to VCC.  
3 kV  
I/O  
EVCC  
I/O  
I/O  
3 kV  
3 kV  
3 kV  
Microcontroller Interface Function  
C4  
C8  
EVCC  
EVCC  
EVCC  
CVCC  
CVCC  
CVCC  
(pull-up) Copy of Card CC4.  
I/O  
Microcontroller Interface Function  
(pull-up) Copy of Card CC8.  
Microcontroller Interface Function  
CLK  
CIO  
CC4  
CC8  
I
Master Clock  
I/O  
Smart card interface function  
8 kV+  
8 kV+  
8 kV+  
(pull-up) Card I/O  
I/O  
Smart card interface function  
(pull-up) Card C4  
I/O  
Smart card interface function  
(pull-up) Card C8  
Smart card interface function  
I
Card presence  
CPRES  
VCC  
8 kV+  
(pull-up)  
An internal Pull-up to VCC can be activated in the pad if necessary using PULLUP bit  
(CONFIG1 register).  
Smart card interface function  
Card clock  
CCLK  
CRST  
CVCC  
CVCC  
8 kV+  
8 kV+  
3 kV+  
O
O
Smart card interface function  
Card reset  
I
Microcontroller Interface Function:  
CMDVCC  
VCC  
EVCC  
(pull-up)  
Activation/Shutdown of the smart card Interface.  
Supply Voltage  
3 kV+  
3 kV+  
PWR  
PWR  
VCC is used to power the internal voltage regulators and I/O buffers.  
DC/DC Input  
LI must be tied to VCC pin through an external coil (typically 4.7 µH) and provides the  
current for the charge pump of the DC/DC converter.  
LI  
It may be directly connected to VCC if the step-up converter is not used (see STEPREG  
bit in CONFIG4 register and see minimum VCC values in Table 20 (class A) and  
Table 21 (class B)).  
4
AT83C24  
4234E–SCR–09/04  
AT83C24  
Table 1. Ports Description (Continued)  
Pad Name  
Pad Internal  
ESD  
Pad  
Power Supply  
Limits  
Type  
Description  
Card Supply Voltage  
CVCC  
8 kV+  
8 kV+  
PWR  
PWR  
CVCC is the programmable voltage output for the Card interface.  
It must be connected to external decoupling capacitors (see page 35 and page 36).  
Card Supply Voltage  
CVCCin  
This pin must be connected to CVCC.  
Digital Supply Voltage  
Is internally generated and used to supply the digital core.  
DVCC  
EVCC  
3 kV+  
PWR  
PWR  
This pin has to be connected to an external capacitor of 100 nF and should not be  
connected to other devices.  
Extra Supply Voltage (Microcontroller power supply)  
EVCC is used to supply the internal level shifters of host interface pins.  
EVCC voltage can be supplied from the external EVCC pin connected to the host power  
supply.  
3 kV+  
If EVCC cannot be connected to the host power supply, it must be tied to an external  
capacitor. EVCC voltage can be generated internally by an automatic follow up of the  
logic high level on the I/O pin. In this configuration, connect a 100 nF + 100kOhms in  
parallel between EVCC pin and VSS pin.  
DC/DC Ground  
CVSS  
VSS  
8 kV+  
Note:  
GND  
GND  
CVSS is used to sink high shunt currents from the external coil.  
Ground  
ESD Test conditions: 3 positive and 3 negative pulses on each pin versus GND. Pulses  
generated according to Mil/STD 883 Class3. Recommended capacitors soldered on  
CVCC and VCC pins.  
5
4234E–SCR–09/04  
Operational Modes  
TWI Bus Control  
The Atmel Two-wire Interface (TWI) interconnects components on a unique two-wire  
bus, made up of one clock line and one data line with speeds of up to 400 Kbits per sec-  
ond, based on a byte-oriented transfer format.  
The TWI-bus interface can be used:  
To configure the AT83C24  
To select the operating mode of the card: 1.8V, 3V or 5V  
To configure the automatic activation sequence  
To start or stop sessions (activation and de-activation sequences)  
To initiate a warm reset  
To control the clock to the card in active mode  
To control the clock to the card in stand-by mode (stop LOW, stop HIGH or  
running)  
To enter or leave the card stand-by or power-down modes  
To select the interface (connection to the host I/O / C4/ C8)  
To request the status (card present or not, over-current and out of range  
supply voltage occurrence)  
To drive and monitor the card contacts by software  
To accurately measure the ATR delay when automatic activation is used  
TWI Commands  
Frame Structure  
The structure of the TWI bus data frames is made of one or a series of write and read  
commands completed by STOP.  
Write commands to the AT83C24 have the structure:  
ADDRESS BYTE + COMMAND BYTE + DATA BYTE(S)  
Read commands to the AT83C24 have the structure:  
ADDRESS BYTE + DATA BYTE(S)  
The ADDRESS BYTE is sampled on A2/CK, A1/RST, A0/3V after each reset  
(hard/soft/general call) but A2/CK, A1/RST, A0/3V can be used for transparent mode  
after the reset.  
Figure 1. Data transfer on TWI bus  
acknowledgement  
from slave  
SDA  
SCL  
Adresse byte  
command  
and/or data  
5
7
8
1
2
3
4
6
9
start condition  
stop condition  
6
AT83C24  
4234E–SCR–09/04  
AT83C24  
Address Byte  
The first byte to send to the device is the address byte. The device controls if the hard-  
ware address (A2/CK, A1/RST, A0/3V pins on reset) corresponds to the address given  
in the address byte (A2, A1, A0 bits).  
If the level is not stable on A2/CK pin (or A1/RST pin, or A0/3V pin) at reset, the user  
has to send the commands to the possible address taken by the device.  
If A2/CK to A0/3V are tied to the host microcontroller and their reset values are  
unknown, a general call on the TWI bus allows to reset all the AT83C24 devices and set  
their address after A2/CK to A0/3V are fixed.  
Figure 2. Address Byte  
b4  
0
b0  
b7  
0
b6  
1
b5  
0
b3  
b2  
b1  
A1  
R/W  
A2  
A0  
Slave Address on 7 Bits  
1 for READ Command  
0 for WRITE Command  
Up to 8 devices can be connected on the same TWI bus. Each device is configured with  
a different combination on A2/CK, A1/RST, A0/3V pins. The corresponding address  
byte values for read/write operations are listed below.  
Table 2. Address Byte Values  
Address Byte  
for  
Address Byte  
for  
A2  
A1  
A0  
(A2/CK pin)  
(A1/RST pin)  
(A0/3V pin)  
Read  
Write  
Command  
Command  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0x41  
0x43  
0x45  
0x47  
0x49  
0x4B  
0x4D  
0x4F  
0x40  
0x42  
0x44  
0x46  
0x48  
0x4A  
0x4C  
0x4E  
7
4234E–SCR–09/04  
Write Commands  
The write commands are:  
1. Reset:  
Initializes all the logic and the TWI interface as after a power-up or power-fail reset.  
If a smart card is active when RESET falls, a deactivation sequence is performed.  
This is a one-byte command.  
2. Write Config:  
Configures the device according to the last six bits in the CONFIG0 register and to  
the following four bytes in CONFIG1, CONFIG2, CONFIG3 then CONFIG4 regis-  
ters. This is a five bytes command.  
Figure 3. Command byte format for Write CONFIG0 command  
b7  
1
b6  
0
b5  
X
b4  
X
b3  
X
b2  
X
b1  
X
b0  
X
CONFIG0 on 6 Bits  
3. Write Timer:  
Program the 16-bit automatic reset transition timer with the following two bytes. This  
is a three bytes command.  
4. Write Interface:  
Program the interface. This is a one-byte command. The MSB of the command byte  
is fixed at 0.  
5. General Call Reset:  
