AT91SAM9XE512-QU [ATMEL]

AT91 ARM Thumb Microcontrollers; AT91 ARM的Thumb微控制器
AT91SAM9XE512-QU
型号: AT91SAM9XE512-QU
厂家: ATMEL    ATMEL
描述:

AT91 ARM Thumb Microcontrollers
AT91 ARM的Thumb微控制器

微控制器
文件: 总48页 (文件大小:903K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Incorporates the ARM926EJ-SARM® Thumb® Processor  
– DSP instruction Extensions, ARM Jazelle® Technology for Java® Acceleration  
– 8 Kbyte Data Cache, 16 Kbyte Instruction Cache, Write Buffer  
– 200 MIPS at 180 MHz  
– Memory Management Unit  
– EmbeddedICE, Debug Communication Channel Support  
Additional Embedded Memories  
– One 32 Kbyte Internal ROM, Single-cycle Access at Maximum Matrix Speed  
– One 32 Kbyte (for AT91SAM9XE256 and AT91SAM9XE512) or 16 Kbyte (for  
AT91SAM9XE128) Internal SRAM, Single-cycle Access at Maximum Matrix Speed  
– 128, 256 or 512 Kbytes of Internal High-speed Flash for AT91SAM9XE128,  
AT91SAM9XE256 or AT91SAM9XE512 Respectively. Organized in 256, 512 or 1024  
Pages of 512 Bytes Respectively.  
AT91 ARM  
Thumb  
Microcontrollers  
• 128-bit Wide Access  
• Fast Read Time: 45 ns  
AT91SAM9XE128  
AT91SAM9XE256  
AT91SAM9XE512  
Preliminary  
• Page Programming Time: 4 ms, Including Page Auto-erase,  
Full Erase Time: 10 ms  
• 10,000 Write Cycles, 10 Years Data Retention, Page Lock Capabilities, Flash  
Security Bit  
Enhanced Embedded Flash Controller (EEFC)  
– Interface of the Flash Block with the 32-bit Internal Bus  
– Increases Performance in ARM and Thumb Mode with 128-bit Wide Memory  
Interface  
External Bus Interface (EBI)  
– Supports SDRAM, Static Memory, ECC-enabled NAND Flash and CompactFlash™  
USB 2.0 Full Speed (12 Mbits per second) Device Port  
– On-chip Transceiver, 2,688-byte Configurable Integrated DPRAM  
USB 2.0 Full Speed (12 Mbits per second) Host Single Port in the 208-pin PQFP Device  
and Double Port in 217-ball LFBGA Device  
Summary  
– Single or Dual On-chip Transceivers  
– Integrated FIFOs and Dedicated DMA Channels  
Ethernet MAC 10/100 Base-T  
– Media Independent Interface or Reduced Media Independent Interface  
– 128-byte FIFOs and Dedicated DMA Channels for Receive and Transmit  
Image Sensor Interface  
– ITU-R BT. 601/656 External Interface, Programmable Frame Capture Rate  
– 12-bit Data Interface for Support of High Sensibility Sensors  
– SAV and EAV Synchronization, Preview Path with Scaler, YCbCr Format  
Bus Matrix  
– Six 32-bit-layer Matrix  
– Remap Command  
Fully-featured System Controller, including  
NOTE: This is a summary document.  
The complete document is available on  
the Atmel website at www.atmel.com.  
– Reset Controller, Shutdown Controller  
– Four 32-bit Battery Backup Registers for a Total of 16 Bytes  
– Clock Generator and Power Management Controller  
– Advanced Interrupt Controller and Debug Unit  
– Periodic Interval Timer, Watchdog Timer and Real-time Timer  
6254BS–ATARM–29-Apr-09  
Reset Controller (RSTC)  
– Based on a Power-on Reset Cell, Reset Source Identification and Reset Output Control  
Clock Generator (CKGR)  
– Selectable 32,768 Hz Low-power Oscillator or Internal Low Power RC Oscillator on Battery Backup Power Supply,  
Providing a Permanent Slow Clock  
– 3 to 20 MHz On-chip Oscillator, One Up to 240 MHz PLL and One Up to 100 MHz PLL  
Power Management Controller (PMC)  
– Very Slow Clock Operating Mode, Software Programmable Power Optimization Capabilities  
– Two Programmable External Clock Signals  
Advanced Interrupt Controller (AIC)  
– Individually Maskable, Eight-level Priority, Vectored Interrupt Sources  
– Three External Interrupt Sources and One Fast Interrupt Source, Spurious Interrupt Protected  
Debug Unit (DBGU)  
– 2-wire UART and support for Debug Communication Channel, Programmable ICE Access Prevention  
– Mode for General Purpose Two-wire UART Serial Communication  
Periodic Interval Timer (PIT)  
– 20-bit Interval Timer Plus 12-bit Interval Counter  
Watchdog Timer (WDT)  
– Key-protected, Programmable Only Once, Windowed 16-bit Counter Running at Slow Clock  
Real-Time Timer (RTT)  
– 32-bit Free-running Backup Counter Running at Slow Clock with 16-bit Prescaler  
One 4-channel 10-bit Analog to Digital Converter  
Three 32-bit Parallel Input/Output Controllers (PIOA, PIOB, PIOC,)  
– 96 Programmable I/O Lines Multiplexed with up to Two Peripheral I/Os  
– Input Change Interrupt Capability on Each I/O Line  
– Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output  
Peripheral DMA Controller Channels (PDC)  
Two-slot Multimedia Card Interface (MCI)  
– SDCard/SDIO and MultiMediaCardCompliant  
– Automatic Protocol Control and Fast Automatic Data Transfers with PDC  
One Synchronous Serial Controllers (SSC)  
– Independent Clock and Frame Sync Signals for Each Receiver and Transmitter  
– I²S Analog Interface Support, Time Division Multiplex Support  
– High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer  
Four Universal Synchronous/Asynchronous Receiver Transmitters (USART)  
– Individual Baud Rate Generator, IrDA® Infrared Modulation/Demodulation, Manchester Encoding/Decoding  
– Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support  
– Full Modem Signal Control on USART0  
One 2-wire UART  
Two Master/Slave Serial Peripheral Interface (SPI)  
– 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects  
– Synchronous Communications  
Two Three-channel 16-bit Timer/Counters (TC)  
– Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel  
– Double PWM Generation, Capture/Waveform Mode, Up/Down Capability  
– High-Drive Capability on Outputs TIOA0, TIOA1, TIOA2  
Two Two-wire Interfaces (TWI)  
– Master, Multi-master and Slave Mode Operation  
– General Call Supported in Slave Mode  
– Connection to PDC Channel to Optimize Data Transfers in Master Mode Only  
2
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
IEEE® 1149.1 JTAG Boundary Scan on All Digital Pins  
Required Power Supplies:  
– 1.65V to 1.95V for VDDBU, VDDCORE and VDDPLL  
– 1.65V to 3.6V for VDDIOP1 (Peripheral I/Os)  
– 3.0V to 3.6V for VDDIOP0 and VDDANA (Analog-to-digital Converter)  
– Programmable 1.65V to 1.95V or 3.0V to 3.6V for VDDIOM (Memory I/Os)  
Available in a 208-pin PQFP Green and a 217-ball LFBGA Green Package  
1. AT91SAM9XE128/256/512 Description  
The AT91SAM9XE128/256/512 is based on the integration of an ARM926EJ-S processor with  
fast ROM and RAM, 128, 256 or 512 Kbytes of Flash and a wide range of peripherals.  
The embedded Flash memory can be programmed in-system via the JTAG-ICE interface or via  
a parallel interface on a production programmer prior to mounting. Built-in lock bits a security bit  
and MMU protect the firmware from accidental overwrite and preserve its confidentiality.  
The AT91SAM9XE128/256/512 embeds an Ethernet MAC, one USB Device Port, and a USB  
Host Controller. It also integrates several standard peripherals, like six UARTs, SPI, TWI, Timer  
Counters, Synchronous Serial Controller, ADC and a MultiMedia/SD Card Interface.  
The AT91SAM9XE128/256/512 system controller includes a reset controller capable of manag-  
ing the power-on sequence of the microcontroller and the complete system. Correct device  
operation can be monitored by a built-in brownout detector and a watchdog running off an inte-  
grated RC oscillator.  
The AT91SAM9XE128/256/512 is architectured on a 6-layer matrix, allowing a maximum inter-  
nal bandwidth of six 32-bit buses. It also features an External Bus Interface capable of  
interfacing with a wide range of memory devices.  
The pinout and ball-out are fully compatible with the AT91SAM9260 with the exception that the  
pin BMS is replaced by the pin ERASE.  
3
6254BS–ATARM–29-Apr-09  
2. AT91SAM9XE128/256/512 Block Diagram  
The block diagram shows all the features for the 217-LFBGA package. Some functions are not  
accessible in the 208-PQFP package and the unavailable pins are highlighted in “Multiplexing  
on PIO Controller A” on page 37, “Multiplexing on PIO Controller B” on page 38, “Multiplexing on  
PIO Controller C” on page 39. The USB Host Port B is also not available. Table 2-1 on page 4  
defines all the multiplexed and not multiplexed pins not available in the 208-PQFP package.  
Table 2-1.  
Unavailable Signals in 208-pin PQFP Device  
PIO  
Peripheral A  
HDPB  
HDMB  
SCK2  
Peripheral B  
-
-
-
-
PA30  
PA31  
PB12  
PB13  
PC2  
PC3  
PC12  
RXD4  
SCK0  
TXD4  
TWD1  
TWCK1  
AD2  
ISI_D10  
ISI_D11  
PCK1  
AD3  
SPI1_NPCS3  
NCS7  
IRQ0  
4
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
Figure 2-1. AT91SAM9XE128/256/512 Block Diagram  
F i l t e r  
5
6254BS–ATARM–29-Apr-09  
3. Signal Description  
Table 3-1 gives details on the signal name classified by peripheral.  
Table 3-1.  
Signal Description List  
Active  
Level  
Reference  
Voltage  
Signal Name  
Function  
Type  
Power Supplies  
Power  
Comments  
VDDIOM  
VDDIOP0  
VDDIOP1  
VDDBU  
EBI I/O Lines Power Supply  
Peripherals I/O Lines Power Supply  
Peripherals I/O Lines Power Supply  
Backup I/O Lines Power Supply  
Analog Power Supply  
1.65V to 1.95V or 3.0V to 3.6V  
3.0V to 3.6V  
Power  
Power  
1.65V to 3.6V  
Power  
1.65V to 1.95V  
VDDANA  
VDDPLL  
Power  
3.0V to 3.6V  
PLL Power Supply  
Power  
1.65V to 1.95V  
Core Chip and Embedded Memories  
Power Supply  
VDDCORE  
Power  
1.65V to 1.95V  
GND  
Ground  
Ground  
Ground  
Ground  
Ground  
GNDPLL  
GNDANA  
GNDBU  
PLL Ground  
Analog Ground  
Backup Ground  
Clocks, Oscillators and PLLs  
XIN  
Main Oscillator Input  
Input  
Output  
Input  
XOUT  
XIN32  
XOUT32  
