AT91SAM9261S [ATMEL]

AT91 ARM Thumb-based Microcontrollers; AT91 ARM的Thumb-基于微控制器
AT91SAM9261S
型号: AT91SAM9261S
厂家: ATMEL    ATMEL
描述:

AT91 ARM Thumb-based Microcontrollers
AT91 ARM的Thumb-基于微控制器

微控制器
文件: 总39页 (文件大小:675K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Incorporates the ARM926EJ-S™ ARM® Thumb® Processor  
– DSP Instruction Extensions  
– ARM Jazelle® Technology for Java® Acceleration  
– 16 Kbyte Data Cache, 16 Kbyte Instruction Cache, Write Buffer  
– 210 MIPS at 190 MHz  
– Memory Management Unit  
– EmbeddedICE, Debug Communication Channel Support  
– Mid-level implementation Embedded Trace Macrocell™  
Additional Embedded Memories  
– 32 Kbytes of Internal ROM, Single-cycle Access at Maximum Bus Speed  
– 16 Kbytes of Internal SRAM, Single-cycle Access at Bus Speed  
External Bus Interface (EBI)  
– Supports SDRAM, Static Memory, NAND Flash and CompactFlash®  
LCD Controller  
AT91 ARM  
Thumb-based  
Microcontrollers  
– Supports Passive or Active Displays  
AT91SAM9261S  
Summary  
– Up to 16-bits per Pixel in STN Color Mode  
– Up to 16M Colors in TFT Mode (24-bit per Pixel), Resolution up to 2048 x 2048  
USB  
– USB 2.0 Full Speed (12 Mbits per second) Host Double Port  
• Dual On-chip Transceivers  
• Integrated FIFOs and Dedicated DMA Channels  
– USB 2.0 Full Speed (12 Mbits per second) Device Port  
• On-chip Transceiver, 2 Kbyte Configurable Integrated FIFOs  
Bus Matrix  
– Handles Five Masters and Five Slaves  
– Boot Mode Select Option  
– Remap Command  
Fully Featured System Controller (SYSC) for Efficient System Management, including  
– Reset Controller, Shutdown Controller, Four 32-bit Battery Backup Registers for a  
Total of 16 Bytes  
– Clock Generator and Power Management Controller  
– Advanced Interrupt Controller and Debug Unit  
– Periodic Interval Timer, Watchdog Timer and Real-time Timer  
– Three 32-bit PIO Controllers  
Reset Controller (RSTC)  
– Based on Power-on Reset Cells, Reset Source Identification and Reset Output  
Control  
Shutdown Controller (SHDWC)  
– Programmable Shutdown Pin Control and Wake-up Circuitry  
Clock Generator (CKGR)  
– 32,768 Hz Low-power Oscillator on Battery Backup Power Supply, Providing a  
Permanent Slow Clock  
– 3 to 20 MHz On-chip Oscillator and two PLLs  
Power Management Controller (PMC)  
– Very Slow Clock Operating Mode, Software Programmable Power Optimization  
Capabilities  
– Four Programmable External Clock Signals  
6242DS–ATARM–06-Jan-09  
Advanced Interrupt Controller (AIC)  
– Individually Maskable, Eight-level Priority, Vectored Interrupt Sources  
– Three External Interrupt Sources and One Fast Interrupt Source, Spurious Interrupt Protected  
Debug Unit (DBGU)  
– 2-wire USART and support for Debug Communication Channel, Programmable ICE Access Prevention  
– Mode for General Purpose Two-wire UART Serial Communication  
Periodic Interval Timer (PIT)  
– 20-bit Interval Timer plus 12-bit Interval Counter  
Watchdog Timer (WDT)  
– Key Protected, Programmable Only Once, Windowed 12-bit Counter, Running at Slow Clock  
Real-Time Timer (RTT)  
– 32-bit Free-running Backup Counter Running at Slow Clock  
Three 32-bit Parallel Input/Output Controllers (PIO) PIOA, PIOB and PIOC  
– 96 Programmable I/O Lines Multiplexed with up to Two Peripheral I/Os  
– Input Change Interrupt Capability on Each I/O Line  
– Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output  
Nineteen Peripheral DMA (PDC) Channels  
Multimedia Card Interface (MCI)  
– SDCard and MultiMediaCardCompliant  
– Automatic Protocol Control and Fast Automatic Data Transfers with PDC, MMC and SDCard Compliant  
Three Synchronous Serial Controllers (SSC)  
– Independent Clock and Frame Sync Signals for Each Receiver and Transmitter  
– I²S Analog Interface Support, Time Division Multiplex Support  
– High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer  
Three Universal Synchronous/Asynchronous Receiver Transmitters (USART)  
– Individual Baud Rate Generator, IrDA® Infrared Modulation/Demodulation  
– Support for ISO7816 T0/T1 Smart Card, Hardware and Software Handshaking, RS485 Support  
Two Master/Slave Serial Peripheral Interface (SPI)  
– 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects  
One Three-channel 16-bit Timer/Counters (TC)  
– Three External Clock Inputs, Two multi-purpose I/O Pins per Channel  
– Double PWM Generation, Capture/Waveform Mode, Up/Down Capability  
Two-wire Interface (TWI)  
– Master Mode Support, All Two-wire Atmel EEPROMs Supported  
IEEE® 1149.1 JTAG Boundary Scan on All Digital Pins  
Required Power Supplies:  
– 1.08V to 1.32V for VDDCORE and VDDBU  
– 3.0V to 3.6V for VDDOSC and for VDDPLL  
– 2.7V to 3.6V for VDDIOP (Peripheral I/Os)  
– 1.65V to 1.95V and 3.0V to 3.6V for VDDIOM (Memory I/Os)  
Available in a 217-ball LFBGA RoHS-compliant Package  
2
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
1. Description  
The AT91SAM9261S is a complete system-on-chip built around the ARM926EJ-S ARM Thumb  
processor with an extended DSP instruction set and Jazelle Java accelerator. It achieves 210  
MIPS at 190 MHz.  
The AT91SAM9261S is an optimized host processor for applications with an LCD display. Its  
integrated LCD controller supports BW and up to 16M color, active and passive LCD displays.  
The 16 Kbyte integrated SRAM can be configured as a frame buffer minimizing the impact for  
LCD refresh on the overall processor performance. The External Bus Interface incorporates con-  
trollers for synchronous DRAM (SDRAM) and Static memories and features specific interface  
circuitry for CompactFlash and NAND Flash.  
The AT91SAM9261S integrates a ROM-based Boot Loader supporting code shadowing from,  
for example, external DataFlash® into external SDRAM. The software controlled Power Manage-  
ment Controller (PMC) keeps system power consumption to a minimum by selectively  
enabling/disabling the processor and various peripherals and adjustment of the operating  
frequency.  
The AT91SAM9261S also benefits from the integration of a wide range of debug features includ-  
ing JTAG-ICE, a dedicated UART debug channel (DBGU) and an embedded real time trace.  
This enables the development and debug of all applications, especially those with real-time  
constraints.  
3
6242DS–ATARM–06-Jan-09  
2. Block Diagram  
Figure 2-1. AT91SAM9261S Block Diagram  
JTAGSEL  
TDI  
ARM926EJ-S Core  
JTAG  
Boundary Scan  
TDO  
TMS  
ICE  
Instruction Cache  
16K bytes  
Data Cache  
16K bytes  
MMU  
BIU  
I
TCK  
NTRST  
RTCK  
System Controller  
AIC  
BMS  
D0-D15  
A0/NBS0  
TST  
FIQ  
D
A1/NBS2/NWR2  
A2-A15/A18-A21  
A22/REG  
IRQ0-IRQ2  
DRXD  
DTXD  
PCK0-PCK3  
DBGU  
PDC  
EBI  
A16/BA0  
Fast SRAM  
16K bytes  
CompactFlash  
NAND Flash  
A17/BA1  
NCS0  
NCS1/SDCS  
NCS2  
PLLA  
PLLRCA  
PLLRCB  
NCS3/NANDCS  
NRD/CFOE  
NWR0/NWE/CFWE  
NWR1/NBS1/CFIOR  
NWR3/NBS3/CFIOW  
SDCK  
Fast ROM  
32K bytes  
PMC  
PLLB  
OSC  
XIN  
XOUT  
5-layer  
Matrix  
SDCKE  
SDRAM  
Controller  
RAS-CAS  
SDWE  
SDA10  
WDT  
PIT  
NWAIT  
A23-A24  
Peripheral  
Bridge  
A25/CFRNW  
NCS4/CFCS0  
Static  
Memory  
Controller  
GPBREG  
RTT  
NCS5/CFCS1  
CFCE1  
CFCE2  
NCS6/NANDOE  
NCS7/NANDWE  
D16-D31  
XIN32  
XOUT32  
OSC  
Peripheral  
DMA  
Controller  
SHDN  
WKUP  
SHDWC  
HDMA  
HDPA  
VDDBU  
GNDBU  
POR  
POR  
DMA  
FIFO  
RSTC  
USB Host  
HDMB  
HDPB  
VDDCORE  
NRST  
FIFO  
APB  
DDM  
DDP  
PIOA  
PIOB  
PIOC  
USB Device  
DMA  
FIFO  
LCDD0-LCDD23  
LCDVSYNC  
LCDHSYNC  
LCDDOTCK  
LCDDEN  
MCCK  
MCCDA  
MCDA0-MCDA3  
MCI  
LUT  
LCD Controller  
LCDCC  
PDC  
TF0  
TK0  
TD0  
RD0  
RK0  
RF0  
RXD0  
TXD0  
SCK0  