A general call followed by the value 06h has the same effect as a Reset command.  
Table 3. Write Commands Description  
Address Byte  
Data Byte Data Byte Data Byte Data Byte  
(See Table 2) Command Byte  
1
2
3
4
1. Reset  
0100 A2A1A00 1111 1111  
(10 + CONFIG0 6  
0100 A2A1A00  
bits)  
CONFIG1 CONFIG2 CONFIG3 CONFIG4  
TIMER1 TIMER0  
2. Write config  
3. Write Timer  
0100 A2A1A00 1111 1100  
(0+INTERFACE 7  
0100 A2A1A00  
bits)  
4. Write Interface  
5. General Call  
Reset  
0000 0000  
0000 0110  
8
AT83C24  
4234E–SCR–09/04  
AT83C24  
Read Command  
After the slave address has been configured, the read command allows to read one or  
several bytes in the following order:  
STATUS, CONFIG0, CONFIG1, CONFIG2, CONFIG3, INTERFACE, TIMER1,  
TIMER0, CAPTURE1, CAPTURE0  
FFh is completing the transfer if the microcontroller attempts to read beyond the last  
byte.  
Note:  
Flags are only reset after the corresponding byte read has been acknowledged by the  
master.  
Table 4. Read Command Description  
Byte Description  
Address byte  
Data byte 1  
Data byte 2  
Data byte 3  
Data byte 4  
Data byte 5  
Data byte 6  
Data byte 7  
Data byte 8  
Data byte 9  
Data byte 10  
Data byte 11  
Data byte 12  
Byte Value  
0100 A2A1A01  
STATUS  
CONFIG0  
CONFIG1  
CONFIG2  
CONFIG3  
CONFIG4  
INTERFACE  
TIMER 1 (MSB)  
TIMER 0 (LSB)  
CAPTURE 1 (MSB)  
CAPTURE 0 (LSB)  
0xFF  
Interrupts  
The PRES/INT behavior depends on IT_SEL bit value (see CONFIG4 register).  
If IT_SEL= 0, the PRES/INT output is High by default (on chip pull up or open drain).  
PRES/INT is driven Low by any of the following event:  
INSERT bit set in CONFIG0 register (card insertion/extraction or bit set by  
software )  
VCARD_INT bit set in STATUS register (the DC/DC output voltage has  
settled)  
over-current detection on CVCC  
VCARDERR bit set in CONFIG0 register (out of range voltage on CVCC or  
bit set by software)  
ATRERR bit set in CONFIG0 register (no ATR before the card clock counter  
overflows or bit set by software).This control of ATR timing is only available if  
ART bit =1.  
If IT_SEL=0, a read command of STATUS register and of CONFIG0 register will  
release PRES/INT pin to high level.  
Several AT83C24 devices can share the same interrupt and the microcontroller can  
identify the interrupt sources by polling the status of the AT83C24 devices using  
TWI commands.  
9
4234E–SCR–09/04  
If IT_SEL= 1 (mandatory for NDS applications and for software compatibility with  
existing devices) the PRES/INT output is High to indicate a card is present and none  
of the following event has occured:  
over-current detection on CVCC  
VCARDERR bit set in CONFIG0 register (out of range voltage on CVCC or  
bit set by software)  
Card Presence Detection  
The card presence is provided by the CPRES pin. The polarity of card presence contact  
is selected with the CARDDET bit (see CONFIG1 register). A programmable filtering is  
controlled with the CDS[2-0] bits (see CONFIG1 register).  
An internal pull-up on the CPRES pin can be disconnected in order to reduce the con-  
sumption, an external pull-up must then be connected to VCC. The PULLUP bit (see  
CONFIG1 register) controls this feature.  
The card presence switch is usually connected to Vss (card present if CPRES=1). The  
CARDDET bit must be set. The internal pull up can be connected.  
If the card presence contact is connected to Vcc (card present if CPRES=0), the internal  
pull-up must be disconnected (see PULLUP bit) and an external pull-down must be con-  
nected to the CPRES pin.  
An interrupt can be generated if a card is inserted or extracted (see interrupts §).  
Figure 4. Card Presence Input  
VCC  
External  
Pull-up  
VCC  
(See Table 18)  
Card  
Internal  
Pull-up  
Contact  
PULLUP Bit  
CARDDET Bit  
Presence  
= 1 No Card if CPRES = 0  
= 0 No Card if CPRES = 1  
= 1 Closed  
= 0 Open  
VSS  
CPRES  
FILTERING  
VCC  
EVCC  
= 1 Closed  
= 0 Open  
CDS[2-0]  
Card  
CARDIN bit  
INT_PULLUP Bit  
Contact  
IT_SEL Bit  
Presence  
= 1 Card Inserted  
= 0 No Card  
PRES/INT  
External  
Pull-down  
IT Controller  
VSS  
10  
AT83C24  
4234E–SCR–09/04  
AT83C24  
CIO, CC4, CC8 Controller  
The CIO, CC4, CC8 output pins are driven respectively by CARDIO, CARDC4,  
CARDC8 bits values or by I/O, C4, C8 signal pins. This selection depends of the IODIS  
bit value. If IODIS is reset, data are bidirectional between respectively I/O, C4, C8 pins  
and CIO, CC4, CC8 pins.  
Figure 5. CIO, CC4, CC8 Block Diagram  
CVCC  
I/O  
0
CIO  
EVCC  
EVCC  
1
CARDIO bit  
CVCC  
CVCC  
C4  
C8  
0
CC4  
CC8  
1
CARDC4 bit  
CARDC8 bit  
0
1
IODIS bit  
IO and CIO pins are linked together through the on chip level shifters if IODIS bit=0 in  
INTERFACE register. This is done automatically during an hardware activation.  
Their iddle level are 1. With IO high, CIO is pulled up.  
The same behavior is applicable on C4/ CC4 and C8/ CC8 pins.  
The maximum frequency on those lines depends on CLK frequency (3 clock rising  
edges to transfer). With CLK=27MHz, the maximum frequency on this line is 1.5MHz.  
Due to the minimum transfer delay allowed for NDS applications, the CLK minimum fre-  
quency is 18MHz.  
Clock Controller  
The clock controller generates two clocks (as shown in Figure 6 and Figure 7):  
1. a clock for the CCLK: Four different sources can be used: CLK pin, DCCLK sig-  
nal, CARDCK bit or A2/CK pin (in transparent mode).  
2. a clock for DC/DC converter.  
11  
4234E–SCR–09/04  
Figure 6. Clock Block Diagram with Software Activation (see page 14)  
DCCLK  
CLK  
DCK[2:0]  
DC/DC  
CKS[2:0]  
0
A2/CK  
CCLK  
1
CARDCK bit  
CKSTOP bit  
Figure 7. Clock Block Diagram with Hardware Activation (see page 14)  
DCCLK  
CLK  
DCK[2:0]  
DC/DC  
CKS[2:0]  
0
A2/CK  
CCLK  
1
CARDCK bit  
CMDVCC  
A1/RST  
Hardware  
activation  
CKSTOP bit  
CRST_SEL bit  
CRST Controller  
The CRST output pin is driven by the A1/RST pin signal pin or by the CARDRST bit  
value. This selection depends of the CRST_SEL bit value (see CONFIG4 register).  
If the CRST pin signal is driven by the CARDRST bit value, two modes are available:  
If the ART bit is reset, CRST pin is driven by CARDRST bit.  
If the ART bit is set, CRST pin is controlled and follows the “Automatic Reset  
Transition” (page 15).  
12  
AT83C24  
4234E–SCR–09/04  
AT83C24  
Figure 8. CRST Block Diagram with soft activation  
0
1
CARDRST bit  
tb delay  
see Fig 12  
0
1
CRST  
ART bit  
CRST_SEL bit = 0  
Figure 9. CRST Block Diagram with Hardware Activation (CMDVCC pin used)  
0
CARDRST bit  
1
0
CRST  
ART bit  
A1/RST  
1
CMDVCC  
Hardware  
activation  
CRST_SEL bit = 1  
CMDVCC  
deactivation  
activation  
13  
4234E–SCR–09/04  
Activation Sequence  
Hardware Activation (DC/DC started with CMDVCC)  
Initial conditions:  
CARDDET bit must be configured in accordance to the smart card connector polarity.  
IT_SEL bit, CRST_SEL bit (see CONFIG4 register) must be set and CARDRST bit (see  