Main Oscillator Output  
Slow Clock Oscillator Input  
Slow Clock Oscillator Output  
Output  
Accepts between 0V and  
VDDBU.  
OSCSEL  
Slow Clock Oscillator Selection  
Input  
VDDBU  
PLLRCA  
PLL A Filter  
Input  
PCK0 - PCK1  
Programmable Clock Output  
Output  
VDDIOP0  
Shutdown, Wakeup Logic  
SHDN  
WKUP  
Shutdown Control  
Wake-Up Input  
Output  
Low  
VDDBU  
VDDBU  
Driven at 0V only.  
Accepts between 0V and  
VDDBU.  
Input  
ICE and JTAG  
NTRST  
TCK  
Test Reset Signal  
Test Clock  
Input  
Low  
VDDIOP0  
VDDIOP0  
Pull-Up resistor (100 kΩ)  
No pull-up resistor, Schmitt  
trigger  
Input  
No pull-up resistor, Schmitt  
trigger  
TDI  
Test Data In  
Input  
Output  
Input  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDBU  
TDO  
Test Data Out  
Test Mode Select  
JTAG Selection  
No pull-up resistor, Schmitt  
trigger  
TMS  
JTAGSEL  
Input  
Pull-down resistor (15 kΩ).  
6
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Reference  
Voltage  
Signal Name  
Function  
Type  
Comments  
RTCK  
Return Test Clock  
Output  
VDDIOP0  
Flash Memory  
Flash and NVM Configuration Bits  
Erase Command  
ERASE  
Input  
High  
Low  
VDDIOP0  
Pull-down resistor (15 kΩ)  
Reset/Test  
Open-drain output,  
Pull-Up resistor (100 kΩ).  
Inserted in the Boundary  
Scan.  
NRST  
TST  
Microcontroller Reset  
Test Mode Select  
I/O  
VDDIOP0  
VDDBU  
Input  
Pull-down resistor (15 kΩ)  
Debug Unit - DBGU  
Input  
DRXD  
DTXD  
Debug Receive Data  
Debug Transmit Data  
VDDIOP0  
VDDIOP0  
Output  
Advanced Interrupt Controller - AIC  
IRQ0 - IRQ2  
FIQ  
External Interrupt Inputs  
Fast Interrupt Input  
Input  
Input  
VDDIOP0  
VDDIOP0  
PIO Controller - PIOA - PIOB - PIOC  
Pulled-up input at reset  
PA0 - PA31  
PB0 - PB30  
PC0 - PC31  
Parallel IO Controller A  
Parallel IO Controller B  
Parallel IO Controller C  
I/O  
I/O  
I/O  
VDDIOP0  
VDDIOP0  
VDDIOP0  
(100kΩ)(1)  
Pulled-up input at reset  
(100kΩ)(1)  
Pulled-up input at reset  
(100kΩ)(1)  
External Bus Interface - EBI  
D0 - D31  
A0 - A25  
NWAIT  
Data Bus  
I/O  
VDDIOM  
VDDIOM  
VDDIOM  
Pulled-up input at reset  
0 at reset  
Address Bus  
Output  
External Wait Signal  
Input  
Low  
Static Memory Controller - SMC  
NCS0 - NCS7  
Chip Select Lines  
Output  
Output  
Output  
Output  
Output  
Low  
Low  
Low  
Low  
Low  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
NWR0 - NWR3 Write Signal  
NRD  
Read Signal  
NWE  
Write Enable  
NBS0 - NBS3  
Byte Mask Signal  
7
6254BS–ATARM–29-Apr-09  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Reference  
Voltage  
Signal Name  
Function  
Type  
Comments  
CompactFlash Support  
CFCE1 -  
CFCE2  
CompactFlash Chip Enable  
Output  
Low  
VDDIOM  
CFOE  
CompactFlash Output Enable  
CompactFlash Write Enable  
CompactFlash IO Read  
Output  
Output  
Output  
Output  
Output  
Low  
Low  
Low  
Low  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
CFWE  
CFIOR  
CFIOW  
CFRNW  
CompactFlash IO Write  
CompactFlash Read Not Write  
CFCS0 -  
CFCS1  
CompactFlash Chip Select Lines  
Output  
Low  
VDDIOM  
NAND Flash Support  
NANDCS  
NANDOE  
NANDWE  
NAND Flash Chip Select  
NAND Flash Output Enable  
NAND Flash Write Enable  
Output  
Output  
Low  
VDDIOM  
VDDIOM  
VDDIOM  
Low  
Low  
Output  
SDRAM Controller  
Output  
SDCK  
SDRAM Clock  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
SDCKE  
SDCS  
SDRAM Clock Enable  
SDRAM Controller Chip Select  
Bank Select  
Output  
Output  
Output  
Output  
Output  
Output  
High  
Low  
BA0 - BA1  
SDWE  
SDRAM Write Enable  
Row and Column Signal  
SDRAM Address 10 Line  
Low  
Low  
RAS - CAS  
SDA10  
Multimedia Card Interface MCI  
MCCK  
Multimedia Card Clock  
Output  
VDDIOP0  
VDDIOP0  
MCCDA  
Multimedia Card Slot A Command  
Multimedia Card Slot A Data  
Multimedia Card Slot B Command  
Multimedia Card Slot B Data  
I/O  
I/O  
I/O  
I/O  
MCDA0 -  
MCDA3  
VDDIOP0  
VDDIOP0  
VDDIOP0  
MCCDB  
MCDB0 -  
MCDB3  
Universal Synchronous Asynchronous Receiver Transmitter USARTx  
SCKx  
TXDx  
RXDx  
RTSx  
CTSx  
DTR0  
DSR0  
USARTx Serial Clock  
I/O  
I/O  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
USARTx Transmit Data  
USARTx Receive Data  
USARTx Request To Send  
USARTx Clear To Send  
USART0 Data Terminal Ready  
USART0 Data Set Ready  
Input  
Output  
Input  
Output  
Input  
8
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Reference  
Voltage  
Signal Name  
DCD0  
Function  
Type  
Input  
Input  
Comments  
USART0 Data Carrier Detect  
USART0 Ring Indicator  
VDDIOP0  
VDDIOP0  
RI0  
Synchronous Serial Controller - SSC  
TD  
RD  
TK  
RK  
TF  
RF  
SSC Transmit Data  
Output  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
SSC Receive Data  
Input  
SSC Transmit Clock  
SSC Receive Clock  
I/O  
I/O  
SSC Transmit Frame Sync  
SSC Receive Frame Sync  
I/O  
I/O  
Timer/Counter - TCx  
TCLKx  
TIOAx  
TIOBx  
TC Channel x External Clock Input  
TC Channel x I/O Line A  
Input  
I/O  
VDDIOP0  
VDDIOP0  
VDDIOP0  
TC Channel x I/O Line B  
I/O  
Serial Peripheral Interface - SPIx_  
SPIx_MISO  
SPIx_MOSI  
SPIx_SPCK  
SPIx_NPCS0  
Master In Slave Out  
Master Out Slave In  
SPI Serial Clock  
I/O  
I/O  
I/O  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
SPI Peripheral Chip Select 0  
I/O  
Low  
Low  
SPIx_NPCS1-  
SPIx_NPCS3  
SPI Peripheral Chip Select  
Output  
VDDIOP0  
Two-Wire Interface  
I/O  
TWDx  
Two-wire Serial Data  
Two-wire Serial Clock  
VDDIOP0  
VDDIOP0  
TWCKx  
I/O  
USB Host Port  
Analog  
HDPA  
HDMA  
HDPB  
HDMB  
USB Host Port A Data +  
USB Host Port A Data -  
USB Host Port B Data +  
USB Host Port B Data +  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
Analog  
Analog  
Analog  
USB Device Port  
Analog  
DDM  
DDP  
USB Device Port Data -  
USB Device Port Data +  
VDDIOP0  
VDDIOP0  
Analog  
9
6254BS–ATARM–29-Apr-09  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Reference  
Voltage  
Signal Name  
Function  
Type  
Ethernet 10/100  
Input  
Comments  
ETXCK  
ERXCK  
ETXEN  
ETX0-ETX3  
ETXER  
ERXDV  
ERX0-ERX3  
ERXER  
ECRS  
Transmit Clock or Reference Clock  
Receive Clock  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
MII only, REFCK in RMII  
MII only  
Input  
Transmit Enable  
Output  
Output  
Output  
Input  
Transmit Data  
ETX0-ETX1 only in RMII  
MII only  
Transmit Coding Error  
Receive Data Valid  
Receive Data  
RXDV in MII, CRSDV in RMII  
ERX0-ERX1 only in RMII  
Input  
Receive Error  
Input  
Carrier Sense and Data Valid  
Collision Detect  
Input  
MII only  
MII only  
ECOL  
Input  
EMDC  
Management Data Clock  
Management Data Input/Output  
Force 100Mbit/sec.  
Output  
I/O  
EMDIO  
EF100  
Output  
High  
Image Sensor Interface  
ISI_D0-  
ISI_D11  
Image Sensor Data  
Input  
VDDIOP1  
ISI_MCK  
Image sensor Reference clock  
Image Sensor Horizontal Synchro  
Image Sensor Vertical Synchro  
Image Sensor Data clock  
output  
input  
input  
input  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
ISI_HSYNC  
ISI_VSYNC  
ISI_PCK  
Analog to Digital Converter  
AD0-AD3  
ADVREF  
ADTRG  
Analog Inputs  
Analog  
VDDANA  
VDDANA  
VDDANA  
Digital pulled-up inputs at reset  
Analog Positive Reference  
ADC Trigger  
Analog  
Input  
Fast Flash Programming Interface  
Input  
PGMEN[2:0]  
PGMNCMD  
PGMRDY  
Programming Enabling  
Programming Command  
Programming Ready  
Programming Read  
Data Direction  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
Input  
Output  
Input  
Output  
Input  
I/O  
Low  
High  
Low  
Low  
PGMNOE  
PGMNVALID  
PGMM[3:0]  
PGMD[15:0]  
Programming Mode  
Programming Data  
Note:  
1. Programming of this pull-up resistor is performed independently for each I/O line through the PIO Controllers. After reset, all  
the I/O lines default as inputs with pull-up resistors enabled, except those which are multiplexed with the External Bus Inter-  
face signals that require to be enabled as Peripheral at reset. This is explicitly indicated in the column “Reset State” of the  
peripheral multiplexing tables.  
10  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
4. Package and Pinout  
The AT91SAM9XE128/256/512 is available in a 208-pin PQFP Green package (0.5mm pitch) or  
in a 217-ball LFBGA Green package (0.8 mm ball pitch).  
4.1  
208-pin PQFP Package Outline  
Figure 4-1 shows the orientation of the 208-pin PQFP package.  
A detailed mechanical description is given in the section “AT91SAM9XE Mechanical Character-  
istics” of the product datasheet.  
Figure 4-1. 208-pin PQFP Package Outline (Top View)  
156  
105  
157  
104  
208  
53  
1
52  
11  
6254BS–ATARM–29-Apr-09  
4.2  
208-pin PQFP Package Pinout  
Table 4-1.  
Pinout for 208-pin PQFP Package  
Pin  
1
Signal Name  
PA24  
Pin  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Signal Name  
GND  
Pin  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
Signal Name  
RAS  
Pin  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
Signal Name  
ADVREF  
PC0  
2
PA25  
DDM  
D0  
3
PA26  
DDP  
D1  
PC1  
4
PA27  
PC13  
PC11  
PC10  
PC14  
PC9  
D2  
VDDANA  
PB10  
PB11  
PB20  
PB21  
PB22  
PB23  
PB24  
PB25  
VDDIOP1  
GND  
5
VDDIOP0  
GND  
D3  
6
D4  
7
PA28  
D5  
8
PA29  
D6  
9
PB0  
PC8  
GND  
VDDIOM  
SDCK  
SDWE  
SDCKE  
D7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
PB1  
PC4  
PB2  
PC6  
PB3  
PC7  
VDDIOP0  
GND  
VDDIOM  
GND  
PB4  
PC5  
D8  
PB26  
PB27  
GND  
PB5  
NCS0  
CFOE/NRD  
CFWE/NWE/NWR0  
