AT91SAM7X256B-AU-999 [ATMEL]

RISC Microcontroller, 32-Bit, FLASH, ARM7 CPU, 55MHz, CMOS, PQFP100;
AT91SAM7X256B-AU-999
型号: AT91SAM7X256B-AU-999
厂家: ATMEL    ATMEL
描述:

RISC Microcontroller, 32-Bit, FLASH, ARM7 CPU, 55MHz, CMOS, PQFP100

ATM 异步传输模式 微控制器 外围集成电路
文件: 总44页 (文件大小:510K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Incorporates the ARM7TDMI® ARM® Thumb® Processor  
– High-performance 32-bit RISC Architecture  
– High-density 16-bit Instruction Set  
• Leader in MIPS/Watt  
– EmbeddedICEIn-circuit Emulation, Debug Communication Channel Support  
Internal High-speed Flash  
– 512 Kbytes (SAM7X512) Organized in Two Banks of 1024 Pages of  
256 Bytes (Dual Plane)  
AT91SAM  
ARM-based  
Flash MCU  
– 256 Kbytes (SAM7X256) Organized in 1024 Pages of 256 Bytes (Single Plane)  
– 128 Kbytes (SAM7X128) Organized in 512 Pages of 256 Bytes (Single Plane)  
• Single Cycle Access at Up to 30 MHz in Worst Case Conditions  
• Prefetch Buffer Optimizing Thumb Instruction Execution at Maximum Speed  
• Page Programming Time: 6 ms, Including Page Auto-erase,  
Full Erase Time: 15 ms  
• 10,000 Write Cycles, 10-year Data Retention Capability,  
Sector Lock Capabilities, Flash Security Bit  
SAM7X512  
SAM7X256  
SAM7X128  
• Fast Flash Programming Interface for High Volume Production  
Internal High-speed SRAM, Single-cycle Access at Maximum Speed  
– 128 Kbytes (SAM7X512)  
– 64 Kbytes (SAM7X256)  
– 32 Kbytes (SAM7X128)  
Memory Controller (MC)  
– Embedded Flash Controller, Abort Status and Misalignment Detection  
Reset Controller (RSTC)  
– Based on Power-on Reset Cells and Low-power Factory-calibrated Brownout  
Detector  
Summary  
– Provides External Reset Signal Shaping and Reset Source Status  
Clock Generator (CKGR)  
– Low-power RC Oscillator, 3 to 20 MHz On-chip Oscillator and one PLL  
Power Management Controller (PMC)  
– Power Optimization Capabilities, Including Slow Clock Mode (Down to 500 Hz) and  
Idle Mode  
– Four Programmable External Clock Signals  
Advanced Interrupt Controller (AIC)  
– Individually Maskable, Eight-level Priority, Vectored Interrupt Sources  
– Two External Interrupt Sources and One Fast Interrupt Source, Spurious Interrupt  
Protected  
Debug Unit (DBGU)  
– 2-wire UART and Support for Debug Communication Channel interrupt,  
Programmable ICE Access Prevention  
– Mode for General Purpose 2-wire UART Serial Communication  
Periodic Interval Timer (PIT)  
– 20-bit Programmable Counter plus 12-bit Interval Counter  
Windowed Watchdog (WDT)  
NOTE: This is a summary document.  
The complete document is available on  
the Atmel website at www.atmel.com.  
– 12-bit key-protected Programmable Counter  
– Provides Reset or Interrupt Signals to the System  
– Counter May Be Stopped While the Processor is in Debug State or in Idle Mode  
6120GS–ATARM–07-Apr-11  
 
 
 
Real-time Timer (RTT)  
– 32-bit Free-running Counter with Alarm  
– Runs Off the Internal RC Oscillator  
Two Parallel Input/Output Controllers (PIO)  
– Sixty-two Programmable I/O Lines Multiplexed with up to Two Peripheral I/Os  
– Input Change Interrupt Capability on Each I/O Line  
– Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output  
Thirteen Peripheral DMA Controller (PDC) Channels  
One USB 2.0 Full Speed (12 Mbits per second) Device Port  
– On-chip Transceiver, 1352-byte Configurable Integrated FIFOs  
One Ethernet MAC 10/100 base-T  
– Media Independent Interface (MII) or Reduced Media Independent Interface (RMII)  
– Integrated 28-byte FIFOs and Dedicated DMA Channels for Transmit and Receive  
One Part 2.0A and Part 2.0B Compliant CAN Controller  
– Eight Fully-programmable Message Object Mailboxes, 16-bit Time Stamp Counter  
One Synchronous Serial Controller (SSC)  
– Independent Clock and Frame Sync Signals for Each Receiver and Transmitter  
– I²S Analog Interface Support, Time Division Multiplex Support  
– High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer  
Two Universal Synchronous/Asynchronous Receiver Transmitters (USART)  
– Individual Baud Rate Generator, IrDA® Infrared Modulation/Demodulation  
– Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support  
– Full Modem Line Support on USART1  
Two Master/Slave Serial Peripheral Interfaces (SPI)  
– 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects  
One Three-channel 16-bit Timer/Counter (TC)  
– Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel  
– Double PWM Generation, Capture/Waveform Mode, Up/Down Capability  
One Four-channel 16-bit Power Width Modulation Controller (PWMC)  
One Two-wire Interface (TWI)  
– Master Mode Support Only, All Two-wire Atmel EEPROMs and I2C Compatible Devices Supported  
One 8-channel 10-bit Analog-to-Digital Converter, Four Channels Multiplexed with Digital I/Os  
SAM-BA® Boot Assistance  
– Default Boot program  
– Interface with SAM-BA Graphic User Interface  
IEEE® 1149.1 JTAG Boundary Scan on All Digital Pins  
5V-tolerant I/Os, Including Four High-current Drive I/O lines, Up to 16 mA Each  
Power Supplies  
– Embedded 1.8V Regulator, Drawing up to 100 mA for the Core and External Components  
– 3.3V VDDIO I/O Lines Power Supply, Independent 3.3V VDDFLASH Flash Power Supply  
– 1.8V VDDCORE Core Power Supply with Brownout Detector  
Fully Static Operation: Up to 55 MHz at 1.65V and 85C Worst Case Conditions  
Available in 100-lead LQFP Green and 100-ball TFBGA Green Packages  
2
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
SAM7X512/256/128 Summary  
1. Description  
Atmel's SAM7X512/256/128 is a member of a series of highly integrated Flash microcontrollers  
based on the 32-bit ARM RISC processor. It features 512/256/128 Kbytes high-speed Flash and  
128/64/32 Kbyte SRAM, a large set of peripherals, including an 802.3 Ethernet MAC and a CAN  
controller. A complete set of system functions minimizes the number of external components.  
The embedded Flash memory can be programmed in-system via the JTAG-ICE interface or via  
a parallel interface on a production programmer prior to mounting. Built-in lock bits and a secu-  
rity bit protect the firmware from accidental overwrite and preserve its confidentiality.  
The SAM7X512/256/128 system controller includes a reset controller capable of managing the  
power-on sequence of the microcontroller and the complete system. Correct device operation  
can be monitored by a built-in brownout detector and a watchdog running off an integrated RC  
oscillator.  
By combining the ARM7TDMI processor with on-chip Flash and SRAM, and a wide range of  
peripheral functions, including USART, SPI, CAN Controller, Ethernet MAC, Timer Counter, RTT  
and Analog-to-Digital Converters on a monolithic chip, the SAM7X512/256/128 is a powerful  
device that provides a flexible, cost-effective solution to many embedded control applications  
requiring communication over, for example, Ethernet, CAN wired and Zigbeewireless  
networks.  
1.1  
Configuration Summary of the SAM7X512/256/128  
The SAM7X512, SAM7X256 and SAM7X128 differ only in memory sizes. Table 1-1 summarizes  
the configurations of the three devices.  
Table 1-1.  
Configuration Summary  
Flash  
Device  
Flash  
Organization  
SRAM  
SAM7X512  
SAM7X256  
SAM7X128  
512 Kbytes  
dual plane  
128 Kbytes  
64 Kbytes  
32 Kbytes  
256 Kbytes  
128 Kbytes  
single plane  
single plane  
3
6120GS–ATARM–07-Apr-11  
 
