AT91CAP9SC250A-CJ [ATMEL]

Customizable Microcontroller Processor; 可定制微控制器处理器
AT91CAP9SC250A-CJ
型号: AT91CAP9SC250A-CJ
厂家: ATMEL    ATMEL
描述:

Customizable Microcontroller Processor
可定制微控制器处理器

微控制器
文件: 总60页 (文件大小:1591K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Incorporates the ARM926EJ-SARM® Thumb® Processor  
– DSP Instruction Extensions, ARM Jazelle® Technology for Java® Acceleration  
– 16 Kbyte Data Cache, 16 Kbyte Instruction Cache, Write Buffer  
– 220 MIPS at 200 MHz  
– Memory Management Unit  
– EmbeddedICEIn-circuit Emulation, Debug Communication Channel Support  
Additional Embedded Memories  
– One 32 Kbyte Internal ROM, Single-cycle Access at Maximum Matrix Speed  
– One 32 Kbyte Internal SRAM, Single-cycle Access at Maximum Matrix Speed  
External Bus Interface (EBI)  
– EBI Supports Mobile DDR, SDRAM, Low Power SDRAM, Static Memory,  
Synchronous CellularRAM, ECC-enabled NAND Flash and CompactFlash®  
Metal Programmable (MP) Block  
Customizable  
Microcontroller  
Processor  
– 500,000 Gates/250,000 Gates Metal Programmable Logic (through 5 Metal Layers)  
for AT91CAP9SC500A/AT91CAP9SC250A Respectively  
– Ten 512 x 36-bit Dual Port RAMs  
AT91CAP9SC500A  
AT91CAP9SC250A  
– Eight 512 x 72-bit Single Port RAMs  
– High Connectivity for Up to Three AHB Masters and Four AHB Slaves  
– Up to Seven AIC Interrupt Inputs  
– Up to Four DMA Hardware Handshake Interfaces  
– Delay Lines for Double Data Rate Interface  
Summary  
– UTMI+ Full Connection  
– Up to 77 Dedicated I/Os  
LCD Controller  
– Supports Passive or Active Displays  
Preliminary  
– Up to 24 Bits per Pixel in TFT Mode, Up to 16 Bits per Pixel in STN Color Mode  
– Up to 16M Colors in TFT Mode, Resolution Up to 2048x2048, Supports Wider  
Screen Buffers  
Image Sensor Interface  
– ITU-R BT. 601/656 External Interface, Programmable Frame Capture Rate  
– 12-bit Data Interface for Support of High Sensibility Sensors  
– SAV and EAV Synchronization, Preview Path with Scaler, YCbCr Format  
USB 2.0 Full Speed (12 Mbits per second) OHCI Host Double Port  
– Dual On-chip Transceivers  
– Integrated FIFOs and Dedicated DMA Channels  
USB 2.0 High Speed (480 Mbits per second) Device Port  
– On-chip Transceiver, 4 Kbyte Configurable Integrated DPRAM  
– Integrated FIFOs and Dedicated DMA Channels  
– Integrated UTMI+ Physical Interface  
Ethernet MAC 10/100 Base T  
– Media Independent Interface (MII) or Reduced Media Independent Interface (RMII)  
– 28-byte FIFOs and Dedicated DMA Channels for Receive and Transmit  
Multi-Layer Bus Matrix  
NOTE: This is a summary document.  
The complete document is available  
under NDA. Please contact an Atmel  
Sales Representative.  
– Twelve 32-bit-layer Matrix, Allowing a Maximum of 38.4 Gbps of On-chip Bus  
Bandwidth at Maximum 100 MHz System Clock Speed  
– Boot Mode Select Option, Remap Command  
www.atmel.com/contacts/  
Fully-featured System Controller, Including  
– Reset Controller, Shutdown Controller  
6270AS–CAP–10-Jan-08  
– Four 32-bit Battery Backup Registers for a Total of 16 Bytes  
– Clock Generator and Power Management Controller  
– Advanced Interrupt Controller and Debug Unit  
– Periodic Interval Timer, Watchdog Timer and Real-Time Timer  
Reset Controller (RSTC)  
– Based on Two Power-on Reset Cells, Reset Source Identification and Reset Output Control  
Shutdown Controller (SHDC)  
– Programmable Shutdown Pin Control and Wake-up Circuitry  
Clock Generator (CKGR)  
– 32,768 Hz Low-power Oscillator on Battery Backup Power Supply, Providing a Permanent  
Slow Clock  
– 8 to 16 MHz On-chip Oscillator  
– Two PLLs up to 240 MHz  
– One USB 480 MHz PLL  
Power Management Controller (PMC)  
– Very Slow Clock Operating Mode, Software Programmable Power Optimization Capabilities  
– Four Programmable External Clock Signals  
Advanced Interrupt Controller (AIC)  
– Individually Maskable, Eight-level Priority, Vectored Interrupt Sources  
– Two External Interrupt Sources and One Fast Interrupt Source, Spurious Interrupt Protected  
Debug Unit (DBGU)  
– 2-wire UART and Support for Debug Communication Channel, Programmable ICE Access  
Prevention  
Periodic Interval Timer (PIT)  
– 20-bit Interval Timer plus 12-bit Interval Counter  
Watchdog Timer (WDT)  
– Key-protected, Programmable Only Once, Windowed 16-bit Counter Running at Slow Clock  
Real-Time Timer (RTT)  
– 32-bit Free-running Backup Counter Running at Slow Clock with 16-bit Prescaler  
Four 32-bit Parallel Input/Output Controllers (PIOA, PIOB, PIOC and PIOD)  
– 128 Programmable I/O Lines Multiplexed with up to Two Peripheral I/Os  
– Input Change Interrupt Capability on Each I/O Line  
– Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output  
DMA Controller (DMAC)  
– Acts as one Bus Matrix Master  
– Embeds 4 Unidirectional Channels with Programmable Priority, Address Generation, Channel  
Buffering and Control  
– Supports Four External DMA Requests and Four Internal DMA Requests from the Metal  
Programmable Block (MPBlock)  
Twenty-fourTwenty-two Peripheral DMA Controller Channels (PDC)  
One Advanced Encryption System (AES)  
– 128/192/256-bit Key Algorithm, Compliant with FIPS PUB 197 Specifications, Protected  
Against DPA Attacks  
– Buffer Encryption/decryption Capabilities with PDC, including EBC, CBC, OFB, CFB and CTR  
Modes of Operation  
One Triple Data Encryption System (TDES)  
– Compliant with FIPS Publication 46-3, Data Encryption Standard (DES)  
– Buffer Encryption/decryption Capabilities with PDC, including EBC, CBC, OFB and CFB  
Modes of Operation  
2
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
One 2.0A and 2.0B Compliant CAN Controller  
– 16 Fully-programmable Message Object Mailboxes, 16-bit Time Stamp Counter  
Two Multimedia Card Interfaces (MCI)  
– SDCard/SDIO and MultiMediaCard 3.31 Compliant  
– Automatic Protocol Control and Fast Automatic Data Transfers with PDC  
Two Synchronous Serial Controllers (SSC)  
– Independent Clock and Frame Sync Signals for Each Receiver and Transmitter  
– I²S Analog Interface Support, Time Division Multiplex Support  
– High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer  
One AC97 Controller (AC97C)  
– 6-channel Single AC97 Analog Front End Interface, Slot Assigner  
Three Universal Synchronous/Asynchronous Receiver Transmitters (USART)  
– Individual Baud Rate Generator, IrDA® Infrared Modulation/Demodulation, Manchester  
Encoding/Decoding  
– Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support  
Two Master/Slave Serial Peripheral Interface (SPI)  
– 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects  
– Synchronous Communications at Up to 90 Mbits/sec  
One Three-channel 16-bit Timer/Counters (TC)  
– Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel  
– Double PWM Generation, Capture/Waveform Mode, Up/Down Capability  
One Four-channel 16-bit PWM Controller (PWMC)  
One Two-wire Interface (TWI)  
– Master and Slave Mode Support, All Two-wire Atmel EEPROMs Supported  
One 8-channel, 10-bit Analog-to-Digital Converter (ADC)  
– Eight Channels Multiplexed with Digital I/Os  
IEEE® 1149.1 JTAG Boundary Scan on All Digital Pins  
Required Power Supplies:  
– 1.08V to 1.32V for VDDCORE and VDDBU, VDDUPLL and VDDUTMIC  
– 3.0V to 3.6V for VDDOSC, VDDPLL and VDDIOP0 (Peripheral I/Os) and VDDANA (ADC)  
– Programmable 1.65V to 1.95V or 3.0V to 3.6V for VDDIOP1 (Peripheral I/Os), VDDIOM (Memory  
I/Os) and VDDMPIOA/VDDMPIOB (MP Block I/Os)  
Available in 400-ball LFBGA RoHS-compliant Package  
Can also be Delivered in a 324-ball TFBGA RoHS-compliant Package According to User Needs  
3
6270AS–CAP–10-Jan-08  
1. Description  
The AT91CAP9SC500A/AT91CAP9SC250A family is based on the integration of an  
ARM926EJ-S processor with fast ROM and SRAM memories, and a wide range of peripherals.  
By  
providing up to 500K gates  
of  
metal  
programmable logic,  
AT91CAP9SC500A/AT91CAP9SC250A is the ideal platform for creating custom designs.  
The AT91CAP9SC500A/AT91CAP9SC250A embeds a USB High-speed Device, a 2-port USB  
OHCI Host, an LCD Controller, a 4-channel DMA Controller, and one Image Sensor Interface. It  
also integrates several standard peripherals, such as USART, SPI, TWI, Timer Counters, PWM  
generators, Multimedia Card interface, and one CAN Controller.  
The AT91CAP9SC500A/AT91CAP9SC250A is architectured on a 12-layer matrix, allowing a  
maximum internal bandwidth of twelve 32-bit buses. It also features one external memory bus  
(EBI) capable of interfacing with a wide range of memory devices.  
The AT91CAP9SC500A/AT91CAP9SC250A is packaged in a 400-ball LFBGA RoHS-compliant  
package. It can also be delivered in a 324-ball TFBGA RoHS-compliant package according to  
the customer’s requirements.  
4
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
2. AT91CAP9SC500A/AT91CAP9SC250A Block Diagram  
Figure 2-1. AT91CAP9SC500A/AT91CAP9SC250A Block Diagram  
5
6270AS–CAP–10-Jan-08  
3. Signal Description  
Table 3-1 gives details on the signal name classified by peripheral.  
Signal Description List  
Function  
Table 3-1.  
Active  
Level  
Signal Name  
Type  
Comments  
Power Supplies  
VDDIOM  
EBI I/O Lines Power Supply  
Peripherals I/O Lines Power Supply  
Peripherals I/O Lines Power Supply  
MP Block I/O A Lines Power Supply  
MP Block I/O B Lines Power Supply  
Backup I/O Lines Power Supply  
PLL Power Supply  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
1.65V to 3.6V  
3.0V to 3.6V  
VDDIOP0  
VDDIOP1  
VDDIOMPA  
VDDIOMPB  
VDDBU  
1.65V to 3.6V  
1.65V to 3.6V  
1.65V to 3.6V  
1.08V to 1.32V  
3.0V to 3.6V  
VDDPLL  
VDDUTMII  
VDDUTMIC  
VDDUPLL  
VDDANA  
VDDCORE  
GND  
USB UTMI+ Interface Power Supply  
USB UTMI+ Core Power Supply  
USB UTMI+ PLL Power Supply  
ADC Analog Power Supply  
Core Chip Power Supply  
Ground  
3.0V to 3.6V  
1.08V to 1.32V  
1.08V to 1.32V  
3.0V to 3.6V  
1.08V to 1.32V  
GNDPLL  
PLL Ground  
GNDUTMII  
GNDUTMIC  
GNDUPLL  
GNDANA  
GNDBU  
USB UTMI+ Interface Ground  
USB UTMI+ Core Ground  
USB UTMI+ PLL Ground  
ADC Analog Ground  
Backup Ground  
Thermally coupled with  
package substrate  
GNDTHERMAL  
Thermal Ground Ball  
Ground  
Clocks, Oscillators and PLLs  
XIN  
Main Oscillator Input  
Main Oscillator Output  
Slow Clock Oscillator Input  
Slow Clock Oscillator Output  
PLL A Filter  
Input  
Output  
Input  
XOUT  
XIN32  
XOUT32  
PLLRCA  
PLLRCB  
PCK0 - PCK3  
Output  
Input  
PLL B Filter  
Input  
Programmable Clock Output  
Output  
Shutdown, Wakeup Logic  
SHDN  
WKUP  
Shutdown Control  
Wake-Up Input  
Output  
Input  
Do not tie over VDDBU  
Accept between 0V and  
VDDBU  
6
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Signal Name  
Function  
Type  
Comments  
ICE and JTAG  
NTRST  
TCK  
Test Reset Signal  
Test Clock  
Input  
Input  
Low  
No pull-up resistor  
No pull-up resistor  
No pull-up resistor  
TDI  
Test Data In  
Input  
TDO  
Test Data Out  
Test Mode Select  
JTAG Selection  
Return Test Clock  
Output  
Input  
TMS  
No pull-up resistor  
Pull-down resistor  
JTAGSEL  
RTCK  
Input  
Output  
Reset/Test  
NRST  
TST  
Microcontroller Reset  
Test Mode Select  
Boot Mode Select  
I/O  
Low  
Pull-up resistor  
Pull-down resistor  
Pull-up resistor  
Input  
Input  
BMS  
Debug Unit - DBGU  
DRXD  
DTXD  
Debug Receive Data  
Debug Transmit Data  
Input  
Output  
Advanced Interrupt Controller - AIC  