RTS0  
CTS0  
SSC0  
USART0  
USART1  
USART2  
PDC  
PDC  
PDC  
PDC  
RXD1  
TXD1  
SCK1  
RTS1  
CTS1  
TF1  
TK1  
TD1  
RD1  
RK1  
RF1  
SSC1  
PDC  
PDC  
RXD2  
TXD2  
SCK2  
RTS2  
CTS2  
TF2  
TK2  
TD2  
RD2  
RK2  
RF2  
SSC2  
SPI0_NPCS0  
SPI0_NPCS1  
SPI0_NPCS2  
SPI0_NPCS3  
SPI0_MISO  
SPI0_MOSI  
SPI0_SPCK  
TCLK0  
TCLK1  
TCLK2  
TIOA0  
TIOB0  
TIOA1  
TIOB1  
TIOA2  
TIOB2  
Timer Counter  
SPI0  
SPI1  
TC0  
TC1  
TC2  
PDC  
PDC  
SPI1_NPCS10  
SPI1_NPCS1  
SPI1_NPCS12  
SPI1_NPCS3  
SPI1_MISO  
SPI1_MOSI  
SPI1_SPCK  
TWD  
TWI  
TWCK  
4
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
3. Signal Description  
Table 3-1.  
Signal Description by Peripheral  
Signal Name  
Function  
Type  
Active Level Comments  
Power  
VDDIOM  
VDDIOP  
VDDBU  
EBI I/O Lines Power Supply  
Peripherals I/O Lines Power Supply  
Backup I/O Lines Power Supply  
PLL Power Supply  
Power  
Power  
Power  
Power  
Power  
Power  
Ground  
Ground  
Ground  
Ground  
1.65 V to 1.95V and 3.0V to 3.6V  
2.7V to 3.6V  
1.08V to 1.32V  
VDDPLL  
VDDOSC  
VDDCORE  
GND  
3.0V to 3.6V  
Oscillator Power Supply  
Core Chip Power Supply  
Ground  
3.0V to 3.6V  
1.08V to 1.32V  
GNDPLL  
GNDOSC  
GNDBU  
PLL Ground  
Oscillator Ground  
Backup Ground  
Clocks, Oscillators and PLLs  
XIN  
Main Oscillator Input  
Input  
Output  
Input  
XOUT  
Main Oscillator Output  
Slow Clock Oscillator Input  
XIN32  
XOUT32  
PLLRCA  
PLLRCB  
PCK0 - PCK3  
Slow Clock Oscillator Output  
PLL Filter  
Output  
Input  
PLL Filter  
Input  
Programmable Clock Output  
Output  
Shutdown, Wakeup Logic  
SHDN  
WKUP  
Shutdown Control  
Wake-Up Input  
Output  
Input  
Do not tie over VDDBU.  
Accepts between 0V and VDDBU.  
ICE and JTAG  
Input  
TCK  
Test Clock  
No pull-up resistor.  
No pull-up resistor.  
No pull-up resistor.  
RTCK  
TDI  
Returned Test Clock  
Test Data In  
Output  
Input  
TDO  
TMS  
NTRST  
Test Data Out  
Output  
Test Mode Select  
Test Reset Signal  
Input  
No pull-up resistor.  
Pull-up resistor.  
Input  
Low  
Low  
Pull-down resistor. Accepts  
between 0V and VDDBU.  
JTAGSEL  
JTAG Selection  
Input  
Reset/Test  
I/O  
NRST  
TST  
Microcontroller Reset  
Test Mode Select  
Boot Mode Select  
Pull-up resistor  
Input  
Pull-down resistor.  
BMS  
Input  
Debug Unit  
Input  
DRXD  
DTXD  
Debug Receive Data  
Debug Transmit Data  
Output  
5
6242DS–ATARM–06-Jan-09  
Table 3-1.  
Signal Description by Peripheral (Continued)  
Signal Name  
Function  
Type  
Active Level Comments  
AIC  
PIO  
IRQ0 - IRQ2  
FIQ  
External Interrupt Inputs  
Fast Interrupt Input  
Input  
Input  
PA0 - PA31  
PB0 - PB31  
PC0 - PC31  
Parallel IO Controller A  
Parallel IO Controller B  
Parallel IO Controller C  
I/O  
I/O  
I/O  
Pulled-up input at reset  
Pulled-up input at reset  
Pulled-up input at reset  
EBI  
D0 - D31  
A0 - A25  
NWAIT  
Data Bus  
I/O  
Pulled-up input at reset  
0 at reset  
Address Bus  
Output  
Input  
External Wait Signal  
Low  
SMC  
NCS0 - NCS7  
NWR0 - NWR3  
NRD  
Chip Select Lines  
Write Signal  
Output  
Output  
Output  
Output  
Output  
Low  
Low  
Low  
Low  
Low  
Read Signal  
NWE  
Write Enable  
NBS0 - NBS3  
Byte Mask Signal  
CompactFlash Support  
CFCE1 - CFCE2  
CFOE  
CompactFlash Chip Enable  
CompactFlash Output Enable  
CompactFlash Write Enable  
CompactFlash IO Read  
Output  
Output  
Output  
Output  
Output  
Low  
Low  
Low  
Low  
Low  
CFWE  
CFIOR  
CFIOW  
CompactFlash IO Write  
CFRNW  
CompactFlash Read Not Write  
CompactFlash Chip Select Lines  
Output  
Output  
CFCS0 - CFCS1  
Low  
NAND Flash Support  
Output  
NANDOE  
NANDWE  
NANDCS  
NAND Flash Output Enable  
NAND Flash Write Enable  
NAND Flash Chip Select  
Low  
Low  
Low  
Output  
Output  
SDRAM Controller  
Output  
SDCK  
SDRAM Clock  
SDCKE  
SDCS  
SDRAM Clock Enable  
SDRAM Controller Chip Select  
Bank Select  
Output  
High  
Low  
Output  
BA0 - BA1  
SDWE  
Output  
SDRAM Write Enable  
Row and Column Signal  
SDRAM Address 10 Line  
Output  
Low  
Low  
RAS - CAS  
SDA10  
Output  
Output  
Multimedia Card Interface  
MCCK  
Multimedia Card Clock  
Output  
MCCDA  
Multimedia Card A Command  
Multimedia Card A Data  
I/O  
I/O  
MCDA0 - MCDA3  
6
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
Table 3-1.  
Signal Description by Peripheral (Continued)  
Signal Name  
Function  
Type  
Active Level Comments  
USART  
SCK0 - SCK2  
TXD0 - TXD2  
RXD0 - RXD2  
RTS0 - RTS2  
CTS0 - CTS2  
Serial Clock  
I/O  
Transmit Data  
Receive Data  
Request To Send  
Clear To Send  
Output  
Input  
Output  
Input  
Synchronous Serial Controller  
TD0 - TD2  
RD0 - RD2  
TK0 - TK2  
RK0 - RK2  
TF0 - TF2  
RF0 - RF2  
Transmit Data  
Output  
Receive Data  
Input  
Transmit Clock  
I/O  
Receive Clock  
I/O  
Transmit Frame Sync  
Receive Frame Sync  
I/O  
I/O  
Timer/Counter  
TCLK0 - TCLK2  
TIOA0 - TIOA2  
TIOB0 - TIOB2  
External Clock Input  
I/O Line A  
Input  
I/O  
I/O  
I/O Line B  
SPI  
SPI0_MISO -  
SPI1_MISO  
Master In Slave Out  
Master Out Slave In  
SPI Serial Clock  
I/O  
I/O  
I/O  
SPI0_MOSI -  
SPI1_MOSI  
SPI0_SPCK -  
SPI1_SPCK  
SPI0_NPCS0,  
SPI1_NPCS0  
SPI Peripheral Chip Select 0  
SPI Peripheral Chip Select  
I/O  
Low  
Low  
SPI0_NPCS1 -  
SPI0_NPCS3  
Output  
SPI1_NPCS1 -  
SPI1_NPCS3  
Two-Wire Interface  
I/O  
TWD  
Two-wire Serial Data  
Two-wire Serial Clock  
TWCK  
I/O  
LCD Controller  
Output  
LCDD0 - LCDD23  
LCDVSYNC  
LCDHSYNC  
LCDDOTCK  
LCDDEN  
LCD Data Bus  
LCD Vertical Synchronization  
LCD Horizontal Synchronization  
LCD Dot Clock  
Output  
Output  
Output  
LCD Data Enable  
Output  
LCDCC  
LCD Contrast Control  
Output  
USB Device Port  
Analog  
DDM  
DDP  
USB Device Port Data -  
USB Device Port Data +  
Analog  
7
6242DS–ATARM–06-Jan-09  
Table 3-1.  
Signal Description by Peripheral (Continued)  
Signal Name  
Function  
Type  
Active Level Comments  
USB Host Port  
HDMA  
HDPA  
HDMB  
HDPB  
USB Host Port A Data -  
USB Host Port A Data +  
USB Host Port B Data -  
USB Host Port B Data +  
Analog  
Analog  
Analog  
Analog  
8
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
4. Package and Pinout  
The AT91SAM9261S is available in a 217-ball LFBGA RoHS-compliant package, 15 x 15 mm,  
0.8 mm ball pitch  
4.1  
217-ball LFBGA Package Outline  
Figure 4-1 shows the orientation of the 217-ball LFBGA Package.  
A detailed mechanical description is given in the section “AT91SAM9261S Mechanical Charac-  
teristics” of the product datasheet.  
Figure 4-1. 217-ball LFBGA Package Outline (Top View)  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A
B C D E F G H J K L M N P R T U  
Ball A1  
9
6242DS–ATARM–06-Jan-09  
4.2  
Pinout  
Table 4-1.  
AT91SAM9261S Pinout for 217-ball LFBGA Package (1)  
Pin  
Signal Name  
Pin  
Signal Name  
VDDCORE  
A10  
Pin  
J14  
J15  
J16  
J17  
K1  
Signal Name  
VDDIOP  
PB9  
Pin  
P17  
R1  
Signal Name  
PA20  
PC19  
PC21  
GND  
A1  
A19  
D5  
A2  
A16/BA0  
A14  
D6  
A3  
D7  
A5  
PB6  
R2  
A4  
A12  
D8  
A0/NBS0  
SHDN  
NC  
PB4  
R3  
A5  
A9  
D9  
D6  
R4  
PC27  
PC29  
PC4  
A6  
A6  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
E1  
K2  
D8  
R5  
A7  
A3  
VDDIOP  
PB29  
K3  
D10  
R6  
A8  
A2  
K4  
D7  
R7  
PC8  
A9  
NC  
PB28  
K8  
GND  
R8  
PC12  
PC14  
VDDPLL  
PA0  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
B1  
XOUT32  
XIN32  
DDP  
PB23  
K9  
GND  
R9  
PB20  
K10  
K14  
K15  
K16  
K17  
L1  
GND  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
T1  
PB17  
VDDCORE  
PB3/BMS  
PB1  
HDPB  
HDMB  
PB27  
GND  
TCK  
PA7  
NWR1/NBS1/CFIOR  