NANDOE  
NANDWE  
A22  
D9  
PB6  
D10  
PB7  
D11  
VDDCORE  
PB28  
PB29  
PB30  
PB31  
PA0  
PB8  
D12  
PB9  
D13  
PB14  
D14  
PB15  
A21  
D15  
PB16  
A20  
PC15  
PC16  
PC17  
PC18  
PC19  
VDDIOM  
GND  
PC20  
PC21  
PC22  
PC23  
PC24  
PC25  
PC26  
PC27  
PC28  
PC29  
PC30  
PC31  
GND  
VDDCORE  
VDDPLL  
XIN  
VDDIOP0  
GND  
A19  
PA1  
VDDCORE  
GND  
PA2  
PB17  
PA3  
PB18  
A18  
PA4  
PB19  
BA1/A17  
BA0/A16  
A15  
PA5  
TDO  
PA6  
TDI  
PA7  
TMS  
A14  
VDDIOP0  
GND  
VDDIOP0  
GND  
A13  
A12  
PA8  
TCK  
A11  
PA9  
NTRST  
NRST  
RTCK  
VDDCORE  
GND  
A10  
PA10  
A9  
PA11  
A8  
PA12  
VDDIOM  
GND  
PA13  
PA14  
ERASE  
OSCSEL  
TST  
A7  
PA15  
A6  
PA16  
A5  
PA17  
JTAGSEL  
GNDBU  
XOUT32  
XIN32  
VDDBU  
WKUP  
A4  
VDDIOP0  
GND  
A3  
A2  
PA18  
NWR2/NBS2/A1  
NBS0/A0  
SDA10  
XOUT  
GNDPLL  
NC  
PA19  
VDDCORE  
GND  
12  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
Table 4-1.  
Pinout for 208-pin PQFP Package (Continued)  
Pin  
49  
50  
51  
52  
Signal Name  
SHDN  
Pin  
101  
102  
103  
104  
Signal Name  
CFIOW/NBS3/NWR3  
CFIOR/NBS1/NWR1  
SDCS/NCS1  
Pin  
153  
154  
155  
156  
Signal Name  
GNDPLL  
PLLRCA  
Pin  
205  
206  
207  
208  
Signal Name  
PA20  
HDMA  
PA21  
HDPA  
VDDPLL  
PA22  
VDDIOP0  
CAS  
GNDANA  
PA23  
4.3  
217-ball LFBGA Package Outline  
Figure 4-2 shows the orientation of the 217-ball LFBGA package.  
A detailed mechanical description is given in the section “AT91SAM9XE Mechanical Character-  
istics” of the product datasheet.  
Figure 4-2.  
217-ball LFBGA Package Outline (Top View)  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A
B C D E F G H J K L M N P R T U  
Ball A1  
13  
6254BS–ATARM–29-Apr-09  
4.4  
217-ball LFBGA Package Pinout  
Table 4-2.  
Pinout for 217-ball LFBGA Package  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
J14  
J15  
J16  
J17  
K1  
Signal Name  
TDO  
PB19  
TDI  
Pin  
P17  
R1  
Signal Name  
PB5  
NC  
GNDANA  
PC29  
VDDANA  
PB12  
PB23  
GND  
A1  
A2  
A3  
CFIOW/NBS3/NWR3  
NBS0/A0  
NWR2/NBS2/A1  
D5  
D6  
D7  
A5  
GND  
A10  
R2  
A4  
A6  
D8  
GND  
PB16  
PC24  
PC20  
D15  
R3  
A5  
A8  
D9  
VDDCORE  
GND  
R4  
A6  
A11  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
E1  
K2  
R5  
A7  
A13  
VDDIOM  
GND  
K3  
R6  
A8  
BA0/A16  
A18  
K4  
PC21  
GND  
R7  
A9  
DDM  
K8  
R8  
PB26  
PB28  
PA0  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
B1  
A21  
HDPB  
NC  
K9  
GND  
R9  
A22  
K10  
K14  
K15  
K16  
K17  
L1  
GND  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
T1  
CFWE/NWE/NWR0  
CFOE/NRD  
NCS0  
PC5  
VDDBU  
XIN32  
D10  
PB4  
PA4  
PB17  
GND  
PA5  
PA10  
PA21  
PA23  
PA24  
PA29  
PLLRCA  
GNDPLL  
PC0  
E2  
D5  
PB15  
GND  
PC6  
E3  
D3  
PC4  
E4  
D4  
L2  
PC26  
PC25  
VDDIOP0  
PA28  
PB9  
SDCK  
CFIOR/NBS1/NWR1  
SDCS/NCS1  
SDA10  
A3  
E14  
E15  
E16  
E17  
F1  
HDPA  
HDMA  
GNDBU  
XOUT32  
D13  
L3  
B2  
L4  
B3  
L14  
L15  
L16  
L17  
M1  
M2  
M3  
M4  
M14  
M15  
M16  
M17  
N1  
T2  
B4  
T3  
B5  
PB8  
T4  
PC1  
B6  
A7  
F2  
SDWE  
D6  
PB14  
VDDCORE  
PC31  
GND  
T5  
PB10  
PB22  
GND  
B7  
A12  
F3  
T6  
B8  
A15  
F4  
GND  
T7  
B9  
A20  
F14  
F15  
F16  
F17  
G1  
OSCSEL  
ERASE  
JTAGSEL  
TST  
T8  
PB29  
PA2  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
C1  
NANDWE  
PC7  
PC22  
PB1  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
U1  
PA6  
PC10  
PC13  
PC11  
PC14  
PC8  
PB2  
PA8  
PC15  
D7  
PB3  
PA11  
VDDCORE  
PA20  
GND  
G2  
PB7  
G3  
SDCKE  
VDDIOM  
GND  
XIN  
G4  
N2  
VDDPLL  
PC23  
PC27  
PA31  
PA30  
PB0  
WKUP  
D8  
G14  
G15  
G16  
G17  
H1  
N3  
PA22  
PA27  
GNDPLL  
ADVREF  
PC2  
NRST  
RTCK  
TMS  
N4  
C2  
D1  
N14  
N15  
N16  
N17  
P1  
C3  
CAS  
U2  
C4  
A2  
PC18  
D14  
U3  
C5  
A4  
H2  
PB6  
U4  
PC3  
C6  
A9  
H3  
D12  
XOUT  
VDDPLL  
PC30  
PC28  
PB11  
PB13  
PB24  
VDDIOP1  
PB30  
PB31  
PA1  
U5  
PB20  
PB21  
PB25  
PB27  
PA12  
PA13  
PA14  
PA15  
PA19  
PA17  
PA16  
PA18  
C7  
A14  
H4  
D11  
P2  
U6  
C8  
BA1/A17  
A19  
H8  
GND  
P3  
U7  
C9  
H9  
GND  
P4  
U8  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
NANDOE  
PC9  
H10  
H14  
H15  
H16  
H17  
J1  
GND  
P5  
U9  
VDDCORE  
TCK  
P6  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
PC12  
DDP  
P7  
NTRST  
PB18  
PC19  
PC17  
VDDIOM  
P8  
HDMB  
NC  
P9  
P10  
P11  
P12  
VDDIOP0  
SHDN  
J2  
J3  
PA3  
14  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
Table 4-2.  
Pinout for 217-ball LFBGA Package (Continued)  
Pin  
D1  
D2  
D3  
D4  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
PA7  
Pin  
Signal Name  
D9  
J4  
PC16  
P13  
P14  
P15  
P16  
U17  
VDDIOP0  
D2  
J8  
GND  
PA9  
RAS  
D0  
J9  
GND  
PA26  
J10  
GND  
PA25  
5. Power Considerations  
5.1  
Power Supplies  
The AT91SAM9XE128/256/512 has several types of power supply pins:  
• VDDCORE pins: Power the core, including the processor, the embedded memories and the  
peripherals; voltage ranges from 1.65V and 1.95V, 1.8V nominal.  
• VDDIOM pins: Power the External Bus Interface I/O lines; voltage ranges between 1.65V and  
1.95V (1.8V typical) or between 3.0V and 3.6V (3.3V nominal). The expected voltage range is  
selectable by software.  
• VDDIOP0 pins: Power the Peripheral I/O lines and the USB transceivers; voltage ranges from  
3.0V and 3.6V, 3V or 3.3V nominal.  
• VDDIOP1 pin: Powers the Peripherals I/O lines involving the Image Sensor Interface; voltage  
ranges from 1.65V and 3.6V, 1.8V, 2.5V, 3V or 3.3V nominal.  
• VDDBU pin: Powers the Slow Clock oscillator and a part of the System Controller; voltage  
ranges from 1.65V to 1.95V, 1.8V nominal.  
• VDDPLL pins: Power the PLL cells and the main oscillator; voltage ranges from 1.65V and  
1.95V, 1.8V nominal.  
• VDDANA pin: Powers the Analog to Digital Converter; voltage ranges from 3.0V and 3.6V,  
3.3V nominal.  
The power supplies VDDIOM, VDDIOP0 and VDDIOP1 are identified in the pinout table and  
their associated I/O lines in the multiplexing tables. These supplies enable the user to power the  
device differently for interfacing with memories and for interfacing with peripherals.  
Ground pins GND are common to VDDCORE, VDDIOM, VDDIOP0 and VDDIOP1 pins power  
supplies. Separated ground pins are provided for VDDBU, VDDPLL and VDDANA. These  
ground pins are respectively GNDBU, GNDPLL and GNDANA.  
15  
6254BS–ATARM–29-Apr-09  
6. I/O Line Considerations  
6.1  
ERASE Pin  
The pin ERASE is used to re-initialize the Flash content and the NVM bits. It integrates a perma-  
nent pull-down resistor of about 15 kΩ, so that it can be left unconnected for normal operations.  
This pin is debounced on the RC oscillator or 32,768 Hz to improve the glitch tolerance. Mini-  
mum debouncing time is 200 ms.  
6.2  
6.3  
I/O Line Drive Levels  
The PIO lines PA0 to PA31 and PB0 to PB31 and PC0 to PC3 are high-drive current capable.  
Each of these I/O lines can drive up to 16 mA permanently with a total of 350 mA on all I/O lines.  
Refer to the “DC Characteristics” section of the product datasheet.  
Shutdown Logic Pins  
The SHDN pin is a tri-state output only pin, which is driven by the Shutdown Controller. There is  
no internal pull-up. An external pull-up to VDDBU is needed and its value must be higher than 1  
MΩ. The resisitor value is calculated according to the regulator enable implementation and the  
SHDN level.  
The pin WKUP is an input-only. It can accept voltages only between 0V and VDDBU.  
7. Processor and Architecture  
7.1  
ARM926EJ-S Processor  
• RISC Processor Based on ARM v5TEJ Architecture with Jazelle technology for Java  
acceleration  
Two Instruction Sets  
– ARM High-performance 32-bit Instruction Set  
– Thumb High Code Density 16-bit Instruction Set  
• DSP Instruction Extensions  
• 5-Stage Pipeline Architecture:  
– Instruction Fetch (F)  
– Instruction Decode (D)  
– Execute (E)  
– Data Memory (M)  
– Register Write (W)  
• 8 KB Data Cache, 16 KB Instruction Cache  
– Virtually-addressed 4-way Associative Cache  
– Eight words per line  
– Write-through and Write-back Operation  
– Pseudo-random or Round-robin Replacement  
• Write Buffer  
– Main Write Buffer with 16-word Data Buffer and 4-address Buffer  
16  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
– DCache Write-back Buffer with 8-word Entries and a Single Address Entry  
– Software Control Drain  
• Standard ARM v4 and v5 Memory Management Unit (MMU)  
– Access Permission for Sections  
– Access Permission for large pages and small pages can be specified separately for  
each quarter of the page  
– 16 embedded domains  
• Bus Interface Unit (BIU)  
– Arbitrates and Schedules AHB Requests  
– Separate Masters for both instruction and data access providing complete Matrix  
system flexibility  
– Separate Address and Data Buses for both the 32-bit instruction interface and the  
32-bit data interface  
– On Address and Data Buses, data can be 8-bit (Bytes), 16-bit (Half-words) or 32-bit  
(Words)  
7.2  
Bus Matrix  
• 6-layer Matrix, handling requests from 6 masters  
• Programmable Arbitration strategy  
– Fixed-priority Arbitration  
– Round-Robin Arbitration, either with no default master, last accessed default master  
or fixed default master  
• Burst Management  
– Breaking with Slot Cycle Limit Support  
– Undefined Burst Length Support  
• One Address Decoder provided per Master  
– Three different slaves may be assigned to each decoded memory area: one for  