IRQ0 - IRQ1  
FIQ  
External Interrupt Inputs  
Fast Interrupt Input  
Input  
Input  
PIO Controller - PIOA - PIOB - PIOC - PIOD  
PA0 - PA31  
PB0 - PB31  
PC0 - PC31  
PD0 - PD31  
Parallel IO Controller A  
I/O  
I/O  
I/O  
I/O  
Pulled-up input at reset  
Pulled-up input at reset  
Pulled-up input at reset  
Pulled-up input at reset  
Parallel IO Controller B  
Parallel IO Controller C  
Parallel IO Controller D  
Direct Memory Access Controller - DMA  
DMA Requests Input  
External Bus Interface - EBI  
DMARQ0-DMARQ3  
D0 - D31  
A0 - A25  
NWAIT  
Data Bus  
I/O  
Pulled-up input at reset  
0 at reset  
Address Bus  
Output  
Input  
External Wait Signal  
Low  
Static Memory Controller - SMC  
NCS0 - NCS5  
NWR0 - NWR3  
NRD  
Chip Select Lines  
Write Signal  
Output  
Output  
Output  
Output  
Output  
Low  
Low  
Low  
Low  
Low  
Read Signal  
NWE  
Write Enable  
NBS0 - NBS3  
Byte Mask Signal  
7
6270AS–CAP–10-Jan-08  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Signal Name  
Function  
Type  
Comments  
CompactFlash Support  
CompactFlash Chip Enable  
CFCE1 - CFCE2  
CFOE  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
Low  
Low  
Low  
Low  
CompactFlash Output Enable  
CompactFlash Write Enable  
CompactFlash IO Read  
CFWE  
CFIOR  
CFIOW  
CompactFlash IO Write  
CFRNW  
CompactFlash Read Not Write  
CompactFlash Chip Select Lines  
CFCS0 - CFCS1  
Low  
NAND Flash Support  
NANDCS  
NANDOE  
NANDWE  
NAND Flash Chip Select  
NAND Flash Output Enable  
NAND Flash Write Enable  
Output  
Output  
Output  
Low  
Low  
Low  
DDR/SDRAM Controller  
SDCK  
DDR/SDRAM Clock  
Output  
Output  
I/O  
SDCKN  
DQS0  
DDR Inverted Clock  
DDR Data Qualifier Strobe 0  
DDR Data Qualifier Strobe 1  
DDR/SDRAM Clock Enable  
DDR/SDRAM Controller Chip Select  
DDR/SDRAM Bank Select  
DDR/SDRAM Write Enable  
DDR/SDRAM Row and Column Signal  
DDR/SDRAM Address 10 Line  
DQS1  
I/O  
SDCKE  
SDCS  
Output  
Output  
Output  
Output  
Output  
Output  
High  
Low  
BA0 - BA1  
SDWE  
Low  
Low  
RAS - CAS  
SDA10  
Burst CellularRAM Controller  
BCCK  
Burst CellularRAM Clock  
Output  
Output  
Output  
Output  
Output  
Input  
BCCRE  
BCADV  
BCWE  
Burst CellularRAM Enable  
Burst CellularRAM Burst Advance Signal  
Burst CellularRAM Write Enable  
Burst CellularRAM Output Enable  
Burst CellularRAM Output Wait  
BCOE  
BCOWAIT  
Multimedia Card Interface MCI  
MCIx_CK  
Multimedia Card Clock  
Multimedia Card Command  
Multimedia Card Data  
Output  
I/O  
MCIx_CD  
MCIx_D0 - D3  
I/O  
8
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Signal Name  
Function  
Type  
Comments  
Universal Synchronous Asynchronous Receiver Transmitter USART  
SCKx  
TXDx  
RXDx  
RTSx  
CTSx  
USARTx Serial Clock  
I/O  
I/O  
USARTx Transmit Data  
USARTx Receive Data  
USARTx Request To Send  
USARTx Clear To Send  
Input  
Output  
Input  
Synchronous Serial Controller - SSC  
TDx  
RDx  
TKx  
RKx  
TFx  
RFx  
SSCx Transmit Data  
Output  
Input  
I/O  
SSCx Receive Data  
SSCx Transmit Clock  
SSCx Receive Clock  
I/O  
SSCx Transmit Frame Sync  
SSCx Receive Frame Sync  
I/O  
I/O  
AC97 Controller - AC97C  
AC97RX  
AC97TX  
AC97FS  
AC97CK  
AC97 Receive Signal  
Input  
Output  
Output  
Input  
AC97 Transmit Signal  
AC97 Frame Synchronization Signal  
AC97 Clock signal  
Timer/Counter - TC  
TCLKx  
TIOAx  
TIOBx  
TC Channel x External Clock Input  
TC Channel x I/O Line A  
Input  
I/O  
TC Channel x I/O Line B  
I/O  
Pulse Width Modulation Controller- PWMC  
Pulse Width Modulation Output Output  
Serial Peripheral Interface - SPI  
PMWx  
SPIx_MISO  
Master In Slave Out  
I/O  
I/O  
SPIx_MOSI  
Master Out Slave In  
SPIx_SPCK  
SPI Serial Clock  
I/O  
SPIx_NPCS0  
SPI Peripheral Chip Select 0  
SPI Peripheral Chip Select  
I/O  
Low  
Low  
SPIx_NPCS1 - SPIx_NPCS3  
Output  
Two-Wire Interface  
TWD  
Two-wire Serial Data  
Two-wire Serial Clock  
I/O  
I/O  
TWCK  
9
6270AS–CAP–10-Jan-08  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Signal Name  
Function  
Type  
Comments  
CAN Controller  
CANRX  
CANTX  
CAN input  
Input  
CAN output  
Output  
LCD Controller - LCDC  
LCDD0 - LCDD23  
LCDVSYNC  
LCDHSYNC  
LCDDOTCK  
LCDDEN  
LCD Data Bus  
Input  
LCD Vertical Synchronization  
LCD Horizontal Synchronization  
LCD Dot Clock  
Output  
Output  
Output  
Output  
Output  
LCD Data Enable  
LCDCC  
LCD Contrast Control  
Ethernet 10/100 E  
ETXCK/EREFCK  
ERXCK  
Transmit Clock or Reference Clock  
Receive Clock  
Input  
Input  
MII only, REFCK in RMII  
MII only  
ETXEN  
Transmit Enable  
Output  
Output  
Output  
ETX0-ETX3  
ETXER  
Transmit Data  
ETX0-ETX1 only in RMII  
MII only  
Transmit Coding Error  
RXDV in MII, CRSDV in  
RMII  
ERXDV  
Receive Data Valid  
Input  
ERX0-ERX3  
ERXER  
ECRS  
Receive Data  
Input  
Input  
Input  
Input  
Output  
I/O  
ERX0-ERX1 only in RMII  
Receive Error  
Carrier Sense and Data Valid  
Collision Detect  
MII only  
MII only  
ECOL  
EMDC  
Management Data Clock  
Management Data Input/Output  
Force 100Mbit/sec.  
EMDIO  
EF100  
Output  
High  
RMII only  
USB High Speed Device  
FSDM  
FSDP  
HSDM  
HSDP  
VBG  
USB Full Speed Data -  
USB Full Speed Data +  
USB High Speed Data -  
USB High Speed Data +  
Bias Voltage Reference  
USB PLL Test Pad  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
PLLRCU  
10  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
Table 3-1.  
Signal Description List (Continued)  
Function  
Active  
Level  
Signal Name  
Type  
Comments  
OHCI USB Host Port  
HDPA  
HDMA  
HDPB  
HDMB  
USB Host Port A Data +  
USB Host Port A Data -  
USB Host Port B Data +  
USB Host Port B Data -  
Analog  
Analog  
Analog  
Analog  
ADC  
AD0-AD7  
ADVREF  
ADTRIG  
Analog Inputs  
Analog  
Analog  
Input  
ADC Voltage Reference  
ADC Trigger  
Image Sensor Interface - ISI  
ISI_D0-ISI_D11  
ISI_MCK  
Image Sensor Data  
Input  
Output  
Input  
Image Sensor Reference Clock  
Image Sensor Horizontal Synchro  
Image Sensor Vertical Synchro  
Image Sensor Data Clock  
ISI_HSYNC  
ISI_VSYNC  
ISI_PCK  
Input  
Input  
MPBLOCK - MPB  
MPIOA0-MPIOA31  
MPIOB0-MPIOB44  
MPBlock I/Os A  
MPBlock I/Os B  
I/O  
I/O  
11  
6270AS–CAP–10-Jan-08  
4. Package and Pinout  
The AT91CAP9SC500A/AT91CAP9SC250A is available in two packages:  
• a 400-ball RoHS-compliant LFBGA package, 17 x 17 mm, 0.8 mm ball pitch  
• a 324-ball RoHS-compliant TFBGA package, 15 x 15 mm, 0.8 mm ball pitch  
4.1  
400-ball LFBGA Package Outline  
Figure 4-1 shows the orientation of the 400-ball BGA Package.  
A
detailed mechanical description is given  
in  
the  
section  
“AT91CAP9SC500A/AT91CAP9SC250A Mechanical Characteristics” of the product datasheet.  
Figure 4-1. 400-ball LFBGA Package Outline and Marking (Top View)  
Top View  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
CAP9  
9
8
7
6
5
4
3
2
1
A
B C D E F G H J K L M N P R T U V W  
Y
A1 Corner  
A1 Corner  
12  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
4.2  
400-ball LFBGA Package Pinout  
Table 4-1.  
AT91CAP9SC500A/AT91CAP9SC250A Pinout for 400-ball BGA Package  
Pin  
A1  
Signal Name  
Pin  
F1  
Signal Name  
PA3  
Pin  
L1  
Signal Name  
PA22  
Pin  
T1  
Signal Name  
PD22  
PC5  
A2  
PC3  
F2  
PA4  
L2  
PA25  
T2  
PD23  
A3  
PC2  
F3  
PA8  
L3  
PA29  
T3  
PD30  
A4  
PC1  
F4  
PA5  
L4  
PA31  
T4  
VDDCORE  
SDDRCS  
DQS0  
A5  
PC0  
F5  
PA6  
L5  
PD6  
T5  
A6  
BMS  
F6  
VDDIOM  
VDDIOP0  
PC24  
NC  
L6  
GNDIO  
T6  
A7  
NRST  
GNDCORE  
PB18  
F7  
L7  
GNDCORE  
PA18  
T7  
D4  
A8  
F8  
L8  
T8  
D11  
A9  
F9  
L9  
GNDTHERMAL  
GNDTHERMAL  
GNDTHERMAL  
GNDTHERMAL  
GNDCORE  
GNDIO  
T9  
D14  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B1  
PB17  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
G1  
VDDCORE  
GNDIO  
PB23  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
U1  
SDA10  
VDDCORE  
MPIOA0  
MPIOA9  
GNDIO  
MPIOA25  
MPIOA24  
MPIOA29  
MPIOB3  
MPIOB17  
MPIOB18  
PD25  
PB14  
PB15  
GNDANA  
PB26  
PB6  
NC  
VDDIOP0  
GNDIO  
FSDP  
FSDM  
HSDP  
HSDM  
PC17  
PC16  
PC14  
PC11  
PC10  
PC9  
NC  
VDDCORE  
MPIOB28  
MPIOB32  
MPIOB34  
MPIOB31  
MPIOB29  
PA26  
NC  
GNDPLL  
WKUP0  
SHDW  
PLLRCA  
PA7  
B2  
G2  
PA10  
PA30  
U2  
PD31  
B3  
G3  
PA11  
PD11  
U3  
BCCLK  
A0  
B4  
G4  
PA9  
PD12  
U4  
B5  
G5  
PA12  
PD13  
U5  
D0  
B6  
G6  
PD10  
GNDIO  
GNDCORE  
VDDIOP0  
PC8  
PD15  
U6  
D1  
B7  
TDO  
G7  
GNDCORE  
PA28  
U7  
NWR1  
DQS1  
B8  
TCK  
G8  
U8  
B9  
PB20  
G9  
GNDTHERMAL  
GNDTHERMAL  
GNDTHERMAL  
GNDTHERMAL  
NRD  
U9  
A7  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
PB19  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
A13  
PB13  
PB25  
A20  
ADVREF  
PB16  
PB21  
GNDIO  
MPIOA4  
MPIOA11  
MPIOA16  
VDDMPIOA  
MPIOA23  
PB8  
PB27  
PB0  
MPIOB26  
GNDIO  
PB24  
PB2  
HDMA  
VDDIOP0  
NC  
MPIOB16  
GNDCORE  
VDDPLL  
13  
6270AS–CAP–10-Jan-08  
Table 4-1.  
AT91CAP9SC500A/AT91CAP9SC250A Pinout for 400-ball BGA Package (Continued)  
Pin  
B18  
B19  
B20  
C1  
Signal Name  
Pin  
G18  
G19  
G20  
H1  
Signal Name  
GNDCORE  
TST  
Pin  
M18  
M19  
M20  
N1  
Signal Name  
MPIOB27  
MPIOB25  
MPIOB24  
PD7  
Pin  
U18  
U19  
U20  
V1  
Signal Name  
MPIOA28  
MPIOB6  
MPIOB9  
PD26  
GNDIO  
VDDUTMII  
GNDUTMII  
PC23  
PLLRCB  
PA13  
C2  
PC22  
H2  
PA14  
N2  
PD8  
V2  
RAS  
C3  
PC21  
H3  
PD0  
N3  
PD16  
V3  
SDCKE  
D3  
C4  
PC20  
H4  
PA15  
N4  
PD19  
V4  
C5  
PC18  
H5  
PD1  
N5  
PD20  
V5  
VDDIOM  
D5  
C6  
PC15  
H6  
VDDIOP1  
VDDCORE  
GNDIO  
N6  
PD29  
V6  
C7  
PC12  
H7  
N7  
GNDIO  
VDDIOM  
NCS1  
V7  
D9  
C8  
PC6  
H8  
N8  
V8  
D15  
C9  
NTRST  
TDI  
H9  
GNDIO  
N9  
V9  
A11  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
D1  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
J1  
PB10  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
P1  
VDDCORE  
A3  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
GNDCORE  
A22  
VDDANA  
PB12  
PB4  
VDDMPIOB  
JTAGSEL  
GNDCORE  
GNDPLL  
NC  
A6  
MPIOA1  
MPIOA6  
MPIOA10  
MPIOA13  
MPIOA17  
MPIOA20  
MPIOA27  
MPIOB5  
VDDMPIOB  
SDWE  
BCOWAIT  
NANDWE  
GNDIO  
D6  
PB29  
VDDCORE  
MPIOB11  
MPIOB13  
MPIOB12  
MPIOB14  
MPIOB15  
MPIOB22  
MPIOB23  
PD9  
PB9  
PB7  
HDPA  
HDPB  
VDDUPLL  
VDDUTMIC  
VBG  
VDDCORE  
MPIOB44  
XOUT32  
XIN32  
PC29  
PD3  
D2  
PC28  
J2  
PD2  
P2  
PD14  
D3  
PC27  
J3  
PD5  
P3  
PD18  
D4  
PC26  
J4  
PA17  
P4  
PD27  
D5  
PC25  
J5  
PA19  
P5  
PD28  
D6  
PC19  
J6  
VDDIOP0  
PA16  
P6  
VDDIOM  
NWR3  
D8  
A2  
D7  
NANDOE  
PC7  
J7  
P7  
A5  
D8  
J8  
GNDCORE  
GNDTHERMAL  
GNDTHERMAL  
GNDTHERMAL  
GNDTHERMAL  
GNDIO  
P8  
A14  
D9  
GNDIO  
TMS  
J9  
P9  
D10  
A17  
D10  
D11  
D12  
D13  
D14  
D15  
J10  
J11  
J12  
J13  
J14  
J15  
P10  
P11  
P12  
P13  
P14  
P15  
GNDIO  
A9  
A19  
NC  
NWR0  
MPIOA2  
MPIOA5  
MPIOA8  
MPIOA12  
PB31  
A12  
PB22  
NC  
VDDCORE  
PB3  
GNDBU  
GNDBU  
MPIOB8  
MPIOB0  
14  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
Table 4-1.  
AT91CAP9SC500A/AT91CAP9SC250A Pinout for 400-ball BGA Package (Continued)  
Pin  
D16  
D17  
D18  
D19  
D20  
E1  
Signal Name  
Pin  
J16  
J17  
J18  
J19  
J20  
K1  
Signal Name  
MPIOB42  
MPIOB39  
MPIOB43  
MPIOB41  
GNDIO  
Pin  
P16  
P17  
P18  
P19  