2. SAM7X512/256/128 Block Diagram  
Figure 2-1. SAM7X512/256/128 Block Diagram  
TDI  
TDO  
TMS  
TCK  
ICE  
ARM7TDMI  
Processor  
JTAG  
SCAN  
JTAGSEL  
1.8 V  
Voltage  
VDDIN  
GND  
System Controller  
AIC  
Regulator  
VDDOUT  
TST  
FIQ  
VDDCORE  
VDDIO  
IRQ0-IRQ1  
Memory Controller  
SRAM  
Embedded  
Address  
Decoder  
128/64/32 Kbytes  
Flash  
PDC  
PDC  
DRXD  
DTXD  
DBGU  
Controllers  
Abort  
Status  
Misalignment  
Detection  
PCK0-PCK3  
PLLRC  
VDDFLASH  
ERASE  
PLL  
Flash  
512/256/128  
Kbytes  
XIN  
XOUT  
PMC  
OSC  
Peripheral Bridge  
RCOSC  
ROM  
VDDCORE  
VDDFLASH  
Peripheral DMA  
Controller  
BOD  
POR  
PGMRDY  
PGMNVALID  
PGMNOE  
Reset  
Controller  
13 Channels  
Fast Flash  
Programming  
Interface  
VDDCORE  
NRST  
PGMCK  
PGMM0-PGMM3  
PGMD0-PGMD15  
PGMNCMD  
PGMEN0-PGMEN1  
PIT  
WDT  
RTT  
APB  
SAM-BA  
DMA  
FIFO  
ETXCK-ERXCK-EREFCK  
ETXEN-ETXER  
ECRS-ECOL, ECRSDV  
ERXER-ERXDV  
ERX0-ERX3  
ETX0-ETX3  
EMDC  
EMDIO  
PIOA  
PIOB  
Ethernet MAC 10/100  
RXD0  
TXD0  
SCK0  
RTS0  
CTS0  
RXD1  
TXD1  
SCK1  
RTS1  
CTS1  
DCD1  
DSR1  
DTR1  
RI1  
PDC  
USART0  
USART1  
EF100  
PDC  
PDC  
VDDFLASH  
FIFO  
DDM  
DDP  
USB Device  
PWM0  
PWM1  
PWM2  
PWM3  
TF  
TK  
TD  
RD  
RK  
RF  
TCLK0  
TCLK1  
TCLK2  
TIOA0  
TIOB0  
TIOA1  
TIOB1  
PDC  
PDC  
PWMC  
SPI0_NPCS0  
SPI0_NPCS1  
SPI0_NPCS2  
SPI0_NPCS3  
SPI0_MISO  
SPI0_MOSI  
SPI0_SPCK  
SPI1_NPCS0  
SPI1_NPCS1  
SPI1_NPCS2  
SPI1_NPCS3  
SPI1_MISO  
SPI1_MOSI  
SPI1_SPCK  
PDC  
SPI0  
SPI1  
SSC  
PDC  
PDC  
PDC  
Timer Counter  
TC0  
TC1  
TC2  
TWI  
PDC  
PDC  
ADTRG  
AD0  
AD1  
AD2  
TIOA2  
TIOB2  
TWD  
TWCK  
CANRX  
CANTX  
AD3  
ADC  
AD4  
AD5  
AD6  
AD7  
CAN  
ADVREF  
4
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
SAM7X512/256/128 Summary  
3. Signal Description  
Table 3-1.  
Signal Description List  
Active  
Signal Name  
Function  
Type  
Level  
Comments  
Power  
Voltage Regulator and ADC Power  
Supply Input  
VDDIN  
Power  
3V to 3.6V  
VDDOUT  
VDDFLASH  
VDDIO  
Voltage Regulator Output  
Flash and USB Power Supply  
I/O Lines Power Supply  
Core Power Supply  
PLL  
Power  
Power  
Power  
Power  
Power  
Ground  
1.85V  
3V to 3.6V  
3V to 3.6V  
1.65V to 1.95V  
1.65V to 1.95V  
VDDCORE  
VDDPLL  
GND  
Ground  
Clocks, Oscillators and PLLs  
XIN  
Main Oscillator Input  
Main Oscillator Output  
PLL Filter  
Input  
Output  
Input  
XOUT  
PLLRC  
PCK0 - PCK3  
Programmable Clock Output  
Output  
ICE and JTAG  
TCK  
Test Clock  
Input  
Input  
No pull-up resistor  
No pull-up resistor  
TDI  
Test Data In  
TDO  
Test Data Out  
Test Mode Select  
JTAG Selection  
Output  
Input  
TMS  
No pull-up resistor  
Pull-down resistor(1)  
JTAGSEL  
Input  
Flash Memory  
Flash and NVM Configuration Bits Erase  
Command  
ERASE  
Input  
High  
Pull-down resistor(1)  
Reset/Test  
Pull-up resistor, Open Drain  
Output  
Pull-down resistor(1)  
NRST  
TST  
Microcontroller Reset  
Test Mode Select  
I/O  
Low  
Input  
High  
Debug Unit  
AIC  
DRXD  
DTXD  
Debug Receive Data  
Debug Transmit Data  
Input  
Output  
IRQ0 - IRQ1  
FIQ  
External Interrupt Inputs  
Fast Interrupt Input  
Input  
Input  
PIO  
PA0 - PA30  
PB0 - PB30  
Parallel IO Controller A  
Parallel IO Controller B  
I/O  
I/O  
Pulled-up input at reset  
Pulled-up input at reset  
5
6120GS–ATARM–07-Apr-11  
 
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Signal Name  
Function  
Type  
USB Device Port  
Comments  
DDM  
DDP  
USB Device Port Data -  
USB Device Port Data +  
Analog  
Analog  
USART  
SCK0 - SCK1  
TXD0 - TXD1  
RXD0 - RXD1  
RTS0 - RTS1  
CTS0 - CTS1  
DCD1  
Serial Clock  
I/O  
I/O  
Transmit Data  
Receive Data  
Input  
Output  
Input  
Input  
Output  
Input  
Input  
Request To Send  
Clear To Send  
Data Carrier Detect  
Data Terminal Ready  
Data Set Ready  
Ring Indicator  
DTR1  
DSR1  
RI1  
Synchronous Serial Controller  
TD  
RD  
TK  
RK  
TF  
RF  
Transmit Data  
Output  
Receive Data  
Input  
Transmit Clock  
I/O  
Receive Clock  
I/O  
Transmit Frame Sync  
Receive Frame Sync  
I/O  
I/O  
Timer/Counter  
TCLK0 - TCLK2  
TIOA0 - TIOA2  
TIOB0 - TIOB2  
External Clock Inputs  
I/O Line A  
Input  
I/O  
I/O Line B  
I/O  
PWM Controller  
PWM0 - PWM3  
PWM Channels  
Output  
Serial Peripheral Interface - SPIx  
SPIx_MISO  
Master In Slave Out  
Master Out Slave In  
SPI Serial Clock  
I/O  
I/O  
I/O  
SPIx_MOSI  
SPIx_SPCK  
SPIx_NPCS0  
SPIx_NPCS1-NPCS3  
SPI Peripheral Chip Select 0  
I/O  
Low  
Low  
SPI Peripheral Chip Select 1 to 3  
Output  
Two-wire Interface  
TWD  
Two-wire Serial Data  
Two-wire Serial Clock  
I/O  
I/O  
TWCK  
6
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
SAM7X512/256/128 Summary  
Table 3-1.  
Signal Description List (Continued)  
Active  
Signal Name  
Function  
Type  
Level  
Comments  
Analog-to-Digital Converter  
AD0-AD3  
AD4-AD7  
ADTRG  
Analog Inputs  
Analog Inputs  
ADC Trigger  
Analog  
Digital pulled-up inputs at reset  
Analog Inputs  
Analog  
Input  
ADVREF  
ADC Reference  
Analog  
Fast Flash Programming Interface  
PGMEN0-PGMEN1  
PGMM0-PGMM3  
PGMD0-PGMD15  
PGMRDY  
Programming Enabling  
Programming Mode  
Programming Data  
Programming Ready  
Data Direction  
Input  
Input  
I/O  
Output  
Output  
Input  
Input  
High  
Low  
Low  
PGMNVALID  
PGMNOE  
Programming Read  
Programming Clock  
PGMCK  
PGMNCMD  
Programming Command  
Input  
CAN Controller  
Low  
CANRX  
CANTX  
CAN Input  
Input  
CAN Output  
Output  
Ethernet MAC 10/100  
EREFCK  
ETXCK  
Reference Clock  
Input  
Input  
RMII only  
MII only  
MII only  
Transmit Clock  
ERXCK  
ETXEN  
Receive Clock  
Input  
Transmit Enable  
Output  
Output  
Output  
Input  
ETX0 - ETX3  
ETXER  
Transmit Data  
ETX0 - ETX1 only in RMII  
MII only  
Transmit Coding Error  
Receive Data Valid  
Carrier Sense and Data Valid  
Receive Data  
ERXDV  
ECRSDV  
ERX0 - ERX3  
ERXER  
ECRS  
MII only  
Input  
RMII only  
Input  
ERX0 - ERX1 only in RMII  
Receive Error  
Input  
Carrier Sense  
Input  
MII only  
MII only  
ECOL  
Collision Detected  
Management Data Clock  
Management Data Input/Output  
Force 100 Mbits/sec.  
Input  
EMDC  
Output  
I/O  
EMDIO  
EF100  
Output  
High  
RMII only  
Note:  
1. Refer to Section 6. ”I/O Lines Considerations”.  
7
6120GS–ATARM–07-Apr-11  
4. Package  
The SAM7X512/256/128 is available in 100-lead LQFP Green and 100-ball TFBGA RoHS-com-  
pliant packages.  
4.1  
100-lead LQFP Package Outline  
Figure 4-1 shows the orientation of the 100-lead LQFP package. A detailed mechanical descrip-  
tion is given in the Mechanical Characteristics section.  
Figure 4-1. 100-lead LQFP Package Outline (Top View)  
75  
51  
76  
50  
100  
26  
1
25  
8
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
SAM7X512/256/128 Summary  
4.2  
100-lead LQFP Pinout  
Table 4-1.  
Pinout in 100-lead LQFP Package  
ADVREF PA18/PGMD6  
1
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
TDI  
GND  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
TDO  
JTAGSEL  
TMS  
2
GND  
AD4  
PB9  
PB8  
3
PB16  
4
AD5  
PB14  
PB4  
TCK  
5
AD6  
PB13  
PA23/PGMD11  
PA24/PGMD12  
NRST  
PA30  
6
AD7  
PB6  
PA0/PGMEN0  
PA1/PGMEN1  
GND  
7
VDDOUT  
VDDIN  
GND  
8
VDDIO  
PB5  
TST  
9
PB27/AD0  
PB28/AD1  
PB29/AD2  
PB30/AD3  
PA8/PGMM0  
PA9/PGMM1  
VDDCORE  
GND  
PA25/PGMD13  
PA26/PGMD14  
VDDIO  
VDDCORE  
PB18  
VDDIO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PB15  
PA3  
PB17  
PA2  
VDDCORE  
PB7  
VDDCORE  
PA4/PGMNCMD  
PA5/PGMRDY  
PA6/PGMNOE  
PA7/PGMNVALID  
ERASE  
PB12  
PB19  
PB0  
PB20  
PB1  
PB21  
VDDIO  
PB2  
PB22  
PA10/PGMM2  
PA11/PGMM3  
PA12/PGMD0  
PA13/PGMD1  
PA14/PGMD2  
PA15/PGMD3  
PA16/PGMD4  
PA17/PGMD5  
PB3  
GND  
DDM  
PB10  
PB23  
DDP  
PB11  
PB24  
VDDFLASH  
GND  
PA19/PGMD7  
PA20/PGMD8  
VDDIO  
PA21/PGMD9  
PA22/PGMD10  
PB25  
PB26  
XIN/PGMCK  
XOUT  
PA27/PGMD15  
PA28  
PLLRC  
PA29  
VDDPLL  
9
6120GS–ATARM–07-Apr-11  
4.3  
100-ball TFBGA Package Outline  
Figure 4-2 shows the orientation of the 100-ball TFBGA package. A detailed mechanical  
description is given in the Mechanical Characteristics section of the full datasheet.  
Figure 4-2. 100-ball TFBGA Package Outline (Top View)  
TOP VIEW  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
BALL A1  
4.4  
100-ball TFBGA Pinout  
Pinout in 100-ball TFBGA Package  
Pin  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
C1  
C2  
C3  
C4  
C5  
Signal Name  
PA22/PGMD10  
PA21/PGMD9  
PA20/PGMD8  
PB1  
Pin  
Signal Name  
Pin  
F1  
Signal Name  
Pin  
H6  
H7  
H8  
H9  
H10  
J1  
Signal Name  
PA7/PGMNVALID  
PA9/PGMM1  
PA8/PGMM0  
PB29/AD2  
PLLRC  
C6  
PB17  
PB21  
C7  
C8  
C9  
C10  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
E10  
PB13  
PA13/PGMD1  
PA12/PGMD0  
PA15/PGMD3  
PA23/PGMD11  
PA24/PGMD12  
NRST  
F2  
PB23  
PB25  
PB26  
TCK  
F3  
F4  
PB7  
F5  
PB5  
F6  
PA6/PGMNOE  
ERASE  
PA29  
PB8  
F7  
J2  
PA30  
PB9  
F8  
VDDCORE  
GND  
J3  
PA0/PGMEN0  
PA1/PGMEN1  
VDDFLASH  
GND  
PA18/PGMD6  
VDDIO  
TST  
F9  
J4  
PB19  
F10  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
H1  
H2  
H3  
H4  
H5  
VDDIN  
J5  
TDI  
PB6  
PB22  
J6  
PA19/PGMD7  
PB11  
PA10/PGMM2  
VDDIO  
PB24  
J7  
XIN/PGMCK  
XOUT  
PA27/PGMD15  
TDO  
J8  
PB2  
PB27/AD0  
PA11/PGMM3  
PA25/PGMD13  
PA26/PGMD14  
PB18  
J9  
GND  
PB12  
PA2  
J10  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
VDDPLL  
VDDCORE  
VDDCORE  
DDP  
PB15  
PA5/PGMRDY  
VDDCORE  
GND  
PB14  
PA14/PGMD2  
PA16/PGMD4  
PA17/PGMD5  
PB16  
PB20  
PB30/AD3  
VDDOUT  
VDDCORE  
PA28  
DDM  
TMS  
GND  
GND  
AD7  
PB4  
VDDIO  
AD6  
PB10  
PB28/AD1  
VDDIO  
JTAGSEL  
PA3  
AD5  
PB3  
AD4  
PB0  
GND  
PA4/PGMNCMD  
ADVREF  
10  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
 