internal ROM boot, one for internal flash boot, one after remap  
• Boot Mode Select  
– Non-volatile Boot Memory can be internal ROM or internal Flash  
– Selection is made by General purpose NVM bit sampled at reset  
• Remap Command  
– Allows Remapping of an Internal SRAM in Place of the Boot Non-Volatile Memory  
(ROM or Flash)  
– Allows Handling of Dynamic Exception Vectors  
7.2.1  
Matrix Masters  
The Bus Matrix of the AT91SAM9XE128/256/512 manages six Masters, thus each master can  
perform an access concurrently with others, depending on whether the slave it accesses is  
available.  
17  
6254BS–ATARM–29-Apr-09  
Each Master has its own decoder, which can be defined specifically for each master. In order to  
simplify the addressing, all the masters have the same decodings.  
Table 7-1.  
Master 0  
Master 1  
Master 2  
Master 3  
Master 4  
Master 5  
List of Bus Matrix Masters  
ARM926Instruction  
ARM926 Data  
Peripheral DMA Controller  
USB Host Controller  
Image Sensor Controller  
Ethernet MAC  
7.2.2  
Matrix Slaves  
Each Slave has its own arbiter, thus allowing a different arbitration per Slave to be programmed.  
Table 7-2.  
Slave 0  
List of Bus Matrix Slaves  
Internal Flash  
Slave 1  
Internal SRAM  
Internal ROM  
Slave 2  
USB Host User Interface  
Slave 3  
Slave 4  
Slave 5  
External Bus Interface  
Reserved  
Internal Peripherals  
7.2.3  
Masters to Slaves Access  
All the Masters can normally access all the Slaves. However, some paths do not make sense,  
such as allowing access from the Ethernet MAC to the internal peripherals.  
Thus, these paths are forbidden or simply not wired, and shown as “–” in the following table.  
AT91SAM9XE128/256/512 Masters to Slaves Access  
Table 7-3.  
Slave  
Master  
0 and 1  
2
3
4
5
ARM926 Instruction Periphera DMA  
ISI Controller  
Ethernet MAC  
USB Host  
Controller  
and Data  
Controller  
0
1
Internal Flash  
X
X
X
X
X
X
X
X
X
X
X
X
Internal SRAM  
Internal ROM  
X
X
2
UHP User Interface  
3
4
External Bus Interface  
Reserved  
X
Internal Peripherals  
X
X
7.3  
Peripheral DMA Controller  
• Acting as one Matrix Master  
18  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
• Allows data transfers from/to peripheral to/from any memory space without any intervention  
of the processor.  
• Next Pointer Support, forbids strong real-time constraints on buffer management.  
Twenty-four channels  
Two for each USART  
Two for the Debug Unit  
Two for each Serial Synchronous Controller  
Two for each Serial Peripheral Interface  
Two for the Two Wire Interface  
– One for Multimedia Card Interface  
– One for Analog To Digital Converter  
The Peripheral DMA Controller handles transfer requests from the channel according to the fol-  
lowing priorities (Low to High priorities):  
– TWI0 Transmit Channel  
– TWI1 Transmit Channel  
– DBGU Transmit Channel  
– USART4 Transmit Channel  
– USART3 Transmit Channel  
– USART2 Transmit Channel  
– USART1 Transmit Channel  
– USART0 Transmit Channel  
– SPI1 Transmit Channel  
– SPI0 Transmit Channel  
– SSC Transmit Channel  
– TWI0 Receive Channel  
– TWI1 Receive Channel  
– DBGU Receive Channel  
– USART4 Receive Channel  
– USART3 Receive Channel  
– USART2 Receive Channel  
– USART1 Receive Channel  
– USART0 Receive Channel  
– ADC Receive Channel  
– SPI1 Receive Channel  
– SPI0 Receive Channel  
– SSC Receive Channel  
– MCI Transmit/Receive Channel  
7.4  
Debug and Test Features  
• ARM926 Real-time In-circuit Emulator  
Two real-time Watchpoint Units  
19  
6254BS–ATARM–29-Apr-09  
Two Independent Registers: Debug Control Register and Debug Status Register  
Test Access Port Accessible through JTAG Protocol  
– Debug Communications Channel  
• Debug Unit  
Two-pin UART  
– Debug Communication Channel Interrupt Handling  
– Chip ID Register  
• IEEE1149.1 JTAG Boundary-scan on All Digital Pins  
20  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
8. Memories  
Figure 8-1. AT91SAM9XE128/256/512 Memory Mapping  
Address Memory Space  
Internal Memory Mapping  
Notes : (1) Can be ROM or Flash  
depending on GPNVM[3]  
0x0000 0000  
0x0000 0000  
0x10 0000  
0x10 8000  
0x20 0000  
0x28 0000  
0x30 0000  
0x30 8000  
0x50 0000  
0x50 4000  
Boot Memory (1)  
ROM  
Internal Memories 256M Bytes  
32K Bytes  
0x0FFF FFFF  
0x1000 0000  
Reserved  
EBI  
Chip Select 0  
256M Bytes  
256M Bytes  
Flash  
128, 256 or 512K Bytes  
32K Bytes  
0x1FFF FFFF  
0x2000 0000  
Reserved  
EBI  
Chip Select 1/  
SDRAMC  
SRAM  
0x2FFF FFFF  
0x3000 0000  
Reserved  
UHP  
EBI  
Chip Select 2  
16K Bytes  
256M Bytes  
256M Bytes  
0x3FFF FFFF  
0x4000 0000  
Reserved  
EBI  
Chip Select 3/  
NANDFlash  
0x0FFF FFFF  
0x4FFF FFFF  
0x5000 0000  
EBI  
Chip Select 4/  
Compact Flash  
Slot 0  
256M Bytes  
256M Bytes  
0x5FFF FFFF  
0x6000 0000  
EBI  
Peripheral Mapping  
Chip Select 5/  
Compact Flash  
Slot 1  
0xF000 0000  
0xFFFA 0000  
System Controller Mapping  
0x6FFF FFFF  
0x7000 0000  
Reserved  
TCO, TC1, TC2  
UDP  
0xFFFF C000  
EBI  
Chip Select 6  
16K Bytes  
256M Bytes  
256M Bytes  
Reserved  
ECC  
0xFFFA 4000  
0xFFFA 8000  
0xFFFF E800  
0xFFFF EA00  
0xFFFF EC00  
0xFFFF EE00  
0x7FFF FFFF  
0x8000 0000  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
512 Bytes  
512 Bytes  
512 Bytes  
EBI  
Chip Select 7  
MCI  
0xFFFA C000  
SDRAMC  
SMC  
0x8FFF FFFF  
0x9000 0000  
TWI0  
0xFFFB 0000  
0xFFFB 4000  
0xFFFB 8000  
0xFFFB C000  
0xFFFC 0000  
0xFFFC 4000  
0xFFFC 8000  
USART0  
USART1  
USART2  
SSC  
MATRIX  
CCFG  
0xFFFF EF10  
0xFFFF F000  
512 Bytes  
512 Bytes  
AIC  
0xFFFF F200  
0xFFFF F400  
0xFFFF F600  
DBGU  
PIOA  
512 Bytes  
512 Bytes  
512 bytes  
ISI  
EMAC  
1,518M Bytes  
Undefined  
(Abort)  
SPI0  
PIOB  
PIOC  
EEFC  
0xFFFC C000  
0xFFFF F800  
0xFFFF FA00  
0xFFFF FC00  
0xFFFF FD00  
SPI1  
512 bytes  
0xFFFD 0000  
0xFFFD 4000  
USART3  
512 bytes  
256 Bytes  
USART4  
PMC  
0xFFFD 8000  
0xFFFD C000  
0xFFFE 0000  
0xFFFE 4000  
0xFFFF C000  
TWI1  
RSTC  
16 Bytes  
16 Bytes  
0xFFFF FD10  
0xFFFF FD20  
SHDC  
RTTC  
PITC  
TC3, TC4, TC5  
16 Bytes  
16 Bytes  
0xFFFF FD30  
0xFFFF FD40  
ADC  
0xEFFF FFFF  
0xF000 0000  
WDTC  
GPBR  
16 Bytes  
16 Bytes  
0xFFFF FD50  
0xFFFF FD60  
Reserved  
SYSC  
Internal Peripherals 256M Bytes  
16K Bytes  
Reserved  
0xFFFF FFFF  
0xFFFF FFFF  
0xFFFF FFFF  
21  
6254BS–ATARM–29-Apr-09  
A first level of address decoding is performed by the Bus Matrix, i.e., the implementation of the  
Advanced High performance Bus (AHB) for its Master and Slave interfaces with additional  
features.  
Decoding breaks up the 4 Gbytes of address space into 16 banks of 256 Mbytes. The banks 1 to  
7 are directed to the EBI that associates these banks to the external chip selects EBI_NCS0 to  
EBI_NCS7. Bank 0 is reserved for the addressing of the internal memories, and a second level  
of decoding provides 1 Mbyte of internal memory area. The bank 15 is reserved for the peripher-  
als and provides access to the Advanced Peripheral Bus (APB).  
Other areas are unused and performing an access within them provides an abort to the master  
requesting such an access.  
Each Master has its own bus and its own decoder, thus allowing a different memory mapping  
per Master. However, in order to simplify the mappings, all the masters have a similar address  
decoding.  
Regarding Master 0 and Master 1 (ARM926 Instruction and Data), three different Slaves are  
assigned to the memory space decoded at address 0x0: one for internal boot, one for external  
boot, one after remap, refer to Table 8-3, “Internal Memory Mapping,” on page 26 for details.  
A complete memory map is presented in Figure 8-1 on page 21.  
8.1  
Embedded Memories  
8.1.1  
AT91SAM9XE128  
AT91SAM9XE256  
AT91SAM9XE512  
ROM Topology  
• 32 KB ROM  
– Single Cycle Access at full matrix speed  
• 16 KB Fast SRAM  
– Single Cycle Access at full matrix speed  
• 128 KB Embedded Flash  
8.1.2  
8.1.3  
• 32 KB ROM  
– Single Cycle Access at full matrix speed  
• 32 KB Fast SRAM  
– Single Cycle Access at full matrix speed  
• 256 KB Embedded Flash  
• 32 KB ROM  
– Single Cycle Access at full matrix speed  
• 32 KB Fast SRAM  
– Single Cycle Access at full matrix speed  
• 512 KB Embedded Flash  
8.1.4  
22  
The embedded ROM contains the Fast Flash Programming and the SAM-BA boot programs.  
Each of these two programs is stored at 16 KB Boundary and the program executed at address  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
zero depends on the combination of the TST pin and PA0 to PA2 pins. Figure 8-2 shows the con-  
tents of the ROM and the program available at address zero.  
Figure 8-2. ROM Boot Memory Map  
0x0000 0000  
0x0000 0000  
0x0000 0000  
SAM-BA  
Program  
SAM-BA  
Program  
FFPI  
Program  
FFPI  
Program  
0x0000 7FFF  
0x0000 3FFF  
0x0000 3FFF  
ROM  
TST=1  
PA0=1  
PA1=1  
PA2=0  
TST=0  
8.1.4.1  
Fast Flash Programming Interface  
The Fast Flash Programming Interface programs the device through a serial JTAG interface or a  
multiplexed fully-handshaked parallel port. It allows gang-programming with market-standard  
industrial programmers.  
The FFPI supports read, page program, page erase, full erase, lock, unlock and protect  
commands.  
The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered  
when the TST pin and the PA0 and PA1 pins are all tied high and PA2 is tied low.  
Table 8-1.  
Signal Name  
PGMEN0  
Signal Description  
PIO  
PA0  
Type  
Input  