NWR0/NWE/CFWE  
NRD/CFOE  
SDA10  
PB22  
PA10  
PA13  
PA17  
GND  
E2  
PB2  
E3  
D9  
PB24  
A20  
E4  
L2  
D11  
E14  
E15  
E16  
E17  
F1  
L3  
D12  
PA18  
PC20  
PC23  
PC26  
PC2  
B2  
A18  
PB18  
L4  
VDDIOM  
PA30  
B3  
A15  
PB15  
L14  
L15  
L16  
L17  
M1  
M2  
M3  
M4  
M14  
M15  
M16  
M17  
N1  
T2  
B4  
A13  
TDI  
PA27  
T3  
B5  
A11  
SDCKE  
RAS  
PA31  
T4  
B6  
A7  
F2  
PB0  
T5  
VDDIOP  
PC5  
B7  
A4  
F3  
NWR3/NBS3/CFIOW  
NCS0  
D13  
T6  
B8  
A1/NBS2/NWR2  
VDDBU  
JTAGSEL  
WKUP  
DDM  
F4  
D15  
T7  
PC9  
B9  
F14  
F15  
F16  
F17  
G1  
PB16  
PC18  
VDDCORE  
PA25  
T8  
PC10  
PC15  
VDDOSC  
GNDOSC  
PA1  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
C1  
NRST  
TDO  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
U1  
NTRST  
D0  
PA26  
PB31  
HDMA  
PB26  
PB25  
PB19  
A22  
PA28  
G2  
D1  
PA29  
PA4  
G3  
SDWE  
NCS3/NANDCS  
PB14  
D14  
PA6  
G4  
N2  
PC17  
PC31  
VDDIOM  
PA22  
PA8  
G14  
G15  
G16  
G17  
H1  
N3  
PA11  
PA14  
PC25  
PC0  
PB12  
N4  
C2  
A21  
PB11  
N14  
N15  
N16  
N17  
P1  
C3  
VDDIOM  
A17/BA1  
VDDIOM  
A8  
PB8  
PA21  
U2  
C4  
D2  
PA23  
U3  
PC3  
C5  
H2  
D3  
PA24  
U4  
GND  
C6  
H3  
VDDIOM  
SDCK  
GND  
PC16  
PC30  
PC22  
PC24  
PC28  
PC1  
U5  
PC6  
C7  
GND  
H4  
P2  
U6  
VDDIOP  
GND  
C8  
VDDIOM  
GNDBU  
TST  
H8  
P3  
U7  
C9  
H9  
GND  
P4  
U8  
PC13  
PLLRCB  
PLLRCA  
XIN  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
D1  
H10  
H14  
H15  
H16  
H17  
J1  
GND  
P5  
U9  
GND  
PB10  
P6  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
HDPA  
PB30  
NC  
PB13  
P7  
PC7  
PB7  
P8  
PC11  
GNDPLL  
PA3  
XOUT  
PA2  
PB5  
P9  
VDDIOP  
PB21  
TMS  
D4  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
PA5  
J2  
D5  
VDDIOP  
VDDCORE  
PA15  
PA12  
PA9  
J3  
GND  
NCS2  
NCS1/SDCS  
GND  
J4  
CAS  
RTCK  
D2  
J8  
GND  
PA16  
D3  
J9  
GND  
VDDIOP  
PA19  
D4  
VDDIOM  
J10  
GND  
Note:  
1. Shaded cells define the pins powered by VDDIOM.  
10  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
5. Power Considerations  
5.1  
Power Supplies  
The AT91SAM9261S has six types of power supply pins:  
• VDDCORE pins: Power the core, including the processor, the memories and the peripherals;  
voltage ranges from 1.08V and 1.32V, 1.2V nominal.  
• VDDIOM pins: Power the External Bus Interface I/O lines; voltage ranges from 1.65V to  
1.95V and 3.0V to 3.6V, 1.8V and 3.3V nominal.  
• VDDIOP pins: Power the Peripheral I/O lines and the USB transceivers; voltage ranges from  
2.7V and 3.6V, 3.3V nominal.  
• VDDBU pin: Powers the Slow Clock oscillator and a part of the System Controller; voltage  
ranges from 1.08V and 1.32V, 1.2V nominal.  
• VDDPLL pin: Powers the PLL cells; voltage ranges from 3.0V and 3.6V, 3.3V nominal.  
• VDDOSC pin: Powers the Main Oscillator cells; voltage ranges from 3.0V and 3.6V, 3.3V  
nominal.  
The double power supplies VDDIOM and VDDIOP are identified in Table 4-1 on page 10. These  
supplies enable the user to power the device differently for interfacing with memories and for  
interfacing with peripherals.  
Ground pins GND are common to VDDCORE, VDDIOM and VDDIOP pins power supplies. Sep-  
arated ground pins are provided for VDDBU, VDDOSC and VDDPLL. The ground pins are  
GNDBU, GNDOSC and GNDPLL, respectively.  
5.2  
Power Consumption  
The AT91SAM9261S consumes about 550 µA of static current on VDDCORE at 25°C. This  
static current rises at up to 5.5 mA if the temperature increases to 85°C.  
On VDDBU, the current does not exceed 3 µA @25°C, but can rise at up to 20 µA @85°C.  
For dynamic power consumption, the AT91SAM9261S consumes a maximum of 50 mA on  
VDDCORE at maximum speed in typical conditions (1.2V, 25°C), processor running full-perfor-  
mance algorithm.  
6. I/O Line Considerations  
6.1  
JTAG Port Pins  
TMS, TDI and TCK are Schmitt trigger inputs and have no pull-up resistors.  
TDO and RTCK are outputs, driven at up to VDDIOP, and have no pull-up resistor.  
The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level (tied  
to VDDBU). It integrates a permanent pull-down resistor of about 15 kΩto GNDBU, so that it can  
be left unconnected for normal operations.  
The NTRST pin is used to initialize the embedded ICE TAP Controller when asserted at a low  
level. It integrates a permanent pull-up resistor of about 15 kΩ to VDDIOP, so that it can be left  
unconnected for normal operations.  
11  
6242DS–ATARM–06-Jan-09  
6.2  
6.3  
Test Pin  
The TST pin is used for manufacturing test purposes when asserted high. It integrates a perma-  
nent pull-down resistor of about 15 kΩ to GNDBU, so that it can be left unconnected for normal  
operations. Driving this line at a high level leads to unpredictable results.  
Reset Pin  
NRST is an open-drain output integrating a non-programmable pull-up resistor. It can be driven  
with voltage at up to VDDIOP. As the product integrates power-on reset cells, the NRST pin can  
be left unconnected in case no reset from the system needs to be applied to the product.  
The NRST pin integrates a permanent pull-up resistor of 100 kΩ minimum to VDDIOP.  
The NRST signal is inserted in the Boundary Scan.  
6.4  
6.5  
PIO Controller A, B and C Lines  
All the I/O lines PA0 to PA31, PB0 to PB31, and PC0 to PC31 integrate a programmable pull-up  
resistor of 100 kΩ. Programming of this pull-up resistor is performed independently for each I/O  
line through the PIO Controllers.  
After reset, all the I/O lines default as inputs with pull-up resistors enabled, except those which  
are multiplexed with the External Bus Interface signals that require to be enabled as Peripherals  
at reset. This is explicitly indicated in the column “Reset State” of the PIO Controller multiplexing  
tables.  
Shutdown Logic Pins  
The SHDN pin is an output only, driven by Shutdown Controller.  
The pin WKUP is an input only. It can accept voltages only between 0V and VDDBU.  
12  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
7. Processor and Architecture  
7.1  
ARM926EJ-S Processor  
• RISC Processor Based on ARM v5TEJ Architecture with Jazelle technology for Java  
acceleration  
Two Instruction Sets  
– ARM High-performance 32-bit Instruction Set  
– Thumb High Code Density 16-bit Instruction Set  
• DSP Instruction Extensions  
• 5-Stage Pipeline Architecture:  
– Instruction Fetch (F)  
– Instruction Decode (D)  
– Execute (E)  
– Data Memory (M)  
– Register Write (W)  
• 16 Kbyte Data Cache, 16 Kbyte Instruction Cache  
– Virtually-addressed 4-way Associative Cache  
– Eight words per line  
– Write-through and Write-back Operation  
– Pseudo-random or Round-robin Replacement  
• Write Buffer  
– Main Write Buffer with 16-word Data Buffer and 4-address Buffer  
– DCache Write-back Buffer with 8-word Entries and a Single Address Entry  
– Software Control Drain  
• Standard ARM v4 and v5 Memory Management Unit (MMU)  
– Access Permission for Sections  
– Access Permission for large pages and small pages can be specified separately for  
each quarter of the page  
– 16 embedded domains  
• Bus Interface Unit (BIU)  
– Arbitrates and Schedules AHB Requests  
– Separate Masters for both instruction and data access providing complete AHB  
system flexibility  
– Separate Address and Data Buses for both the 32-bit instruction interface and the  
32-bit data interface  
– On Address and Data Buses, data can be 8-bit (Bytes), 16-bit (Half-words) or 32-bit  
(Words)  
13  
6242DS–ATARM–06-Jan-09  
7.2  
Debug and Test Features  
• Integrated Embedded In-circuit Emulator Real-Time  
Two real-time Watchpoint Units  