INTERFACE register) must be cleared. A smart card must be detected to enable to start  
the DC/DC (CVCC= 3V or 5V).  
The hardware activation sequence is started by hardware with CMDVCC pin going high  
to low. It follows this automatic sequence:  
CIO / CC4 / CC8 and IO / C4 / C8 are respectively linked together (IODIS bit is  
cleared).  
The DC/DC is started and CVCC is set according to the A0/3V pin: 5V (Class A) if  
A0/3V is High and 3V (Class B) is A0/3V is Low.  
CCLK signal is enabled (CKSTOP bit cleared) when CVCC has settled to the  
programmed voltage (see Electrical Characteristics) and the level on A1/RST is 0.  
The CCLK source can be DCCLK signal, CLK signal , A2/CK signals or CARDCK bit  
(see Figures 5).  
CRST signal is linked with A1/RST pin as soon as A1/RST pin level is 0. A rising  
edge on A1/RST pin set the CRST pin.  
Note:  
1. The card must be deactivated to change the voltage.  
Figure 10. Activation sequence with CMDVCC  
CMDVCC  
A1/RST  
CCLK  
CVCC  
CRST  
CIO  
Note:  
For NDS applications, the host usually starts activation with A1/RST = 0.  
14  
AT83C24  
4234E–SCR–09/04  
AT83C24  
Software Activation (DC/DC Started With Writing in VCARD[1:0] bits) and ART bit = 1  
Initial conditions: CARDRST bit = 0, CKSTOP bit =1, IODIS bit = 1.  
The following sequence can be applied:  
1. Card Voltage is set by software to the required value (VCARD[1:0] bits in  
CONFIG0 register). This writing starts the DC/DC.  
2. Wait the end of the DC/DC init with a polling on VCARDOK bit (STATUS reg-  
ister) or wait for PRES/INT to go Low if enabled (if IT_SEL bit = 0 in  
CONFIG4 register). When VCARDOK bit is set (by hardware), CARDIO bit  
should be set by software.  
3. CKSTOP, IODIS are programmed by software. CKSTOP bit is reset to have  
the clock running. IODIS is reset to drive the I/O, C4, C8 pins and the  
CIO,CC4, CC8 pins according to each other.  
4. CARDRST bit (see INTERFACE register) is set by software.  
Automatic Reset Transition description:  
A 16-bit counter starts when CARDRST bit is set. It counts card clock cycles. The CRST  
signal is set when the counter reaches the TIMER[1-0] value which corresponds to the  
“tb” time (Figure 11).The counter is reseted when the CRST pin is released and it is  
stopped at the first start bit of the Answer To Request (ATR) on CIO pin.  
The CIO pin is not checked during the first 200 clock cycles (ta on Figure 11). If the ATR  
arrives before the counter reaches Timer[1-0] value, the activation sequence fails, the  
CRST signal is not set and the Capture[1-0] register contains the value of the counter at  
the arrival of the ATR.  
If the ATR arrives after the rising edge on CRST pin and before the card clock counter  
overflows (65535 clock cycles), the activation sequence completes. The Capture[1-0]  
register contains the value of the counter at the arrival of the ATR (tc time on Figure 11).  
15  
4234E–SCR–09/04  
Figure 11. Software activation with ART bit = 1  
CARDRST bit set  
CVCC  
4
3
1
CRST  
CCLK  
CIO  
ta  
2
tb  
tc  
ISO 7816 constraints: ta = 200 card clock cycles  
400 card clock cycles< = tb  
400 card clock cycles< = tc < = 40000 card clock cycles  
Timer[1-0] reset value is 400.  
Note:  
Software Activation (DC/DC Started by Writing in VCARD[1:0] bits) and ART bit = 0  
The activation sequence is controlled by software using TWI commands, depending on  
the cards to support. For ISO 7816 cards, the following sequence can be applied:  
1. Card Voltage is set by software to the required value (VCARD[1:0] bits in  
CONFIG0 register). This writing starts the DC/DC.  
2. Wait of the end of the DC/DC init with a polling on VCARDOK bit (STATUS  
register) or wait for PRES/INT to go Low if enabled (if IT_SEL bit = 0 in  
CONFIG4 register). When VCARDOK bit is set (by hardware), CARDIO bit  
should be set by software.  
3. CKSTOP, IODIS are programmed by software. CKSTOP bit is reset to have  
the clock running. IODIS is reset to drive the I/O, C4, C8 pins and the  
CIO,CC4, CC8 pins according to each other.  
4. CRST pin is controlled by software using CARDRST bit (see INTERFACE  
register).  
16  
AT83C24  
4234E–SCR–09/04  
AT83C24  
Figure 12. Software activation without automatic control (ART bit = 0)  
CVCC  
4
1
CRST  
CCLK  
CIO  
3
ATR  
2
Note:  
Note:  
It is assumed that initially VCARD[1:0], CARDCK, CARDIO and CARDRST bits are  
cleared, CKSTOP and IODIS are set (those bits are further explained in the registers  
description)  
The user should check the AT83C24 status and possibly resume the activation sequence  
if one TWI transfer is not acknowledged during the activation sequence.  
Deactivation Sequence  
The card automatic deactivation is triggered when one the following condition occurs:  
ICARDERR bit is set by hardware  
VCARDERR bit is set by hardware (or by software)  
INSERT is set and CARDIN is cleared (card extraction)  
SHUTDOWN is set by software  
CMDVCC goes from Low to High  
Power fail on VCC (see POWERMON bit in CONFIG4 register)  
Reset pin going low  
It is a self-timed sequence which cannot be interrupted when started (see Figure 13).  
Each step is separated by a delay based on Td equal to 8 periods of the DC/DC clock,  
typically 2 µs:  
1. T0: CARDRST is cleared, SHUTDOWN bit set.  
2. T0 + 5 x Td:CARDCK is cleared, CKSTOP, CARDIO and IODIS are set.  
3. T0 + 6 x Td: CARDIO is cleared.  
4. T0 + 7 x Td: VCARD[1-0] = 00.  
17  
4234E–SCR–09/04  
Figure 13. Deactivation Sequence  
CVCC  
CRST  
CCLK  
CIO,  
CC4,  
CC8  
t1  
t2  
Td  
Notes: 1. Setting ICARDERR by software does not trigger a deactivation. VCARDERR can be  
used to deactivate the card by software.  
2. t1=5 to 5.5*Td, and t2=0.5*Td to Td.  
Transparent Mode  
If the microcontroller outputs ISO 7816 signals, a transparent mode allows to connect  
RST/CLK and I/O/C4/C8 signals after an electrical level control. The AT83C24 level  
shifters adapt the card signals to the smart card voltage selection.  
The CRST and CCLK microcontroller signals can be respectively connected to the  
A1/RST and A2/CK pins.  
The CRST_SEL bit (in CONFIG4 register) selects standard or transparent configuration  
for the CRST pin. CKS in CONFIG2 allows to select standard or transparent configura-  
tion for the CCLK pin. So CCLK and CRST are independent. A2/CK to A0/3V inputs  
always give the TWI address at reset. The A0/3V pin can be used for TWI addressing  
and easily connect two AT83C24 devices on the same TWI bus.  
Figure 14. Transparent Mode Description  
Microcontroller  
AT83C24  
CCLK  
CRST  
CIO  
A2/CK  
CCLK  
A1/RST  
I/O  
CRST  
CIO  
SMART CARD  
CC4  
CC8  
C4  
CC4  
CC8  
C8  
18  
AT83C24  
4234E–SCR–09/04  
AT83C24  
Power Modes  
Two power-down modes are available to reduce the AT83C24 power consumption (see  
STUTDOWN bit in CONFIG1 register and LP bits in CONFIG3 register).  
To enter in the mode number 4 (see Table 5), the sequence is the following:  