Active Level  
High  
Comments  
Must be connected to VDDIO  
Must be connected to VDDIO  
Must be connected to GND  
Pulled-up input at reset  
Pulled-up input at reset  
Pulled-up input at reset  
Pulled-up input at reset  
Pulled-up input at reset  
Pulled-up input at reset  
PGMEN1  
PA1  
Input  
High  
PGMEN2  
PA2  
Input  
Low  
PGMNCMD  
PGMRDY  
PA4  
Input  
Low  
PA5  
Output  
Input  
High  
PGMNOE  
PA6  
Low  
PGMNVALID  
PGMM[3:0]  
PGMD[15:0]  
PA7  
Output  
Input  
Low  
PA8..PA10  
PA12..PA27  
Input/Output  
8.1.4.2  
SAM-BA® Boot Assistant  
The SAM-BA Boot Assistant is a default Boot Program that provides an easy way to program in  
situ the on-chip Flash memory.  
The SAM-BA Boot Assistant supports serial communication through the DBGU or through the  
USB Device Port.  
23  
6254BS–ATARM–29-Apr-09  
• Communication through the DBGU supports a wide range of crystals from 3 to 20 MHz via  
software auto-detection.  
• Communication through the USB Device Port is depends on crystal selected:  
– limited to an 18,432 Hz crystal if the internal RC oscillator is selected  
– supports a wide range of crystals from 3 to 20 MHz if the 32,768 Hz crystal is  
selected  
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).  
8.1.5  
Embedded Flash  
The Flash of the AT91SAM9XE128/256/512 is organized in 256/512/1024 pages of 512 bytes  
directly connected to the 32-bit internal bus. Each page contains 128 words.  
The Flash contains a 512-byte write buffer allowing the programming of a page. This buffer is  
write-only as 128 32-bit words, and accessible all along the 1 MB address space, so that each  
word can be written at its final address.  
The Flash benefits from the integration of a power reset cell and from a brownout detector to  
prevent code corruption during power supply changes, even in the worst conditions.  
8.1.5.1  
Enhanced Embedded Flash Controller  
The Enhanced Embedded Flash Controller (EEFC) is continuously clocked.  
The Enhanced Embedded Flash Controller (EEFC) is a slave for the bus matrix and is configu-  
rable through its User Interface on the APB bus. It ensures the interface of the Flash block with  
the 32-bit internal bus. Its 128-bit wide memory interface increases performance, four 32-bit data  
are read during each access, this multiply the throughput by 4 in case of consecutive data.  
It also manages the programming, erasing, locking and unlocking sequences of the Flash using  
a full set of commands. One of the commands returns the embedded Flash descriptor definition  
that informs the system about the Flash organization, thus making the software generic pro-  
gramming of the access parameters of the Flash (number of wait states, timings, etc.)  
8.1.5.2  
Lock Regions  
The memory plane of 128, 256 or 512 Kbytes is organized in 8, 16 or 32 locked regions of 32  
pages each. Each lock region can be locked independently, so that the software protects the  
first memory plane against erroneous programming:  
If a locked-regions erase or program command occurs, the command is aborted and the EEFC  
could trigger an interrupt.  
The Lock bits are software programmable through the EEFC User Interface. The command “Set  
Lock Bit” enables the protection. The command “Clear Lock Bit” unlocks the lock region.  
Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.  
24  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
Figure 8-3. Flash First Memory Plane Mapping  
0x0020 0000  
Locked Region 0  
Page 0  
Locked Regions Area  
128, 256 or 512 Kbytes  
256, 512 or  
1024 Pages  
Page 31  
512 bytes  
16 KBytes  
Locked Region 7, 15 or 31  
0x0021 FFFF  
or 0x0023 FFFF  
or 0x0027 FFFF  
32 bits wide  
8.1.5.3  
GPNVM Bits  
The AT91SAM9XE128/256/512 features four GPNVM bits that can be cleared or set respec-  
tively through the commands “Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User  
Interface.  
Table 8-2.  
General-purpose Non volatile Memory Bits  
Function  
GPNVMBit[#]  
0
1
2
3
Security Bit  
Brownout Detector Enable  
Brownout Detector Reset Enable  
Boot Mode Select (BMS)  
8.1.5.4  
Security Bit  
The AT91SAM9XE128/256/512 features a security bit, based on a specific GPNVM bit, GPN-  
VMBit[0]. When the security is enabled, access to the Flash, either through the ICE interface or  
through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of  
the code programmed in the Flash.  
Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full  
Flash erase is performed. When the security bit is deactivated, all accesses to the Flash are  
permitted.  
As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal  
operation.  
25  
6254BS–ATARM–29-Apr-09  
8.1.5.5  
Non-volatile Brownout Detector Control  
Two GPNVM bits are used for controlling the brownout detector (BOD), so that even after a  
power loss, the brownout detector operations remain in their state.  
• GPNVMBit[1] is used as a brownout detector enable bit. Setting GPNVMBit[1] enables the  
BOD, clearing it disables the BOD. Asserting ERASE clears GPNVMBit[1] and thus disables  
the brownout detector by default.  
• GPNVMBit[2] is used as a brownout reset enable signal for the reset controller. Setting  
GPNVMBit[2] enables the brownout reset when a brownout is detected, clearing  
GPNVMBit[2] disables the brownout reset. Asserting ERASE disables the brownout reset by  
default.  
8.1.6  
Boot Strategies  
Table 8-3 summarizes the Internal Memory Mapping for each Master, depending on the Remap  
status and the GPNVMBit[3] state at reset.  
Table 8-3.  
Internal Memory Mapping  
REMAP = 0  
REMAP = 1  
SRAM  
Address  
GPNVMBit[3] clear  
ROM  
GPNVMBit[3] set  
Flash  
0x0000 0000  
The system always boots at address 0x0. To ensure a maximum number of possibilities for boot,  
the memory layout can be configured with two parameters.  
REMAP allows the user to lay out the first internal SRAM bank to 0x0 to ease development. This  
is done by software once the system has booted. Refer to the section “AT91SAM9XE Bus  
Matrix” in the product datasheet for more details.  
When REMAP = 0, a non volatile bit stored in Flash memory (GPNVMBit[3]) allows the user to  
lay out to 0x0, at his convenience, the ROM or the Flash. Refer to the section “Enhanced  
Embedded Flash Controller (EEFC)” in the product datasheet for more details.  
Note:  
Memory blocks not affected by these parameters can always be seen at their specified base  
addresses. See the complete memory map presented in Figure 8-1 on page 21.  
The AT91SAM9XE Matrix manages a boot memory that depends on the value of GPNVMBit[3]  
at reset. The internal memory area mapped between address 0x0 and 0x0FFF FFFF is reserved  
for this purpose.  
If GPNVMBit[3] is set, the boot memory is the internal Flash memory  
If GPNVMBit[3] is clear (Flash reset State), the boot memory is the embedded ROM. After a  
Flash erase, the boot memory is the internal ROM.  
8.1.6.1  
GPNVMBit[3] = 0, Boot on Embedded ROM  
The system boots using the Boot Program.  
• Boot on slow clock (On-chip RC or 32,768 Hz)  
• Auto baudrate detection  
• SAM-BA Boot in case no valid program is detected in external NVM, supporting  
– Serial communication on a DBGU  
– USB Device Port  
26  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
8.1.6.2  
GPNVMBit[3] = 1, Boot on Internal Flash  
• Boot on slow clock (On-chip RC or 32,768 Hz)  
The customer-programmed software must perform a complete configuration.  
To speed up the boot sequence when booting at 32 kHz, the user must take the following steps:  
1. Program the PMC (main oscillator enable or bypass mode)  
2. Program and start the PLL  
3. Switch the main clock to the new value.  
8.2  
External Memories  
The external memories are accessed through the External Bus Interface. Each Chip Select line  
has a 256 MB memory area assigned.  
Refer to the memory map in Figure 8-1 on page 21.  
8.2.1  
External Bus Interface  
• Integrates three External Memory Controllers:  
– Static Memory Controller  
– SDRAM Controller  
– ECC Controller  
• Additional logic for NANDFlash  
• Full 32-bit External Data Bus  
• Up to 26-bit Address Bus (up to 64 MB linear)  
• Up to 8 chip selects, Configurable Assignment:  
– Static Memory Controller on NCS0  
– SDRAM Controller or Static Memory Controller on NCS1  
– Static Memory Controller on NCS2  
– Static Memory Controller on NCS3, Optional NAND Flash support  
– Static Memory Controller on NCS4 - NCS5, Optional CompactFlash support  
– Static Memory Controller on NCS6-NCS7  
8.2.2  
Static Memory Controller  
• 8-, 16- or 32-bit Data Bus  
• Multiple Access Modes supported  
– Byte Write or Byte Select Lines  
– Asynchronous read in Page Mode supported (4- up to 32-byte page size)  
• Multiple device adaptability  
– Compliant with LCD Module  
– Control signals programmable setup, pulse and hold time for each Memory Bank  
• Multiple Wait State Management  
– Programmable Wait State Generation  
– External Wait Request  
– Programmable Data Float Time  
• Slow Clock mode supported  
27  
6254BS–ATARM–29-Apr-09  
8.2.3  
SDRAM Controller  
• Supported devices:  
– Standard and Low Power SDRAM (Mobile SDRAM)  
• Numerous configurations supported  
– 2K, 4K, 8K Row Address Memory Parts  
– SDRAM with two or four Internal Banks  
– SDRAM with 16- or 32-bit Data Path  
• Programming facilities  
– Word, half-word, byte access  
– Automatic page break when Memory Boundary has been reached  
– Multibank Ping-pong Access  
– Timing parameters specified by software  