Two Independent Registers: Debug Control Register and Debug Status Register  
Test Access Port Accessible through JTAG Protocol  
– Debug Communications Channel  
• Debug Unit  
Two-pin UART  
– Debug Communication Channel Interrupt Handling  
– Chip ID Register  
• IEEE1149.1 JTAG Boundary-scan on All Digital Pins  
7.3  
Bus Matrix  
• Five Masters and Five Slaves handled  
– Handles Requests from the ARM926EJ-S, USB Host Port, LCD Controller and the  
Peripheral DMA Controller to internal ROM, internal SRAM, EBI, APB, LCD  
Controller and USB Host Port.  
– Round-Robin Arbitration (three modes supported: no default master, last accessed  
default master, fixed default master)  
– Burst Breaking with Slot Cycle Limit  
• One Address Decoder Provided per Master  
– Three different slaves may be assigned to each decoded memory area: one for  
internal boot, one for external boot, one after remap.  
• Boot Mode Select Option  
– Non-volatile Boot Memory can be Internal or External.  
– Selection is made by BMS pin sampled at reset.  
• Remap Command  
– Allows Remapping of an Internal SRAM in Place of the Boot Non-Volatile Memory  
– Allows Handling of Dynamic Exception Vectors  
7.4  
Peripheral DMA Controller  
Transfers from/to peripheral to/from any memory space without intervention of the processor.  
• Next Pointer Support, forbids strong real-time constraints on buffer management.  
• Nineteen channels  
Two for each USART  
Two for the Debug Unit  
Two for each Serial Synchronous Controller  
Two for each Serial Peripheral Interface  
– One for the Multimedia Card Interface  
14  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
8. Memories  
Figure 8-1. AT91SAM9261S Memory Mapping  
Address Memory Space  
Internal Memory Mapping  
Notes :  
(1) Can be ROM, EBI_NCS0 or SRAM  
depending on BMS and REMAP  
0x0000 0000  
0x0000 0000  
0x10 0000  
0x20 0000  
0x30 0000  
0x40 0000  
0x50 0000  
0x60 0000  
0x70 0000  
0x0FFF FFFF  
Boot Memory (1)  
Reserved  
Internal Memories 256M Bytes  
0x0FFF FFFF  
0x1000 0000  
EBI  
Chip Select 0  
256M Bytes  
256M Bytes  
Reserved  
0x1FFF FFFF  
0x2000 0000  
EBI  
Chip Select 1/  
SDRAMC  
1M Bytes  
1M Bytes  
SRAM  
0x2FFF FFFF  
0x3000 0000  
ROM  
EBI  
Chip Select 2  
256M Bytes  
256M Bytes  
UHP User Interface  
LCD User Interface  
Reserved  
1M Bytes  
1M Bytes  
0x3FFF FFFF  
0x4000 0000  
EBI  
Chip Select 3/  
NAND Flash  
0x4FFF FFFF  
0x5000 0000  
EBI  
Chip Select 4/  
Compact Flash  
Slot 0  
256M Bytes  
256M Bytes  
0x5FFF FFFF  
0x6000 0000  
EBI  
Chip Select 5/  
Compact Flash  
Slot 1  
0x6FFF FFFF  
0x7000 0000  
System Controller Mapping  
0xFFFF C000  
EBI  
Chip Select 6  
256M Bytes  
256M Bytes  
Reserved  
Peripheral Mapping  
Reserved  
0x7FFF FFFF  
0x8000 0000  
0xF000 0000  
EBI  
Chip Select 7  
0xFFFF EA00  
0xFFFF EC00  
SDRAMC  
SMC  
512 Bytes  
512 Bytes  
0xFFFA 0000  
0xFFFA 4000  
0x8FFF FFFF  
0x9000 0000  
16K Bytes  
16K Bytes  
TCO, TC1, TC2  
UDP  
0xFFFF EE00  
0xFFFF F000  
0xFFFA 8000  
0xFFFA C000  
0xFFFB 0000  
MATRIX  
512 Bytes  
512 Bytes  
16K Bytes  
16K Bytes  
MCI  
TWI  
AIC  
0xFFFF F200  
0xFFFF F400  
0xFFFF F600  
16K Bytes  
16K Bytes  
DBGU  
PIOA  
512 Bytes  
512 Bytes  
512 bytes  
USART0  
USART1  
0xFFFB 4000  
0xFFFB 8000  
0xFFFB C000  
1,518M Bytes  
Undefined  
(Abort)  
16K Bytes  
16K Bytes  
USART2  
SSC0  
PIOB  
PIOC  
0xFFFF F800  
0xFFFF FA00  
0xFFFF FC00  
0xFFFF FD00  
512 bytes  
0xFFFC 0000  
16K Bytes  
16K Bytes  
SSC1  
SSC2  
Reserved  
PMC  
0xFFFC 4000  
0xFFFC 8000  
256 Bytes  
16K Bytes  
16K Bytes  
RSTC  
SHDWC  
RTT  
16 Bytes  
16 Bytes  
SPI0  
SPI1  
0xFFFC C000  
0xFFFC D000  
0xFFFF FD10  
0xFFFF FD20  
16 Bytes  
16 Bytes  
0xFFFF FD30  
0xFFFF FD40  
PIT  
0xEFFF FFFF  
0xF000 0000  
Reserved  
SYSC  
WDT  
16 Bytes  
16 Bytes  
0xFFFF FD50  
0xFFFF FD60  
GPBR  
0xFFFF C000  
0xFFFF FFFF  
Internal Peripherals 256M Bytes  
16K Bytes  
Reserved  
0xFFFF FFFF  
0xFFFF FFFF  
15  
6242DS–ATARM–06-Jan-09  
A first level of address decoding is performed by the Bus Matrix, i.e., the implementation of the  
Advanced High performance Bus (AHB) for its Master and Slave interfaces with additional  
features.  
Decoding breaks up the 4 Gbytes of address space into 16 areas of 256 Mbytes. The areas 1 to  
8 are directed to the EBI that associates these areas to the external chip selects NCS0 to NCS7.  
The area 0 is reserved for the addressing of the internal memories, and a second level of decod-  
ing provides 1 Mbyte of internal memory area. The area 15 is reserved for the peripherals and  
provides access to the Advanced Peripheral Bus (APB).  
Other areas are unused and performing an access within them provides an abort to the master  
requesting such an access.  
The Bus Matrix manages five Masters and five Slaves.  
Each Master has its own bus and its own decoder, thus allowing a different memory mapping  
per Master.  
Regarding Master 0 and Master 1 (ARM926Instruction and Data), three different Slaves are  
assigned to the memory space decoded at address 0x0: one for internal boot, one for external  
boot, one after remap. Refer to Table 8-3 for details.  
Table 8-1.  
Master 0  
Master 1  
Master 2  
Master 3  
Master 4  
List of Bus Matrix Masters  
ARM926 Instruction  
ARM926 Data  
PDC  
LCD Controller  
USB Host  
Each Slave has its own arbiter, thus allowing a different arbitration per Slave.  
Table 8-2.  
Slave 0  
Slave 1  
Slave 2  
Slave 3  
Slave 4  
List of Bus Matrix Slaves  
Internal SRAM  
Internal ROM  
LCD Controller and USB Host Port Interfaces  
External Bus Interface  
Internal Peripherals  
8.1  
Embedded Memories  
• 32 KB ROM  
– Single Cycle Access at full bus speed  
• 16 KB Fast SRAM  
– Single Cycle Access at full bus speed  
16  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
8.1.1  
Internal Memory Mapping  
Table 8-3 summarizes the Internal Memory Mapping for each Master, depending on the Remap  
status and the BMS state at reset.  
Table 8-3.  
Address  
Internal Memory Mapping  
Master 0: ARM926 Instruction  
REMAP(RCB0) = 0  
Master 1: ARM926 Data  
REMAP (RCB0) = 1  
Int. RAM C  
REMAP (RCB1) = 0  
REMAP (RCB1) = 1  
Int. RAM C  
BMS = 1  
Int. ROM  
BMS = 0  
EBI NCS0(1)  
BMS = 1  
Int. ROM  
BMS = 0  
0x0000 0000  
EBI NCS0(1)  
Note:  
1. EBI NCS0 is to be connected to a 16-bit non-volatile memory. The access configuration is defined by the reset state of SMC  
Setup, SMC Pulse, SMC Cycle and SMC Mode CS0 registers.  
8.1.1.1  
Internal SRAM  
The AT91SAM9261S embeds a high-speed 16-Kbyte SRAM.  
8.1.1.2  
8.1.1.3  
Internal ROM  
The AT91SAM9261S integrates a 32-Kbyte Internal ROM mapped at address 0x0040 0000. It is  
also accessible at address 0x0 after reset and before remap if the BMS is tied high during reset.  
USB Host Port  
The AT91SAM9261S integrates a USB Host Port Open Host Controller Interface (OHCI). The  
registers of this interface are directly accessible on the AHB Bus and are mapped like a standard  
internal memory at address 0x0050 0000.  
8.1.1.4  
LCD Controller  
The AT91SAM9261S integrates an LCD Controller. The interface is directly accessible on the  
AHB Bus and is mapped like a standard internal memory at address 0x0060 0000.  
8.1.2  
Boot Strategies  
The system always boots at address 0x0. To ensure a maximum number of possibilities for boot,  
the memory layout can be configured with two parameters.  
REMAP allows the user to lay out the first internal SRAM bank to 0x0 to ease development. This  
is done by software once the system has booted for each Master of the Bus Matrix. Refer to the  