P20  
R1  
Signal Name  
MPIOB1  
MPIOB7  
MPIOB10  
MPIOB21  
VDDMPIOB  
PD21  
Pin  
W16  
W17  
W18  
W19  
W20  
Y1  
Signal Name  
MPIOA15  
MPIOA21  
MPIOA22  
GNDIO  
VDDCORE  
SDCK  
PB1  
HDMB  
PLLRCU  
GNDUTMIC  
GNDUPLL  
PC30  
PD4  
E2  
PA2  
K2  
PA21  
R2  
PD17  
Y2  
SDCKN  
A1  
E3  
PA1  
K3  
PA24  
R3  
PD24  
Y3  
E4  
PA0  
K4  
PA27  
R4  
CAS  
Y4  
GNDCORE  
A4  
E5  
PC31  
K5  
PA23  
R5  
VDDCORE  
D2  
Y5  
E6  
GNDIO  
VDDCORE  
PC13  
K6  
GNDIO  
R6  
Y6  
A8  
E7  
K7  
PA20  
R7  
D7  
Y7  
A10  
E8  
K8  
VDDCORE  
GNDTHERMAL  
GNDTHERMAL  
GNDTHERMAL  
GNDTHERMAL  
GNDCORE  
MPIOB33  
MPIOB30  
MPIOB35  
MPIOB38  
MPIOB40  
MPIOB37  
MPIOB36  
R8  
VDDIOM  
D13  
Y8  
A15  
E9  
PC4  
K9  
R9  
Y9  
A18  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
RTCK  
VDDIOP0  
PB30  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
D12  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
A21  
VDDIOM  
A16  
NCS0  
MPIOA3  
MPIOA7  
VDDMPIOA  
MPIOA14  
MPIOA18  
MPIOA19  
MPIOA26  
MPIOA30  
MPIOA31  
PB28  
VDDIOM  
NC  
PB11  
PB5  
NC  
NC  
NC  
VDDPLL  
VDDBU  
XIN  
MPIOB2  
MPIOB4  
MPIOB19  
MPIOB20  
XOUT  
15  
6270AS–CAP–10-Jan-08  
4.3  
324-ball TFBGA Package Outline  
Figure 4-1 shows the orientation of the 324-ball TFBGA green package.  
A
detailed mechanical description is given  
in  
the  
section  
“AT91CAP9SC500A/AT91CAP9SC250A Mechanical Characteristics” of the product datasheet.  
Figure 4-2. 324-ball TFBGA Package Outline and Marking (Top View)  
Top View  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
CAP9  
7
6
5
4
3
2
1
A
B C D E F G H J K L M N P R T U V  
A1 Corner  
A1 Corner  
4.4  
324-ball TFBGA Package Pinout  
The pin assignment for the 324-ball TFBGA package is customizable and dependent upon the  
needs of the user.  
Important: It is possible to partially or totally remove the connections to dedicated Metal Pro-  
grammable I/0s: MPIOAO-MPIOA31 and MPIOB0-MPIOB44. Likewise, PA16-PA31, PB21-  
PB31, PDC0-PC27, PD-0-PD10 can be partially or totally disconnected. However, it is incum-  
bent upon the user to ensure that the associated functionality removed is not needed for the  
intended application. Refer to Section 10.3.1 on page 42, Section 10.3.2 on page 43, Section  
10.3.3 on page 44, Section 10.3.4 on page 45 for information on PIO multiplexing and to verify  
functionality before disconnecting signals.  
16  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
5. Power Considerations  
5.1  
Power Supplies  
The AT91CAP9SC500A/AT91CAP9SC250A has several types of power supply pins:  
• VDDCORE pins: Power the core, including the processor, the embedded memories and the  
peripherals; voltage range between1.08V and 1.32V, 1.2V nominal.  
• VDDIOM pins: Power the External Bus Interface; voltage ranges between 1.65V and 1.95V  
(1.8V nominal) or between 3.0V and 3.6V (3.3V nominal).  
• VDDIOP0 pins: Power the Peripherals I/O lines and the USB transceivers; voltage range  
between 3.0V and 3.6V, 3.3V nominal.  
• VDDIOP1 pins: Power the Peripherals I/O lines involving the Image Sensor Interface; voltage  
ranges from 1.65V to 3.6V, 1.8V, 2.5V, 3V or 3.3V nominal.  
• VDDIOMPA pins: Power the MP Block I/O A lines; voltage ranges from 1.65V to 3.6V, 1.8V,  
2.5V, 3V or 3.3V nominal.  
• VDDIOMPB pins: Power the dedicated MP Block I/O B lines; voltage ranges from 1.65V to  
3.6V, 1.8V, 2.5V, 3V or 3.3V nominal.  
• VDDBU pin: Powers the Slow Clock oscillator and a part of the System Controller; voltage  
range between1.08V and 1.32V, 1.2V nominal.  
• VDDPLL pin: Powers the PLL cells; voltage ranges between 3.0V to 3.6V, 3.3V nominal.  
• VDDUTMII pin: Powers the UTMI+ interface; voltage ranges from 3.0V to 3.6V, 3.3V nominal.  
• VDDUTMIC pin: Powers the UTMI+ core; voltage ranges between 1.08V and 1.32V, 1.2V  
nominal.  
• VDDUPLL pin: Powers the USB PLL cell; voltage ranges between 1.08V and 1.32V, 1.2V  
nominal.  
• VDDANA pin: Powers the ADC cell; voltage ranges between 3.0V and 3.6V, 3.3V nominal.  
The power supplies VDDIOM, VDDIOP0 and VDDIOP1 are identified in the pinout table and the  
multiplexing tables. These supplies enable the user to power the device differently for interfacing  
with memories and for interfacing with peripherals.  
Ground pins GNDIO are common to VDDIOM, VDDIOP0, VDDIOP1, VDDIOMPA and VDDI-  
OMPB pin power supplies. Separated ground pins are provided for VDDCORE, VDDBU,  
VDDPLL, VDDUTMII, VDDUTMIC, VDDUPLL and VDDANA. These ground pins are, respec-  
tively, GNDBU, GNDOSC, GNDPLL, GNDUTMII, GNDUTMIC, GNDUPLL and GNDANA.  
Special GNDTHERMAL ground balls are thermally coupled with package substrate.  
5.2  
Power Consumption  
The AT91CAP9SC500A/AT91CAP9SC250A consumes about 700 µA (TBC) of static current on  
VDDCORE at 25°C. This static current may go up to 7 mA (TBC) if the temperature increases to  
85°C.  
On VDDBU, the current does not exceed 3 µA (TBC) @25°C, but can rise at up to 20 µA (TBC)  
@85°C.  
For dynamic power consumption, the AT91CAP9SC500A/AT91CAP9SC250A consumes a  
maximum of 90 mA (TBC) on VDDCORE at typical conditions (1.2V, 25°C, processor running  
full-performance algorithm).  
17  
6270AS–CAP–10-Jan-08  
5.3  
Programmable I/O Lines Power Supplies  
The power supply pins VDDIOM, VDDMPIOA and VDDMPIOB accept two voltage ranges. This  
allows the device to reach its maximum speed either out of 1.8V or 3.3V external memories.  
The target maximum speed is 100 MHz on the pin DDR/SDR and MPIOA or MPIOB pins loaded  
with 30 pF for power supply at 1.8V and 50 pF for power supply at 3.3V. The other signals (con-  
trol, address and data signals) do not go over 50 MHz.  
The voltage ranges are determined by programming registers in the Chip Configuration registers  
located in the Matrix User Interface.  
At reset, the selected voltage defaults to 3.3V nominal and power supply pins can accept either  
1.8V or 3.3V. Obviously, the device cannot reach its maximum speed if the voltage supplied to  
the pins is 1.8V only. The user must make sure to program the EBI voltage range before getting  
the device out of its Slow Clock Mode.  
18  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6. I/O Line Considerations  
6.1  
JTAG Port Pins  
TMS, TDI and TCK are Schmitt trigger inputs and have no pull-up resistors.  
TDO and RTCK are outputs, driven at up to VDDIOP0, and have no pull-up resistors.  
The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It  
integrates a permanent pull-down resistor of about 15 kto GNDBU so that it can be left uncon-  
nected for normal operations.  
The NTRST signal is described in Section 6.3 “Reset Pins” on page 19.  
All the JTAG signals are supplied with VDDIOP0.  
6.2  
6.3  
Test Pin  
The TST pin is used for manufacturing test purposes when asserted high. It integrates a perma-  
nent pull-down resistor of about 15 kto GNDBU so that it can be left unconnected for normal  
operations. Driving this line at a high level leads to unpredictable results.  
This pin is supplied with VDDBU.  
Reset Pins  
NRST is an open-drain output integrating a non-programmable pull-up resistor. It can be driven  
with voltage at up to VDDIOP0.  
NTRST is an input which allows reset of the JTAG Test Access port. It has no action on the  
processor.  
As the product integrates power-on reset cells that manage the processor and the JTAG reset,  
the NRST and NTRST pins can be left unconnected.  
The NRST and NTRST pins both integrate a permanent pull-up resistor of 90 kminimum to  
VDDIOP0.  
The NRST signal is inserted in the Boundary Scan.  
6.4  
6.5  
PIO Controllers  
All the I/O lines which are managed by the PIO Controllers integrate a programmable pull-up  
resistor of 90 kminimum. Programming of this pull-up resistor is performed independently for  
each I/O line through the PIO Controllers.  
After reset, all the I/O lines default as inputs with pull-up resistors enabled, except those multi-  
plexed with the External Bus Interface signals that must be enabled as Peripheral at reset. This  
is indicated in the column “Reset State” of the PIO Controller multiplexing tables.  
Shutdown Logic Pins  
The SHDN pin is an output only, which is driven by the Shutdown Controller only at low level. It  
can be tied high with an external pull-up resistor at VDDBU only.  
The pin WKUP is an input-only. It can accept voltages only between 0V and VDDBU.  
19  
6270AS–CAP–10-Jan-08  
7. Processor and Architecture  
7.1  
ARM926EJ-S Processor  
• RISC Processor based on ARM v5TEJ Architecture with Jazelle technology for Java  
acceleration  
Two Instruction Sets  
– ARM High-performance 32-bit Instruction Set  
– Thumb High Code Density 16-bit Instruction Set  
• DSP Instruction Extensions  
• 5-Stage Pipeline Architecture:  
– Instruction Fetch (F)  
– Instruction Decode (D)  
– Execute (E)  
– Data Memory (M)  
– Register Write (W)  
• 16-Kbyte Data Cache, 16-Kbyte Instruction Cache  
– Virtually-addressed 4-way Associative Cache  
– Eight words per line  
– Write-through and Write-back Operation  
– Pseudo-random or Round-robin Replacement  
• Write Buffer  
– Main Write Buffer with 16-word Data Buffer and 4-address Buffer  
– DCache Write-back Buffer with 8-word Entries and a Single Address Entry  
– Software Control Drain  
• Standard ARM v4 and v5 Memory Management Unit (MMU)  
– Access Permission for Sections  
– Access Permission for large pages and small pages can be specified separately for  
each quarter of the page  
– 16 embedded domains  
• Bus Interface Unit (BIU)  
– Arbitrates and Schedules AHB Requests  
– Separate Masters for both instruction and data access providing complete Matrix  
system flexibility  
– Separate Address and Data Buses for both the 32-bit instruction interface and the  
32-bit data interface  
– On Address and Data Buses, data can be 8-bit (Bytes), 16-bit (Half-words) or 32-bit  
(Words)  
7.2  
Bus Matrix  
• 12-layer Matrix, handling requests from 12 masters  
• Programmable Arbitration strategy  
– Fixed-priority Arbitration  
20  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
– Round-Robin Arbitration, either with no default master, last accessed default master  
or fixed default master  
• Burst Management  
– Breaking with Slot Cycle Limit Support  
– Undefined Burst Length Support  
• One Address Decoder provided per Master  
– Three different slaves may be assigned to each decoded memory area: one for  
internal boot, one for external boot, one after remap  
• Boot Mode Select  
– Non-volatile Boot Memory can be internal or external  
– Selection is made by BMS pin sampled at reset  
• Remap Command  
– Allows Remapping of an Internal SRAM in Place of the Boot Non-Volatile Memory  
– Allows Handling of Dynamic Exception Vectors  
7.3  
Matrix Masters  
The Bus Matrix of the AT91CAP9SC500A/AT91CAP9SC250A manages twelve Masters and  
thus each master can perform an access concurrently with the others, assuming that the slave it  
accesses is available.  
Each Master has its own decoder, which is defined specifically for each master. In order to sim-  
plify the addressing, all the masters have the same decoding.  
Table 7-1.  
Master 0  
Master 1  
Master 2  
Master 3  
Master 4  
Master 5  
Master 6  
Master 7  
Master 8  
Master 9  
Master 10  
Master 11  
List of Bus Matrix Masters  
ARM926Instruction  