– Automatic refresh operation, refresh rate is programmable  
• Energy-saving capabilities  
– Self-refresh, power down and deep power down modes supported  
• Error detection  
– Refresh Error Interrupt  
• SDRAM Power-up Initialization by software  
• CAS Latency of 1, 2 and 3 supported  
• Auto Precharge Command not used  
8.2.4  
Error Corrected Code Controller  
• Hardware error corrected code generation  
– Detection and correction by software  
• Supports NAND Flash and SmartMedia devices with 8- or 16-bit data path  
• Supports NAND Flash and SmartMedia with page sizes of 528,1056, 2112 and 4224 bytes  
specified by software  
• Supports 1 bit correction for a page of 512, 1024, 2112 and 4096 bytes with 8- or 16-bit data  
path  
• Supports 1 bit correction per 512 bytes of data for a page size of 512, 2048 and 4096 bytes  
with 8-bit data path  
• Supports 1 bit correction per 256 bytes of data for a page size of 512, 2048 and 4096 bytes  
with 8-bit data path  
Ω
28  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
9. System Controller  
The System Controller is a set of peripherals that allows handling of key elements of the system,  
such as power, resets, clocks, time, interrupts, watchdog, etc.  
The System Controller User Interface also embeds the registers that configure the Matrix and a  
set of registers for the chip configuration. The chip configuration registers configure the EBI chip  
select assignment and voltage range for external memories.  
The System Controller’s peripherals are all mapped within the highest 16 KB of address space,  
between addresses 0xFFFF E800 and 0xFFFF FFFF.  
However, all the registers of System Controller are mapped on the top of the address space. All  
the registers of the System Controller can be addressed from a single pointer by using the stan-  
dard ARM instruction set, as the Load/Store instruction have an indexing mode of 4 KB.  
Figure 9-1 on page 30 shows the System Controller block diagram.  
Figure 8-1 on page 21 shows the mapping of the User Interfaces of the System Controller  
peripherals.  
29  
6254BS–ATARM–29-Apr-09  
9.1  
System Controller Block Diagram  
Figure 9-1. AT91SAM9XE128/256/512 System Controller Block Diagram  
System Controller  
VDDCORE Powered  
irq0-irq2  
fiq  
nirq  
nfiq  
Advanced  
Interrupt  
periph_irq[2..24]  
por_ntrst  
Controller  
efc2_irq  
pit_irq  
rtt_irq  
wdt_irq  
dbgu_irq  
pmc_irq  
rstc_irq  
ntrst  
ARM926EJ-S  
int  
proc_nreset  
PCK  
debug  
MCK  
Debug  
Unit  
dbgu_irq  
dbgu_txd  
periph_nreset  
dbgu_rxd  
MCK  
debug  
periph_nreset  
Periodic  
Interval  
Timer  
jtag_nreset  
Boundary Scan  
TAP Controller  
pit_irq  
SLCK  
debug  
Watchdog  
Timer  
wdt_irq  
idle  
MCK  
proc_nreset  
wdt_fault  
WDRPROC  
periph_nreset  
gpnvm[3]  
Bus Matrix  
gpnvm[2]  
bod_rst_en  
cal  
gpnvm[1]  
rstc_irq  
flash_wrdis  
BOD  
POR  
VDDCORE  
periph_nreset  
proc_nreset  
Reset  
Controller  
por_ntrst  
jtag_nreset  
security_bit(gpnvm0)  
flash_poe  
backup_nreset  
VDDCORE  
NRST  
flash_poe  
Embedded  
Flash  
flash_wrdis  
cal  
VDDBU  
POR  
VDDBU Powered  
VDDBU  
SLCK  
SLCK  
gpnvm[1..3]  
rtt_irq  
Real-Time  
Timer  
rtt_alarm  
backup_nreset  
SLCK  
UHPCK  
SHDN  
WKUP  
periph_clk[20]  
Shutdown  
Controller  
USB Host  
Port  
RC  
OSC  
periph_nreset  
periph_irq[20]  
backup_nreset  
rtt0_alarm  
OSCSEL  
SLOW  
CLOCK  
OSC  
4 General-Purpose  
Backup Registers  
XIN32  
XOUT32  
SLCK  
UDPCK  
int  
periph_clk[2..27]  
pck[0-1]  
XIN  
periph_clk[10]  
periph_nreset  
periph_irq[10]  
USB  
Device  
Port  
MAINCK  
MAIN  
OSC  
XOUT  
PCK  
Power  
Management  
Controller  
UDPCK  
PLLRCA  
PLLA  
PLLB  
PLLACK  
PLLBCK  
UHPCK  
MCK  
pmc_irq  
idle  
periph_nreset  
periph_clk[6..24]  
periph_nreset  
periph_nreset  
periph_clk[2..4]  
dbgu_rxd  
periph_irq[2..4]  
irq0-irq2  
fiq  
Embedded  
Peripherals  
PIO  
Controllers  
periph_irq[6..24]  
PA0-PA31  
PB0-PB31  
PC0-PC31  
dbgu_txd  
in  
out  
enable  
30  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
9.2  
Reset Controller  
• Based on two Power-on reset cells  
– One on VDDBU and one on VDDCORE  
• Status of the last reset  
– Either general reset (VDDBU rising), wake-up reset (VDDCORE rising), software  
reset, user reset or watchdog reset  
• Controls the internal resets and the NRST pin output  
– Allows shaping a reset signal for the external devices  
9.3  
Brownout Detector and Power-on Reset  
The AT91SAM9XE128/256/512 embeds one brownout detection circuit and power-on reset  
cells. The power-on reset are supplied with and monitor VDDCORE and VDDBU.  
Signals (flash_poe and flash_wrdis) are provided to the Flash to prevent any code corruption  
during power-up or power-down sequences or if brownouts occur on the VDDCORE power  
supply.  
The power-on reset cell has a limited-accuracy threshold at around 1.5V. Its output remains low  
during power-up until VDDCORE goes over this voltage level. This signal goes to the reset con-  
troller and allows a full re-initialization of the device.  
The brownout detector monitors the VDDCORE level during operation by comparing it to a fixed  
trigger level. It secures system operations in the most difficult environments and prevents code  
corruption in case of brownout on the VDDCORE.  
When the brownout detector is enabled and VDDCORE decreases to a value below the trigger  
level (Vbot-), the brownout output is immediately activated. For more details on Vbot, see the  
table “Brownout Detector Characteristics” in the section “AT91SAM9XE128/256/512 Electrical  
Characteristics” in the full datasheet.  
When VDDCORE increases above the trigger level (Vbot+, defined as Vbot + Vhyst), the reset  
is released. The brownout detector only detects a drop if the voltage on VDDCORE stays below  
the threshold voltage for longer than about 1µs.  
The VDDCORE threshold voltage has a hysteresis of about 50 mV typical, to ensure spike free  
brownout detection. The typical value of the brownout detector threshold is 1.55V with an accu-  
racy of 2% and is factory calibrated.  
The brownout detector is low-power, as it consumes less than 12 µA static current. However, it  
can be deactivated to save its static current. In this case, it consumes less than 1 µA. The deac-  
tivation is configured through the GPNVMBit[1] of the Flash.  
Additional information can be found in the “Electrical Characteristics” section of the product  
datasheet.  
9.4  
Shutdown Controller  
• Shutdown and Wake-Up logic  
– Software programmable assertion of the SHDN pin  
– Deassertion Programmable on a WKUP pin level change or on alarm  
31  
6254BS–ATARM–29-Apr-09  
9.5  
Clock Generator  
• Embeds a low power 32,768 Hz slow clock oscillator and a low-power RC oscillator  
selectable with OSCSEL signal  
– Provides the permanent slow clock SLCK to the system  
• Embeds the main oscillator  
– Oscillator bypass feature  
– Supports 3 to 20 MHz crystals  
• Embeds 2 PLLs  
– PLL A outputs 80 to 240 MHz clock  
– PLL B outputs 70 MHz to 130 MHz clock  
– Both integrate an input divider to increase output accuracy  
– PLLB embeds its own filter  
9.6  
Power Management Controller  
• Provides:  
– the Processor Clock PCK  
– the Master Clock MCK, in particular to the Matrix and the memory interfaces  
– the USB Device Clock UDPCK  
– independent peripheral clocks, typically at the frequency of MCK  
– 2 programmable clock outputs: PCK0, PCK1  
• Five flexible operating modes:  
– Normal Mode, processor and peripherals running at a programmable frequency  
– Idle Mode, processor stopped waiting for an interrupt  
– Slow Clock Mode, processor and peripherals running at low frequency  
– Standby Mode, mix of Idle and Backup Mode, peripheral running at low frequency,  
processor stopped waiting for an interrupt  
– Backup Mode, Main Power Supplies off, VDDBU powered by a battery  
9.7  
Periodic Interval Timer  
• Includes a 20-bit Periodic Counter, with less than 1 µs accuracy  
• Includes a 12-bit Interval Overlay Counter  
• Real Time OS or Linux®/WindowsCE® compliant tick generator  
9.8  
9.9  
Watchdog Timer  
• 16-bit key-protected only-once-Programmable Counter  
• Windowed, prevents the processor to be in a dead-lock on the watchdog access  
Real-time Timer  
• Real-time Timer with 32-bit free-running back-up counter  
• Integrates a 16-bit programmable prescaler running on slow clock  
• Alarm Register capable to generate a wake-up of the system through the Shutdown  
Controller  
32  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
9.10 General-purpose Back-up Registers  
• Four 32-bit backup general-purpose registers  
9.11 Advanced Interrupt Controller  
• Controls the interrupt lines (nIRQ and nFIQ) of the ARM Processor  
• Thirty-two individually maskable and vectored interrupt sources  
– Source 0 is reserved for the Fast Interrupt Input (FIQ)  
– Source 1 is reserved for system peripherals (PIT, RTT, PMC, DBGU, etc.)  
– Programmable Edge-triggered or Level-sensitive Internal Sources  
– Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive  
• Three External Sources plus the Fast Interrupt signal  
• 8-level Priority Controller  
– Drives the Normal Interrupt of the processor  
– Handles priority of the interrupt sources 1 to 31  
– Higher priority interrupts can be served during service of lower priority interrupt  
• Vectoring  
– Optimizes Interrupt Service Routine Branch and Execution  
– One 32-bit Vector Register per interrupt source  