Bus Matrix Section for more details.  
When REMAP = 0, BMS allows the user to lay out to 0x0, at his convenience, the ROM or an  
external memory. This is done via hardware at reset.  
Note:  
Memory blocks not affected by these parameters can always be seen at their specified base  
addresses. See the complete memory map presented in Figure 8-1 on page 15.  
The AT91SAM9261S Bus Matrix manages a boot memory that depends on the level on the  
BMS pin at reset. The internal memory area mapped between address 0x0 and 0x000F FFFF is  
reserved for this purpose.  
If BMS is detected at 1, the boot memory is the embedded ROM.  
If BMS is detected at 0, the boot memory is the memory connected on the Chip Select 0 of the  
External Bus Interface.  
17  
6242DS–ATARM–06-Jan-09  
8.1.2.1  
BMS = 1, Boot on Embedded ROM  
The system boots using the Boot Program.  
• DataFlash Boot  
– Downloads and runs an application from SPI DataFlash into internal SRAM  
– Downloaded code size from SPI DataFlash depends on embedded SRAM size  
– Automatic detection of valid application  
– SPI DataFlash connected to SPI NPCS0  
• NAND Flash boot  
• Boot Uploader in case no valid program is detected in external SPI DataFlash  
– Small monitor functionalities (read/write/run) interface with SAM-BA® application  
– Automatic detection of the communication link  
Serial communication on a DBGU (XModem protocol)  
USB Device Port (CDC Protocol)  
8.1.2.2  
BMS = 0, Boot on External Memory  
• Boot on slow clock (32,768 Hz)  
• Boot with the default configuration for the Static Memory Controller, byte select mode, 16-bit  
data bus, Read/Write controlled by Chip Select, allows boot on 16-bit non-volatile memory.  
The customer-programmed software must perform a complete configuration.  
To speed up the boot sequence when booting at 32 kHz EBI CS0 (BMS=0), the user must take  
the following steps:  
1. Program the PMC (main oscillator enable or bypass mode).  
2. Program and start the PLL.  
3. Reprogram the SMC setup, cycle, hold, mode timings registers for CS0 to adapt them  
to the new clock  
4. Switch the main clock to the new value.  
8.2  
External Memories  
The external memories are accessed through the External Bus Interface (Bus Matrix Slave 3).  
Refer to the memory map in Figure 8-1 on page 15.  
18  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
9. System Controller  
The System Controller manages all vital blocks of the microcontroller: interrupts, clocks, power,  
time, debug and reset.  
The System Peripherals are all mapped within the highest 6 Kbytes of address space, between  
addresses 0xFFFF EA00 and 0xFFFF FFFF. Each peripheral has an address space of 256 or  
512 Bytes, representing 64 or 128 registers.  
Figure 9-1 on page 20 shows the System Controller block diagram.  
Figure 8-1 on page 15 shows the mapping of the User Interfaces of the System Controller  
peripherals.  
19  
6242DS–ATARM–06-Jan-09  
9.1  
Block Diagram  
Figure 9-1. System Controller Block Diagram  
System Controller  
nirq  
nfiq  
irq0-irq2  
fiq  
Advanced  
Interrupt  
Controller  
periph_irq[2..21]  
int  
pit_irq  
rtt_irq  
ice_nreset  
force_ntrst  
ntrst  
wdt_irq  
dbgu_irq  
pmc_irq  
rstc_irq  
ARM926EJ-S  
proc_nreset  
MCK  
dbgu_irq  
force_ntrst  
dbgu_txd  
Debug  
Unit  
periph_nreset  
PCK  
dbgu_rxd  
debug  
MCK  
Periodic  
Interval  
Timer  
debug  
pit_irq  
periph_nreset  
SLCK  
debug  
Watchdog  
Timer  
jtag_nreset  
Boundary Scan  
TAP Controller  
wdt_irq  
idle  
proc_nreset  
wdt_fault  
WDRPROC  
VDDCORE Powered  
MCK  
NRST  
Bus Matrix  
ice_nreset  
periph_nreset  
periph_nreset  
proc_nreset  
VDDCORE  
jtag_nreset  
POR  
Reset  
Controller  
backup_nreset  
rstc_irq  
UDPCK  
VDDBU  
POR  
periph_clk[10]  
periph_nreset  
periph_irq[10]  
usb_suspend  
USB Device  
Port  
SLCK  
rtt_irq  
SLCK  
Real-Time  
Timer  
rtt_alarm  
backup_nreset  
SLCK  
rtt_alarm  
SHDN  
Shutdown  
Controller  
UHPCK  
WKUP  
periph_clk[20]  
periph_nreset  
periph_irq[20]  
backup_nreset  
USB Host  
Port  
4 General-purpose  
Backup Registers  
VDDBU Powered  
XIN32  
SLOW  
CLOCK  
OSC  
SLCK  
XOUT32  
LCDCK  
periph_clk[2..21]  
pck[0-3]  
periph_clk[21]  
XIN  
LCD  
Controller  
MAINCK  
MAIN  
OSC  
periph_nreset  
periph_irq[21]  
PCK  
XOUT  
UDPCK  
UHPCK  
LCDCK  
MCK  
Power  
Management  
Controller  
PLLRCA  
PLLRCB  
PLLA  
PLLB  
PLLACK  
PLLBCK  
pmc_irq  
idle  
periph_clk[6..21]  
periph_nreset  
int  
periph_nreset  
usb_suspend  
Embedded  
Peripherals  
periph_nreset  
periph_clk[2..4]  
dbgu_rxd  
periph_irq{2..4]  
irq0-irq2  
fiq  
periph_irq[6..21]  
PIO  
Controllers  
PA0-PA31  
dbgu_txd  
in  
PB0-PB31  
PC0-PC31  
out  
enable  
20  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
9.2  
9.3  
Reset Controller  
• Based on two Power-on-Reset cells  
• Status of the last reset  
– Either cold reset, first reset, soft reset, user reset, watchdog reset, wake-up reset  
• Controls the internal resets and the NRST pin output  
Shutdown Controller  
• Shutdown and Wake-up logic:  
– Software programmable assertion of the SHDN pin  
– Deassertion Programmable on a WKUP pin level change or on alarm  
9.4  
9.5  
General-purpose Backup Registers  
• Four 32-bit general-purpose backup registers  
Clock Generator  
• Embeds the Low-power 32768 Hz Slow Clock Oscillator  
– Provides the permanent Slow Clock to the system  
• Embeds the Main Oscillator  
– Oscillator bypass feature  
– Supports 3 to 20 MHz crystals  
• Embeds Two PLLs  
– Outputs 80 to 240 MHz clocks  
– Integrates an input divider to increase output accuracy  
– 1 MHz minimum input frequency  
• Provides SLCK, MAINCK, PLLACK and PLLBCK.  
Figure 9-2. Clock Generator Block Diagram  
Clock Generator  
XIN32  
XOUT32  
XIN  
Slow Clock  
Oscillator  
Slow Clock  
SLCK  
Main  
Oscillator  
Main Clock  
MAINCK  
XOUT  
PLL and  
Divider A  
PLLA Clock  
PLLACK  
PLLRCA  
PLLRCB  
PLL and  
Divider B  
PLLB Clock  
PLLBCK  
Status  
Power  
Control  
Management  
Controller  
21  
6242DS–ATARM–06-Jan-09  
9.6  
Power Management Controller  
• The Power Management Controller provides:  
– the Processor Clock PCK  
– the Master Clock MCK  
– the USB Clock USBCK (HCK0)  
– the LCD Controller Clock LCDCK (HCK1)  
– up to thirty peripheral clocks  
– four programmable clock outputs: PCK0 to PCK3  
Figure 9-3. Power Management Controller Block Diagram  
Processor  
Clock  
Controller  
PCK  
int  
Master Clock Controller  
Idle Mode  
SLCK  
MAINCK  
PLLACK  
PLLBCK  
Divider  
/1,/2,/3,/4  
Prescaler  
/1,/2,/4,...,/64  
MCK  
APB Peripherals  
Clock Controller  
periph_clk[2..21]  
ON/OFF  
AHB Peripherals  
Clock Controller  
HCKx  
ON/OFF  
Programmable Clock Controller  
SLCK  
MAINCK  
PLLACK  
PLLBCK  
Prescaler  
/1,/2,/4,...,/64  
pck[0..3]  
USB Clock Controller  
ON/OFF  
usb_suspend  
UDPCK  
UHPCK  
Divider  
/1,/2,/4  
PLLBCK  
9.7  
Periodic Interval Timer  
• Includes a 20-bit Periodic Counter with less than 1 µs accuracy  
• Includes a 12-bit Interval Overlay Counter  
• Real time OS or Linux®/WindowsCE® compliant tick generator  
9.8  
9.9  
Watchdog Timer  
• 12-bit key-protected only-once programmable counter  
• Windowed, prevents the processor to be in a dead-lock on the watchdog access  
Real-time Timer  
• 32-bit Free-running backup counter  
• Alarm Register capable to generate a wake-up of the system  
22  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
9.10 Advanced Interrupt Controller  
• Controls the interrupt lines (nIRQ and nFIQ) of an ARM Processor  
• Thirty-two individually maskable and vectored interrupt sources  