SAM7X512/256/128 Summary  
5. Power Considerations  
5.1  
Power Supplies  
The SAM7X512/256/128 has six types of power supply pins and integrates a voltage regulator,  
allowing the device to be supplied with only one voltage. The six power supply pin types are:  
• VDDIN pin. It powers the voltage regulator and the ADC; voltage ranges from 3.0V to 3.6V,  
3.3V nominal. In order to decrease current consumption, if the voltage regulator and the ADC  
are not used, VDDIN, ADVREF, AD4, AD5, AD6 and AD7 should be connected to GND. In  
this case, VDDOUT should be left unconnected.  
• VDDOUT pin. It is the output of the 1.8V voltage regulator.  
• VDDIO pin. It powers the I/O lines; voltage ranges from 3.0V to 3.6V, 3.3V nominal.  
• VDDFLASH pin. It powers the USB transceivers and a part of the Flash and is required for  
the Flash to operate correctly; voltage ranges from 3.0V to 3.6V, 3.3V nominal.  
• VDDCORE pins. They power the logic of the device; voltage ranges from 1.65V to 1.95V,  
1.8V typical. It can be connected to the VDDOUT pin with decoupling capacitor. VDDCORE  
is required for the device, including its embedded Flash, to operate correctly.  
• VDDPLL pin. It powers the oscillator and the PLL. It can be connected directly to the  
VDDOUT pin.  
No separate ground pins are provided for the different power supplies. Only GND pins are pro-  
vided and should be connected as shortly as possible to the system ground plane.  
5.2  
5.3  
Power Consumption  
The SAM7X512/256/128 has a static current of less than 60 µA on VDDCORE at 25°C, includ-  
ing the RC oscillator, the voltage regulator and the power-on reset when the brownout detector  
is deactivated. Activating the brownout detector adds 28 µA static current.  
The dynamic power consumption on VDDCORE is less than 90 mA at full speed when running  
out of the Flash. Under the same conditions, the power consumption on VDDFLASH does not  
exceed 10 mA.  
Voltage Regulator  
The SAM7X512/256/128 embeds a voltage regulator that is managed by the System Controller.  
In Normal Mode, the voltage regulator consumes less than 100 µA static current and draws 100  
mA of output current.  
The voltage regulator also has a Low-power Mode. In this mode, it consumes less than 25 µA  
static current and draws 1 mA of output current.  
Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscil-  
lations. The best way to achieve this is to use two capacitors in parallel: one external 470 pF (or  
1 nF) NPO capacitor should be connected between VDDOUT and GND as close to the chip as  
possible. One external 2.2 µF (or 3.3 µF) X7R capacitor should be connected between VDDOUT  
and GND.  
Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability  
and reduce source voltage drop. The input decoupling capacitor should be placed close to the  
chip. For example, two capacitors can be used in parallel: 100 nF NPO and 4.7 µF X7R.  
11  
6120GS–ATARM–07-Apr-11  
 
 
5.4  
Typical Powering Schematics  
The SAM7X512/256/128 supports a 3.3V single supply mode. The internal regulator input con-  
nected to the 3.3V source and its output feeds VDDCORE and the VDDPLL. Figure 5-1 shows  
the power schematics to be used for USB bus-powered systems.  
Figure 5-1. 3.3V System Single Power Supply Schematic  
VDDFLASH  
Power Source  
VDDIO  
ranges  
from 4.5V (USB)  
to 18V  
DC/DC Converter  
VDDIN  
Voltage  
Regulator  
3.3V  
VDDOUT  
VDDCORE  
VDDPLL  
12  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
SAM7X512/256/128 Summary  
6. I/O Lines Considerations  
6.1  
JTAG Port Pins  
TMS, TDI and TCK are schmitt trigger inputs and are not 5-V tolerant. TMS, TDI and TCK do not  
integrate a pull-up resistor.  
TDO is an output, driven at up to VDDIO, and has no pull-up resistor.  
The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. The  
JTAGSEL pin integrates a permanent pull-down resistor of about 15 kΩ to GND.  
To eliminate any risk of spuriously entering the JTAG boundary scan mode due to noise on  
JTAGSEL, it should be tied externally to GND if boundary scan is not used, or pulled down with  
an external low-value resistor (such as 1 kΩ).  
6.2  
Test Pin  
The TST pin is used for manufacturing test or fast programming mode of the  
SAM7X512/256/128 when asserted high. The TST pin integrates a permanent pull-down resis-  
tor of about 15 kΩ to GND.  
To eliminate any risk of entering the test mode due to noise on the TST pin, it should be tied to  
GND if the FFPI is not used, or pulled down with an external low-value resistor (such as 1 kΩ)  
To enter fast programming mode, the TST pin and the PA0 and PA1 pins should be tied high  
and PA2 tied to low.  
Driving the TST pin at a high level while PA0 or PA1 is driven at 0 leads to unpredictable results.  
6.3  
6.4  
Reset Pin  
The NRST pin is bidirectional with an open drain output buffer. It is handled by the on-chip reset  
controller and can be driven low to provide a reset signal to the external components or asserted  
low externally to reset the microcontroller. There is no constraint on the length of the reset pulse,  
and the reset controller can guarantee a minimum pulse length. This allows connection of a sim-  
ple push-button on the NRST pin as system user reset, and the use of the signal NRST to reset  
all the components of the system.  
The NRST pin integrates a permanent pull-up resistor to VDDIO.  
ERASE Pin  
The ERASE pin is used to re-initialize the Flash content and some of its NVM bits. It integrates a  
permanent pull-down resistor of about 15 kΩ to GND.  
To eliminate any risk of erasing the Flash due to noise on the ERASE pin, it should be tied exter-  
nally to GND, which prevents erasing the Flash from the application, or pulled down with an  
external low-value resistor (such as 1 kΩ).  
This pin is debounced by the RC oscillator to improve the glitch tolerance. When the pin is tied to  
high during less than 100 ms, ERASE pin is not taken into account. The pin must be tied high  
during more than 220 ms to perform the re-initialization of the Flash.  
13  
6120GS–ATARM–07-Apr-11  
 
 
 