– Interrupt Vector Register reads the corresponding current Interrupt Vector  
• Protect Mode  
– Easy debugging by preventing automatic operations when protect modeIs are  
enabled  
• Fast Forcing  
– Permits redirecting any normal interrupt source on the Fast Interrupt of the  
processor  
9.12 Debug Unit  
• Composed of two functions  
Two-pin UART  
– Debug Communication Channel (DCC) support  
Two-pin UART  
– Implemented features are 100% compatible with the standard Atmel USART  
– Independent receiver and transmitter with a common programmable Baud Rate  
Generator  
– Even, Odd, Mark or Space Parity Generation  
– Parity, Framing and Overrun Error Detection  
– Automatic Echo, Local Loopback and Remote Loopback Channel Modes  
– Support for two PDC channels with connection to receiver and transmitter  
• Debug Communication Channel Support  
– Offers visibility of and interrupt trigger from COMMRX and COMMTX signals from  
the ARM Processor’s ICE Interface  
33  
6254BS–ATARM–29-Apr-09  
9.13 Chip Identification  
• Chip ID:  
– 0x329AA3A0 for the SAM9XE512  
– 0x329A93A0 for the SAM9XE256  
– 0x329973A0 for the SAM9XE128  
• JTAG ID: 05B1_C03F  
• ARM926 TAP ID: 0x0792603F  
34  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
10. Peripherals  
10.1 User Interface  
The Peripherals are mapped in the upper 256 Mbytes of the address space between the  
addresses 0xFFFA 0000 and 0xFFFC FFFF. Each User Peripheral is allocated 16 Kbytes of  
address space. A complete memory map is presented in Figure 8-1 on page 21.  
10.2 Peripheral Identifier  
The AT91SAM9XE128/256/512 embeds a wide range of peripherals. Table 10-1 defines the  
Peripheral Identifiers of the AT91SAM9XE128/256/512. A peripheral identifier is required for the  
control of the peripheral interrupt with the Advanced Interrupt Controller and for the control of the  
peripheral clock with the Power Management Controller.  
Table 10-1. AT91SAM9XE128/256/512 Peripheral Identifiers  
Peripheral ID  
Peripheral Mnemonic  
Peripheral Name  
External Interrupt  
0
AIC  
Advanced Interrupt Controller  
System Controller Interrupt  
Parallel I/O Controller A  
Parallel I/O Controller B  
Parallel I/O Controller C  
Analog-to-digital Converter  
USART 0  
FIQ  
1
SYSC  
PIOA  
PIOB  
PIOC  
ADC  
US0  
US1  
US2  
MCI  
UDP  
TWI0  
SPI0  
SPI1  
SSC  
-
2
3
4
5
6
7
USART 1  
8
USART 2  
9
Multimedia Card Interface  
USB Device Port  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Two Wire Interface 0  
Serial Peripheral Interface 0  
Serial Peripheral Interface1  
Synchronous Serial Controller  
Reserved  
-
Reserved  
TC0  
TC1  
TC2  
UHP  
EMAC  
ISI  
Timer/Counter 0  
Timer/Counter 1  
Timer/Counter 2  
USB Host Port  
Ethernet MAC  
Image Sensor Interface  
USART 3  
US3  
US4  
TWI1  
TC3  
TC4  
TC5  
AIC  
USART 4  
Two Wire Interface 1  
Timer/Counter 3  
Timer/Counter 4  
Timer/Counter 5  
Advanced Interrupt Controller  
Advanced Interrupt Controller  
Advanced Interrupt Controller  
IRQ0  
IRQ1  
IRQ2  
AIC  
AIC  
35  
6254BS–ATARM–29-Apr-09  
Note:  
Setting AIC, SYSC, UHP, ADC and IRQ0-2 bits in the clock set/clear registers of the PMC has no  
effect. The ADC clock is automatically started for the first conversion. In Sleep Mode the ADC  
clock is automatically stopped after each conversion.  
10.2.1  
Peripheral Interrupts and Clock Control  
10.2.1.1  
System Interrupt  
The System Interrupt in Source 1 is the wired-OR of the interrupt signals coming from:  
• the SDRAM Controller  
• the Debug Unit  
• the Periodic Interval Timer  
• the Real-time Timer  
• the Watchdog Timer  
• the Reset Controller  
• the Power Management Controller  
• Enhanced Embedded Flash Controller  
The clock of these peripherals cannot be deactivated and Peripheral ID 1 can only be used  
within the Advanced Interrupt Controller.  
10.2.1.2  
External Interrupts  
All external interrupt signals, i.e., the Fast Interrupt signal FIQ or the Interrupt signals IRQ0 to  
IRQ2, use a dedicated Peripheral ID. However, there is no clock control associated with these  
peripheral IDs.  
10.3 Peripheral Signals Multiplexing on I/O Lines  
The AT91SAM9XE128/256/512 features 3 PIO controllers, PIOA, PIOB, PIOC, which multiplex  
the I/O lines of the peripheral set.  
Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral  
functions, A or B. The multiplexing tables in the following paragraphs define how the I/O lines of  
the peripherals A and B are multiplexed on the PIO Controllers. The two columns “Function” and  
“Comments” have been inserted in this table for the user’s own comments; they may be used to  
track how pins are defined in an application.  
Note that some peripheral function which are output only, might be duplicated within the both  
tables.  
The column “Reset State” indicates whether the PIO Line resets in I/O mode or in peripheral  
mode. If I/O is mentioned, the PIO Line resets in input with the pull-up enabled, so that the  
device is maintained in a static state as soon as the reset is released. As a result, the bit corre-  
sponding to the PIO Line in the register PIO_PSR (Peripheral Status Register) resets low.  
If a signal name is mentioned in the “Reset State” column, the PIO Line is assigned to this func-  
tion and the corresponding bit in PIO_PSR resets high. This is the case of pins controlling  
memories, in particular the address lines, which require the pin to be driven as soon as the reset  
is released. Note that the pull-up resistor is also enabled in this case.  
36  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
10.3.1  
PIO Controller A Multiplexing  
Table 10-2. Multiplexing on PIO Controller A  
PIO Controller A  
Application Usage  
Reset  
State  
Power  
Supply  
I/O Line  
PA0  
Peripheral A  
SPI0_MISO  
SPI0_MOSI  
SPI0_SPCK  
SPI0_NPCS0  
RTS2  
Peripheral B  
MCDB0  
Comments  
Function  
Comments  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
PA1  
MCCDB  
PA2  
PA3  
MCDB3  
MCDB2  
MCDB1  
PA4  
PA5  
CTS2  
PA6  
MCDA0  
MCCDA  
MCCK  
PA7  
PA8  
PA9  
MCDA1  
MCDA2  
MCDA3  
ETX0  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
PA17  
PA18  
PA19  
PA20  
PA21  
PA22  
PA23  
PA24  
PA25  
PA26  
PA27  
PA28  
PA29  
PA30(1)  
PA31(1)  
ETX2  
ETX3  
ETX1  
ERX0  
ERX1  
ETXEN  
ERXDV  
ERXER  
ETXCK  
EMDC  
EMDIO  
ADTRG  
TWD0  
ETXER  
ETX2  
TWCK0  
TCLK0  
TIOA0  
ETX3  
ERX2  
ERX3  
ERXCK  
ECRS  
ECOL  
RXD4  
TXD4  
TIOA1  
TIOA2  
SCK1  
SCK2  
SCK0  
Note:  
1. Not available in the 208-lead PQFP package.  
37  
6254BS–ATARM–29-Apr-09  
10.3.2  
PIO Controller B Multiplexing  
Table 10-3. Multiplexing on PIO Controller B  
PIO Controller B  
Application Usage  
Power Supply Function  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
I/O Line  
PB0  
Peripheral A  
SPI1_MISO  
SPI1_MOSI  
SPI1_SPCK  
SPI1_NPCS0  
TXD0  
Peripheral B Comments Reset State  
Comments  
TIOA3  
TIOB3  
TIOA4  
TIOA5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PB1  
PB2  
PB3  
PB4  
PB5  
RXD0  
PB6  
TXD1  
TCLK1  
TCLK2  
PB7  
RXD1  
PB8  
TXD2  
PB9  
RXD2  
PB10  
PB11  
PB12(1)  
PB13(1)  
PB14  
PB15  
PB16  
PB17  
PB18  
PB19  
PB20  
PB21  
PB22  
PB23  
PB24  
PB25  
PB26  
PB27  
PB28  
PB29  
PB30  
PB31  
TXD3  
ISI_D8  
ISI_D9  
ISI_D10  
ISI_D11  
RXD3  
TWD1  
TWCK1  
DRXD  
DTXD  
TK0  
TCLK3  
TF0  
TCLK4  
TD0  
TIOB4  
RD0  
TIOB5  
RK0  
ISI_D0  
RF0  
ISI_D1  
DSR0  
ISI_D2  
DCD0  
DTR0  
ISI_D3  
ISI_D4  
RI0  
ISI_D5  
RTS0  
ISI_D6  
CTS0  
ISI_D7  
RTS1  
ISI_PCK  
ISI_VSYNC  
ISI_HSYNC  
ISI_MCK  
CTS1  
PCK0  
PCK1  
Note:  
1. Not available in the 208-lead PQFP package.  
38  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
10.3.3  
PIO Controller C Multiplexing  
Table 10-4. Multiplexing on PIO Controller C  
PIO Controller C  
Application Usage  
I/O Line  
PC0  
Peripheral A  
Peripheral B  
SCK3  
Comments  
AD0  
Reset State Power Supply Function  
Comments  
I/O  
I/O  
I/O  
I/O  
A23  
A24  
I/O  
I/O  
I/O  
I/O  
A25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
PC1  
PCK0  
AD1  
PC2(1)  
PC3(1)  
PC4  
PCK1  
AD2  
SPI1_NPCS3  
SPI1_NPCS2  
SPI1_NPCS1  
CFCE1  
AD3  
A23  
PC5  
A24  
PC6  
TIOB2  
TIOB1  
NCS4/CFCS0  
NCS5/CFCS1  
A25/CFRNW  
NCS2  
IRQ0  
PC7  
CFCE2  
PC8  
RTS3  
PC9  
TIOB0  
PC10  
PC11  
PC12(1)  
PC13  
PC14  
PC15  
PC16  
PC17  
PC18  
PC19  
PC20  
PC21  
PC22  
PC23  
PC24  
PC25  
PC26  
PC27  
PC28  
PC29  
PC30  
PC31  
CTS3  
SPI0_NPCS1  
NCS7  
FIQ  
NCS6  
NCS3/NANDCS  
NWAIT  
D16  
IRQ2  
IRQ1  
SPI0_NPCS2  
SPI0_NPCS3  
SPI1_NPCS1  
SPI1_NPCS2  
SPI1_NPCS3  
EF100  
D17  
D18  
D19  
D20  
D21  
D22  
TCLK5  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
Note:  
1. Not available in the 208-lead PQFP package.  
39  
6254BS–ATARM–29-Apr-09  
10.4 Embedded Peripherals  
10.4.1  
Serial Peripheral Interface  
• Supports communication with serial external devices  
– Four chip selects with external decoder support allow communication with up to 15  
peripherals  
– Serial memories, such as DataFlash and 3-wire EEPROMs  
– Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and  
Sensors  
– External co-processors  
• Master or slave serial peripheral bus interface  
– 8- to 16-bit programmable data length per chip select  
– Programmable phase and polarity per chip select  
– Programmable transfer delays between consecutive transfers and between clock  
and data per chip select  
– Programmable delay between consecutive transfers  
– Selectable mode fault detection  
• Very fast transfers supported  