– Source 0 is reserved for the Fast Interrupt Input (FIQ)  
– Source 1 is reserved for system peripherals (PIT, RTT, PMC, DBGU, etc.)  
– Source 2 to Source 31 control up to thirty embedded peripheral interrupts or external  
interrupts  
– Programmable edge-triggered or level-sensitive internal sources  
– Programmable positive/negative edge-triggered or high/low level-sensitive  
• Four External Sources  
• 8-level Priority Controller  
– Drives the normal interrupt of the processor  
– Handles priority of the interrupt sources 1 to 31  
– Higher priority interrupts can be served during service of lower priority interrupt  
• Vectoring  
– Optimizes Interrupt Service Routine Branch and Execution  
– One 32-bit Vector Register per interrupt source  
– Interrupt Vector Register reads the corresponding current Interrupt Vector  
• Protect Mode  
– Easy debugging by preventing automatic operations when protect mode is enabled  
• Fast Forcing  
– Permits redirecting any normal interrupt source on the Fast Interrupt of the  
processor  
• General Interrupt Mask  
– Provides processor synchronization on events without triggering an interrupt  
9.11 Debug Unit  
• Composed of four functions  
Two-pin UART  
– Debug Communication Channel (DCC) support  
– Chip ID Registers  
– ICE Access Prevention  
Two-pin UART  
– Implemented features are 100% compatible with the standard Atmel USART  
– Independent receiver and transmitter with a common programmable Baud Rate  
Generator  
– Even, Odd, Mark or Space Parity Generation  
– Parity, Framing and Overrun Error Detection  
– Automatic Echo, Local Loopback and Remote Loopback Channel Modes  
– Support for two PDC channels with connection to receiver and transmitter  
• Debug Communication Channel Support  
23  
6242DS–ATARM–06-Jan-09  
– Offers visibility of COMMRX and COMMTX signals from the ARM Processor  
• Chip ID Registers  
– Identification of the device revision, sizes of the embedded memories, set of  
peripherals  
• ICE Access prevention  
– Enables software to prevent system access through the ARM Processor’s ICE  
– Prevention is made by asserting the NTRST line of the ARM Processor’s ICE  
9.12 PIO Controllers  
• Three PIO Controllers, each controlling up to 32 programmable I/O Lines  
– PIOA has 32 I/O Lines  
– PIOB has 32 I/O Lines  
– PIOC has 32 I/O Lines  
• Fully programmable through Set/Clear Registers  
• Multiplexing of two peripheral functions per I/O Line  
• For each I/O Line (whether assigned to a peripheral or used as general-purpose I/O)  
– Input change interrupt  
– Glitch filter  
– Multi-drive option enables driving in open drain  
– Programmable pull up on each I/O line  
– Pin data status register, supplies visibility of the level on the pin at any time  
• Synchronous output, provides Set and Clear of several I/O lines in a single write  
24  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
10. Peripherals  
10.1 User Interface  
The User Peripherals are mapped in the upper 256 Mbytes of the address space between the  
addresses 0xFFFA 0000 and 0xFFFC FFFF. Each User Peripheral is allocated 16 Kbytes of  
address space.  
A complete memory map is presented in Figure 8-1 on page 15.  
10.2 Peripheral Identifiers  
Table 10-1 defines the Peripheral Identifiers of the AT91SAM9261S. A peripheral identifier is  
required for the control of the peripheral interrupt with the Advanced Interrupt Controller and for  
the control of the peripheral clock with the Power Management Controller.  
Table 10-1. Peripheral Identifiers  
Peripheral ID  
Peripheral Mnemonic  
Peripheral Name  
External Interrupt  
0
AIC  
Advanced Interrupt Controller  
System Interrupt  
FIQ  
1
SYSIRQ  
PIOA  
PIOB  
PIOC  
-
2
Parallel I/O Controller A  
Parallel I/O Controller B  
Parallel I/O Controller C  
Reserved  
3
4
5
6
US0  
US1  
US2  
MCI  
USART 0  
7
USART 1  
8
USART 2  
9
Multimedia Card Interface  
USB Device Port  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22 - 28  
29  
30  
31  
UDP  
TWI  
Two-Wire Interface  
SPI0  
SPI1  
SSC0  
SSC1  
SSC2  
TC0  
TC1  
TC2  
UHP  
LCDC  
-
Serial Peripheral Interface 0  
Serial Peripheral Interface 1  
Synchronous Serial Controller 0  
Synchronous Serial Controller 1  
Synchronous Serial Controller 2  
Timer/Counter 0  
Timer/Counter 1  
Timer/Counter 2  
USB Host Port  
LCD Controller  
Reserved  
AIC  
Advanced Interrupt Controller  
Advanced Interrupt Controller  
Advanced Interrupt Controller  
IRQ0  
IRQ1  
IRQ2  
AIC  
AIC  
Note:  
Setting AIC, SYSIRQ, UHP, LCDC and IRQ0 to IRQ2 bits in the clock set/clear registers of the  
PMC has no effect.  
25  
6242DS–ATARM–06-Jan-09  
10.3 Peripheral Multiplexing on PIO Lines  
The AT91SAM9261S features three PIO controllers, PIOA, PIOB and PIOC, that multiplex the  
I/O lines of the peripheral set.  
Each PIO Controller controls up to thirty-two lines. Each line can be assigned to one of two  
peripheral functions, A or B. Table 10-2 on page 28, Table 10-3 on page 29 and Table 10-4 on  
page 30 define how the I/O lines of the peripherals A and B are multiplexed on the PIO Control-  
lers. The two columns “Function” and “Comments” have been inserted for the user’s own  
comments; they may be used to track how pins are defined in an application.  
Note that some output only peripheral functions might be duplicated within the tables.  
The column “Reset State” indicates whether the PIO line resets in I/O mode or in peripheral  
mode. If I/O is mentioned, the PIO line resets in input with the pull-up enabled, so that the device  
is maintained in a static state as soon as the reset is released. As a result, the bit corresponding  
to the PIO line in the register PIO_PSR (Peripheral Status Register) resets low.  
If a signal name is mentioned in the “Reset State” column, the PIO line is assigned to this func-  
tion and the corresponding bit in PIO_PSR resets high. This is the case of pins controlling  
memories, in particular the address lines, which require the pin to be driven as soon as the reset  
is released. Note that the pull-up resistor is also enabled in this case.  
10.3.1  
Resource Multiplexing  
10.3.1.1  
LCD Controller  
The LCD Controller can interface with several LCD panels. It supports 4, 8 or 16 bit-per-pixel  
without any limitation. Interfacing 24 bit-per-pixel TFTs panel prevents using the SSC0 and the  
chip select line 0 of the SPI1.  
16 bit-per-pixel TFT panels are interfaced through peripheral B functions, as color data is output  
on LCDD3 to LCDD7, LCDD11 to LCDD15 and LCDD19 to LCDD23. Intensity bit is output on  
LCDD2, LCDD10 and LCDD18. Using the peripheral B does not prevent using the SSC0 and  
the SPI1 lines.  
10.3.1.2  
10.3.1.3  
EBI  
If not required, the NWAIT function (external wait request) can be deactivated by software,  
allowing this pin to be used as a PIO.  
32-bit Data Bus  
Using a 32-bit Data Bus prevents:  
• using the three Timer Counter channels’ outputs and trigger inputs  
• using the SSC2  
10.3.1.4  
10.3.1.5  
NAND Flash Interface  
Using the NAND Flash interface prevents:  
• using NCS3, NCS6 and NCS7 to access other parallel devices  
Compact Flash Interface  
Using the CompactFlash interface prevents:  
• using NCS4 and/or NCS5 to access other parallel devices  
26  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
10.3.1.6  
SPI0 and the MultiMedia Card Interface  
As the DataFlash Card is compatible with the SDCard, it is useful to multiplex SPI and MCI.  
Here, the SPI0 signal is multiplexed with the MCI.  
10.3.1.7  
10.3.1.8  
USARTs  
• Using USART0 with its control signals prevents using some clock outputs and interrupt lines.  