ARM926 Data  
Peripheral DMA Controller  
LCD Controller  
USB High Speed Device Controller  
Image Sensor Interface  
DMA Controller  
Ethernet MAC  
OHCI USB Host Controller  
MP Block Master 0  
MP Block Master 1  
MP Block Master 2  
7.4  
Matrix Slaves  
The Bus Matrix of the AT91CAP9SC500A/AT91CAP9SC250A manages ten Slaves. Each Slave  
has its own arbiter, thus permitting a different arbitration per Slave to be programmed.  
21  
6270AS–CAP–10-Jan-08  
The LCD Controller, the USB Host and the USB High Speed Device have a user interface  
mapped as a Slave of the Matrix. They share the same layer, as programming them does not  
require a high bandwidth.  
Table 7-2.  
Slave 0  
List of Bus Matrix Slaves  
Internal SRAM 32 Kbytes  
Slave 1  
MP Block Slave 0 (MP Block Internal Memories)  
Internal ROM  
LCD Controller User Interface  
Slave 2  
USB High Speed Device Interface  
OHCI USB Host Interface  
Slave 3  
Slave 4  
Slave 5  
Slave 6  
Slave 7  
Slave 8  
Slave 9  
MP Block Slave 1 (MP Block Internal Memories)  
External Bus Interface  
DDR Controller Port 2  
DDR Controller Port 3  
MP Block Slave 2 (MP Block External Chip Selects)  
MP Block Slave 3 (MP Block Internal Peripherals)  
Internal Peripherals for AT91CAP9  
7.5  
Master-to-Slave Access  
All the Masters can normally access all the Slaves. However, some paths do not make sense,  
such as allowing access from the Ethernet MAC to the Internal Peripherals. Thus, these paths  
are forbidden or simply not wired, and shown as “-” in Table 7-3,  
“AT91CAP9SC500A/AT91CAP9SC250A Masters to Slaves Access,” on page 23.  
22  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
Table 7-3.  
AT91CAP9SC500A/AT91CAP9SC250A Masters to Slaves Access  
Master  
0
1
2
3
4
5
6
7
8
9
10  
11  
Slave  
InternalSRAM  
32 Kbytes  
0
X
X
X
X
X
X
X
X
X
X
X
X
MP Block  
Slave 0  
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Internal ROM  
LCD  
Controller  
User Interface  
X
X
X
X
-
-
-
-
-
-
-
-
-
-
-
-
-
X
X
X
X
X
X
2
USB High  
Speed Device  
Interface  
X
OHCI USB  
Host Interface  
X
X
X
X
X
X
-
-
-
-
-
-
-
X
X
X
X
X
X
X
X
X
MPBlock  
Slave 1  
3
4
X
X
X
X
X
X
X
X
X
X
X
X
X
X
External Bus  
Interface  
-
-
DDR Port 0  
DDR Port 1  
DDR Port 2  
DDR Port 3  
X
-
-
-
-
-
-
-
-
-
-
-
-
5
6
X
-
-
-
-
-
-
-
-
-
-
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
X(1)  
MPBlock  
Slave 2  
7
8
9
X
X
X
X
X
X
X
X
X
X
X
-
X
X
-
X
X
-
X
X
X
X
X
-
X
X
-
X
X
X
X
X
X
X
X
X
MPBlock  
Slave 3  
Internal  
Peripherals  
Note:  
1. DDR Port 2 or Port 3 is selectable for each master through the Matrix Remap Control Register.  
23  
6270AS–CAP–10-Jan-08  
7.6  
Peripheral DMA Controller  
• Acting as one Matrix Master  
• Allows data transfers from/to peripheral to/from any memory space without any intervention  
of the processor.  
• Next Pointer Support, forbids strong real-time constraints on buffer management.  
Twenty-four Channels  
Two for each USART  
Two for the Debug Unit  
– One for the TWI  
– One for the ADC Controller  
Two for the AC97 Controller  
Two for each Serial Synchronous Controller  
Two for each Serial Peripheral Interface  
Two for the Triple DES or for the AES  
– One for the each Multimedia Card Interface  
The Peripheral DMA Controller handles transfer requests from the channel according to the fol-  
lowing priorities (Low to High priorities):  
– TDES/AES Receive Channel  
– TDES/AES Transmit Channel  
– DBGU Transmit Channel  
– USART2 Transmit Channel  
– USART1 Transmit Channel  
– USART0 Transmit Channel  
– AC97 Transmit Channel  
– SPI1 Transmit Channel  
– SPI0 Transmit Channel  
– SSC1 Transmit Channel  
– SSC0 Transmit Channel  
– DBGU Receive Channel  
– TWI Transmit/Receive Channel  
– ADC Receive Channel  
– USART2 Receive Channel  
– USART1 Receive Channel  
– USART0 Receive Channel  
– AC97 Receive Channel  
– SPI1 Receive Channel  
– SPI0 Receive Channel  
– SSC1 Receive Channel  
– SSC0 Receive Channel  
– MCI1 Transmit/Receive Channel  
– MCI0 Transmit/Receive Channel  
24  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
7.7  
DMA Controller  
• Acting as one Matrix Master  
• Embeds 4 unidirectional channels with programmable priority  
• Address Generation  
– Source / destination address programming  
– Address increment, decrement or no change  
– DMA chaining support for multiple non-contiguous data blocks through use of linked  
lists  
– Scatter support for placing fields into a system memory area from a contiguous  
transfer. Writing a stream of data into non-contiguous fields in system memory  
– Gather support for extracting fields from a system memory area into a contiguous  
transfer  
– User enabled auto-reloading of source, destination and control registers from initially  
programmed values at the end of a block transfer  
– Auto-loading of source, destination and control registers from system memory at end  
of block transfer in block chaining mode  
– Unaligned system address to data transfer width supported in hardware  
• Channel Buffering  
– 8-word FIFO  
– Automatic packing/unpacking of data to fit FIFO width  
• Channel Control  
– Programmable multiple transaction size for each channel  
– Support for cleanly disabling a channel without data loss  
– Suspend DMA operation  
– Programmable DMA lock transfer support  
Transfer Initiation  
– Support four External DMA Requests and four Internal DMA request from the MP  
Block  
– Support for Software handshaking interface. Memory mapped registers can be used  
to control the flow of a DMA transfer in place of a hardware handshaking interface  
• Interrupt  
– Programmable Interrupt generation on DMA Transfer completion Block Transfer  
completion, Single/Multiple transaction completion or Error condition  
7.8  
Debug and Test Features  
• ARM926 Real-time In-circuit Emulator  
Two real-time Watchpoint Units  
Two Independent Registers: Debug Control Register and Debug Status Register  
Test Access Port Accessible through JTAG Protocol  
– Debug Communications Channel  
• Debug Unit  
Two-pin UART  
25  
6270AS–CAP–10-Jan-08  
– Debug Communication Channel Interrupt Handling  
– Chip ID Register  
• IEEE1149.1 JTAG Boundary-scan on All Digital Pins  
26  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
8. Memories  
Figure 8-1. AT91CAP9SC500A/AT91CAP9SC250A Memory Mapping  
Internal Memory Mapping  
Address Memory Space  
0x0000 0000  
Notes :  
0x0000 0000  
0x0010 0000  
0x0020 0000  
0x0030 0000  
0x0040 0000  
0x0050 0000  
0x0060 0000  
0x0070 0000  
0x0080 0000  
0x0090 0000  
0x00A0 0000  
0x00B0 0000  
(1) Can be ROM, EBI_NCS0 or SRAM  
depending on BMS and REMAP  
Boot Memory (1)  
SRAM  
Internal Memories 256M Bytes  
0x0FFF FFFF  
0x1000 0000  
MPB SLAVE0  
MPB SLAVE0  
ROM  
EBI  
Chip Select 0  
256M Bytes  
0x1FFF FFFF  
0x2000 0000  
LCDC  
EBI  
Chip Select 1/  
EBI BCRAMC  
256M Bytes  
256M Bytes  
256M Bytes  
256M Bytes  
256M Bytes  
256M Bytes  
256M Bytes  
UDPHS  
0x2FFF FFFF  
0x3000 0000  
USB HOST  
MPB SLAVE1  
MPB SLAVE1  
MPB SLAVE1  
MPB SLAVE1  
EBI  
Chip Select 2  
0x3FFF FFFF  
0x4000 0000  
EBI  
Chip Select 3/  
NANDFlash  
0x4FFF FFFF  
0x5000 0000  
EBI  
Chip Select 4/  
Compact Flash  
Slot 0  
Peripheral Mapping  
0xFF00 0000  
0xFFF7 8000  
0xFFF7 C000  
0xFFF8 0000  
0xFFF8 4000  
0xFFF8 8000  
0xFFF8 C000  
0xFFF9 0000  
0xFFF9 4000  
0xFFF9 8000  
0xFFF9 C000  
0xFFFA 0000  
0xFFFA 4000  
0xFFFA 8000  
0xFFFA C000  
0xFFFB 0000  
0xFFFB 4000  
0xFFFB 8000  
0xFFFB C000  
0xFFFC 0000  
0xFFFC 4000  
0xFFFC 8000  
0xFFFC C000  
0xFFFF C000  
0xFFFF FFFF  
Reserved  
UDPHS  
TCO, TC1, TC2  
MCI0  
16K Bytes  
0x5FFF FFFF  
0x6000 0000  
EBI  
System Controller Mapping  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
Chip Select 5/  
Compact Flash  
Slot 1  
0xFFFF C000  
0x6FFF FFFF  
0x7000 0000  
Reserved  
EBI  
SDDRSDRC  
0xFFFF E200  
0xFFFF E400  
MCI1  
ECC  
BCRAMC  
SDDRC  
SMC  
0x7FFF FFFF  
0x8000 0000  
512 Bytes  
512 Bytes  
TWI  
MPB SLAVE2  
Chip Select 0  
0xFFFF E600  
0xFFFF E800  
USART0  
USART1  
USART2  
SSC0  
512 bytes  
512 Bytes  
0x8FFF FFFF  
0x9000 0000  
MPB SLAVE 2  
Chip Select 1  
256M Bytes  
256M Bytes  
256M Bytes  
0xFFFF EA00  
0xFFFF EB10  
0xFFFF EC00  
MATRIX  
CCFG  
DMA  
512 Bytes  
0x9FFF FFFF  
0xA000 0000  
MPB SLAVE 2  
Chip Select 2  
512 Bytes  
512 Bytes  
512 bytes  
512 bytes  
512 Bytes  
SSC1  
0xFFFF EE00  
0xFFFF F000  
0xAFFF FFFF  
0xB000 0000  
DBGU  
AIC  
AC97C  
SPI0  
MPB SLAVE 2  
Chip Select 3  
0xFFFF F200  
0xFFFF F400  
PIOA  
0xBFFF FFFF  
0xC000 0000  
SPI1  
PIOB  
CAN0  
0xFFFF F600  
PIOC  
PIOD  
512 bytes  
512 bytes  
512 bytes  
AES/TDES  
Reserved  
PWMC  
EMAC  
0xFFFF F800  
0xFFFF FA00  
Undefined  
(Abort)  
768M Bytes  
Reserved  
0xFFFF FC00  
0xFFFF FD00  
PMC  
256 Bytes  
16 Bytes  
16 Bytes  
16 Bytes  
16 Bytes  
16 Bytes  
16 Bytes  
RSTC  
0xFFFF FD10  
0xFFFF FD20  
SHDC  
RTT  
ADC  
ISI  
0xFFFF FD30  
0xFFFF FD40  
PIT  
0xEFFF FFFF  
0xF000 0000  
WDT  
Reserved  
Reserved  
SYSC  
Undefined  
(Abort)  
MPB SLAVE3  
MPB SLAVE3  
208M Bytes  
0xFFFF FD50  
0xFFFF FD60  
GPBR  
0xFCFF FFFF  
0xFD00 0000  
16M Bytes  
16M Bytes  
0xFE00 0000  
0xFF00 0000  
0xFFFF FFFF  
Reserved  
16K Bytes  
Internal Peripherals 16M Bytes  
0xFFFF FFFF  
27  
6270AS–CAP–10-Jan-08  
A first level of address decoding is performed by the Bus Matrix, i.e., the implementation of the  
Advanced High-performance Bus (AHB) for its Master and Slave interfaces with additional  
features.  
Decoding breaks up the 4G bytes of address space into 16 banks of 256M bytes. The banks 1 to  
7 are directed to the EBI that associates these banks to the external chip selects EBI_NCS0 to  
EBI_NCS5 and EBI_SDDRCS. The bank 0 is reserved for the addressing of the internal memo-  
ries, and a second level of decoding provides 1M byte of internal memory area. The banks 8 to  
11 are directed to MP Block (Slave 2) and may be used to address external memories. The bank  
15 is split into three parts, one reserved for the peripherals that provides access to the Advanced  
Peripheral Bus (APB), the two others are directed to MP Block (Slave 3) and may provide  
access to the MP Block APB or to other AHB peripherals.  
Other areas are unused and performing an access within them provides an abort to the master  
requesting such an access.  
Each Master has its own bus and its own decoder, thus allowing a different memory mapping  
per Master. However, in order to simplify the mappings, all the masters have a similar address  
decoding.  
Regarding Master 0 and Master 1 (ARM926 Instruction and Data), three different Slaves are  
assigned to the memory space decoded at address 0x0: one for internal boot, one for external  
boot and one after remap. Refer to Table 8-1, “Internal Memory Mapping,” on page 29 for  
details.  
8.1  
Embedded Memories  
• 32 Kbyte ROM  
– Single Cycle Access at full matrix speed  
• 32 Kbyte Fast SRAM  
– Single Cycle Access at full matrix speed  
• 20 Kbyte MP Block Fast Dual Port RAM (ten 512x36 DPR instances)  
– Used as Dual Port RAM completely managed by MP Block  
• 32 Kbyte MP Block Fast Single Port RAM (eight 512x72 SPR instances)  
– Used as Single Port RAM completely managed by MP Block  
28  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
8.1.1  
Internal Memory Mapping  