First select the Low-power mode by setting the LP bit  
The activation of the SHUTDOWN bit can then be done.  
The AT83C24 exits Power-down if a software/hardware reset is done or if SHUTDOWN  
bit is cleared. The AT83C24 is then active immediately.  
Either a hardware reset or a TWI command clearing the SHUTDOWN bit can cause an  
exit from Power-down. The internal registers retain their value during the shutdown  
mode.  
In Power-down mode, the device is sleeping and waiting for a wake up condition.  
To reduce power consumption, the User should stop the clock on the CLK input after  
setting the SHUTDOWN bit. The clock can be enabled again just before exiting SHUT-  
DOWN (at least 10 µs before a START bit on SDA).  
Table 5. Power Modes Description  
Typical  
Supply  
Current  
Shutdown  
Bit  
LP  
Bit  
STEPREG  
VCARD[1:0]  
Description  
Mode  
Number  
1
0
X
0
11  
Step up mode: VCC = 3V, CVCC = 5V,  
160 mA  
30 mA  
Icard = 65mA  
Icard = 0  
2
0
X
1
11  
70 mA  
Regulator mode: VCC = 5.25V, CVCC = 5V,  
Icvcc = 65mA  
3
4
0
1
X
0
X
X
00  
00  
3 mA  
DC/DC off, CLK = 10MHz, VCC=3V to 5V  
90 µA  
The TWI interface of the AT83C24 is active  
but its analog blocs are switched off to reduce  
the consumption  
5
1
1
X
00  
30 µA  
Pulsed mode of the internal 3V logic regulator  
Power Monitoring  
The AT83C24 needs only one power supply to run: VCC.  
If the microcontroller outputs signals with a different electrical level, the host positive  
supply is connected to EVCC.  
EVCC and VCC pins can be connected together if they have the same voltage.  
If EVCC and VCC have different electrical levels:  
The EVCC pin and RESET pin should be connected with a resistor bridge. RESET  
pin high level must be higher than VIH (see Table 19). When EVCC drops, RESET  
pin level drops too. A deactivation sequence starts if a card was active.  
19  
4234E–SCR–09/04  
Then the AT83C24 resets if RESET pin stays low.  
If EVCC and VCC have the same value, then they should be connected:  
The AT83C24 integrates an internal 3V regulator to feed its logic from the VCC sup-  
ply. The bit powermon allows the user to select if the internal PFD monitors VCC or  
the internal regulated 3V. If the PFD monitors VCC (POWERMON bit=0), a deacti-  
vation is performed if VCC falls below VPFDP (see VPFDP value in the datasheet).  
Same deactivation is performed if the internal 3V falls below VPFDP and POWER-  
MON bit = 1.  
20  
AT83C24  
4234E–SCR–09/04  
AT83C24  
Registers  
Table 6. CONFIG0 (Config Byte 0)  
7
1
6
0
5
4
3
2
1
0
ATRERR  
INSERT  
ICARDERR VCARDERR  
VCARD1  
VCARD0  
Bit  
Number  
Bit Mnemonic Description  
7-6  
1-0  
These bits cannot be programmed and are read as 1-0.  
Answer to Reset Interrupt  
This bit is set when the card clock counter overflows (no falling edge on CIO  
is received before the overflow of the card clock counter).  
5
ATRERR  
This bit is cleared by hardware when this register is read. It can be set by  
software for test purpose. The reset value is 0.  
Card Insertion Interrupt  
This bit is set when a card is inserted or extracted: a change in CARDIN value  
filtered according to CDS[2-0]. After power up, if the level on CPRES pin is 0,  
then INSERT bit is set.  
4
INSERT  
It can be set by software for test purpose.  
This bit is cleared by hardware when this register is read. It cannot be cleared  
by software.  
The reset value is 0.  
Card Over Current Interrupt  
This bit is set when an over current is detected on CVCC. It can be set by  
software for test purpose (no card deactivation is performed, no IT is  
performed).  
3
ICARDERR  
This bit is cleared by hardware when this register is read. It cannot be cleared  
by software.  
The reset value is 0.  
Card Out of Range Voltage Interrupt  
This bit is set when the output voltage goes out of the voltage range specified  
by VCARD field. It can be set by software for test purpose and deactivate the  
card.  
2
VCARDERR  
This bit is cleared by hardware when this register is read. It cannot be cleared  
by software.  
The reset value is 0.  
Card Voltage Selection  
VCARD[1:0] = 00: 0V  
VCARD[1:0] = 01: 1.8V (see STEPREG bit)  
VCARD[1:0] = 10: 3V  
VCARD[1:0] = 11: 5V  
1-0  
VCARD[1:0]  
VCARD[1:0] writing to 1.8V, 3V, 5V starts the DC/DC if a card is detected.  
VCARD[1:0] writing to 0 stops the DC/DC.  
No card deactivation is performed when the voltage is changed between  
1.8V, 3V or 5V. The microcontroller should deactivate the card before  
changing the voltage.  
The reset value is 00.  
21  
4234E–SCR–09/04  
Table 7. CONFIG 1 (Config Byte 1)  
7
X
6
5
4
3
2
1
0
ART  
SHUTDOWN  
CARDDET  
PULLUP  
CDS2  
CDS1  
CDS0  
Bit  
Bit  
Number  
Mnemonic Description  
7
X
This bit should not be set.  
Automatic Reset Transition  
Set this bit to have the CRST pin changed according to activation sequence.  
6
ART  
Clear this bit to have the CRST pin immediately following the value programmed  
in CARDRST.  
The reset value is 0.  
Shutdown  
Set this bit to reduce the power consumption. An automatic de-activation  
sequence will be done.  
SHUTDOWN  
5
4
Clear this bit to enable VCARD[1:0] selection.  
The reset value is 0.  
Card Presence Detection Polarity  
Set this bit to indicate the card presence detector is closed when no card is  
inserted (CPRES is low).  
CARDDET  
Clear this bit to indicate the card presence detector is open when no card is  
inserted (CPRES is high).Changing CARDDET will set INSERT bit (see  
CONFIG0) even if no card is inserted or extracted.  
The reset value is 0.  
Pull-up Enable  
Set this bit to enable the internal pull-up on the CPRES pin. This allows to  
minimize the number of external components.  
3
PULLUP  
Clear this bit to disable the internal pull-up and minimize the power consumption  
when the card detection contact is on. Then an external pull-up must be  
connected to VCC (typically a 1 Mresistor).  
The reset value is 1.  
Card Detection filtering  
CPRES is sampled by the master clock provided on CLK input. A change on  
CPRES is detected after:  
CDS[2-0] = 0: 0 sample(1)  
CDS[2-0] = 1: 4 identical samples  
CDS [2-0] = 2: 8 identical samples (reset value)  
CDS[2-0] = 3: 16 identical samples  
CDS[2-0] = 4: 32 identical samples  
CDS[2-0] = 5: 64 identical samples  
CDS[2-0] = 6: 128 identical samples  
CDS[2-0] = 7: 256 identical samples  
The reset value is 2.  
2-0  
CDS[2:0]  
Note:  
When CDS[2-0] = 0 and IT_SEL = 0, PRES/INT = 1 when no  
card is present and PRES/INT = 0 when a card is inserted  
even if CLK is STOPPED. This can be used to wake up the  
external microcontroller and restart CLK when a card is  
inserted in the AT83C24.  
If CDS[2-0] = 0, IT_SEL = 1 and CLK is stopped, a card insertion or  
extraction has no effect on PRES/INT pin.  
22  
AT83C24  
4234E–SCR–09/04  
AT83C24  
Table 8. CONFIG2 (Config Byte 2)  
7
6
5
4
3
2
1
0
X
DCK2  
DCK1  
DCK0  
X
CKS2  
CKS1  
CKS0  
Bit  
Bit  
Number  
Mnemonic Description  
7
X
This bit should not be set.  