6.5  
PIO Controller Lines  
All the I/O lines, PA0 to PA30 and PB0 to PB30, are 5V-tolerant and all integrate a programma-  
ble pull-up resistor. Programming of this pull-up resistor is performed independently for each I/O  
line through the PIO controllers.  
5V-tolerant means that the I/O lines can drive voltage level according to VDDIO, but can be  
driven with a voltage of up to 5.5V. However, driving an I/O line with a voltage over VDDIO while  
the programmable pull-up resistor is enabled will create a current path through the pull-up resis-  
tor from the I/O line to VDDIO. Care should be taken, in particular at reset, as all the I/O lines  
default to input with pull-up resistor enabled at reset.  
6.6  
I/O Lines Current Drawing  
The PIO lines PA0 to PA3 are high-drive current capable. Each of these I/O lines can drive up to  
16 mA permanently.  
The remaining I/O lines can draw only 8 mA.  
However, the total current drawn by all the I/O lines cannot exceed 200 mA.  
14  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
SAM7X512/256/128 Summary  
7. Processor and Architecture  
7.1  
7.2  
7.3  
ARM7TDMI Processor  
• RISC processor based on ARMv4T Von Neumann architecture  
– Runs at up to 55 MHz, providing 0.9 MIPS/MHz  
Two instruction sets  
– ARM high-performance 32-bit instruction set  
– Thumb high code density 16-bit instruction set  
• Three-stage pipeline architecture  
– Instruction Fetch (F)  
– Instruction Decode (D)  
– Execute (E)  
Debug and Test Features  
• Integrated embedded in-circuit emulator  
Two watchpoint units  
Test access port accessible through a JTAG protocol  
– Debug communication channel  
• Debug Unit  
Two-pin UART  
– Debug communication channel interrupt handling  
– Chip ID Register  
• IEEE1149.1 JTAG Boundary-scan on all digital pins  
Memory Controller  
• Programmable Bus Arbiter  
– Handles requests from the ARM7TDMI, the Ethernet MAC and the Peripheral DMA  
Controller  
• Address decoder provides selection signals for  
– Three internal 1 Mbyte memory areas  
– One 256 Mbyte embedded peripheral area  
• Abort Status Registers  
– Source, Type and all parameters of the access leading to an abort are saved  
– Facilitates debug by detection of bad pointers  
• Misalignment Detector  
– Alignment checking of all data accesses  
– Abort generation in case of misalignment  
• Remap Command  
– Remaps the SRAM in place of the embedded non-volatile memory  
– Allows handling of dynamic exception vectors  
15  
6120GS–ATARM–07-Apr-11  
• Embedded Flash Controller  
– Embedded Flash interface, up to three programmable wait states  
– Prefetch buffer, buffering and anticipating the 16-bit requests, reducing the required  
wait states  
– Key-protected program, erase and lock/unlock sequencer  
– Single command for erasing, programming and locking operations  
– Interrupt generation in case of forbidden operation  
7.4  
Peripheral DMA Controller  
• Handles data transfer between peripherals and memories  
• Thirteen channels  
Two for each USART  
Two for the Debug Unit  
Two for the Serial Synchronous Controller  
Two for each Serial Peripheral Interface  
– One for the Analog-to-digital Converter  
• Low bus arbitration overhead  
– One Master Clock cycle needed for a transfer from memory to peripheral  
Two Master Clock cycles needed for a transfer from peripheral to memory  
• Next Pointer management for reducing interrupt latency requirements  
• Peripheral DMA Controller (PDC) priority is as follows (from the highest priority to the lowest):  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
DBGU  
USART0  
USART1  
SSC  
ADC  
SPI0  
SPI1  
DBGU  
USART0  
USART  
SSC  
SPI0  
SPI1  
16  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
SAM7X512/256/128 Summary  
8. Memories  
8.1  
8.2  
8.3  
SAM7X512  
SAM7X256  
SAM7X128  
• 512 Kbytes of dual-plane Flash Memory  
– 2 contiguous banks of 1024 pages of 256 bytes  
– Fast access time, 30 MHz single-cycle access in Worst Case conditions  
– Page programming time: 6 ms, including page auto-erase  
– Page programming without auto-erase: 3 ms  
– Full chip erase time: 15 ms  
– 10,000 write cycles, 10-year data retention capability  
– 32 lock bits, protecting 32 sectors of 64 pages  
– Protection Mode to secure contents of the Flash  
• 128 Kbytes of Fast SRAM  
– Single-cycle access at full speed  
• 256 Kbytes of Flash Memory  
– 1024 pages of 256 bytes  
– Fast access time, 30 MHz single-cycle access in Worst Case conditions  
– Page programming time: 6 ms, including page auto-erase  
– Page programming without auto-erase: 3 ms  
– Full chip erase time: 15 ms  
– 10,000 write cycles, 10-year data retention capability  
– 16 lock bits, each protecting 16 sectors of 64 pages  
– Protection Mode to secure contents of the Flash  
• 64 Kbytes of Fast SRAM  
– Single-cycle access at full speed  
• 128 Kbytes of Flash Memory  
– 512 pages of 256 bytes  
– Fast access time, 30 MHz single-cycle access in Worst Case conditions  
– Page programming time: 6 ms, including page auto-erase  
– Page programming without auto-erase: 3 ms  
– Full chip erase time: 15 ms  
– 10,000 write cycles, 10-year data retention capability  
– 8 lock bits, each protecting 8 sectors of 64 pages  
– Protection Mode to secure contents of the Flash  
• 32 Kbytes of Fast SRAM  
– Single-cycle access at full speed  
17  
6120GS–ATARM–07-Apr-11  
 
Figure 8-1. SAM7X512/256/128 Memory Mapping  
Internal Memory Mapping  
Boot Memory (1)  
Note:  
(1) Can be ROM, Flash or SRAM  
depending on GPNVM2 and REMAP  
0x0000 0000  
Flash before Remap  
SRAM after Remap  
1 MBytes  
1 MBytes  
1 MBytes  
1 MBytes  
0x000F FFF  
0x0010 0000  
Internal Flash  
0x001F FFF  
0x0020 0000  
Internal SRAM  
Internal ROM  
0x002F FFF  
0x0030 0000  
Address Memory Space  
Internal Memories  
0x0000 0000  
0x003F FFF  
0x0040 0000  
252 MBytes  
256 MBytes  
Reserved  
0x0FFF FFFF  
0x0FFF FFFF  
0x1000 0000  
System Controller Mapping  
0xFFFF F000  
AIC  
512 Bytes/128 registers  
512 Bytes/128 registers  
0xFFFF F1FF  
0xFFFF F200  
Peripheral Mapping  
0xF000 0000  
DBGU  
Reserved  
TC0, TC1, TC2  
Reserved  
UDP  
0xFFF9 FFFF  
0xFFFA 0000  
0xFFFF F3FF  
0xFFFF F400  
16 Kbytes  
16 Kbytes  
16 Kbytes  
Undefined  
(Abort)  
14 x 256 MBytes  
3,584 MBytes  
0xFFFA 3FFF  
0xFFFA 4000  
PIOA  
512 Bytes/128 registers  
512 Bytes/128 registers  
0xFFFA FFFF  
0xFFFB 0000  
0xFFFF F5FF  
0xFFFF F600  
0xFFFB 3FFF  
0xFFFB 4000  
Reserved  
PIOB  
0xFFFB 7FFF  
0xFFFB 8000  
TWI  
0xFFFF F7FF  
0xFFFF F800  
0xFFFB BFFF  
0xFFFB C000  
Reserved  
USART0  
USART1  
Reserved  
PWMC  
0xEFFF FFFF  
0xF000 0000  
0xFFFB FFFF  
0xFFFC 0000  
Reserved  
16 Kbytes  
16 Kbytes  
0xFFFF FBFF  
0xFFFF FC00  
0xFFFC 3FFF  
0xFFFC 4000  
PMC  
256 Bytes/64 registers  
16 Bytes/4 registers  
0xFFFC 7FFF  
0xFFFC 8000  
0xFFFF FCFF  
0xFFFF FD00  
0xFFFF FD0F  
Internal Peripherals  
256 MBytes  
RSTC  
0xFFFC BFFF  
0xFFFC C000  
16 Kbytes  
0xFFFC FFFF  
0xFFFD 0000  
Reserved  
RTT  
0xFFFF FFFF  
CAN  
16 Kbytes  
16 Kbytes  
0xFFFF FD20  
0xFFFF FC2F  
0xFFFF FD30  
16 Bytes/4 registers  
0xFFFD 3FFF  
0xFFFD 4000  
SSC  
PIT  
16 Bytes/4 registers  
16 Bytes/4 registers  
0xFFFD 7FFF  
0xFFFD 8000  
0xFFFF FC3F  
0xFFFF FD40  
ADC  
EMAC  
SPI0  
16 Kbytes  
16 Kbytes  
16 Kbytes  
16 Kbytes  
WDT  
0xFFFD BFFF  
0xFFFD C000  
0xFFFF FD4F  
Reserved  
VREG  
0xFFFD FFFF  
0xFFFE 0000  
0xFFFF FD60  
4 Bytes/1 register  
0xFFFF FC6F  
0xFFFF FD70  
0xFFFE 3FFF  
0xFFFE 4000  
SPI1  
Reserved  
MC  
0xFFFE 7FFF  
0xFFFE 8000  
0xFFFF FEFF  
0xFFFF FF00  
Reserved  
SYSC  
256 Bytes/64 registers  
0xFFFF EFFF  
0xFFFF F000  
0xFFFF FFFF  
0xFFFF FFFF  
18  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
SAM7X512/256/128 Summary  
8.4  
Memory Mapping  
8.4.1  
Internal SRAM  
• The SAM7X512 embeds a high-speed 128 Kbyte SRAM bank.  
• The SAM7X256 embeds a high-speed 64 Kbyte SRAM bank.  
• The SAM7X128 embeds a high-speed 32 Kbyte SRAM bank.  
After reset and until the Remap Command is performed, the SRAM is only accessible at address  
0x0020 0000. After Remap, the SRAM also becomes available at address 0x0.  
8.4.2  
8.4.3  
Internal ROM  
Internal Flash  
The SAM7X512/256/128 embeds an Internal ROM. At any time, the ROM is mapped at address  
0x30 0000. The ROM contains the FFPI and the SAM-BA program.  
• The SAM7X512 features two banks (dual plane) of 256 Kbytes of Flash.  
• The SAM7X256 features one bank (single plane) of 256 Kbytes of Flash.  
• The SAM7X128 features one bank (single plane) of 128 Kbytes of Flash.  
At any time, the Flash is mapped to address 0x0010 0000. It is also accessible at address 0x0  
after the reset, if GPNVM bit 2 is set and before the Remap Command.  
A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the  
Flash.  
This GPNVM bit can be cleared or set respectively through the commands “Clear General-pur-  
pose NVM Bit” and “Set General-purpose NVM Bit” of the EFC User Interface.  
Setting the GPNVM Bit 2 selects the boot from the Flash. Asserting ERASE clears the GPNVM  
Bit 2 and thus selects the boot from the ROM by default.  
Figure 8-2. Internal Memory Mapping with GPNVM Bit 2 = 0 (default)  
0x0000 0000  
ROM Before Remap  
1 M Bytes  
SRAM After Remap  
0x000F FFFF  
0x0010 0000  
Internal FLASH  
1 M Bytes  
0x001F FFFF  
0x0020 0000  
Internal SRAM  
Internal ROM  
256M Bytes  
1 M Bytes  
1 M Bytes  
252 M Bytes  
0x002F FFFF  
0x0030 0000  
0x003F FFFF  
0x0040 0000  
Undefined Areas  
(Abort)  
0x0FFF FFFF  
19  
6120GS–ATARM–07-Apr-11  
 