Table 8-1 summarizes the Internal Memory Mapping, depending on the Remap Command Bit  
(RCB) status and the BMS state at reset.  
Table 8-1.  
Address  
Internal Memory Mapping  
ARM926 I  
RCB0 = 0  
ARM926 D  
RCB1 = 0  
Other Masters  
RCB0 = 1  
RCB1 = 1  
0x0000 0000  
BMS = 0  
EBI_NCS0  
BMS = 1  
ROM  
BMS = 0  
BMS = 1  
ROM  
SRAM  
EBI_NCS0  
SRAM  
Abort  
8.1.1.1  
Internal 32 Kbyte Fast SRAM  
The AT91CAP9SC500A/AT91CAP9SC250A integrates a 32 Kbyte SRAM, mapped at address  
0x0010 0000,which is accessible from the AHB bus. This SRAM is single cycle accessible at full  
matrix speed.  
8.1.1.2  
Boot Memory  
The AT91CAP9SC500A/AT91CAP9SC250A Matrix manages a boot memory which depends on  
the level on the pin BMS at reset. The internal memory area mapped between address 0x0 and  
0x000F FFFF is reserved at this effect.  
If BMS is detected at 0, the boot memory is the memory connected on the Chip Select 0 of the  
External Bus Interface. The default configuration for the Static Memory Controller, byte select  
mode, 16-bit data bus, Read/Write controlled by Chip Select, allows to boot on a 16-bit non-vol-  
atile memory.  
If BMS is detected at 1, the boot memory is the embedded ROM.  
8.1.2  
Boot Program  
• Downloads and runs an application from external storage media into internal SRAM  
• Downloaded code size depends on embedded SRAM size  
• Automatic detection of valid application  
• Bootloader on a non-volatile memory  
– SPI DataFlash® connected on NPCS0 of the SPI0  
• Boot Uploader in case no valid program is detected in external NVM and supporting several  
communication media  
– Serial communication on a DBGU  
– USB Bulk Device Port  
– External Memories Mapping  
The external memories are accessed through the External Bus Interface. Each Chip Select lines  
has a 256 Mbyte memory area assigned.  
8.2  
External Memories  
The external memories are accessed through the External Bus Interfaces. Each Chip Select line  
has a 256 Mbyte memory area assigned.  
Refer to Figure 8-1 on page 27.  
29  
6270AS–CAP–10-Jan-08  
8.2.1  
External Bus Interface  
The AT91CAP9SC500A/AT91CAP9SC250A features one External Bus Interface to offer high  
bandwidth to the system and to prevent any bottleneck while accessing the external memories.  
• Optimized for Application Memory Space support  
• Integrates three External Memory Controllers:  
– Static Memory Controller  
– 4-port DDR/SDRAM Controller  
– Burst/CellularRAM Controller  
– ECC Controller for NAND Flash  
• Additional logic for NAND Flash and CompactFlash  
• Optional Full 32-bit External Data Bus  
• Up to 26-bit Address Bus (up to 64 Mbytes linear per chip select)  
• Up to 6 chips selects, Configurable Assignment:  
– Static Memory Controller on NCS0  
– Burst/CellularRAM Controller or Static Memory Controller on NCS1  
– Static Memory Controller on NCS2  
– Static Memory Controller on NCS3, Optional NAND Flash support  
– Static Memory Controller on NCS4 - NCS5, Optional CompactFlash support  
• One dedicated chip select:  
– DDR/SDRAM Controller on SDCS  
8.2.2  
Static Memory Controller  
• 8-, 16- or 32-bit Data Bus  
• Multiple Access Modes supported  
– Byte Write or Byte Select Lines  
– Asynchronous read in Page Mode supported (4- up to 32-byte page size)  
• Multiple device adaptability  
– Compliant with LCD Module  
– Control signals programmable setup, pulse and hold time for each Memory Bank  
• Multiple Wait State Management  
– Programmable Wait State Generation  
– External Wait Request  
– Programmable Data Float Time  
• Slow Clock mode supported  
8.2.3  
DDR/SDRAM Controller  
• Supported devices:  
– Standard and Low Power SDRAM (Mobile SDRAM)  
– Mobile DDR  
• Numerous configurations supported  
– 2K, 4K, 8K Row Address Memory Parts  
– SDRAM with two or four Internal Banks  
30  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
– SDRAM with 16- or 32-bit Data Path  
– Mobile DDR with four Internal Banks  
– Mobile DDR with 16-bit Data Path  
• Programming facilities  
– Word, half-word, byte access  
– Automatic page break when Memory Boundary has been reached  
– Multibank Ping-pong Access  
– Timing parameters specified by software  
– Automatic refresh operation, refresh rate is programmable  
– Multiport (4 Ports)  
• Energy-saving capabilities  
– Self-refresh, power down and deep power down modes supported  
• Error detection  
– Refresh Error Interrupt  
• DDR/SDRAM Power-up Initialization by software  
• SDRAM CAS Latency of 1, 2 and 3 supported  
• DDR CAS latency of 3 supported  
• Auto Precharge Command not used  
8.2.4  
Burst Cellular RAM Controller  
• Supported devices:  
– Synchronous Cellular RAM version 1.0, 1.5 and 2.0  
• Numerous configurations supported  
– 64K, 128K, 256K, 512K Row Address Memory Parts  
– Cellular RAM with 16- or 32-bit Data Path  
• Programming facilities  
– Word, half-word, byte access  
– Automatic page break when Memory Boundary has been reached  
– Timing parameters specified by software  
– Only Continuous read or write burst supported  
• Energy-saving capabilities  
– Standby and Deep Power Down (DPD) modes supported  
– Low Power features (PASR/TCSR) supported  
• Cellular RAM Power-up Initialization by hardware  
• Cellular RAM CAS latency of 2 and 3 supported (Version 1.0)  
• Cellular RAM CAS latency of 2, 3, 4, 5 and 6 supported (Version 1.5 and 2.0)  
• Cellular RAM variable or fixed latency supported (Version 1.5 and 2.0)  
• Multiplexed address/data bus supported (Version 2.0)  
• Asynchronous and Page mode not supported.  
31  
6270AS–CAP–10-Jan-08  
8.2.5  
Error Corrected Code Controller  
Tracking the accesses to a NAND Flash device by trigging on the corresponding chip select  
• Single bit error correction and 2-bit Random detection.  
• Automatic Hamming Code Calculation while writing  
– ECC value available in a register  
• Automatic Hamming Code Calculation while reading  
– Error Report, including error flag, correctable error flag and word address being  
detected erroneous  
– Support 8- or 16-bit NAND Flash devices with 512-, 1024-, 2048- or 4096-byte  
pages  
32  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
9. System Controller  
The System Controller is a set of peripherals, which allow handling of key elements of the sys-  
tem, such as power, resets, clocks, time, interrupts, watchdog, etc.  
The System Controller User Interface also embeds the registers that allow configuration of the  
Matrix and a set of registers for the chip configuration. The chip configuration registers are used  
to configure:  
– EBI chip select assignment and voltage range for external memories  
– MP Block  
The System Controller peripherals are all mapped within the highest 16 Kbytes of address  
space, between addresses 0xFFFF C000 and 0xFFFF FFFF.  
However, all the registers of System Controller are mapped on the top of the address space.  
This allows all the registers of the System Controller to be addressed from a single pointer by  
using the standard ARM instruction set, as the Load/Store instructions have an indexing mode of  
± 4 Kbytes.  
Figure 9-1 on page 34 shows the System Controller block diagram.  
Figure 8-1 on page 27 shows the mapping of the User Interfaces of the System Controller  
peripherals.  
33  
6270AS–CAP–10-Jan-08  
9.1  
System Controller Block Diagram  
Figure 9-1. AT91CAP9SC500A/AT91CAP9SC250A System Controller Block Diagram  
System Controller  
VDDCORE Powered  
nirq  
nfiq  
irq0-irq1  
fiq  
Advanced  
Interrupt  
Controller  
periph_irq[2..29]  
pit_irq  
rtt_irq  
int  
wdt_irq  
dbgu_irq  
pmc_irq  
rstc_irq  
ntrst  
ARM926EJ-S  
por_ntrst  
proc_nreset  
MCK  
dbgu_irq  
dbgu_txd  
Debug  
Unit  
periph_nreset  
PCK  
dbgu_rxd  
debug  
MCK  
Periodic  
Interval  
Timer  
debug  
pit_irq  
periph_nreset  
jtag_nreset  
Boundary Scan  
TAP Controller  
SLCK  
debug  
Watchdog  
Timer  
wdt_irq  
idle  
proc_nreset  
MCK  
wdt_fault  
WDRPROC  
Bus Matrix  
periph_nreset  
NRST  
rstc_irq  
por_ntrst  
jtag_nreset  
periph_nreset  
proc_nreset  
VDDCORE  
POR  
Reset  
Controller  
backup_nreset  
VDDBU Powered  
VDDBU  
POR  
SLCK  
rtt_irq  
SLCK  
Real-Time  
Timer  
rtt_alarm  
backup_nreset  
SLCK  
battery_save  
Voltage  
Controller  
SHDN  
WKUP  
Shut-Down  
Controller  
UDPHSCK  
periph_clk[28]  
periph_nreset  
periph_irq[28]  
backup_nreset  
4 General-purpose  
Backup Registers  
XIN32  
SLOW  
CLOCK  
OSC  
rtt_alarm  
USB High-speed  
Device Port  
XOUT32  
SLCK  
int  
UDPHSCK  
periph_clk[2..31]  
pck[0-3]  
UTMI PLL  
PCK  
XIN  
Power  
Management  
Controller  
MAINCK  
MAIN  
OSC  
UHPCK  
XOUT  
UHPCK  
periph_clk[29]  
periph_nreset  
periph_irq[29]  
USB Host  
Port  
PLLRCA  
PLLRCB  
PLLA  
PLLB  
PLLACK  
PLLBCK  
MCK  
pmc_irq  
idle  
periph_nreset  
periph_clk[7..31]  
periph_nreset  
periph_nreset  
periph_clk[2]  
dbgu_rxd  
periph_irq[2]  
irq0-irq1  
fiq  
Embedded  
Peripherals  
PIO  
Controllers  
periph_irq[7..27]  
PA0-PA31  
PB0-PB31  
PC0-PC31  
PD0-PD31  
dbgu_txd  
in  
out  
enable  
34  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
9.2  
Reset Controller  
• Based on two Power-on-Reset cells  
– One on VDDBU and one on VDDCORE  
• Status of the last reset  
– Either general reset (VDDBU rising), wake-up reset (VDDCORE rising), software  
reset, user reset or watchdog reset  
• Controls the internal resets and the NRST pin output  
– Allows shaping a reset signal for the external devices  
9.3  
9.4  
Shutdown Controller  
• Shutdown and Wake-Up logic  
– Software programmable assertion of the SHDN pin  
– Deassertion Programmable on a WKUP pin level change or on alarm  
Clock Generator  
• Embeds the low power 32,768 Hz Slow Clock Oscillator  
– Provides the permanent Slow Clock SLCK to the system  
• Embeds the Main Oscillator  
– Oscillator bypass feature  
– Supports 8 to 16 MHz crystals  
– 12 MHz crystal is required for USB High-Speed Device  
• Embeds 2 PLLs  
– Output 80 to 200 MHz clocks  
– Integrates an input divider to increase output accuracy  
– 1 MHz minimum input frequency  
Figure 9-2. Clock Generator Block Diagram  
Clock Generator  
XIN32  
XOUT32  
XIN  
Slow Clock  
Oscillator  
Slow Clock  
SLCK  
Main  
Oscillator  
Main Clock  
MAINCK  
XOUT  
PLL and  
Divider A  
PLLA Clock  
PLLACK  
PLLRCA  
PLLRCB  
PLL and  
Divider B  
PLLB Clock  
PLLBCK  
Status  
Control  
Power  
Management  
Controller  
35  
6270AS–CAP–10-Jan-08  
9.5  
Power Management Controller  
• Provides:  
– the Processor Clock PCK  
– the Master Clock MCK, in particular to the Matrix and the memory interfaces  
– the USB High-speed Device Clock UDPHSCK  
– the USB Host Clock UHPCK  
– independent peripheral clocks, typically at the frequency of MCK  
– four programmable clock outputs: PCK0 to PCK3  
• Five flexible operating modes:  
– Normal Mode, processor and peripherals running at a programmable frequency  
– Idle Mode, processor stopped waiting for an interrupt  
– Slow Clock Mode, processor and peripherals running at low frequency  
– Standby Mode, mix of Idle and Backup Mode, peripheral running at low frequency,  
processor stopped waiting for an interrupt  
– Backup Mode, Main Power Supplies off, VDDBU powered by a battery  
Figure 9-3. AT91CAP9SC500A/AT91CAP9SC250A Power Management Controller Block Diagram  
Processor  
Clock  
Controller  
PCK  
int  