DC/DC Clock prescaler factor  
DCCLK is the DC/DC clock. It is the division of CLK input by DCK prescaler.  
DCK = 0: prescaler factor equals 1 (CLK = 4 to 4.61MHz)  
DCK [2:0] = 1: prescaler factor equals 2 (CLK = 7 to 9.25MHz)  
DCK [2:0] = 2: prescaler factor equals 4 (CLK = 14 to 18.5 MHz)  
DCK [2:0] = 3: prescaler factor equals 6 (CLK = 21 to 27.6 MHz)  
DCK [2:0] = 4: prescaler factor equals 8 (CLK = 28 to 34.8 MHz)  
6-4  
DCK[2:0] DCK [2:0] = 5: prescaler factor equals 10 (CLK = 35 to 43 MHz)  
DCK [2:0] = 6: prescaler factor equals 12 (CLK = 43.1 to 48 MHz)  
DCK [2:0] = 7: reserved  
The reset value is 1.  
DCCLK must be as close as possible to 4 MHz with a duty cycle of 50%.  
DCK must be programmed before starting the DC/DC.  
The other values of CLK are not allowed.  
DCK has to be properly configured before resetting the STEPREG bit.  
3
X
This bit should not be set.  
Card Clock prescaler factor  
CKS [2:0] = 0: CCLK = CLK (then the maximum frequency on CLK is 24 MHz)  
CKS [2:0] = 1: CCLK = DCCLK (DC/DC clock)  
CKS [2:0] = 2: CCLK = DCCLK / 2  
CKS [2:0] = 3: CCLK = DCCLK / 4  
CKS [2:0] = 4: CCLK = A2  
2-0  
CKS[2:0]  
CKS [2:0] = 5: CCLK = A2 / 2  
CKS [2:0] = 6: CCLK = CLK / 2  
CKS [2:0] = 7: CCLK = CLK / 4  
The reset value is 0.  
Notes: 1. When this register is changed, a special logic insures no glitch occurs on the CCLK  
pin and actual configuration changes can be delayed by half a period to two periods  
of CCLK.  
2. CCLK must be stopped with CKSTOP bit before switching from CKS = (0, 1, 2, 3, 6,  
7) to CKS = (4, 5) or vice versa.  
3. When DCK = 0, only CKS=4 and CKS=5 are allowed.  
4. The user can’t directly select A2 or A2/2 after a reset or when switching from CKS =  
(0, 1, 2, 3, 6, 7) to CKS = (4, 5). To select A2, the user should select A2/2 first and  
after A2. To select A2/2, the user should select A2 first and after A2/2.  
23  
4234E–SCR–09/04  
Table 9. CONFIG3 (Config Byte 3)  
7
6
5
4
3
2
1
0
EAUTO  
VEXT1  
VEXT0  
ICCADJ  
LP  
X
X
X
Bit  
Bit  
Number  
Mnemonic Description  
EVCC voltage configuration:  
EAUTO VEXT1 VEXT0  
0
0
0
0
1
0
0
1
1
X
0 EVCC = 0 the regulator is switched off.  
1EVCC = 2.3V  
0 EVCC = 1.8V  
EAUTO  
VEXT1  
VEXT0  
1 EVCC = 2.7V  
7-5  
X EVCC voltage is the level detected on I/O input pin.  
if EVCC is supplied from the external EVCC pin, the user can switch off the  
internal EVCC regulator to decrease the consumption.  
If EVCC is switched off, and no external EVCC is supplied, the AT83C24 is  
inactive until a hardware reset is done.  
The reset value is 100.  
CICC overflow adjust  
This bit controls the DC/DC sensitivity to any overflow current .  
Set this bit to decrease the DC/DC sensitivity (CICC_ovf is increased by about  
4
ICCADJ 20%, see Electrical Characteristics). The start of the DC/DC with a high current  
load is easier.  
Clear this bit to have a normal configuration.  
The reset value is 0.  
Low-power Mode  
Set this bit to enable low-power mode during shutdown mode (pulsed mode  
activated).  
Clear this bit to disable low-power mode during shutdown mode.  
3
LP  
The activation reference is the following:  
• First select the Low-power mode by setting LP bit.  
• The activation of SHUTDOWN bit can then be done.  
This bit as no effect when SHUTDOWN bit is cleared.  
The reset value is 0.  
2
1
0
X
X
X
This bit should not be set.  
This bit should not be set.  
This bit should not be set.  
24  
AT83C24  
4234E–SCR–09/04  
AT83C24  
Table 10. CONFIG4 (Config Byte 4)  
7
6
5
4
3
2
1
0
X
X
X
STEPREG  
INT_PULLUP  
POWERMON  
IT_SEL  
CRST_SEL  
Bit Number  
Bit Mnemonic Description  
7-5  
X-X-X  
These bits should not be set.  
Step Regulator mode  
Clear this bit to enable the automatic step-up converter (CVCC is stable even if VCC is not higher than CVCC).  
Set this bit to permanently disable the step-up converter (CVCC is stable only if VCC is sufficiently higher than  
CVCC).  
4
STEPREG  
This bit must be set before activating the DC/DC converter if no external coil is present.  
The reset value is 0.  
This bit must always be set if no external coil is used  
Internal pull-up  
Set this bit to activate the internal pull-up (connected internally to EVCC) on PRES/INT pin.  
3
2
INT_PULLUP Clear this bit to deactivate the internal pull-up.  
PRES/INT is an open drain output with a programmable internal pull up.  
The reset value is 0.  
Power monitor  
Set this bit to monitor any glitch on the Digital Supply Voltage (DVCC) of the AT83C24.  
Clear this bit to monitor any glitch on VCC.  
POWERMON  
The reset value is 0.  
Interrupt Select  
Set this bit to disable INSERT and VCARD_INT interrupts. Then PRES/INT is pulled up when a card is present  
and no error is detected.  
1
0
IT_SEL  
Clear this bit to have all the interrupt sources enabled and active Low.  
IT_SEL must be set to enable a hardware activation with CMDVCC.  
The reset value is 0.  
Card Reset Selection  
Set this bit to have the CRST pin driven by hardware through the A1 pin (only with hardware activation).  
Clear this bit to have the CRST pin driven by software through the CARDRST bit.  
CRST_SEL must be set when CMDVCC is used (hardware activation).  
The reset value is 0.  
CRST_SEL  
25  
4234E–SCR–09/04  
Table 11. INTERFACE (Interface Byte)  
7
0
6
5
4
3
2
1
0
IODIS  
CKSTOP  
CARDRST  
CARDC8  
CARDC4  
CARDCK  
CARDIO  
Bit Number  
Bit Mnemonic Description  
7
0
This bit should not be set.  
Card I/O isolation  
Set this bit to drive the CIO, CC4, CC8 pins according to CARDIO, CARDC4, CARDC8 respectively and to put  
I/O, C4, C8 in Hi-Z. This can be used to have the I/O, and C4 and C8 pins of the host communicating with  
another AT83C24 interface, while CIO, CC4 and CC8 are driven by software (or if the card is in standby or  
power-down modes).  
6
IODIS  
Clear this bit to drive the I/O/CIO, C4/CC4 and C8/CC8 pins according to each other. This can be used to activate  
asynchronous cards.  
The reset value is 1.  
CARD Clock Stop  
Set this bit to stop CCLK according to CARDCK. This can be used to set asynchronous cards in power-down  
mode (GSM) or to drive CCLK by software.  
Clear this bit to have CCLK running according to CKS. This can be used to activate asynchronous cards.  
Note:  
1. When this bit is changed a special logic ensures that no glitch occurs on the CCLK pin  
and actual configuration changes can be delayed by half a period to two periods of  
CCLK.  
5
CKSTOP  
2. CKSTOP must be set before switching on the DC/DC with VCARD[1:0].  
The reset value is 1.  
Card Reset  
Set this bit to enter a reset sequence according to ART bit value.  
Clear this bit to drive a low level on the CRST pin.  
The reset value is 0.  
4
3
CARDRST  
CARDC8  
Card C8  
Set this bit to drive the CC8 pin High with the on-chip pull-up (according to IODIS bit value). The pin can then be  
an input (read in STATUS register).  
Clear this bit to drive a low level on the CC8 pin (according to IODIS bit value).  