Clock Outputs  
Interrupt Lines  
• Using the clock outputs multiplexed with the PIO A prevents using the Debug Unit and/or the  
Two Wire Interface.  
• Alternatively, using the second implementation of the clock outputs prevents using the LCD  
Controller Interface and/or USART0.  
10.3.1.9  
• Using FIQ prevents using the USART0 control signals.  
• Using IRQ0 prevents using the NWAIT EBI signal.  
• Using the IRQ1 and/or IRQ2 prevents using the SPI1.  
27  
6242DS–ATARM–06-Jan-09  
10.3.2  
PIO Controller A Multiplexing  
Table 10-2. Multiplexing on PIO Controller A  
PIO Controller A  
Application Usage  
Function  
Reset  
State  
I/O Line  
PA0  
Peripheral A  
SPI0_MISO  
SPI0_MOSI  
SPI0_SPCK  
SPI0_NPCS0  
SPI0_NPCS1  
SPI0_NPCS2  
SPI0_NPCS3  
TWD  
Peripheral B  
MCDA0  
Comments  
Power Supply  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
Comments  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A23  
A24  
PA1  
MCCDA  
MCCK  
PA2  
PA3  
PA4  
MCDA1  
MCDA2  
MCDA3  
PCK0  
PA5  
PA6  
PA7  
PA8  
TWCK  
PCK1  
PA9  
DRXD  
PCK2  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
PA17  
PA18  
PA19  
PA20  
PA21  
PA22  
PA23  
PA24  
PA25  
PA26  
PA27  
PA28  
PA29  
PA30  
PA31  
DTXD  
PCK3  
TSYNC  
TCLK  
SCK1  
RTS1  
TPS0  
CTS1  
TPS1  
SCK2  
TPS2  
RTS2  
TPK0  
CTS2  
TPK1  
TF1  
TPK2  
TK1  
TPK3  
TD1  
TPK4  
RD1  
TPK5  
RK1  
TPK6  
RF1  
TPK7  
RTS0  
TPK8  
SPI1_NPCS1  
SPI1_NPCS2  
SPI1_NPCS3  
SPI0_NPCS1  
SPI0_NPCS2  
SPI0_NPCS3  
A23  
TPK9  
TPK10  
TPK11  
TPK12  
TPK13  
TPK14  
TPK15  
A24  
28  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
10.3.3  
PIO Controller B Multiplexing  
Table 10-3. Multiplexing on PIO Controller B  
PIO Controller B  
Application Usage  
Reset  
State  
I/O Line  
PB0  
Peripheral A  
LCDVSYNC  
LCDHSYNC  
LCDDOTCK  
LCDDEN  
LCDCC  
Peripheral B  
Comments  
Power Supply  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
Function  
Comments  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PB1  
PB2  
PCK0  
PB3(1)  
See footnote(1)  
PB4  
LCDD2  
LCDD3  
LCDD4  
LCDD5  
LCDD6  
LCDD7  
LCDD10  
LCDD11  
LCDD12  
LCDD13  
LCDD14  
LCDD15  
LCDD19  
LCDD20  
LCDD21  
LCDD22  
LCDD23  
LCDD16  
LCDD17  
LCDD18  
LCDD19  
LCDD20  
LCDD21  
LCDD22  
LCDD23  
IRQ2  
PB5  
LCDD0  
PB6  
LCDD1  
PB7  
LCDD2  
PB8  
LCDD3  
PB9  
LCDD4  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
PB16  
PB17  
PB18  
PB19  
PB20  
PB21  
PB22  
PB23  
PB24  
PB25  
PB26  
PB27  
PB28  
PB29  
PB30  
PB31  
LCDD5  
LCDD6  
LCDD7  
LCDD8  
LCDD9  
LCDD10  
LCDD11  
LCDD12  
LCDD13  
LCDD14  
LCDD15  
TF0  
TK0  
TD0  
RD0  
RK0  
RF0  
SPI1_NPCS1  
SPI1_NPCS0  
SPI1_SPCK  
SPI1_MISO  
SPI1_MOSI  
IRQ1  
PCK2  
Note:  
1. PB3 is multiplexed with BMS signal. Care should be taken during reset time.  
29  
6242DS–ATARM–06-Jan-09  
10.3.4  
PIO Controller C Multiplexing  
Table 10-4. Multiplexing on PIO Controller C  
PIO Controller C  
Application Usage  
Reset  
State  
I/O Line  
PC0  
Peripheral A  
NANDOE  
NANDWE  
NWAIT  
A25/CFRNW  
NCS4/CFCS0  
NCS5/CFCS1  
CFCE1  
CFCE2  
TXD0  
RXD0  
RTS0  
Peripheral B  
NCS6  
Comments  
Power Supply  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOP  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
Function  
Comments  
I/O  
I/O  
I/O  
A25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PC1  
NCS7  
PC2  
IRQ0  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
PCK2  
PCK3  
PC9  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
PC16  
PC17  
PC18  
PC19  
PC20  
PC21  
PC22  
PC23  
PC24  
PC25  
PC26  
PC27  
PC28  
PC29  
PC30  
PC31  
SCK0  
CTS0  
TXD1  
RXD1  
TXD2  
RXD2  
D16  
FIQ  
NCS6  
NCS7  
SPI1_NPCS2  
SPI1_NPCS3  
TCLK0  
TCLK1  
TCLK2  
TIOA0  
TIOB0  
TIOA1  
TIOB1  
TIOA2  
TIOB2  
TF2  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
TK2  
D27  
TD2  
D28  
RD2  
D29  
RK2  
D30  
RF2  
D31  
PCK1  
30  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
10.3.5  
System Interrupt  
The System Interrupt in Source 1 is the wired-OR of the interrupt signals coming from:  
• the SDRAM Controller  
• the Debug Unit  
• the Periodic Interval Timer  
• the Real-Time Timer  
• the Watchdog Timer  
• the Reset Controller  
• the Power Management Controller  
The clock of these peripherals cannot be deactivated and Peripheral ID 1 can only be used  
within the Advanced Interrupt Controller.  
10.3.6  
External Interrupts  
All external interrupt signals, i.e., the Fast Interrupt signal FIQ or the Interrupt signals IRQ0 to  
IRQ2, use a dedicated Peripheral ID. However, there is no clock control associated with these  
peripheral IDs.  
10.4 External Bus Interface  
• Integrates two External Memory Controllers:  
– Static Memory Controller  
– SDRAM Controller  
• Additional logic for NAND Flash and CompactFlash support  
– NAND Flash support: 8-bit as well as 16-bit devices are supported  
– CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True  
IDE) are supported but the signals -IOIS16 (I/O and True IDE modes) and -ATA SEL  
(True IDE mode) are not handled.  
• Optimized External Bus  
– 16- or 32-bit Data Bus  
– Up to 26-bit Address Bus, up to 64 Mbytes addressable  
– Eight Chip Selects, each reserved to one of the eight Memory Areas  
– Optimized pin multiplexing to reduce latencies on External Memories  
• Configurable Chip Select Assignment Managed by EBI_CSA Register located in the MATRIX  
user interface  
– Static Memory Controller on NCS0  
– SDRAM Controller or Static Memory Controller on NCS1  
– Static Memory Controller on NCS2  
– Static Memory Controller on NCS3, Optional NAND Flash Support  
– Static Memory Controller on NCS4 - NCS5, Optional CompactFlash Support  
– Static Memory Controller on NCS6 - NCS7  
31  
6242DS–ATARM–06-Jan-09  
10.5 Static Memory Controller  
• External memory mapping, 256 Mbyte address space per Chip Select Line  
• Up to Eight Chip Select Lines  
• 8-, 16- or 32-bit Data Bus  
• Multiple Access Modes supported  
– Byte Write or Byte Select Lines  
– Asynchronous read in Page Mode supported (4- up to 32-byte page size)  
• Multiple device adaptability  
– Compliant with LCD Module  
– Control signal programmable setup, pulse and hold time for each Memory Bank  
• Multiple Wait State Management  
– Programmable Wait State Generation  
– External Wait Request  
– Programmable Data Float Time  
• Slow Clock Mode Supported  
10.6 SDRAM Controller  
• Supported Devices  
– Standard and Low Power SDRAM (Mobile SDRAM)  
• Numerous configurations supported  
– 2K, 4K, 8K Row Address Memory Parts  
– SDRAM with two or four Internal Banks  
– SDRAM with 16- or 32-bit Data Path  
• Programming Facilities  
– Word, half-word, byte access  
– Automatic page break when Memory Boundary has been reached  
– Multibank Ping-pong Access  
– Timing parameters specified by software  
– Automatic refresh operation, refresh rate is programmable  
• Energy-saving Capabilities  
– Self-refresh, power down and deep power down modes supported  
• Error detection  
– Refresh Error Interrupt  
• SDRAM Power-up Initialization by software  
• CAS Latency of 1, 2 and 3 supported  
• Auto Precharge Command not used  
32  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
10.7 Serial Peripheral Interface  
• Supports communication with serial external devices  
– Four chip selects with external decoder support allow communication with up to  
fifteen peripherals  
– Serial memories, such as DataFlash and 3-wire EEPROMs  
– Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and  
Sensors  
– External co-processors  
• Master or slave serial peripheral bus interface  