Master Clock Controller  
Idle Mode  
SLCK  
MAINCK  
PLLACK  
PLLBCK  
Divider  
/1,/2,/4  
Prescaler  
/1,/2,/4,...,/64  
MCK  
Peripherals  
Clock Controller  
periph_clk[..]  
DDRCK  
ON/OFF  
Programmable Clock Controller  
SLCK  
MAINCK  
PLLACK  
PLLBCK  
ON/OFF  
Prescaler  
/1,/2,/4,...,/64  
pck[..]  
USB Clock Controller  
ON/OFF  
Divider  
/1,/2,/4  
PLLBCK  
UHPCK  
9.6  
Periodic Interval Timer  
• Includes a 20-bit Periodic Counter, with less than 1 µs accuracy  
• Includes a 12-bit Interval Overlay Counter  
• Real-time OS or Linux®/WinCE® compliant tick generator  
36  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
9.7  
9.8  
Watchdog Timer  
• 16-bit key-protected only-once-Programmable Counter  
• Windowed, prevents the processor to be in a dead-lock on the watchdog access  
Real-time Timer  
Two Real-time Timers, allowing backup of time with different accuracies  
– 32-bit Free-running back-up Counter  
– Integrates a 16-bit programmable prescaler running on the embedded 32,768 Hz  
oscillator  
– Alarm Register to generate a wake-up of the system through the Shutdown  
Controller  
9.9  
General-Purpose Backup Registers  
• Four 32-bit backup general-purpose registers  
9.10 Advanced Interrupt Controller  
• Controls the interrupt lines (nIRQ and nFIQ) of the ARM Processor  
• Thirty-two individually maskable and vectored interrupt sources  
– Source 0 is reserved for the Fast Interrupt Input (FIQ)  
– Source 1 is reserved for system peripherals (PIT, RTT, PMC, DBGU, etc.)  
– Programmable Edge-triggered or Level-sensitive Internal Sources  
– Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive  
• Four External Sources plus the Fast Interrupt signal  
• 8-level Priority Controller  
– Drives the Normal Interrupt of the processor  
– Handles priority of the interrupt sources 1 to 31  
– Higher priority interrupts can be served during service of lower priority interrupt  
• Vectoring  
– Optimizes Interrupt Service Routine Branch and Execution  
– One 32-bit Vector Register per interrupt source  
– Interrupt Vector Register reads the corresponding current Interrupt Vector  
• Protect Mode  
– Easy debugging by preventing automatic operations when protect models are  
enabled  
• Fast Forcing  
– Permits redirecting any normal interrupt source on the Fast Interrupt of the  
processor  
9.11 Debug Unit  
• Composed of two functions  
Two-pin UART  
– Debug Communication Channel (DCC) support  
37  
6270AS–CAP–10-Jan-08  
Two-pin UART  
– Implemented features are 100% compatible with the standard Atmel USART  
– Independent receiver and transmitter with a common programmable Baud Rate  
Generator  
– Even, Odd, Mark or Space Parity Generation  
– Parity, Framing and Overrun Error Detection  
– Automatic Echo, Local Loopback and Remote Loopback Channel Modes  
– Support for two PDC channels with connection to receiver and transmitter  
• Debug Communication Channel Support  
– Offers visibility of and interrupt trigger from COMMRX and COMMTX signals from  
the ARM Processor’s ICE Interface  
9.12 Chip Identification  
• Chip ID: 0x039A03A0  
• JTAG ID: 0x05B1B03F  
• ARM926 TAP ID: 0x0792603F  
9.13 PIO Controllers  
• 4 PIO Controllers, PIOA to PIOD, controlling a total of 128 I/O Lines  
• Each PIO Controller controls up to 32 programmable I/O Lines  
– PIOA has 32 I/O Lines  
– PIOB has 32 I/O Lines  
– PIOC has 32 I/O Lines  
– PIOD has 32 I/O Lines  
• Fully programmable through Set/Clear Registers  
• Multiplexing of two peripheral functions per I/O Line  
• For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)  
– Input change interrupt  
– Glitch filter  
– Multi-drive option enables driving in open drain  
– Programmable pull up on each I/O line  
– Pin data status register, supplies visibility of the level on the pin at any time  
• Synchronous output, provides Set and Clear of several I/O lines in a single write  
38  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
10. Peripherals  
10.1 User Interface  
The peripherals are mapped in the upper 256 Mbytes of the address space between the  
addresses 0xFFFA 0000 and 0xFFFC FFFF. Each user peripheral is allocated 16 Kbytes of  
address space.  
A complete memory map is presented in Figure 8-1 on page 27.  
10.2 Identifiers  
The AT91CAP9SC500A/AT91CAP9SC250A embeds a wide range of peripherals. Table 10-1  
defines the Peripheral Identifiers of the AT91CAP9SC500A/AT91CAP9SC250A. A peripheral  
identifier is required for the control of the peripheral interrupt with the Advanced Interrupt Con-  
troller and for the control of the peripheral clock with the Power Management Controller.  
Table 10-1. AT91CAP9SC500A/AT91CAP9SC250A Peripheral Identifiers  
Peripheral  
ID  
Peripheral  
Mnemonic  
External  
Interrupt  
Peripheral Name  
0
1
AIC  
SYSC  
PIOA-D  
MPB0  
MPB1  
MPB2  
MPB3  
MPB4  
US0  
Advanced Interrupt Controller  
System Controller Interrupt  
Parallel I/O Controller A to D  
MP Block Peripheral 0  
MP Block Peripheral 1  
MP Block Peripheral 2  
MP Block Peripheral 3  
MP Block Peripheral 4  
USART 0  
FIQ  
2
3
4
5
6
7
8
9
US1  
USART 1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
US2  
USART 2  
MCI0  
Multimedia Card Interface 0  
Multimedia Card Interface 1  
CAN Controller  
MCI1  
CAN  
TWI  
Two-Wire Interface  
SPI0  
Serial Peripheral Interface 0  
Serial Peripheral Interface 1  
Synchronous Serial Controller 0  
Synchronous Serial Controller 1  
AC97 Controller  
SPI1  
SSC0  
SSC1  
AC97  
TC0, TC1, TC2  
PWMC  
EMAC  
AES/TDES  
Timer/Counter 0, 1 and 2  
Pulse Width Modulation Controller  
Ethernet MAC  
Advanced Encryption System/Triple DES  
39  
6270AS–CAP–10-Jan-08  
Table 10-1. AT91CAP9SC500A/AT91CAP9SC250A Peripheral Identifiers (Continued)  
Peripheral  
ID  
Peripheral  
Mnemonic  
External  
Interrupt  
Peripheral Name  
24  
25  
26  
27  
28  
29  
30  
31  
ADCC  
ISI  
ADC Controller  
Image Sensor Interface  
LCD Controller  
LCDC  
DMA  
UDPHS  
UHP  
AIC  
DMA Controller  
USB High Speed Device Port  
USB Host Port  
Advanced Interrupt Controller  
Advanced Interrupt Controller  
IRQ0  
IRQ1  
AIC  
10.2.1  
Peripheral Interrupts and Clock Control  
10.2.1.1  
System Interrupt  
The System Interrupt in Source 1 is the wired-OR of the interrupt signals coming from:  
• the DDR/SDRAM Controller  
• the BCRAM Controller  
• the Debug Unit  
• the Periodic Interval Timer  
• the Real-Time Timer  
• the Watchdog Timer  
• the Reset Controller  
• the Power Management Controller  
• the MP Block  
The clock of these peripherals cannot be deactivated and Peripheral ID 1 can only be used  
within the Advanced Interrupt Controller.  
10.2.1.2  
10.2.1.3  
External Interrupts  
All external interrupt signals, i.e., the Fast Interrupt signal FIQ or the Interrupt signals IRQ0 to  
IRQ1, use a dedicated Peripheral ID. However, there is no clock control associated with these  
peripheral IDs.  
Timer Counter Interrupts  
The three Timer Counter channels interrupt signals are OR-wired together to provide the inter-  
rupt source 19 of the Advanced Interrupt Controller. This forces the programmer to read all  
Timer Counter status registers before branching the right Interrupt Service Routine.  
The Timer Counter channels clocks cannot be deactivated independently. Switching off the  
clock of the Peripheral 19 disables the clock of the 3 channels.  
40  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
10.2.2  
DMA Controller Request Signals  
The requests to the DMA Controller may come from eight different sources:  
• four external requests  
• four internal requests from the MPBlock  
Table 10-2. DMA Controller Request Source and Signal Names  
Internal DMA Request from MPBlock  
External DMA Request  
Channel 7  
Channel 6  
Channel 5  
Channel 4  
Channel 3  
Channel 2  
DMARQ2  
Channel 1  
DMARQ1  
Channel 0  
DMARQ0  
MP_DMARQ3 MP_DMARQ2 MP_DMARQ1 MP_DMARQ0 DMARQ3  
Each request source is selected through the DMAC Channel x Configuration Register.  
It is also necessary to choose the hardware handshaking interface from the SRC_H2SEL and  
DST_H2SEL fields.  
(For more details, see the DMA Controller (DMAC) section and DMAC User Interface in the  
product datasheet.)  
10.3 Peripheral Signal Multiplexing on I/O Lines  
The AT91CAP9SC500A/AT91CAP9SC250A features 4 PIO controllers, PIOA, PIOB, PIOC and  
PIOD, that multiplex the I/O lines of the peripheral set.  
Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral  
functions, A or B. The multiplexing tables in the following paragraphs define how the I/O lines of  
the peripherals A and B are multiplexed on the PIO Controllers. The two columns “Function” and  
“Comments” have been inserted in this table for the user’s own comments; they may be used to  
track how pins are defined in an application.  
Note that some peripheral functions which are output only may be duplicated within both tables.  
The column “Reset State” indicates whether the PIO Line resets in I/O mode or in peripheral  
mode. If I/O is mentioned, the PIO Line resets in input with the pull-up enabled, so that the  
device is maintained in a static state as soon as the reset is released. As a result, the bit corre-  
sponding to the PIO Line in the register PIO_PSR (Peripheral Status Register) resets low.  
If a signal name is mentioned in the “Reset State” column, the PIO Line is assigned to this func-  
tion and the corresponding bit in PIO_PSR resets high. This is the case of pins controlling  
memories, in particular the address lines, which require the pin to be driven as soon as the reset  
is released. Note that the pull-up resistor is also enabled in this case.  
41  
6270AS–CAP–10-Jan-08  
10.3.1  
PIO Controller A Multiplexing  
Table 10-3. Multiplexing on PIO Controller A  
PIO Controller A  
Application Usage  
Power  
Reset  
State  
324-BGA pkg  
Options(1)  
I/O Line  
PA0  
Peripheral A  
MCI0_D0  
MCI0_CD  
MCI0_CK  
MCI0_D1  
MCI0_D2  
MCI0_D3  
AC97FS  
AC97CK  
AC97TX  
AC97RX  
IRQ0  
Peripheral B  
SPI0_MISO  
SPI0_MOSI  
SPI0_SPCK  
SPI0_NPCS1  
SPI0_NPCS2  
SPI0_NPCS0  
Comments  
Supply  
Function  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PA8  
PA9  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
PA17  
PA18  
PA19  
PA20  
PA21  
PA22  
PA23  
PA24  
PA25  
PA26  
PA27  
PA28  
PA29  
PA30  
PA31  
PWM1  
PWM3  
PCK0  
DMARQ0  
CANTX  
CANRX  
TCLK2  
IRQ1  
DMARQ3  
MCI1_CK  
MCI1_CD  
MCI1_D0  
MCI1_D1  
MCI1_D2  
MCI1_D3  
TXD0  
PCK2  
ISI_D0  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
ISI_D1  
ISI_D2  
ISI_D3  
ISI_D4  
ISI_D5  
ISI_D6  
RXD0  
ISI_D7  
RTS0  
ISI_PCK  
ISI_HSYNC  
ISI_VSYNC  
ISI_MCK  
ISI_D8  
CTS0  
SCK0  
PCK1  
SPI0_NPCS3  
TIOA0  
ISI_D9  
TIOB0  
ISI_D10  
ISI_D11  
DMARQ1  
Note:  
1. The user must ensure that removing the designated pins does not have an adverse effect on the intended application.  
42  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
10.3.2  
PIO Controller B Multiplexing  
Table 10-4. Multiplexing on PIO Controller B  
PIO Controller B  
Application Usage  
Reset Power  
324-BGA pkg  
Options(1)  
I/O Line  
PB0  
Peripheral A  
TF0  
Peripheral B  
Comments  
State  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Supply  
Function  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
PB1  
TK0  
PB2  
TD0  
PB3  
RD0  
PB4  
RK0  
TWD  
PB5  