Transfers with baud rates up to MCK  
– The chip select line may be left active to speed up transfers on the same device  
10.4.2  
10.4.3  
Two-wire Interface  
• Master, Multi-master and Slave modes supported  
• General call supported in Slave mode  
• Connection to PDC Channel  
USART  
• Programmable Baud Rate Generator  
• 5- to 9-bit full-duplex synchronous or asynchronous serial communications  
– 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode  
– Parity generation and error detection  
– Framing error detection, overrun error detection  
– MSB- or LSB-first  
– Optional break generation and detection  
– By 8 or by 16 oversampling receiver frequency  
– Hardware handshaking RTS-CTS  
– Receiver time-out and transmitter timeguard  
– Optional Multi-drop Mode with address generation and detection  
– Optional Manchester Encoding  
• RS485 with driver control signal  
• ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards  
– NACK handling, error counter with repetition and iteration limit  
40  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
• IrDA modulation and demodulation  
– Communication at up to 115.2 Kbps  
Test Modes  
– Remote Loopback, Local Loopback, Automatic Echo  
10.4.4  
Serial Synchronous Controller  
• Provides serial synchronous communication links used in audio and telecom applications  
(with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.)  
• Contains an independent receiver and transmitter and a common clock divider  
• Offers a configurable frame sync and data length  
• Receiver and transmitter can be programmed to start automatically or on detection of  
different event on the frame sync signal  
• Receiver and transmitter include a data signal, a clock signal and a frame synchronization  
signal  
10.4.5  
Timer Counter  
• Six 16-bit Timer Counter Channels  
• Wide range of functions including:  
– Frequency Measurement  
– Event Counting  
– Interval Measurement  
– Pulse Generation  
– Delay Timing  
– Pulse Width Modulation  
– Up/down Capabilities  
• Each channel is user-configurable and contains:  
– Three external clock inputs  
– Five internal clock inputs  
Two multi-purpose input/output signals  
Two global registers that act on all three TC Channels  
10.4.6  
Multimedia Card Interface  
• One double-channel Multimedia Card Interface  
• Compatibility with MultiMedia Card Specification Version 2.2  
• Compatibility with SD Memory Card Specification Version 1.0  
• Compatibility with SDIO Specification Version V1.0.  
• Cards clock rate up to Master Clock divided by 2  
• Embedded power management to slow down clock rate when not used  
• MCI has two slot, each supporting  
– One slot for one MultiMediaCard bus (up to 30 cards) or  
– One SD Memory Card  
• Support for stream, block and multi-block data read and write  
41  
6254BS–ATARM–29-Apr-09  
10.4.7  
USB Host Port  
• Compliance with Open HCI Rev 1.0 Specification  
• Compliance with USB V2.0 Full-speed and Low-speed Specification  
• Supports both Low-Speed 1.5 Mbps and Full-speed 12 Mbps devices  
• Root hub integrated with two downstream USB ports in the 217-LFBGA package  
Two embedded USB transceivers  
• Supports power management  
• Operates as a master on the Matrix  
10.4.8  
USB Device Port  
• USB V2.0 full-speed compliant, 12 MBits per second  
• Embedded USB V2.0 full-speed transceiver  
• Embedded 2,688-byte dual-port RAM for endpoints  
• Suspend/Resume logic  
• Ping-pong mode (two memory banks) for isochronous and bulk endpoints  
• Eight general-purpose endpoints  
– Endpoint 0 and 3: 64 bytes, no ping-pong mode  
– Endpoint 1, 2, 6, 7: 64 bytes, ping-pong mode  
– Endpoint 4 and 5: 512 bytes, ping-pong mode  
• Embedded pad pull-up  
10.4.9  
Ethernet 10/100 MAC  
• Compatibility with IEEE Standard 802.3  
• 10 and 100 MBits per second data throughput capability  
• Full- and half-duplex operations  
• MII or RMII interface to the physical layer  
• Register Interface to address, data, status and control registers  
• DMA Interface, operating as a master on the Memory Controller  
• Interrupt generation to signal receive and transmit completion  
• 128-byte transmit and 128-byte receive FIFOs  
• Automatic pad and CRC generation on transmitted frames  
• Address checking logic to recognize four 48-bit addresses  
• Support promiscuous mode where all valid frames are copied to memory  
• Support physical layer management through MDIO interface control of alarm and update  
time/calendar data in  
10.4.10 Image Sensor Interface  
• ITU-R BT. 601/656 8-bit mode external interface support  
• Support for ITU-R BT.656-4 SAV and EAV synchronization  
• Vertical and horizontal resolutions up to 2048 x 2048  
• Preview Path up to 640*480  
• Support for packed data formatting for YCbCr 4:2:2 formats  
42  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
• Preview scaler to generate smaller size image  
10.4.11 Analog-to-digital Converter  
• 4-channel ADC  
• 10-bit 312K samples/sec. Successive Approximation Register ADC  
• -2/+2 LSB Integral Non Linearity, -1/+1 LSB Differential Non Linearity  
• Individual enable and disable of each channel  
• External voltage reference for better accuracy on low voltage inputs  
• Multiple trigger source – Hardware or software trigger – External trigger pin – Timer Counter  
0 to 2 outputs TIOA0 to TIOA2 trigger  
• Sleep Mode and conversion sequencer – Automatic wakeup on trigger and back to sleep  
mode after conversions of all enabled channels  
• Four analog inputs shared with digital signals  
43  
6254BS–ATARM–29-Apr-09  
11. Package Drawings  
Figure 11-1. 208-pin PQFP Package Drawing  
44  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
Figure 11-2. 217-ball LFBGA Package Drawing  
45  
6254BS–ATARM–29-Apr-09  
12. AT911SAM9XE128/256/512 Ordering Information  
Table 12-1. AT91SAM9XE128/256/512 Ordering Information  
Ordering Code  
Package  
PQFP208  
BGA217  
PQFP208  
BGA217  
PQFP208  
BGA217  
Package Type  
Green  
Temperature Operating Range  
AT91SAM9XE128-QU  
AT91SAM9XE128-CU  
AT91SAM9XE256-QU  
AT91SAM9XE256-CU  
AT91SAM9XE512-QU  
AT91SAM9XE512-CU  
Industrial  
-40°C to 85°C  
Green  
Green  
Industrial  
-40°C to 85°C  
Green  
Green  
Industrial  
-40°C to 85°C  
Green  
46  
AT91SAM9XE128/256/512 Preliminary  
6254BS–ATARM–29-Apr-09  
AT91SAM9XE128/256/512 Preliminary  
13. Revision History  
Change  
Request  
Ref.  
Doc.  
Ref.  
Comments  
6254BS  
Removed 6.8, Slow CLock Selection (is shown in 27.5 of the full datasheet)  
Removed fomer Section 5.2 “Power Consumption”.  
Removed Clock Generator block diagram from Section 9.5 “Clock Generator” (is shown in Figure 27.1 of  
the full datasheet).  
rfo  
Removed PMC block diagram from Section 9.6 “Power Management Controller” (is shown in Figure 28.1  
of the full datasheet).  
“Features”,  
5800  
5846  
5800  
rfo  
“Ethernet MAC 10/100 Base-T”, 128-byte FIFOs (typo corrected).  
Debug Unit (DBGU), added, Mode for general purpose6-2-wire UART serial communication  
Section 9.13 “Chip Identification”, SAM9XE512 chip ID is 0x329AA3A0.  
Table 3-1, “Signal Description List,””, comment column updated in certain instances and “PIO Controller -  
PIOA - PIOB - PIOC” , has a foot note added to its comments column. SHDWN is active Low.  
Section 5.1 “Power Supplies”, added “Caution: VDDCORE and VDDIO constraints.......  
Section 6. “I/O Line Considerations”, unneeded paragraphs removed.  
“Features”, “Additional Embedded Memories”Fast Read Time: 45 ns  
“Features”, “Four Universal Synchronous/Asynchronous Receiver Transmitters (USART)”, added  
Manchester Encoding/Decoding.  
5930  
rfo  
Section 6.3 “Shutdown Logic Pins”, updated with external pull-up requirement.  
First issue.  
6254AS  
47  
6254BS–ATARM–29-Apr-09  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
www.atmel.com  
www.atmel.com/AT91SAM  
Technical Support  
AT91SAM Support  
Atmel techincal support  
Sales Contacts  
www.atmel.com/contacts/  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifica-  
tions and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically pro-  
vided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted  
for use as components in applications intended to support or sustain life.  
© 2008 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, DataFlash®, SAM-BA® and others are registered  
trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM®, the ARMPowered® logo, Thumb® and others are the registered trade-  
marks or trademarks of ARM Ltd. Windows® and others are the registered trademarks of Microsoft Corporation in the US and/or other countries.  
Other terms and product names may be trademarks of others.  
6254BS–ATARM–29-Apr-09  

相关型号:

AT91SAMS64-AI

AT91 ARM㈢ Thumb㈢-based Microcontrollers
ATMEL

AT91SAM_13

ARM-based Flash MCU
ATMEL

AT91SC192192CT-USB

32-bit Secure Microcontrollers
ATMEL

AT91SC25672RC

32-bit Secure Microcontroller for Smart Cards
ATMEL

AT91SC464384RCU

32-bit Secure Microcontrollers
ATMEL

AT91SC512384-128M

32-bit Secure Microcontrollers
ATMEL

AT91SC512384-8M

32-bit Secure Microcontrollers
ATMEL

AT91SC512384RCT

32-bit Secure Microcontrollers
ATMEL

AT91SO100

Secure Microcontroller for Electronic Transaction Terminal / Reader
ATMEL

AT91SO100_07

Secure Microcontroller for Electronic Transaction Terminal / Reader
ATMEL

AT91SO101

Secure Microcontroller for Electronic Transaction Terminal / Reader
ATMEL

AT91SO25

Secure Microcontroller for Electronic Transaction Terminal / Reader
ATMEL