Figure 8-3. Internal Memory Mapping with GPNVM Bit 2 = 1  
0x0000 0000  
Flash Before Remap  
1 M Bytes  
1 M Bytes  
SRAM After Remap  
0x000F FFFF  
0x0010 0000  
Internal FLASH  
0x001F FFFF  
0x0020 0000  
Internal SRAM  
Internal ROM  
256M Bytes  
1 M Bytes  
1 M Bytes  
252 M Bytes  
0x002F FFFF  
0x0030 0000  
0x003F FFFF  
0x0040 0000  
Undefined Areas  
(Abort)  
0x0FFF FFFF  
8.5  
Embedded Flash  
8.5.1  
Flash Overview  
• The Flash of the SAM7X512 is organized in two banks (dual plane) of 1024 pages of 256  
bytes. The 524,288 bytes are organized in 32-bit words.  
• The Flash of the SAM7X256 is organized in 1024 pages of 256 bytes (single plane). It reads  
as 65,536 32-bit words.  
• The Flash of the SAM7X128 is organized in 512 pages of 256 bytes (single plane). It reads  
as 32,768 32-bit words.  
The Flash contains a 256-byte write buffer, accessible through a 32-bit interface.  
The Flash benefits from the integration of a power reset cell and from the brownout detector.  
This prevents code corruption during power supply changes, even in the worst conditions.  
When Flash is not used (read or write access), it is automatically placed into standby mode.  
8.5.2  
Embedded Flash Controller  
The Embedded Flash Controller (EFC) manages accesses performed by the masters of the sys-  
tem. It enables reading the Flash and writing the write buffer. It also contains a User Interface,  
mapped within the Memory Controller on the APB. The User Interface allows:  
• programming of the access parameters of the Flash (number of wait states, timings, etc.)  
• starting commands such as full erase, page erase, page program, NVM bit set, NVM bit  
clear, etc.  
• getting the end status of the last command  
• getting error status  
• programming interrupts on the end of the last commands or on errors  
The Embedded Flash Controller also provides a dual 32-bit Prefetch Buffer that optimizes 16-bit  
access to the Flash. This is particularly efficient when the processor is running in Thumb mode.  
Two EFCs are embedded in the SAM7X512 to control each bank of 256 KBytes. Dual-plane  
organization allows concurrent read and program functionality. Read from one memory plane  
20  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
SAM7X512/256/128 Summary  
may be performed even while program or erase functions are being executed in the other mem-  
ory plane.  
One EFC is embedded in the SAM7X256/128 to control the single plane of 256/128 KBytes.  
8.5.3  
Lock Regions  
8.5.3.1  
SAM7X512  
Two Embedded Flash Controllers each manage 16 lock bits to protect 16 regions of the flash  
against inadvertent flash erasing or programming commands. The SAM7X512 contains 32 lock  
regions and each lock region contains 64 pages of 256 bytes. Each lock region has a size of 16  
Kbytes.  
If a locked-region’s erase or program command occurs, the command is aborted and the EFC  
trigs an interrupt.  
The 32 NVM bits are software programmable through both of the EFC User Interfaces. The com-  
mand “Set Lock Bit” enables the protection. The command “Clear Lock Bit” unlocks the lock  
region.  
Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.  
8.5.3.2  
SAM7X256  
The Embedded Flash Controller manages 16 lock bits to protect 16 regions of the flash against  
inadvertent flash erasing or programming commands. The SAM7X256 contains 16 lock regions  
and each lock region contains 64 pages of 256 bytes. Each lock region has a size of 16 Kbytes.  
If a locked-region’s erase or program command occurs, the command is aborted and the EFC  
trigs an interrupt.  
The 16 NVM bits are software programmable through the EFC User Interface. The command  
“Set Lock Bit” enables the protection. The command “Clear Lock Bit” unlocks the lock region.  
Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.  
8.5.3.3  
SAM7X128  
The Embedded Flash Controller manages 8 lock bits to protect 8 regions of the flash against  
inadvertent flash erasing or programming commands. The SAM7X128 contains 8 lock regions  
and each lock region contains 64 pages of 256 bytes. Each lock region has a size of 16 Kbytes.  
If a locked-region’s erase or program command occurs, the command is aborted and the EFC  
trigs an interrupt.  
The 8 NVM bits are software programmable through the EFC User Interface. The command “Set  
Lock Bit” enables the protection. The command “Clear Lock Bit” unlocks the lock region.  
Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.  
8.5.4  
Security Bit Feature  
The SAM7X512/256/128 features a security bit, based on a specific NVM-Bit. When the security  
is enabled, any access to the Flash, either through the ICE interface or through the Fast Flash  
Programming Interface, is forbidden. This ensures the confidentiality of the code programmed in  
the Flash.  
This security bit can only be enabled, through the Command “Set Security Bit” of the EFC User  
Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and  
21  
6120GS–ATARM–07-Apr-11  
after a full flash erase is performed. When the security bit is deactivated, all accesses to the  
flash are permitted.  
It is important to note that the assertion of the ERASE pin should always be longer than 220 ms.  
As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal  
operation. However, it is safer to connect it directly to GND for the final application.  
8.5.5  
Non-volatile Brownout Detector Control  
Two general purpose NVM (GPNVM) bits are used for controlling the brownout detector (BOD),  
so that even after a power loss, the brownout detector operations remain in their state.  
These two GPNVM bits can be cleared or set respectively through the commands “Clear Gen-  
eral-purpose NVM Bit” and “Set General-purpose NVM Bit” of the EFC User Interface.  
• GPNVM Bit 0 is used as a brownout detector enable bit. Setting the GPNVM Bit 0 enables  
the BOD, clearing it disables the BOD. Asserting ERASE clears the GPNVM Bit 0 and thus  
disables the brownout detector by default.  
• The GPNVM Bit 1 is used as a brownout reset enable signal for the reset controller. Setting  
the GPNVM Bit 1 enables the brownout reset when a brownout is detected, Clearing the  
GPNVM Bit 1 disables the brownout reset. Asserting ERASE disables the brownout reset by  
default.  
8.5.6  
Calibration Bits  
Eight NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits  
are factory configured and cannot be changed by the user. The ERASE pin has no effect on the  
calibration bits.  
8.6  
Fast Flash Programming Interface  
The Fast Flash Programming Interface allows programming the device through either a serial  
JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang-program-  
ming with market-standard industrial programmers.  
The FFPI supports read, page program, page erase, full erase, lock, unlock and protect  
commands.  
The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered  
when the TST pin and the PA0 and PA1 pins are all tied high.  
8.7  
SAM-BA Boot Assistant  
The SAM-BA Boot Assistant is a default Boot Program that provides an easy way to program in-  
situ the on-chip Flash memory.  
The SAM-BA Boot Assistant supports serial communication via the DBGU or the USB Device  
Port.  
• Communication via the DBGU supports a wide range of crystals from 3 to 20 MHz via  
software auto-detection.  
• Communication via the USB Device Port is limited to an 18.432 MHz crystal.  
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).  
The SAM-BA Boot is in ROM and is mapped at address 0x0 when the GPNVM Bit 2 is set to 0.  
When GPNVM bit 2 is set to 1, the device boots from the Flash.  
When GPNVM bit 2 is set to 0, the device boots from ROM (SAM-BA).  
22  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
SAM7X512/256/128 Summary  
9. System Controller  
The System Controller manages all vital blocks of the microcontroller: interrupts, clocks, power,  
time, debug and reset.  
The System Controller peripherals are all mapped to the highest 4 Kbytes of address space,  
between addresses 0xFFFF F000 and 0xFFFF FFFF.  
Figure 9-1 on page 24 shows the System Controller Block Diagram.  
Figure 8-1 on page 18 shows the mapping of the User Interface of the System Controller periph-  
erals. Note that the Memory Controller configuration user interface is also mapped within this  
address space.  
23  
6120GS–ATARM–07-Apr-11  
Figure 9-1. System Controller Block Diagram  
jtag_nreset  
Boundary Scan  
TAP Controller  
System Controller  
nirq  
nfiq  
irq0-irq1  
Advanced  
Interrupt  
Controller  
fiq  
proc_nreset  
ARM7TDMI  
periph_irq[2..19]  
PCK  
int  
debug  
pit_irq  
rtt_irq  
wdt_irq  
dbgu_irq  
pmc_irq  
rstc_irq  
efc_irq  
power_on_reset  
force_ntrst  
MCK  
periph_nreset  
dbgu_irq  
Debug  
Unit  
force_ntrst  
dbgu_rxd  
dbgu_txd  
pit_irq  
security_bit  
MCK  
debug  
Periodic  
Interval  
Timer  
periph_nreset  
flash_poe  
SLCK  
Real-Time  
Timer  
Embedded  
Flash  
rtt_irq  
flash_wrdis  
power_on_reset  
cal  
SLCK  
debug  
Watchdog  
Timer  
wdt_irq  
gpnvm[0..2]  
idle  
proc_nreset  
cal  
gpnvm[0]  
wdt_fault  
WDRPROC  
gpnvm[1]  
efc_irq  
en  
bod_rst_en  
Memory  
Controller  
MCK  
flash_wrdis  
BOD  
proc_nreset  
power_on_reset  
jtag_nreset  
periph_nreset  
proc_nreset  
Reset  
Controller  
Voltage  
Regulator  
Mode  
POR  
flash_poe  
standby  
cal  
Voltage  
Regulator  
Controller  
rstc_irq  
NRST  
SLCK  
SLCK  
RCOSC  
OSC  
periph_clk[2..18]  
pck[0-3]  
UDPCK  
periph_clk[11]  
USB Device  
XIN  
MAINCK  
Port  
Power  
Management  
Controller  
periph_nreset  
periph_irq[11]  
usb_suspend  
PCK  
XOUT  
UDPCK  
MCK  
PLLRC  
PLL  
PLLCK  
int  
pmc_irq  
idle  
periph_nreset  
periph_clk[4..19]  
usb_suspend  
periph_nreset  
Embedded  
Peripherals  
periph_nreset  
periph_clk[2-3]  
dbgu_rxd  
periph_irq{2-3]  
irq0-irq1  
fiq  
periph_irq[4..19]  
PIO  
Controller  
dbgu_txd  
in  
PA0-PA30  
PB0-PB30  
out  
enable  
24  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
SAM7X512/256/128 Summary  
9.1  
Reset Controller  
• Based on one power-on reset cell and one brownout detector  
• Status of the last reset, either Power-up Reset, Software Reset, User Reset, Watchdog  
Reset, Brownout Reset  
• Controls the internal resets and the NRST pin output  
• Allows to shape a signal on the NRST line, guaranteeing that the length of the pulse meets  
any requirement.  
9.1.1  
Brownout Detector and Power-on Reset  
The SAM7X512/256/128 embeds one brownout detection circuit and a power-on reset cell. The  
power-on reset is supplied with and monitors VDDCORE.  
Both signals are provided to the Flash to prevent any code corruption during power-up or power-  
down sequences or if brownouts occur on the power supplies.  
The power-on reset cell has a limited-accuracy threshold at around 1.5V. Its output remains low  
during power-up until VDDCORE goes over this voltage level. This signal goes to the reset con-  
troller and allows a full re-initialization of the device.  
The brownout detector monitors the VDDCORE and VDDFLASH levels during operation by  
comparing them to a fixed trigger level. It secures system operations in the most difficult environ-  
ments and prevents code corruption in case of brownout on the VDDCORE or VDDFLASH.  
When the brownout detector is enabled and VDDCORE decreases to a value below the trigger  
level (Vbot18-, defined as Vbot18 - hyst/2), the brownout output is immediately activated.  
When VDDCORE increases above the trigger level (Vbot18+, defined as Vbot18 + hyst/2), the  
reset is released. The brownout detector only detects a drop if the voltage on VDDCORE stays  
below the threshold voltage for longer than about 1µs.  
The VDDCORE threshold voltage has a hysteresis of about 50 mV, to ensure spike free brown-  
out detection. The typical value of the brownout detector threshold is 1.68V with an accuracy of  
2ꢀ and is factory calibrated.  
When the brownout detector is enabled and VDDFLASH decreases to a value below the trigger  
level (Vbot33-, defined as Vbot33 - hyst/2), the brownout output is immediately activated.  
When VDDFLASH increases above the trigger level (Vbot33+, defined as Vbot33 + hyst/2), the  
reset is released. The brownout detector only detects a drop if the voltage on VDDCORE stays  
below the threshold voltage for longer than about 1µs.  
The VDDFLASH threshold voltage has a hysteresis of about 50 mV, to ensure spike free brown-  
out detection. The typical value of the brownout detector threshold is 2.80V with an accuracy of  
3.5ꢀ and is factory calibrated.  
The brownout detector is low-power, as it consumes less than 28 µA static current. However, it  
can be deactivated to save its static current. In this case, it consumes less than 1µA. The deac-  
tivation is configured through the GPNVM bit 0 of the Flash.  
25  
6120GS–ATARM–07-Apr-11  
9.2  
Clock Generator  
The Clock Generator embeds one low-power RC Oscillator, one Main Oscillator and one PLL  
with the following characteristics:  
• RC Oscillator ranges between 22 KHz and 42 KHz  
• Main Oscillator frequency ranges between 3 and 20 MHz  
• Main Oscillator can be bypassed  
• PLL output ranges between 80 and 200 MHz  
It provides SLCK, MAINCK and PLLCK.  
Figure 9-2. Clock Generator Block Diagram  
Clock Generator  
Embedded  
RC  
Oscillator  
Slow Clock  
SLCK  
XIN  
Main  
Oscillator  
Main Clock  
MAINCK  
XOUT  
PLL and  
Divider  
PLL Clock  
PLLCK  
PLLRC  
Status  
Power  
Control  
Management  
Controller  
26  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
SAM7X512/256/128 Summary  
9.3  
Power Management Controller  
The Power Management Controller uses the Clock Generator outputs to provide:  
• the Processor Clock PCK  
• the Master Clock MCK  
• the USB Clock UDPCK  
• all the peripheral clocks, independently controllable  
• four programmable clock outputs  
The Master Clock (MCK) is programmable from a few hundred Hz to the maximum operating fre-  
quency of the device.  
The Processor Clock (PCK) switches off when entering processor idle mode, thus allowing  
reduced power consumption while waiting for an interrupt.  
Figure 9-3. Power Management Controller Block Diagram  
Processor  
PCK  
Clock  
Controller  
int  
Master Clock Controller  
Idle Mode  
SLCK  
Prescaler  
MAINCK  
MCK  
/1,/2,/4,...,/64  
PLLCK  
Peripherals  
Clock Controller  
periph_clk[2..18]  
ON/OFF  
Programmable Clock Controller  
SLCK  
MAINCK  
PLLCK  
Prescaler  
/1,/2,/4,...,/64  
pck[0..3]  
USB Clock Controller  
ON/OFF  
Divider  
/1,/2,/4  
PLLCK  
UDPCK  
9.4  
Advanced Interrupt Controller  
• Controls the interrupt lines (nIRQ and nFIQ) of an ARM Processor  
• Individually maskable and vectored interrupt sources  
– Source 0 is reserved for the Fast Interrupt Input (FIQ)  
– Source 1 is reserved for system peripherals (RTT, PIT, EFC, PMC, DBGU, etc.)  
– Other sources control the peripheral interrupts or external interrupts  
– Programmable edge-triggered or level-sensitive internal sources  
– Programmable positive/negative edge-triggered or high/low level-sensitive external  
sources  
• 8-level Priority Controller  
– Drives the normal interrupt nIRQ of the processor  
– Handles priority of the interrupt sources  
27  
6120GS–ATARM–07-Apr-11  
– Higher priority interrupts can be served during service of lower priority interrupt  
• Vectoring  
– Optimizes interrupt service routine branch and execution  
– One 32-bit vector register per interrupt source  
– Interrupt vector register reads the corresponding current interrupt vector  
• Protect Mode  
– Easy debugging by preventing automatic operations  
• Fast Forcing  
– Permits redirecting any interrupt source on the fast interrupt  
• General Interrupt Mask  
– Provides processor synchronization on events without triggering an interrupt  
9.5  
Debug Unit  
• Comprises:  
– One two-pin UART  
– One Interface for the Debug Communication Channel (DCC) support  
– One set of Chip ID Registers  
– One Interface providing ICE Access Prevention  
Two-pin UART  
– USART-compatible User Interface  
– Programmable Baud Rate Generator  
– Parity, Framing and Overrun Error  
– Automatic Echo, Local Loopback and Remote Loopback Channel Modes  
• Debug Communication Channel Support  
– Offers visibility of COMMRX and COMMTX signals from the ARM Processor  
• Chip ID Registers  
– Identification of the device revision, sizes of the embedded memories, set of  
peripherals  
– Chip ID is 0x275C 0A40 (MRL A) for SAM7X512  
– Chip ID is 0x275B 0940 (MRL A or B) for SAM7X256  
– Chip ID is 0x275B 0942 (MRL C) for SAM7X256  
– Chip ID is 0x275A 0740 (MRL A or B) for SAM7X128  
– Chip ID is 0x275A 0742 (MRL C) for SAM7X128  
9.6  
9.7  
Periodic Interval Timer  
• 20-bit programmable counter plus 12-bit interval counter  
Watchdog Timer  
• 12-bit key-protected Programmable Counter running on prescaled SLCK  
• Provides reset or interrupt signals to the system  
• Counter may be stopped while the processor is in debug state or in idle mode  
28  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
 