RF0  
TWCK  
TIOA1  
TIOB1  
PWM2  
LCDCC  
PCK1  
PB6  
TF1  
PB7  
TK1  
PB8  
TD1  
PB9  
RD1  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
PB16  
PB17  
PB18  
PB19  
PB20  
PB21  
PB22  
PB23  
PB24  
PB25  
PB26  
PB27  
PB28  
PB29  
PB30  
PB31  
RK1  
RF1  
SPI1_MISO  
SPI1_MOSI  
SPI1_SPCK  
SPI1_NPCS0  
SPI1_NPCS1  
SPI1_NPCS2  
SPI1_NPCS3  
PWM0  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
PWM1  
ETXCK/EREFCK  
ERXDV  
ETX0  
TIOA2  
TIOB2  
PCK3  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
ETX1  
ERX0  
ERX1  
ERXER  
ETXEN  
EMDC  
TCLK0  
PWM3  
EMDIO  
ADTRIG  
EF100  
Note:  
1. The user must ensure that removing the designated pins does not have an adverse effect on the intended application.  
43  
6270AS–CAP–10-Jan-08  
10.3.3  
PIO Controller C Multiplexing  
Table 10-5. Multiplexing on PIO Controller C  
PIO Controller C  
Application Usage  
Power  
Reset  
State  
324-BGA pkg  
Options(1)  
I/O Line  
PC0  
Peripheral A  
LCDVSYNC  
LCDHSYNC  
LCDDOTCK  
LCDDEN  
LCDD0  
Peripheral B  
Comments  
Supply  
Function  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
PC1  
PC2  
PC3  
PWM1  
PC4  
LCDD3  
LCDD4  
LCDD5  
LCDD6  
LCDD7  
LCDD10  
LCDD11  
LCDD12  
LCDD13  
LCDD14  
LCDD15  
LCDD19  
LCDD20  
LCDD21  
LCDD22  
LCDD23  
ETX2  
PC5  
LCDD1  
PC6  
LCDD2  
PC7  
LCDD3  
PC8  
LCDD4  
PC9  
LCDD5  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
PC16  
PC17  
PC18  
PC19  
PC20  
PC21  
PC22  
PC23  
PC24  
PC25  
PC26  
PC27  
PC28  
PC29  
PC30  
PC31  
LCDD6  
LCDD7  
LCDD8  
LCDD9  
LCDD10  
LCDD11  
LCDD12  
LCDD13  
LCDD14  
LCDD15  
LCDD16  
LCDD17  
LCDD18  
LCDD19  
LCDD20  
LCDD21  
LCDD22  
LCDD23  
PWM0  
ETX3  
ERX2  
ERX3  
ETXER  
ECRS  
ECOL  
ERXCK  
TCLK1  
PWM2  
PCK0  
DRXD  
DTXD  
Note:  
1. The user must ensure that removing the designated pins does not have an adverse effect on the intended application.  
44  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
10.3.4  
PIO Controller D Multiplexing  
Table 10-6. Multiplexing on PIO Controller D  
PIO Controller D  
Application Usage  
Power  
Reset  
State  
324-BGA pkg  
Options(1)  
I/O Line  
PD0  
Peripheral A  
TXD1  
Peripheral B  
SPI0_NPCS2  
SPI0_NPCS3  
SPI1_NPCS2  
SPI1_NPCS3  
Comments  
Supply  
Function  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A23  
A24  
A25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
can be removed  
PD1  
RXD1  
TXD2  
PD2  
PD3  
RXD2  
FIQ  
PD4  
PD5  
DMARQ2  
NWAIT  
NCS4/CFCS0  
NCS5/CFCS1  
CFCE1  
CFCE2  
NCS2  
A23  
RTS2  
CTS2  
RTS1  
CTS1  
SCK2  
SCK1  
PD6  
PD7  
PD8  
PD9  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PD16  
PD17  
PD18  
PD19  
PD20  
PD21  
PD22  
PD23  
PD24  
PD25  
PD26  
PD27  
PD28  
PD29  
PD30  
PD31  
A24  
A25/CFRNW  
NCS3/NANDCS  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
Note:  
1. The user must ensure that removing the designated pins does not have an adverse effect on the intended application.  
45  
6270AS–CAP–10-Jan-08  
10.4 Embedded Peripherals  
10.4.1  
Serial Peripheral Interface  
• Supports communication with serial external devices  
– Four chip selects with external decoder support allow communication with up to 15  
peripherals  
– Serial memories, such as DataFlash and 3-wire EEPROMs  
– Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and  
Sensors  
– External co-processors  
• Master or slave serial peripheral bus interface  
– 8- to 16-bit programmable data length per chip select  
– Programmable phase and polarity per chip select  
– Programmable transfer delays between consecutive transfers and between clock  
and data per chip select  
– Programmable delay between consecutive transfers  
– Selectable mode fault detection  
• Very fast transfers supported  
Transfers with baud rates up to MCK  
– The chip select line may be left active to speed up transfers on the same device  
10.4.2  
10.4.3  
Two-wire Interface  
• Compatibility with standard two-wire serial memory  
• One, two or three bytes for slave address  
• Sequential read/write operations  
USART  
• Programmable Baud Rate Generator  
• 5- to 9-bit full-duplex synchronous or asynchronous serial communications  
– 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode  
– Parity generation and error detection  
– Framing error detection, overrun error detection  
– MSB- or LSB-first  
– Optional break generation and detection  
– By 8 or by-16 over-sampling receiver frequency  
– Hardware handshaking RTS-CTS  
– Receiver time-out and transmitter timeguard  
– Optional Multi-drop Mode with address generation and detection  
– Optional Manchester Encoding  
• RS485 with driver control signal  
• ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards  
– NACK handling, error counter with repetition and iteration limit  
46  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
• IrDA modulation and demodulation  
– Communication at up to 115.2 Kbps  
Test Modes  
– Remote Loopback, Local Loopback, Automatic Echo  
10.4.4  
Synchronous Serial Controller  
• Provides serial synchronous communication links used in audio and telecom applications  
(with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.)  
• Contains an independent receiver and transmitter and a common clock divider  
• Offers a configurable frame sync and data length  
• Receiver and transmitter can be programmed to start automatically or on detection of  
different event on the frame sync signal  
• Receiver and transmitter include a data signal, a clock signal and a frame synchronization  
signal  
10.4.5  
AC97 Controller  
• Compatible with AC97 Component Specification V2.2  
• Capable to Interface with a Single Analog Front end  
• Three independent RX Channels and three independent TX Channels  
– One RX and one TX channel dedicated to the AC97 Analog Front end control  
– One RX and one TX channel for data transfers, associated with a PDC  
– One RX and one TX channel for data transfers with no PDC  
• Time Slot Assigner allowing to assign up to 12 time slots to a channel  
• Channels support mono or stereo up to 20 bit sample length  
– Variable sampling rate AC97 Codec Interface (48KHz and below)  
10.4.6  
Timer Counter  
• Three 16-bit Timer Counter Channels  
• Wide range of functions including:  
– Frequency Measurement  
– Event Counting  
– Interval Measurement  
– Pulse Generation  
– Delay Timing  
– Pulse Width Modulation  
– Up/down Capabilities  
• Each channel is user-configurable and contains:  
– Three external clock inputs  
– Five internal clock inputs  
Two multi-purpose input/output signals  
Two global registers that act on all three TC Channels  
47  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
10.4.7  
Pulse Width Modulation Controller  
• 4 channels, one 16-bit counter per channel  
• Common clock generator, providing Thirteen Different Clocks  
– A Modulo n counter providing eleven clocks  
Two independent Linear Dividers working on modulo n counter outputs  
• Independent channel programming  
– Independent Enable Disable Commands  
– Independent Clock Selection  
– Independent Period and Duty Cycle, with Double Bufferization  
– Programmable selection of the output waveform polarity  
– Programmable center or left aligned output waveform  
10.4.8  
Multimedia Card Interface  
• 2 double-channel Multimedia Card Interface, allowing concurrent transfers with 2 cards  
• Compatibility with MultiMedia Card Specification Version 3.31  
• Compatibility with SD Memory Card Specification Version 1.0  
• Compatibility with SDIO Specification Version V1.0.  
• Cards clock rate up to Master Clock divided by 2  
• Embedded power management to slow down clock rate when not used  
• Each MCI has one slot supporting  
– One MultiMediaCardbus (up to 30 cards) or  
– One SD Memory Card  
– One SDIO Card  
• Support for stream, block and multi-block data read and write  
10.4.9  
Advanced Encryption Standard 128/192/256-bit  
• AES 128/192/256-bit Key Algorithm Hardware Accelerator  
• PDC Support for Buffer Encryption/Decryption without any processor intervention  
• Compliant with FIPS PUB 197 Specifications  
• 10-clock Cycle Encryption/Decryption for 128-bit Key  
• Four Standard Modes of Operation Specified in NIST Special Publication 800-38A  
Recommendations:  
– Electronic Book Coding (EBC)  
– Cipher Block Chaining (CBC)  
– Cipher Feedback (CFB)  
– Output Feedback (OFB)  
• 8-, 16-, 32-, 64- and 128-bit Data Sizes Possible in CFB Mode  
10.4.10 Triple Data Encryption Standard  
• Support Single Data Encryption Standard (DES) and Triple Data Encryption Algorithm  
(TDEA or TDES)  
• PDC Support for Buffer Encryption/Decryption without any processor intervention  
48  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
• Compliant with FIPS Publication 46-3, Data Encryption Standard (DES)  
• 18-clock Cycle Encryption/Decryption for DES  
• 50-clock Cycle Encryption/Decryption for TDES  
• Four Standard Modes of Operation Specified in FIPS Publication 81, DES Modes of  
Operation  
– Electronic Book Coding (EBC)  
– Cipher Block Chaining (CBC)  
– Cipher Feedback (CFB)  
– Output Feedback (OFB)  
• 8-, 16-, 32- and 64-bit Data Sizes Possible in CFB Mode  
10.4.11 CAN Controller  
• Fully compliant with 16-mailbox CAN 2.0A and 2.0B CAN Controllers  
• Bit rates up to 1Mbit/s.  
• Object-oriented mailboxes, each with the following properties:  
– CAN Specification 2.0 Part A or 2.0 Part B Programmable for Each Message  
– Object Configurable as receive (with overwrite or not) or transmit  
– Local Tag and Mask Filters up to 29-bit Identifier/Channel  
– 32 bits access to Data registers for each mailbox data object  
– Uses a 16-bit time stamp on receive and transmit message  
– Hardware concatenation of ID unmasked bitfields to speedup family ID processing  
– 16-bit internal timer for Time Stamping and Network synchronization  
– Programmable reception buffer length up to 16 mailbox object  
– Priority Management between transmission mailboxes  
– Autobaud and listening mode  
– Low power mode and programmable wake-up on bus activity or by the application  
– Data, Remote, Error and Overload Frame handling  
10.4.12 USB Host Port  
• Compliance with OHCI Rev 1.0 Specification  
• Compliance with USB V2.0 Full-speed and Low-speed Specification  
• Supports both Low-speed 1.5 Mbps and Full-speed 12 Mbps devices  
• Root hub integrated with two downstream USB ports  
Two embedded USB transceivers  
• Supports power management  
• Operates as a master on the Matrix  
• Internal DMA Controller, operating as a Master on Bus Matrix  
10.4.13 USB High Speed Device Port  
• USB V2.0 high-speed compliant, 480 MBits per second  
• Embedded USB V2.0 UTMI+ high-speed transceiver  
• Embedded 4K-byte dual-port RAM for endpoints  
49  
6270AS–CAP–10-Jan-08  
• Embedded 6 channels DMA controller  
• Suspend/Resume logic  
• Up to 2 or 3 banks for isochronous and bulk endpoints  
• Seven endpoints:  
– Endpoint 0: 64 bytes  
– Endpoint 1 & 2: 1024 bytes, 3 banks mode, HS isochronous capable  
– Endpoint 3 & 4: 1024 bytes, 2 banks mode, HS isochronous capable  
– Endpoint 5 & 6: 1024 bytes, 2 banks mode  
– Endpoint 7: 1024 bytes, 2 banks mode  
10.4.14 LCD Controller  
• Single and Dual scan color and monochrome passive STN LCD panels supported  
• Single scan active TFT LCD panels supported  