The reset value is 0.  
Card C4  
Set this bit to drive the CC4 pin High with the on-chip pull-up (according to IODIS bit value). The pin can then be  
an input (read in STATUS register).  
2
CARDC4  
Clear this bit to drive a low level on the CC4 pin (according to IODIS bit value).  
The reset value is 0.  
Card Clock  
Set this bit to set a high level on the CCLK pin (according to CKSTOP bit value).  
Clear this bit to drive a low level on the CCLK pin.  
The reset value is 0.  
1
0
CARDCK  
CARDIO  
Card I/O  
Set this bit to drive the CIO pin High with the on-chip pull-up (according to IODIS bit value). The pin can then be  
an input (read in STATUS register).  
Clear this bit to drive a low level on the CIO pin (according to IODIS bit value).  
The reset value is 0.  
26  
AT83C24  
4234E–SCR–09/04  
AT83C24  
Table 12. STATUS (Status Byte)  
7
6
5
4
3
X
2
1
0
CC8  
CC4  
CARDIN  
VCARDOK  
VCARD_INT  
CRST  
CIO  
Bit Number  
Bit Mnemonic  
Description  
Card CC8  
7
CC8  
This bit provides the actual level on the CC8 pin when read.  
The reset value is 0.  
Card CC4  
6
5
CC4  
This bit provides the actual level on the CC4 pin when read.  
The reset value is 0.  
Card Presence Status  
CARDIN  
This bit is set when a card is detected.  
It is cleared otherwise.  
Card Voltage Status  
This bit is set by the DCDC when the output voltage remains within the  
voltage range specified by VCARD[1:0] bits.  
It is cleared otherwise.  
4
VCARD_OK  
The reset value is 0.  
3
2
X
This bit should not be set.  
Card voltage interrupt  
This bit is set when VCARD_OK bit is set.  
This bit is cleared when read by the microcontroller.  
The reset value is 0.  
VCARD_INT  
Card RST  
1
0
CRST  
CIO  
This bit provides the actual level on the CRST pin when read.  
The reset value is 0.  
Card I/O  
This bit provides the actual level on the CIO pin when read.  
The reset value is 0.  
Table 13. TIMER 1 (Timer MSB)  
7
6
5
4
3
2
1
0
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit  
Bit  
Number  
Mnemonic Description  
7 - 0  
Bits 15 - 8 Timer MSB (bits 15 to 8)  
Reset value = 0x00000001  
27  
4234E–SCR–09/04  
Table 14. TIMER 0 (Timer LSB)  
7
6
5
4
3
2
1
0
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bit  
Bit  
Number  
Mnemonic Description  
7 - 0  
bits 7 - 0 Timer LSB (bits 7to 0)  
Reset value = 0x10010000  
Table 15. CAPTURE 1 (Capture MSB)  
7
6
5
4
3
2
1
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Bit  
Bit  
Number  
Mnemonic Description  
7 - 0  
bits 15 - 8 See “software activation with ART = 1”, page 15.  
Reset value = 0x00000000  
Table 16. CAPTURE 0 (Capture LSB)  
7
6
5
4
3
2
1
0
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Bit  
Bit  
Number  
Mnemonic Description  
7 - 0  
bits 7 - 0 See “software activation with ART = 1”, page 15.  
Reset value = 0x00000000  
28  
AT83C24  
4234E–SCR–09/04  
AT83C24  
Electrical Characteristics  
Absolute Maximum Ratings *  
*NOTICE:  
Stresses at or above those listed under “Absolute  
Maximum Ratings” may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or any  
other conditions above those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Ambient Temperature Under Bias: .....................-40°C to 85°C  
Storage Temperature: ................................... -65°C to +150°C  
Voltage on VCC: ........................................ VSS -0.5V to +6.0V  
Voltage on SCIB pins (***): .........CVSS -0.5V to CVCC + 0.5V  
Voltage on host interface pins:.......VSS -0.5V to EVCC + 0.5V  
Voltage on other pins:...................... VSS -0.5V to VCC + 0.5V  
Power Dissipation value is based on the maxi-  
mum allowable die temperature and the thermal  
resistance of the package.  
Power Dissipation: .......................................................... 1.5W  
Thermal resistor of QFN pack-  
age..(**)............................35°C/W  
Thermal resistor of SO package.................................48°C/W  
(**) Exposed die attached pad must be soldered to ground  
Thermal resistor are measured on multilayer PCB with 0 m/s air flow.  
(***) including shortages between any groups of smart card pins.  
AC/DC Parameters  
EVCC connected to host power supply: from 1.6V to 5.5V.  
TA = -40°C to +85°C; VSS = 0V; VCC = 3V to 5.5V.  
CLASS A card supplied with CVCC = 4.75 to 5.25V for AT83C24NDS  
CLASS A card supplied with CVCC = 4.6 to 5.25V for AT83C24  
CLASS B card supplied with CVCC = 2.8V to 3.2V  
CLASS C card supplied with CVCC = 1.68V to 1.92V  
Table 17. Core (VCC)  
Symbol  
Parameter  
Min  
2.4  
Typ  
2.5  
Max  
2.6  
Unit  
V
Test Conditions  
VPFDP  
VPFDM  
trise, tfall  
Power fail high level threshold  
Power fail low level threshold  
VDD rise and fall time  
2.25  
1 µs  
2.35  
2.45  
600s  
V
Not tested.  
Table 18. Host Interface (I/O, C4, C8, CLK, A2, A1, A0, CMDVCC, PRES/INT)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
0.3 x EVCC  
EVCC from 2.7V to VCC  
EVCC from 1.6 to 2.7V  
VIL  
Input Low-voltage  
Input High Voltage  
-0.5  
V
V
0.25 x EVCC  
EAUTO=0  
VIH  
0.7 x EVCC  
EVCC + 0.5  
EAUTO=1  
EVCC from 1.6V to VCC  
29  
4234E–SCR–09/04  
Table 18. Host Interface (I/O, C4, C8, CLK, A2, A1, A0, CMDVCC, PRES/INT) (Continued)  
Symbol  
Parameter  
Min  
0.8 x EVCC  
300  
Typ  
Max  
Unit  
Test Conditions  
IOL = -100 µA  
0.05  
0.4  
V
V
VOL  
Output Low-voltage (I/O, C4, C8, PRES/INT)  
IOL = -1.2 mA  
Output High Voltage (C4, C8, PRES/INT)  
VOH on I/O depends on external pull up value  
EVCC from 1.6V to VCC  
VOH  
EVCC  
+3  
V
IOH = 100 µA  
EICC  
Extra Supply Current  
mA CL = 100 nF  
Short to VSS  
RPRES/INT PRES/INT weak pull-up output current  
330  
360  
κΩ  
INT_PULLUP = 0: Internal  
pull-up active.  
CL = 100 nF, EIcc = +3  
mA  
Vpeak on I/O from 1.6V to  
VCC  
EVCC  
EVCC pin not connected to a power supply  
Vpeak - 10 mV  
Vpeak  
Vpeak + 25 mV  
V
EAUTO = 1:  
min duration 1µs,  
min frequency 0.1Hz,  
spikes <50ns are filtered.  
Vpeak -  
200mV  
EVCC  
CLK  
EVCC pin connected to a power supply  
Clock signal for AT83C24  
EAUTO = 1  
If DCK[2:0] =0  
(CLK=4MHz to 4.61MHz),  
a duty cycle of 50% is  
needed.  
4
48  
48  
MHz  
MHz  
no constrainst on duty  
cycle  
CLK  
Clock signal for AT83C24NDS  
18  
Table 19. Host Interface (SCL, SDA, RESET)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
1.9  
VCC > 4.5V  
VIL  
Input Low-voltage  
-0.5  
V
0.3 x VCC  
VCC <= 4.5V  
3
VCC > 4.5V  
VIH  
Input High Voltage  
Output Low-voltage  
VCC + 0.5  
0.4  
V
V
0.7 x VCC  
VCC <= 4.5V  
VOL  
IOL = -3 mA  
VHIST  
Input trigger hysteresis  
0.1 x VCC  
Table 20. Smart Card Class A  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
VCC=3V to 5.5V,  
STEPREG=0  
Card Supply Current Capability  
65  
65  
CICC  
mA  
mA  
VCC > 5.35V, STEPREG = 1  
Card Supply Current Overflow:  
ICCADJ = 0 (reset value)  
ICCADJ = 1  
CICC_ovf  
66  
66  
120  
130  
130  
150  
VCC from 3 to 5.5V  
30  
AT83C24  
4234E–SCR–09/04  