– 8- to 16-bit programmable data length per chip select  
– Programmable phase and polarity per chip select  
– Programmable transfer delays between consecutive transfers and between clock  
and data per chip select  
– Programmable delay between consecutive transfers  
– Selectable mode fault detection  
• Very fast transfers supported  
Transfers with baud rates up to MCK  
– The chip select line may be left active to speed up transfers on the same device  
10.8 Two-wire Interface  
• Compatibility with standard two-wire serial memory  
• One, two or three bytes for slave address  
• Sequential read/write operations  
10.9 USART  
• Programmable Baud Rate Generator  
• 5- to 9-bit full-duplex synchronous or asynchronous serial communications  
– 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode  
– Parity generation and error detection  
– Framing error detection, overrun error detection  
– MSB- or LSB-first  
– Optional break generation and detection  
– By-8 or by-16 over-sampling receiver frequency  
– Hardware handshaking RTS-CTS  
– Receiver time-out and transmitter timeguard  
– Optional Multi-drop Mode with address generation and detection  
– Optional Manchester Encoding  
• RS485 with driver control signal  
• ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards  
– NACK handling, error counter with repetition and iteration limit  
• IrDA modulation and demodulation  
33  
6242DS–ATARM–06-Jan-09  
– Communication at up to 115.2 Kbps  
Test Modes  
– Remote Loopback, Local Loopback, Automatic Echo  
10.10 Synchronous Serial Controller  
• Provides serial synchronous communication links used in audio and telecom applications  
(with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader and  
more).  
• Contains an independent receiver and transmitter and a common clock divider.  
• Offers a configurable frame sync and data length.  
• Receiver and transmitter can be programmed to start automatically or on detection of  
different event on the frame sync signal.  
• Receiver and transmitter include a data signal, a clock signal and a frame synchronization  
signal.  
10.11 Timer Counter  
• Three 16-bit Timer Counter Channels  
• Wide range of functions including:  
– Frequency Measurement  
– Event Counting  
– Interval Measurement  
– Pulse Generation  
– Delay Timing  
– Pulse Width Modulation  
– Up/down Capabilities  
• Each channel is user-configurable and contains:  
– Three external clock inputs  
– Five internal clock inputs  
Two multi-purpose input/output signals  
Two global registers that act on all three TC Channels  
10.12 Multimedia Card Interface  
• Compatibility with MultiMedia Card Specification Version 2.2  
• Compatibility with SD Memory Card Specification Version 1.0  
• Cards clock rate up to Master Clock divided by 2  
• Embedded power management to slow down clock rate when not used  
• Each MCI has two slots, each supporting  
– One slot for one MultiMedia Card bus (up to 30 cards) or  
– One SD Memory Card  
• Support for stream, block and multi-block data read and write  
34  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
10.13 USB  
• USB Host Port:  
– Compliance with Open HCI Rev 1.0 specification  
– Compliance with USB V2.0 Full-speed and Low-speed Specification  
– Supports both Low-speed 1.5 Mbps and Full-speed 12 Mbps USB devices  
– Root hub integrated with two downstream USB ports  
Two embedded USB transceivers  
– No overcurrent detection  
– Supports power management  
– Operates as a master on the Bus Matrix  
• USB Device Port:  
– USB V2.0 full-speed compliant, 12 Mbits per second  
– Embedded USB V2.0 full-speed transceiver  
– Embedded dual-port RAM for endpoints  
– Suspend/Resume logic  
– Ping-pong mode (two memory banks) for isochronous and bulk endpoints  
– Six general-purpose endpoints:  
Endpoint 0: 8 bytes, no ping-pong mode  
Endpoint 1, Endpoint 2: 64 bytes, ping-pong mode  
Endpoint 3: 64 bytes, no ping-pong mode  
Endpoint 4, Endpoint 5: 256 bytes, ping-pong mode  
• Embedded pad pull-up configurable via USB_PUCR Register located in the MATRIX user  
interface  
10.14 LCD Controller  
• Single and Dual scan color and monochrome passive STN LCD panels supported  
• Single scan active TFT LCD panels supported.  
• 4-bit single scan, 8-bit single or dual scan, 16-bit dual scan STN interfaces supported  
• Up to 24-bit single scan TFT interfaces supported  
• Up to 16 gray levels for mono STN and up to 4096 colors for color STN displays  
• 1, 2 bits per pixel (palletized), 4 bits per pixel (non-palletized) for mono STN  
• 1, 2, 4, 8 bits per pixel (palletized), 16 bits per pixel (non-palletized) for color STN  
• 1, 2, 4, 8 bits per pixel (palletized), 16, 24 bits per pixel (non-palletized) for TFT  
• Single clock domain architecture  
• Resolution supported up to 2048 x 2048  
35  
6242DS–ATARM–06-Jan-09  
11. Package Drawing  
Figure 11-1. 217-ball LFBGA Package Drawing  
36  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
AT91SAM9261S  
12. AT91SAM9261S Ordering Information  
Table 12-1. AT91SAM9261S Ordering Information  
Ordering Code  
Package  
Package Type  
Temperature Operating Range  
Industrial  
-40°C to 85°C  
AT91SAM9261S-CJ  
BGA217  
RoHS-compliant  
Industrial  
-40°C to 85°C  
AT91SAM9261SB-CU  
BGA217  
RoHS-compliant  
37  
6242DS–ATARM–06-Jan-09  
13. Revision History  
In the table below the most recent version of the datasheet appears first.  
Change  
Doc. Rev.  
Comments  
Request Ref.  
“Features”  
6242DS  
Additional Embedded Memories, 16 Kbytes SRAM updated.  
Debug Unit (DBGU) updated.  
5848  
5846  
Section 12. “AT91SAM9261S Ordering Information”  
Updated with Revision B Parts: AT91SAM9261SB-CU  
Section 7.2 “Debug and Test Features”, removed ETM9 list.  
5487  
6242CS  
5794  
6242BS  
6242AS  
Section 12. “AT91SAM9261S Ordering Information” added to document.  
First Issue  
38  
AT91SAM9261S  
6242DS–ATARM–06-Jan-09  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
Technical Support  
Sales Contacts  
www.atmel.com  
www.atmel.com/AT91SAM  
AT91SAM Support  
www.atmel.com/contacts/  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifica-  
tions and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically pro-  
vided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted  
for use as components in applications intended to support or sustain life.  
© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, DataFlash®, SAM-BA® and others are regis-  
tered trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM®, the ARMPowered® logo, Thumb® and others are the registered  
trademarks or trademarks of ARM Ltd. Windows® and others are the registered trademarks or trademarks of Microsoft Corporation in the US  
and/or other countries. Other terms and product names may be the trademarks of others.  
6242DS–ATARM–06-Jan-09  

相关型号:

AT91SAM9261S-CJ

AT91 ARM Thumb-based Microcontrollers
ATMEL

AT91SAM9261S-CU

RISC Microcontroller, 32-Bit, MROM, 240MHz, CMOS, PBGA217, 15 X 15 MM, 0.80 MM PITCH, GREEN, MO-205, LFBGA-217
ATMEL

AT91SAM9261SB-CU

AT91 ARM Thumb-based Microcontrollers
ATMEL

AT91SAM9261S_09

AT91 ARM Thumb-based Microcontrollers
ATMEL

AT91SAM9261S_1

AT91 ARM Thumb-based Microcontrollers
ATMEL

AT91SAM9261_08

AT91 ARM Thumb-based Microcontrollers
ATMEL

AT91SAM9261_09

AT91 ARM Thumb-based Microcontrollers
ATMEL

AT91SAM9261_0903

AT91 ARM Thumb-based Microcontrollers
ATMEL

AT91SAM9261_1

AT91 ARM Thumb-based Microcontrollers
ATMEL

AT91SAM9263

Thumb Microcontrollers
ATMEL

AT91SAM9263-CU

Thumb Microcontrollers
ATMEL

AT91SAM9263-EK

Atmel Evaluation Kits
ATMEL