• 4-bit single scan, 8-bit single or dual scan, 16-bit dual scan STN interfaces supported  
• Up to 24-bit single scan TFT interfaces supported  
• Up to 16 gray levels for mono STN and up to 4096 colors for color STN displays  
• 1, 2 bits per pixel (palletized), 4 bits per pixel (non-palletized) for mono STN  
• 1, 2, 4, 8 bits per pixel (palletized), 16 bits per pixel (non-palletized) for color STN  
• 1, 2, 4, 8 bits per pixel (palletized), 16, 24 bits per pixel (non-palletized) for TFT  
• Single clock domain architecture  
• Resolution supported up to 2048x2048  
• 2D-DMA Controller for management of virtual Frame Buffer  
– Allows management of frame buffer larger than the screen size and moving the view  
over this virtual frame buffer  
• Automatic resynchronization of the frame buffer pointer to prevent flickering  
10.4.15 Ethernet 10/100 MAC  
• Compatibility with IEEE Standard 802.3  
• 10 and 100 MBits per second data throughput capability  
• Full- and half-duplex operations  
• MII or RMII interface to the physical layer  
• Register Interface to address, data, status and control registers  
• Internal DMA Controller, operating as a Master on Bus Matrix  
• Interrupt generation to signal receive and transmit completion  
• 28-byte transmit and 28-byte receive FIFOs  
• Automatic pad and CRC generation on transmitted frames  
• Address checking logic to recognize four 48-bit addresses  
• Support promiscuous mode where all valid frames are copied to memory  
• Support physical layer management through MDIO interface control of alarm and update  
time/calendar data in  
50  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
10.4.16 Image Sensor Interface  
• ITU-R BT. 601/656 8-bit mode external interface support  
• Support for ITU-R BT.656-4 SAV and EAV synchronization  
• Vertical and horizontal resolutions up to 2048 x 2048  
• Preview Path up to 640*480  
• Support for packed data formatting for YCbCr 4:2:2 formats  
• Preview scaler to generate smaller size image  
• Programmable frame capture rate  
• Internal DMA Controller, operating as a Master on Bus Matrix  
10.4.17 Analog-to-digital Converter  
• 8-channel ADC  
• 10-bit 440K samples/sec. Successive Approximation Register ADC  
• -2/+2 LSB Integral Non Linearity, -1/+1 LSB Differential Non Linearity  
• Individual enable and disable of each channel  
• External voltage reference for better accuracy on low voltage inputs  
• Multiple trigger source – Hardware or software trigger – External trigger pin – Timer Counter  
0 to 2 outputs TIOA0 to TIOA2 and TIOB0 to TIOB2 triggers  
• Sleep Mode and conversion sequencer – Automatic wakeup on trigger and back to sleep  
mode after conversions of all enabled channels  
• Four analog inputs shared with digital signals  
51  
6270AS–CAP–10-Jan-08  
11. Metal Programmable Block  
The Metal Programmable Block (MPBlock) is connected to internal resources as the AHB bus or  
interrupts and to external resources as dedicated I/O pads or UTMI+ core.  
The MPBlock may be used to implement the Advanced High-speed Bus (AHB) or Advanced  
Peripheral Bus (APB) custom peripherals. The MPBlock adds approximately 500K or 250K  
gates of standard cell custom logic to the AT91CAP9SC500A/AT91CAP9SC250A base design.  
Figure 11-1 shows the MPBlock and its connections to internal or external resources.  
Figure 11-1. MPBlock Connectivity  
ITs  
DMA  
AHB MASTERS  
AHB SLAVES  
MPBlock Test Wrapper  
10x  
8x  
CLOCKS  
DPR  
512x36  
AES,TDES,CAN,  
MACB, OHCI  
ENABLE  
MPBLOCK  
500K Gates (CAP9SC500)  
250K Gates (CAP9SC250)  
SPR  
512x72  
CHIP ID  
JTAG ID  
UTMI+  
PHY  
Chip Boundary Scan  
MPIOA[31:0]  
MPIOB[44:0]  
11.1 Internal Connectivity  
In  
order  
to  
connect  
the  
MPBlock  
custom  
peripheral  
to  
the  
AT91CAP9SC500A/AT91CAP9SC250A base design, the following connections are made.  
11.1.1  
Clocks  
The MPBlock receives the following clocks:  
• 32,768 Hz Slow Clock  
• 8 to 16 MHz Main Oscillator Clock  
• PLLA Clock  
• PLLB Clock  
• 48 MHz USB Clock  
• 12 MHz USB Clock  
52  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
• 30 or 60 MHz UTMI+ USB Clock  
• MCK System Clock  
• DDRCK Dual Rate System Clock  
• PCK Processor Clock  
• 5 Gated Peripherals Clock (for AHB and/or APB peripherals) corresponding to Peripheral ID  
3 to 7  
11.1.2  
11.1.3  
11.1.4  
AHB Master Buses  
The MPBlock may implement up to three AHB masters, each having a dedicated AHB master  
bus connected to the Bus Matrix.  
AHB Slave Buses  
The MPBlock receives four different AHB slave buses coming from the Bus Matrix. Each bus  
has two or four select signals that can implement up to 12 AHB slaves.  
Interrupts  
The MPBlock is connected to 5 dedicated interrupt lines corresponding to Peripheral ID 3 to 9.  
It is also connected to two other interrupt lines (through OR gate) corresponding to Peripheral ID  
1 and 2  
11.1.5  
11.1.6  
DMA Channels  
The MPBlock is connected to 4 DMA hardware handshaking interfaces, allowing it to implement  
up to 4 DMA enabled peripherals.  
Peripheral DMA Channels  
The MPBlock is not connected to the Peripheral DMA Controller. In order to implement Periph-  
eral DMA Controller (PDC) enabled APB peripherals, a PDC and an AHB-to-APB Bridge must  
be integrated into the MPBlock using one AHB master and one AHB slave bus.  
11.1.7  
11.1.8  
11.1.9  
MPBlock Single Port RAMs  
The MPBlock is connected to eight instances of 512x72 High-Speed Single Port RAMs.  
The MPBlock has control over all memory connections.  
MPBlock Dual Port RAMs  
The MPBlock is connected to ten instances of 512x36 High-Speed Dual Port RAMs.  
The MPBlock has control over all memory connections.  
Optional Peripherals Enable  
The MPBlock drives the enable of the optional peripherals, and so can enable or disable any of  
the optional peripherals.  
53  
6270AS–CAP–10-Jan-08  
11.2 External Connectivity  
The MPBlock is connected to the following external resources.  
11.2.1  
Dedicated I/O Lines  
The MPBlock is directly connected to 77 (32 MPIOA and 45 MPIOB lines) dedicated I/O Pads  
with the following features:  
• Supply/Drive control pin (needed for high-speed or low voltage interfaces)  
• Pull-up control pin  
• Supported logic levels include:  
LVCMOS33 at 100 MHz maximum frequency  
LVCMOS25 at 50 MHz maximum frequency  
LVCMOS18 at 100 MHz maximum frequency  
Only 32 dedicated I/O pins are available in the TFBGA324 package.  
11.2.2  
UTMI+ Transceiver  
The MPBlock may be connected to the UTMI+ transceiver. As only one UTMI+ transceiver is  
available, the USB High-speed Device and the MPBlock do not have access to the UTMI+ at the  
same time. However, a dual role Master-Slave USB High-Speed may be implemented by using  
the USB High-speed Device and integrating a High-speed Host in the MPBlock as the switching  
between both is generated inside the MPBlock.  
11.3 Prototyping Solution  
In order to prototype the final custom design, a Prototyping Platform version of the  
AT91CAP9SC500A/AT91CAP9SC250A design has been created. The platform maps APB and  
AHB masters or slaves into the FPGA located outside the chip with the following features and  
restrictions:  
AT91CAP9SC500A/AT91CAP9SC250A to FPGA interface is provided to prototype AHB  
masters and slave into the external FPGA exactly as if it were in MPBlock.  
• Prototyped AHB Masters  
– Prototyped AHB Masters have access to AT91CAP9SC500A/AT91CAP9SC250A  
slave resources.  
– Prototyped AHB Masters have access to MPBlock (FPGA) slave resources.  
• Prototyped AHB Slaves  
– Prototyped AHB Slaves may be accessed from  
AT91CAP9SC500A/AT91CAP9SC250A master resources.  
– Prototyped AHB Slaves may be accessed from MPBlock (FPGA) resources.  
• Prototyped APB Slaves  
– APB bus must be created locally in the FPGA by implementing AHB to APB bridge.  
Peripheral DMA controller may also be necessary to implement locally in the FPGA  
in order to prototype PDC enabled APB peripherals.  
Figure 11-2 shows a typical prototyping solution.  
54  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
Figure 11-2. Typical Prototyping Solution  
CAP9500C  
CAP9250C  
MASTERS  
ARM926EJ-S  
EBI  
Bus Matrix  
4-channel  
DMA  
Metal Programmable Block  
500K Gates (CAP9500C)  
250K Gates (CAP9250C)  
FPGA Interface  
MPIOA[31:0]  
MPIOB[44:0]  
FPGA  
CAP9500C/CAP9250C FPGA Interface  
Local AHB Matrix  
AHB  
MASTER  
DPR  
AHB  
MASTER  
AHB  
SLAVE  
PDC  
AHB 2 APB  
BRIDGE  
RAM  
DPR  
APB  
DPR  
APB  
SLAVE  
MPBlock  
Emulation Area  
APB  
SLAVE  
55  
6270AS–CAP–10-Jan-08  
12. AT91CAP9SC Mechanical Characteristics  
12.1 Package Drawing  
Figure 12-1. 400-ball LFBGA Package Drawing  
56  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
Figure 12-2. 324-ball TFBGA Package  
57  
6270AS–CAP–10-Jan-08  
13. AT91CAP9SC Ordering Information  
Table 13-1. CAP9SC Ordering Information  
Ordering Code  
Package  
Package Type  
Temperature Operating Range  
AT91CAP9SC250A-CJ  
AT91CAP9SC500A-CJ  
AT91CAP9SC250A-CJ  
AT91CAP9SC500A-CJ  
Industrial  
-40°C to 85°C  
BGA400  
RoHS Compliant  
Industrial  
-40°C to 85°C  
BGA324  
RoHS Compliant  
14. Export Regulations Statement  
These commodities, technology or software will be exported from France and the applicable  
Export Administration Regulations will apply. French, United States and other relevant laws, reg-  
ulations and requirements regarding the export of products may restrict sale, export and re-  
export of these products; please assure you conduct your activities in accordance with the appli-  
cable relevant export regulations.  
58  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
6270AS–CAP–10-Jan-08  
AT91CAP9SC500A/AT91CAP9SC250A Preliminary  
15. Revision History  
Change  
Request  
Ref.  
Document  
Ref.  
Comments  
6270AS  
First issue.  
59  
6270AS–CAP–10-Jan-08  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
Technical Support  
Sales Contacts  
www.atmel.com  
www.atmel.com/AT91CAP  
Atmel techincal support  
www.atmel.com/contacts/  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifica-  
tions and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically pro-  
vided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted  
for use as components in applications intended to support or sustain life.  
© 2008 Atmel Corporation. All rights reserved. Atmel®, logo, DataFlash® and others are registered trademarks and CAP™ and others are  
trademarks of Atmel Corporation or its subsidiaries. ARM®, the ARMPowered® logo, Thumb® and others are the registered trademarks or trade-  
marks of ARM Ltd. Other terms and product names may be the trademarks of others.  
6270AS–CAP–10-Jan-08  

相关型号:

AT91CAP9SC500A

Customizable Microcontroller Processor
ATMEL

AT91CAP9SC500A-CJ

Customizable Microcontroller Processor
ATMEL

AT91CAPS250A-CJ

Customizable Microcontroller Processor
ATMEL

AT91CAPS9500A-CJ

Customizable Microcontroller Processor
ATMEL

AT91EB42

AT91EB42 Evaluation Board
ATMEL

AT91EB55

AT91EB55 Evaluation Board
ATMEL

AT91F40816

ARM Thumb Microcontrollers
ATMEL

AT91F40816-33CI

ARM Thumb Microcontrollers
ATMEL

AT91F40816_02

AT91 ARM Thumb Microcontrollers
ATMEL

AT91FR40161

ARM Thumb Microcontrollers
ATMEL

AT91FR40161-CI

ARM Thumb Microcontrollers
ATMEL

AT91FR40162

AT91 ARM Thumb Microcontrollers
ATMEL