SAM7X512/256/128 Summary  
9.8  
9.9  
Real-time Timer  
PIO Controllers  
• 32-bit free-running counter with alarm running on prescaled SLCK  
• Programmable 16-bit prescaler for SLCK accuracy compensation  
Two PIO Controllers, each controlling 31 I/O lines  
• Fully programmable through set/clear registers  
• Multiplexing of two peripheral functions per I/O line  
• For each I/O line (whether assigned to a peripheral or used as general-purpose I/O)  
– Input change interrupt  
– Half a clock period glitch filter  
– Multi-drive option enables driving in open drain  
– Programmable pull-up on each I/O line  
– Pin data status register, supplies visibility of the level on the pin at any time  
• Synchronous output, provides Set and Clear of several I/O lines in a single write  
9.10 Voltage Regulator Controller  
The purpose of this controller is to select the Power Mode of the Voltage Regulator between  
Normal Mode (bit 0 is cleared) or Standby Mode (bit 0 is set).  
29  
6120GS–ATARM–07-Apr-11  
10. Peripherals  
10.1 User Interface  
The User Peripherals are mapped in the 256 Mbytes of address space between 0xF000 0000  
and 0xFFFF EFFF. Each peripheral is allocated 16 Kbytes of address space.  
A complete memory map is provided in Figure 8-1 on page 18.  
10.2 Peripheral Identifiers  
The SAM7X512/256/128 embeds a wide range of peripherals. Table 10-1 defines the Peripheral  
Identifiers of the SAM7X512/256/128. Unique peripheral identifiers are defined for both the  
Advanced Interrupt Controller and the Power Management Controller.  
Table 10-1. Peripheral Identifiers  
External  
Peripheral ID  
Peripheral Mnemonic  
Peripheral Name  
Interrupt  
0
AIC  
Advanced Interrupt Controller  
System Controller  
FIQ  
1
SYSC(1)  
PIOA  
PIOB  
SPI0  
SPI1  
US0  
2
Parallel I/O Controller A  
Parallel I/O Controller B  
Serial Peripheral Interface 0  
Serial Peripheral Interface 1  
USART 0  
3
4
5
6
7
US1  
USART 1  
8
SSC  
Synchronous Serial Controller  
Two-wire Interface  
9
TWI  
10  
11  
12  
13  
14  
15  
16  
17  
18 - 29  
30  
31  
PWMC  
UDP  
TC0  
Pulse Width Modulation Controller  
USB Device Port  
Timer/Counter 0  
TC1  
Timer/Counter 1  
TC2  
Timer/Counter 2  
CAN  
EMAC  
ADC(1)  
Reserved  
AIC  
CAN Controller  
Ethernet MAC  
Analog-to Digital Converter  
Advanced Interrupt Controller  
Advanced Interrupt Controller  
IRQ0  
IRQ1  
AIC  
Note:  
1. Setting SYSC and ADC bits in the clock set/clear registers of the PMC has no effect. The Sys-  
tem Controller and ADC are continuously clocked.  
30  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
 