AT83C24  
Table 20. Smart Card Class A  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
0 < Icard < 60mA CL =10µF  
for AT83C24  
60  
200  
350  
Ripple on CVCC  
Spikes on CVCC  
mV  
150  
0 < Icard < 65mA CL = 3.3µF  
for AT83C24NDS  
Max. charge 40 nA.s  
4.6  
4.8  
5.3  
V
Max. duration 400 ns  
Max. Icard variation 200 mA  
Vcardok up  
Vcardok high level threshold  
Vcardok low level threshold  
4.9  
V
V
4.6  
4.8  
4.8  
AT83C24  
Vcardok down  
4.75  
AT83C24NDS  
Icard = 0, VCC > VPFDP  
CL = 3.3 µF Icard = 0  
CL = 10 µF Icard = 0  
(see note 1)  
180  
500  
250  
750  
TVHL  
CVCC valid to 0  
µs  
µs  
VCC = 3V, CL = 3.3µF  
Icard = 65mA  
180  
110  
250  
250  
Icard = 0mA  
TVLH  
CVCC 0 to Valid  
VCC = 3V, CL = 10µF  
Icard = 65mA  
240  
170  
300  
250  
Icard = 0mA  
Notes: 1. Capacitor: X7R type or X5R type, max ESR value is 30m(100kHz-100MHz),  
Replacing 3.3µF by 2.2µF in parrallel with 1µF is better for ESR and noise reduction.  
Table 21. Smart Card Class B  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
65  
65  
VCC=3V to 5.5V, STEPREG=0  
VCC > 5.35V, STEPREG = 1  
CICC  
Card Supply Current Capability  
mA  
mA  
mV  
V
Card Supply Current Overflow:  
CICC_ovf ICCADJ = 0 (reset value)  
ICCADJ = 1  
66  
66  
130  
140  
140  
150  
VCC from 3.0 to 5.5V  
200  
350  
0 < Icard < 65mA CL =10µF  
0 < Icard < 65mA CL = 3.3µF  
Ripple on CVCC  
60  
Maxi. charge 40 nA.s  
Max. duration 400 ns  
Spikes on CVCC  
2.76  
3.24  
Max. variation Icard 200mA  
Vcardok up Vcardok high level threshold  
2.8  
3
V
V
Vcardok  
Vcardok low level threshold  
down  
2.76  
2.9  
Icard = 0, VCC > VPFDP  
CL = 3.3 µF Icard = 0  
(see note 1)  
130  
400  
250  
500  
TVHL  
CVCC valid to 0  
µs  
CL = 10 µF Icard = 0  
31  
4234E–SCR–09/04  
Table 21. Smart Card Class B  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
VCC = 3V, CL = 3.3µF  
Icard = 65mA  
140  
110  
250  
250  
Icard = 0mA  
TVLH  
CVCC 0 to Valid  
µs  
VCC = 3V, CL = 10µF  
Icard = 60mA  
130  
100  
250  
250  
Icard = 0mA  
Notes: 1. Capacitor: X7R type or X5R type, max ESR value is 30m(100kHz-100MHz),  
Replacing 3.3µF by 2.2µF in parrallel with 1µF is better for ESR and noise reduction.  
Table 22. Smart Card Class C  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
CICC  
Card Supply Current Capability  
40  
mA VCC = 3V  
Card Supply Current Overflow:  
CICC_ovf ICCADJ = 0 (reset value)  
ICCADJ = 1  
45  
mA  
Spikes on CVCC  
1.68  
1.75  
1.92  
300  
V
V
Vcardok up Vcardok high level threshold  
1.8  
Vcardok  
Vcardok low level threshold  
down  
1.7  
1.75  
V
Icard = 0, CL = 10 µF(1)  
TVHL  
CVCC valid to 0  
180  
µs  
µs  
CVCC = 1.8V to 0.4V  
200  
100  
50  
300  
150  
80  
Icard = 40mA, CL = 10 µF(1)  
Icard = 0, CL = 10 µF(1)  
TVLH  
CVCC 0 to valid  
Icard = 40mA, CL = 3.3 µF(1)  
Icard = 0, CL = 3.3 µF(1)  
CVCC = 0.4 to VCARDOK  
60  
100  
Notes: 1. Capacitor: X7R type or X5R type, max ESR value is 30m(100kHz-100MHz),  
Replacing 3.3µF by 2.2µF in parrallel with 1µF is better for ESR and noise reduction.  
Table 23. Smart Card Clock (CCLK pin)  
Symbol  
Parameter  
Min  
0
Typ  
Max  
0.4  
Unit  
Test Conditions  
IOL = -200 µA CLASS  
A&B&C  
VOL  
Output Low-voltage  
V
CVCC - 0.45  
CVCC  
IOH = +200 µA CLASS  
A&B  
VOH  
Output High Voltage  
Short Circuit Current  
V
CLASS C  
0.7CVCC  
-30  
CVCC  
30  
IOS  
mA  
Short to GND or CVCC  
CL = 30 pF CLASS A  
CL = 30 pF CLASS B  
CL = 30 pF CLASS C  
16  
22.5  
50  
ns  
tR tF  
Rise and Fall time  
measurement between  
10% and 90% of CVCC  
32  
AT83C24  
4234E–SCR–09/04  
AT83C24  
Table 23. Smart Card Clock (CCLK pin) (Continued)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
0.2  
CLASS A  
CCLK from 0.5 to 4.2V  
CLASS B  
Rise and Fall Slew rate  
0.12  
V/ns  
CCLK from 0.5 to 0.85 x  
CVCC  
Low level voltage stability  
-0.25  
0.5  
V
CLASS A&B&C  
(taking into account PCB design)  
High level voltage stability  
4.2  
2.35  
CVCC+0.25  
CVCC+0.25  
CVCC+0.25  
CVCC = CLASS A  
CVCC = CLASS B  
CLASS C  
(taking into account PCB design)  
V
CVCC-0.4  
CCLK  
Smart card clock frequency  
24  
MHz  
CL = 30pF, CLK=48MHz  
Table 24. Smart Card I/O (CIO, CC4, CC8 pins)  
Symbol  
VIL  
Parameter  
Min  
Typ  
Max  
0.8  
Unit  
V
Test Conditions  
IIL = 500 µA  
Input Low-voltage  
Input Low Current  
-0.3V  
IIL  
700  
µA  
CVCC = CLASS A&B&C  
0.6 x CVCC  
0.7 x CVCC  
CVCC  
CVCC  
CVCC = CLASS A  
VIH  
IIH  
Input High Voltage  
Input High Current  
V
CVCC = CLASS B & C  
-20  
+20  
µA  
0.45  
0.3  
IOL = -1 mA CLASS A  
IOL = -1 mA CLASS B  
IOL = -1 mA CLASS C  
VOL  
Output Low-voltage  
0
V
0.3  
IOH = 40 µA CLASS  
A&B&C  
0.75 x CVCC  
0.9 x CVCC  
CVCC  
CVCC  
VOH  
Output High Voltage  
V
mA  
V
IOH = 0µA, CLASS A&B  
IOS  
Output Short Circuit Current  
-15  
+15  
Short to GND or CVCC  
-0.25  
-0.25  
-0.25  
0.6  
0.4  
0.4  
CLASS A  
CLASS B  
CLASS C  
Low level voltage stability  
(taking into account PCB design)  
High level voltage stability  
CVCC-0.5  
CVCC+0.25  
V
CVCC = CLASS A&B&C  
(taking into account PCB design)  
CL = 65 pF  
CLASS A:  
measurement between  
0.6V and 70% of CVCC  
Output rise and fall time  
Input rise and fall time  
tR tF  
0.1  
1
µs  
µs  
CLASS B & C:  
measurement between  
0.4V and 70% of CVCC  
tR tF  
CL = 65 pF  
33  
4234E–SCR–09/04  
Table 25. Smart Card RST (CRST pin)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
0.12 x CVCC  
IOL = -20 µA CLASS  
A&B&C  
0
0
VOL  
Output Low-voltage  
0.4  
0.2  
V
IOL = -200 µA CLASS A  
IOL = -200 µA CLASS  
B&C  
IOH = 200 µA  
VOH  
IOS  
Output High Voltage  
Output High Current  
0.9*CVCC  
-15  
CVCC  
+15  
V
CLASS A&B&C  
mA  
Short to GND or CVCC  
CL = 30pF  
tR tF  
Rise and Fall time  
0.1  
µs  
V
measurement between  
10% and 90% of CVCC  
0.50V  
0.30V  
0.30V  
CLASS A  
CLASS B  
CLASS C  
Low level voltage stability  
-0.25  
(taking into account PCB design)  
4.2  
2.35  
CLASS A  
CLASS B  
CLASS C  
High level voltage stability  
CVCC+0.25  
V
(taking into account PCB design)  
CVCC-0.4  
Table 26. Card Presence  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Short to VSS  
RCPRES  
CPRES weak pull-up output current  
300  
330  
360  
κΩ  
PULLUP = 1:  
Internal pull-up active  
Table 27. TWI (SDA, SCL pins)  
Symbol  
tSU;DAT  
tHD;DAT  
tfDA  
Parameter  
Min  
20  
Typ  
10  
0
Max  
Unit  
ns  
Test Conditions  
Not tested  
Data set-up time  
Data hold time  
10  
ns  
Not tested  
Fall time on SDA signal  
50  
ns  
Not tested  
34  
AT83C24  
4234E–SCR–09/04  
Typical Application  
Figure 1. Typical Standard Mode Application Diagram for 3 AT83C24 (up to 8 AT83C24 if needed)  
VCC  
EVCC  
100nF  
L1  
4.7µH  
C1  
2.2µF  
VSS  
C13  
VSS  
VCC  
VCC  
VCC  
A2/CK  
See note  
pull up  
A1/RST  
A0/3V  
for  
I/O  
CRST  
CIO, CC4, CC8  
CPRES  
SDA,  
SCL  
pullups  
Reset  
pullup  
Card 1  
CCLK  
SCL  
SDA  
CVCC,  
CVCCin  
TWI  
AT83C24  
2.2uF 1uF  
100nF  
C2  
RESET  
RST  
C3  
C10  
CVSS  
CVSS  
CVSS  
DVCC  
INT0  
Px.y  
PRES/INT  
I/O, C4, C8  
100nF  
CLK  
VSS  
VCC  
100nF  
EVCC  
L2  
4.7µH  
C4  
2.2µF  
VSS  
C14  
VSS  
Host  
MICROCONTROLLER  
VCC  
A2/CK  
A1/RST  
A0/3V  
CRST  
CIO, CC4, CC8  
CPRES  
XTAL1  
XTAL2  
Card 2  
VSS  
CCLK  
SCL  
SDA  
CVCC,  
CVCCin  
AT83C24  
2.2uF  
1uF  
100nF  
4 to 48 MHz  
RESET  
C5  
C6  
C11  
CVSS  
CVSS  
CVSS  
VSS  
DVCC  
PRES/INT  
I/O, C4, C8  
VSS  
100nF  
CLK  
VSS  
VCC  
100nF  
EVCC  
L3  
4.7µH  
C5  
2.2µF  
VSS  
C15  
VSS  
VCC  
A2/CK  
A1/RST  
A0/3V  
CRST  
CIO, CC4, CC8  
CPRES  
Card 3  
VSS  
CCLK  
SCL  
SDA  
CVCC,  
CVCCin  
AT83C24  
2.2uF  
1uF  
100nF  
RESET  
C8  
C9  
C12  
CVSS CVSS  
CVSS  
PRES/INT  
I/O, C4, C8  
DVCC  
100nF  
CLK  
VSS  
Note: 1. The external resistor on I/O can be removed if the host pin has an internal resistor.  
Typical NDS Application  
Figure 2. Typical NDS Standard Mode Application Diagram for 1 AT83C24NDS.  
VCC  
EVCC  
100nF  
L1  
4.7µH  
C1  
2.2µF  
VSS  
C13  
VSS  
See note 2  
VCC  
VCC  
See note1  
for  
I/O pull up  
CVSS  
SDA,  
SCL  
pullups  
Reset  
pullup  
SCL  
SDA  
CRST  
TWI  
Smart  
Card 1  
CIO, CC4, CC8  
CCLK  
RESET  
RST  
INT0  
Px.y  
PRES/INT  
I/O, C4, C8  
CVCCin  
CVCC  
CLK  
Px.y  
Px.y  
Px.y  
A2/CLK  
1uF  
2.2uF  
100nF  
A1/RST  
A0/3V  
C2  
C3  
C10  
CVSS  
CVSS  
CVSS  
Host  
MICROCONTROLLER  
AT83C24NDS  
XTAL1  
XTAL2  
CPRES  
DVCC  
18.432 or 27MHz  
card  
present  
100nF  
VSS  
VSS  
VSS  
VSS  
Note:  
1. The external resistor on I/O can be removed if the host pin has an internal resistor.  
2. The internal pull up on PRES/INT is disabled during reset (recommended external  
20kOhms pull up).  
3. Refer to application note for AT83C24NDS software configuration.  
36  
AT83C24  
4234E–SCR–09/04  
AT83C24  
Ordering Information  
Part Number  
Supply Voltage  
3V to 5.5V  
Temperature Range  
Industrial  
Package  
QFN28  
QFN28  
QFN28  
QFN28  
SO28  
Packing  
Tray  
AT83C24-PRTIL(2)  
AT83C24-PRRIL(2)  
AT83C24-PRTIM(2)  
AT83C24-PRRIM(2)  
AT83C24-TISIL  
3V to 5.5V  
Industrial  
Tape&Reel  
Tray  
4.00V to 5.5V  
4.00V to 5.5V  
3V to 5.5V  
Industrial  
Industrial  
Tape&Reel  
Stick  
Industrial  
AT83C24-TIRIL  
3V to 5.5V  
Industrial  
SO28  
Tape&Reel  
Stick  
AT83C24-TISIM  
AT83C24-TIRIM  
4.00V to 5.5V  
4.00V to 5.5V  
Industrial  
SO28  
Industrial  
SO28  
Tape&Reel  
AT83C24NDS-PRTIL (1)(2)  
AT83C24NDS-PRRIL (1)(2)  
AT83C24NDS-PRTIM (1)(2)  
AT83C24NDS-PRRIM (1)(2)  
AT83C24NDS-TISIL (1)  
AT83C24NDS-TIRIL (1)  
AT83C24NDS-TISIM (1)  
AT83C24NDS-TIRIM (1)  
3V to 5.5V  
3V to 5.5V  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
QFN28  
QFN28  
QFN28  
QFN28  
SO28  
Tray  
Tape&Reel  
Tray  
4.00V to 5.5V  
4.00V to 5.5V  
3V to 5.5V  
Tape&Reel  
Stick  
3V to 5.5V  
SO28  
Tape&Reel  
Stick  
4.00V to 5.5V  
4.00V to 5.5V  
SO28  
SO28  
Tape&Reel  
LEAD FREE/  
HALOGEN FREE:  
AT83C24-PRTUL(2)  
AT83C24-PRRUL(2)  
AT83C24-PRTUM(2)  
AT83C24-PRRUM(2)  
AT83C24-TISUL  
3V to 5.5V  
3V to 5.5V  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
QFN28  
QFN28  
QFN28  
QFN28  
SO28  
Tray  
Tape&Reel  
Tray  
4.00V to 5.5V  
4.00V to 5.5V  
3V to 5.5V  
Tape&Reel  
Stick  
AT83C24-TIRUL  
3V to 5.5V  
SO28  
Tape&Reel  
Stick  
AT83C24-TISUM  
AT83C24-TIRUM  
4.00V to 5.5V  
4.00V to 5.5V  
SO28  
SO28  
Tape&Reel  
AT83C24NDS-PRTUL (1)(2)  
AT83C24NDS-PRRUL (1)(2)  
AT83C24NDS-PRTUM(1)(2)  
3V to 5.5V  
3V to 5.5V  
Industrial  
Industrial  
Industrial  
QFN28  
QFN28  
QFN28  
Tray  
Tape&Reel  
Tray  
4.00V to 5.5V  
37  
4234E–SCR–09/04  
Part Number  
Supply Voltage  
4.00V to 5.5V  
3V to 5.5V  
Temperature Range  
Industrial  
Package  
QFN28  
SO28  
Packing  
Tape&Reel  
Stick  
AT83C24NDS-PRRUM (1)(2)  
AT83C24NDS-TISUL (1)  
AT83C24NDS-TIRUL (1)  
AT83C24NDS-TISUM (1)  
AT83C24NDS-TIRUM (1)  
Industrial  
3V to 5.5V  
Industrial  
SO28  
Tape&Reel  
Stick  
4.00V to 5.5V  
4.00V to 5.5V  
Industrial  
SO28  
Industrial  
SO28  
Tape&Reel  
Note:  
1. Enhanced AC/DC parameters, see first page for differences between AT83C24 and AT83C24NDS.  
2. Refer to index mark for proper placement.  
38  
AT83C24  
4234E–SCR–09/04  
AT83C24  
Package Drawings  
QFN28  
39  
4234E–SCR–09/04  
SO28  
AT83C24  
Datasheet Change  
Log  
Changes from 4234A-  
05/03 to 4234B-02/04  
1. Addition of CRST, CIO, CCLK controllers descriptions, page 10.  
2. Update of Hardware\Software activation description, page 14.  
3. Suppression of low voltage regulator mode for power down modes, page 19.  
4. Modification of clock values in CONFIG2 regsiter, page 22.  
5. Addition of a point on QFN pinout view, page2.  
6. Update of electrical characteristics, page 29.  
Changes from 4234B-  
02/04 to 4234C - 04/04  
1. Addition of references in ordering information  
2. Update of EVCC description  
3. Update of CARDDET bit and INSERT bit description  
Changes from 4234C-  
04/04 to 4234D - 07/04  
1. Update for Rev 4 silicon version (index 4 on component).  
2. Software workaround for A2 or A2/2 selection in CKS register.  
3. Max speed on IO/CIO transfer  
4. New conditions for hardware activation (see IT_SEL).  
5. SO28 drawing package (error with SO32).  
6. Adjusted electrical parameters for NDS compliance, pages 28, 29, 30.  
Changes from 4234D-  
04/04 to 4234E - 09/04  
1. QFN28 new package drawing.  
2. Clock input parameters for AT83C24 and AT83C24NDS.  
41  
4234E–SCR–09/04  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard  
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any  
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and  
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are  
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use  
as critical components in life support devices or systems.  
© Atmel Corporation 2004. All rights reserved. Atmel® logo and combinations thereof are registered trademarks, and Everywhere You  
Aresm are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
4234E–SCR–09/04  
/xM  

相关型号:

AT83C24-TISUL

Smart Card Reader Interface with Power Management
ATMEL

AT83C24-TISUM

Smart Card Reader Interface with Power Management
ATMEL

AT83C24B

Smart Card Reader Interface with Power Management
ATMEL

AT83C24B-PRRIL

Smart Card Reader Interface with Power Management
ATMEL

AT83C24B-PRRIM

Smart Card Reader Interface with Power Management
ATMEL

AT83C24B-PRRUL

Smart Card Reader Interface with Power Management
ATMEL

AT83C24B-PRRUM

Smart Card Reader Interface with Power Management
ATMEL

AT83C24B-PRTIL

Smart Card Reader Interface with Power Management
ATMEL

AT83C24B-PRTIM

Smart Card Reader Interface with Power Management
ATMEL

AT83C24B-PRTUL

Smart Card Reader Interface with Power Management
ATMEL

AT83C24B-PRTUM

Smart Card Reader Interface with Power Management
ATMEL

AT83C24B-TIRIL

Smart Card Reader Interface with Power Management
ATMEL