 
 
SAM7X512/256/128 Summary  
10.3 Peripheral Multiplexing on PIO Lines  
The SAM7X512/256/128 features two PIO controllers, PIOA and PIOB, that multiplex the I/O  
lines of the peripheral set.  
Each PIO Controller controls 31 lines. Each line can be assigned to one of two peripheral func-  
tions, A or B. Some of them can also be multiplexed with the analog inputs of the ADC  
Controller.  
Table 10-2 on page 32 and Table 10-3 on page 33 defines how the I/O lines of the peripherals A,  
B or the analog inputs are multiplexed on the PIO Controller A and PIO Controller B. The two  
columns “Function” and “Comments” have been inserted for the user’s own comments; they may  
be used to track how pins are defined in an application.  
Note that some peripheral functions that are output only, may be duplicated in the table.  
At reset, all I/O lines are automatically configured as input with the programmable pull-up  
enabled, so that the device is maintained in a static state as soon as a reset is detected.  
31  
6120GS–ATARM–07-Apr-11  
10.4 PIO Controller A Multiplexing  
Table 10-2. Multiplexing on PIO Controller A  
PIO Controller A  
Application Usage  
Function Comments  
I/O Line  
PA0  
Peripheral A  
RXD0  
Peripheral B  
Comments  
High-Drive  
High-Drive  
High-Drive  
High-Drive  
PA1  
TXD0  
PA2  
SCK0  
SPI1_NPCS1  
SPI1_NPCS2  
SPI1_NPCS3  
PA3  
RTS0  
PA4  
CTS0  
PA5  
RXD1  
PA6  
TXD1  
PA7  
SCK1  
SPI0_NPCS1  
SPI0_NPCS2  
SPI0_NPCS3  
PA8  
RTS1  
PA9  
CTS1  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
PA17  
PA18  
PA19  
PA20  
PA21  
PA22  
PA23  
PA24  
PA25  
PA26  
PA27  
PA28  
PA29  
PA30  
TWD  
TWCK  
SPI_NPCS0  
SPI0_NPCS1  
SPI0_NPCS2  
SPI0_NPCS3  
SPI0_MISO  
SPI0_MOSI  
SPI0_SPCK  
CANRX  
CANTX  
TF  
PCK1  
IRQ1  
TCLK2  
SPI1_NPCS0  
SPI1_SPCK  
SPI1_MOSI  
SPI1_MISO  
SPI1_NPCS1  
SPI1_NPCS2  
PCK3  
TK  
TD  
RD  
RK  
RF  
DRXD  
DTXD  
FIQ  
SPI1_NPCS3  
PCK2  
IRQ0  
32  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
SAM7X512/256/128 Summary  
10.5 PIO Controller B Multiplexing  
Table 10-3. Multiplexing on PIO Controller B  
PIO Controller B  
Application Usage  
I/O Line  
PB0  
Peripheral A  
ETXCK/EREFCK  
ETXEN  
ETX0  
Peripheral B  
Comments  
Function  
Comments  
PCK0  
PB1  
PB2  
PB3  
ETX1  
PB4  
ECRS  
PB5  
ERX0  
PB6  
ERX1  
PB7  
ERXER  
EMDC  
PB8  
PB9  
EMDIO  
ETX2  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
PB16  
PB17  
PB18  
PB19  
PB20  
PB21  
PB22  
PB23  
PB24  
PB25  
PB26  
PB27  
PB28  
PB29  
PB30  
SPI1_NPCS1  
SPI1_NPCS2  
TCLK0  
ETX3  
ETXER  
ERX2  
SPI0_NPCS1  
SPI0_NPCS2  
ERX3  
ERXDV/ECRSDV  
ECOL  
SPI1_NPCS3  
SPI0_NPCS3  
ADTRG  
TCLK1  
PCK0  
ERXCK  
EF100  
PWM0  
PWM1  
PWM2  
PWM3  
TIOA0  
PCK1  
PCK2  
DCD1  
TIOB0  
DSR1  
TIOA1  
DTR1  
TIOB1  
RI1  
TIOA2  
PWM0  
PWM1  
PWM2  
PWM3  
AD0  
AD1  
AD2  
AD3  
TIOB2  
PCK1  
PCK2  
33  
6120GS–ATARM–07-Apr-11  
 
10.6 Ethernet MAC  
• DMA Master on Receive and Transmit Channels  
• Compatible with IEEE Standard 802.3  
• 10 and 100 Mbit/s operation  
• Full- and half-duplex operation  
• Statistics Counter Registers  
• MII/RMII interface to the physical layer  
• Interrupt generation to signal receive and transmit completion  
• 28-byte transmit FIFO and 28-byte receive FIFO  
• Automatic pad and CRC generation on transmitted frames  
• Automatic discard of frames received with errors  
• Address checking logic supports up to four specific 48-bit addresses  
• Support Promiscuous Mode where all valid received frames are copied to memory  
• Hash matching of unicast and multicast destination addresses  
• Physical layer management through MDIO interface  
• Half-duplex flow control by forcing collisions on incoming frames  
• Full-duplex flow control with recognition of incoming pause frames  
• Support for 802.1Q VLAN tagging with recognition of incoming VLAN and priority tagged  
frames  
• Multiple buffers per receive and transmit frame  
• Jumbo frames up to 10240 bytes supported  
10.7 Serial Peripheral Interface  
• Supports communication with external serial devices  
– Four chip selects with external decoder allow communication with up to 15  
peripherals  
– Serial memories, such as DataFlash® and 3-wire EEPROMs  
– Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and  
Sensors  
– External co-processors  
• Master or slave serial peripheral bus interface  
– 8- to 16-bit programmable data length per chip select  
– Programmable phase and polarity per chip select  
– Programmable transfer delays per chip select, between consecutive transfers and  
between clock and data  
– Programmable delay between consecutive transfers  
– Selectable mode fault detection  
– Maximum frequency at up to Master Clock  
10.8 Two-wire Interface  
• Master Mode only  
• Compatibility with I2C compatible devices (refer to the TWI section of the datasheet)  
34  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
SAM7X512/256/128 Summary  
• One, two or three bytes internal address registers for easy Serial Memory access  
• 7-bit or 10-bit slave addressing  
• Sequential read/write operations  
10.9 USART  
• Programmable Baud Rate Generator  
• 5- to 9-bit full-duplex synchronous or asynchronous serial communications  
– 1, 1.5 or 2 stop bits in Asynchronous Mode  
– 1 or 2 stop bits in Synchronous Mode  
– Parity generation and error detection  
– Framing error detection, overrun error detection  
– MSB or LSB first  
– Optional break generation and detection  
– By 8 or by 16 over-sampling receiver frequency  
– Hardware handshaking RTS - CTS  
– Modem Signals Management DTR-DSR-DCD-RI on USART1  
– Receiver time-out and transmitter timeguard  
– Multi-drop Mode with address generation and detection  
• RS485 with driver control signal  
• ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards  
– NACK handling, error counter with repetition and iteration limit  
• IrDA modulation and demodulation  
– Communication at up to 115.2 Kbps  
Test Modes  
– Remote Loopback, Local Loopback, Automatic Echo  
10.10 Serial Synchronous Controller  
• Provides serial synchronous communication links used in audio and telecom applications  
• Contains an independent receiver and transmitter and a common clock divider  
• Offers a configurable frame sync and data length  
• Receiver and transmitter can be programmed to start automatically or on detection of  
different event on the frame sync signal  
• Receiver and transmitter include a data signal, a clock signal and a frame synchronization  
signal  
10.11 Timer Counter  
• Three 16-bit Timer Counter Channels  
Two output compare or one input capture per channel  
• Wide range of functions including:  
– Frequency measurement  
– Event counting  
– Interval measurement  
35  
6120GS–ATARM–07-Apr-11  
– Pulse generation  
– Delay timing  
– Pulse Width Modulation  
– Up/down capabilities  
• Each channel is user-configurable and contains:  
– Three external clock inputs  
• Five internal clock inputs, as defined in Table 10-4  
Table 10-4. Timer Counter Clocks Assignment  
TC Clock input  
TIMER_CLOCK1  
TIMER_CLOCK2  
TIMER_CLOCK3  
TIMER_CLOCK4  
TIMER_CLOCK5  
Clock  
MCK/2  
MCK/8  
MCK/32  
MCK/128  
MCK/1024  
Two multi-purpose input/output signals  
Two global registers that act on all three TC channels  
10.12 Pulse Width Modulation Controller  
• Four channels, one 16-bit counter per channel  
• Common clock generator, providing thirteen different clocks  
– One Modulo n counter providing eleven clocks  
Two independent linear dividers working on modulo n counter outputs  
• Independent channel programming  
– Independent enable/disable commands  
– Independent clock selection  
– Independent period and duty cycle, with double buffering  
– Programmable selection of the output waveform polarity  
– Programmable center or left aligned output waveform  
10.13 USB Device Port  
• USB V2.0 full-speed compliant,12 Mbits per second  
• Embedded USB V2.0 full-speed transceiver  
• Embedded 1352-byte dual-port RAM for endpoints  
• Six endpoints  
– Endpoint 0: 8 bytes  
– Endpoint 1 and 2: 64 bytes ping-pong  
– Endpoint 3: 64 bytes  
– Endpoint 4 and 5: 256 bytes ping-pong  
– Ping-pong Mode (two memory banks) for bulk endpoints  
• Suspend/resume logic  
36  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
SAM7X512/256/128 Summary  
10.14 CAN Controller  
Fully compliant with CAN 2.0A and 2.0B  
Bit rates up to 1Mbit/s  
Eight object oriented mailboxes each with the following properties:  
– CAN Specification 2.0 Part A or 2.0 Part B Programmable for each Message  
– Object configurable to receive (with overwrite or not) or transmit  
– Local tag and mask filters up to 29-bit identifier/channel  
– 32-bit access to data registers for each mailbox data object  
– Uses a 16-bit time stamp on receive and transmit message  
– Hardware concatenation of ID unmasked bitfields to speedup family ID processing  
– 16-bit internal timer for time stamping and network synchronization  
– Programmable reception buffer length up to 8 mailbox objects  
– Priority management between transmission mailboxes  
– Autobaud and listening mode  
– Low power mode and programmable wake-up on bus activity or by the application  
– Data, remote, error and overload frame handling  
10.15 Analog-to-Digital Converter  
• 8-channel ADC  
• 10-bit 384 K samples/sec. Successive Approximation Register ADC  
• 2 LSB Integral Non Linearity, 1 LSB Differential Non Linearity  
• Integrated 8-to-1 multiplexer, offering eight independent 3.3V analog inputs  
• External voltage reference for better accuracy on low voltage inputs  
• Individual enable and disable of each channel  
• Multiple trigger sources  
– Hardware or software trigger  
– External trigger pin  
– Timer Counter 0 to 2 outputs TIOA0 to TIOA2 trigger  
• Sleep Mode and conversion sequencer  
– Automatic wakeup on trigger and back to sleep mode after conversions of all  
enabled channels  
• Four of eight analog inputs shared with digital signals  
37  
6120GS–ATARM–07-Apr-11  
11. Package Drawings  
Figure 11-1. LQFP Package Drawing  
38  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
 
SAM7X512/256/128 Summary  
Table 11-1. 100-lead LQFP Package Dimensions  
Millimeter  
Nom  
Inch  
Nom  
Symbol  
A
Min  
Max  
1.60  
0.15  
1.45  
Min  
Max  
0.63  
A1  
A2  
D
0.05  
1.35  
0.002  
0.053  
0.006  
0.057  
1.40  
0.055  
16.00 BSC  
14.00 BSC  
16.00 BSC  
14.00 BSC  
0.630 BSC  
0.551 BSC  
0.630 BSC  
0.551 BSC  
D1  
E
E1  
R2  
R1  
Q
0.08  
0.08  
0°  
0.20  
0.003  
0.003  
0°  
0.008  
3.5°  
7°  
3.5°  
7°  
θ1  
θ2  
θ3  
c
0°  
0°  
11°  
11°  
0.09  
0.45  
12°  
12°  
13°  
13°  
11°  
12°  
12°  
13°  
13°  
11°  
0.20  
0.75  
0.004  
0.018  
0.008  
0.030  
L
0.60  
0.024  
L1  
S
1.00 REF  
0.039 REF  
0.20  
0.17  
0.008  
0.007  
b
0.20  
0.50 BSC  
12.00  
0.27  
0.008  
0.020 BSC  
0.472  
0.011  
e
D2  
E2  
12.00  
0.472  
Tolerances of Form and Position  
0.20  
aaa  
bbb  
ccc  
ddd  
0.008  
0.008  
0.003  
0.003  
0.20  
0.08  
0.08  
39  
6120GS–ATARM–07-Apr-11  
Figure 11-2. TFBGA Package Drawing  
All dimensions are in mm  
40  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
SAM7X512/256/128 Summary  
12. Ordering Information  
Table 12-1. Ordering Information  
MLR A  
MLR B  
MLR C  
Temperature  
Ordering Code  
Ordering Code  
Ordering Code  
Package  
Package Type  
Operating Range  
AT91SAM7X512-AU  
AT91SAM7X512-CU  
LQFP 100  
Industrial  
(-40C to 85C)  
Green  
TFBGA 100  
AT91SAM7X256-AU  
AT91SAM7X256-CU  
AT91SAM7X256B-AU  
AT91SAM7X256C-AU  
LQFP 100  
Industrial  
(-40C to 85C)  
Green  
Green  
AT91SAM7X256B-CU AT91SAM7X256C-CU  
AT91SAM7X128B-AU AT91SAM7X128C-AU  
AT91SAM7X128B-CU AT91SAM7X128C-CU  
TFBGA 100  
AT91SAM7X128-AU  
AT91SAM7X128-CU  
LQFP 100  
Industrial  
(-40C to 85C)  
TFBGA 100  
41  
6120GS–ATARM–07-Apr-11  
 
Revision History  
Table 12-2. Revision History  
Change  
Request  
Ref.  
Doc. Rev  
6120AS  
Comments  
First issue - Unqualified on Intranet  
Legal page updated.Qualified on Intranet  
6120BS  
Corrections to maintain consistency with full datasheet:  
In “Features” on page 1, corrected Page Programming Time and Full Erase Time; corrected number of  
PDC channels, removed Wake-on-LAN support.  
In Figure 2-1 on page 4, corrected number of PDC channels.  
In Figure 2-1 on page 4, Table 3-1 on page 5, Table 10-2 on page 32 and Table 10-3 on page 33,  
changed all SPI pin names.  
In Section 5.2 “Power Consumption” on page 11, changed value of static current level and value of  
dynamic power consumption level on VDDCORE  
CSR 05-388  
In Section 6.2 “Test Pin” on page 13, removed reference to SAM-BA boot recovery.  
In Section 6.6 “I/O Lines Current Drawing” on page 14, changed value of total current level.  
In Section 7.4 “Peripheral DMA Controller” on page 16, corrected number of PDC channels.  
In Section 8. “Memories” on page 17, corrected Page Programming Time and Full Erase Time.  
In Section 8.7 “SAM-BA Boot Assistant” on page 22, updated section.  
In Figure 9-1 on page 24, changed range of periph_irq and periph_clk on AIC and for Embedded  
Peripherals block.  
In Section 10.6 “Ethernet MAC” on page 34, updated features.  
6120CS  
6120DS  
Update to product functionalities including changes to “Features” on page 1, Figure 2-1 on page 4,  
Section 9.5 “Debug Unit” on page 28 and to Peripheral mapping.  
05-457  
05-462  
Updated PLL output range max value in Section 9.2 “Clock Generator” on page 26.  
Updated information in Section 5.1 “Power Supplies” on page 11.  
05-491  
Updated ordering information in “Ordering Information” on page 41.  
05-471  
2723  
2728  
Added AT91SAM7X512 to product family.“Features” on page 1 and global  
Reformatted Memories Section 8. “Memories” on page 17.  
Reordered sub sections in Peripherals Section 10. “Peripherals” on page 30  
Consolidated Memory Mapping in Figure 8-1 on page 18.  
Added TFBGA information Section 4.3 “100-ball TFBGA Package Outline” on page 10.  
added LQFP and TFBGA package drawings Section 11. on page 38.  
System Controller block diagram Figure 9-1 on page 24, “ice_nreset” signals changed to  
“power_on_reset”.  
rfo review  
Section 10.1 ”User Interface” User Peripherals are mapped between 0xF000 0000 and 0XFFFF EFFF.  
Table 10-1 on page 30 SYSIRQ changed to SYSC in “Peripheral Identifiers”  
42  
SAM7X512/256/128 Summary  
6120GS–ATARM–07-Apr-11  
SAM7X512/256/128 Summary  
Table 12-2. Revision History  
Change  
Request  
Ref.  
Doc. Rev  
6120ES  
Comments  
“Features”,TWI updated to include Atmel TWI compatibility with I2C Standard.  
Section 10.8 ”Two-wire Interface”, updated.  
4247  
Section 7.4 ”Peripheral DMA Controller”, added PDC priority list.  
Section 10.11 ”Timer Counter”, The TC has Two output compare or one input capture per channel.  
Section 10.15 ”Analog-to-Digital Converter”, INL and DNL updated.  
4774  
4210  
4007  
6120FS  
Table 3-1, “Signal Description List” footnote added to JTAGSEL, ERASE and TST pin comments.  
Section 6.1 ”JTAG Port Pins”, Section 6.2 ”Test Pin” and Section 6.4 ”ERASE Pin”, updated.  
5064  
Section 8.4.3 ”Internal Flash”, updated: “At any time, the Flash is mapped... if GPNVM bit 2 is set and  
before the Remap Command.”  
5850  
5223  
5846  
6064  
Figure 9-1,”System Controller Block Diagram”, RTT is reset by power_on_reset.  
”Features”, ”Debug Unit (DBGU)”, added ”Mode for General Purpose 2-wire UART Serial  
Communication”  
Section 12. ”Ordering Information”, MLR B parts added to ordering information.  
6120GS  
Section 12. ”Ordering Information”, MLR C parts added to ordering information  
Section 9.5 ”Debug Unit”  
7371  
rfo  
“Chip ID Registers”, Chip IDs updated with reference to MRL A, B or C.  
Product Series Naming Convention:  
Except for part ordering and library references, AT91 prefix dropped from most nomenclature.  
AT91SAM7X becomes SAM7X.  
43  
6120GS–ATARM–07-Apr-11  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: (+1) (408) 441-0311  
Fax: (+1) (408) 487-2600  
Atmel Asia Limited  
Unit 01-5 & 16, 19F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
HONG KONG  
Atmel Munich GmbH  
Business Campus  
Parkring 4  
D-85748 Garching b. Munich  
GERMANY  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
JAPAN  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Tel: (+49) 89-31970-0  
Fax: (+49) 89-3194621  
Tel: (+852) 2245-6100  
Fax: (+852) 2722-1369  
Product Contact  
Web Site  
www.atmel.com  
www.atmel.com/AT91SAM  
Technical Support  
AT91SAM Support  
Atmel techincal support  
Sales Contacts  
www.atmel.com/contacts/  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifica-  
tions and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically pro-  
vided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted  
for use as components in applications intended to support or sustain life.  
© 2011 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, DataFlash®, SAM-BA® and others, are regis-  
tered trademarks and others are trademarks of Atmel Corporation or its subsidiaries. Windows® and others, are registered trademarks of Micro-  
soft Corporation in the US and/or other countries. ARM®, the ARM Powered® logo and others, are registered trademarks or trademarks of ARM  
Limited. Other terms and product names may be the trademarks of others.  
6120GS–ATARM–07-Apr-11  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY