ATA5723P3C-TKQW [ATMEL]

Telecom Circuit, 1-Func, PDSO20, 4.40 MM, SSOP-20;
ATA5723P3C-TKQW
型号: ATA5723P3C-TKQW
厂家: ATMEL    ATMEL
描述:

Telecom Circuit, 1-Func, PDSO20, 4.40 MM, SSOP-20

电信 光电二极管 电信集成电路
文件: 总44页 (文件大小:1716K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ATA5723C/ATA5724C/ATA5728C  
UHF ASK/FSK Receiver  
DATASHEET  
Features  
Frequency receiving range of (3 versions)  
f0 = 312.5MHz to 317.5MHz or  
f0 = 431.5MHz to 436.5MHz or  
f0 = 868MHz to 870MHz  
30dB image rejection  
Receiving bandwidth  
BIF = 300kHz for 315MHz/433MHz version  
BIF = 600kHz for 868MHz version  
Fully integrated LC-VCO and PLL loop filter  
Very high sensitivity with power matched LNA  
Atmel® ATA5723C/ATA5724C:  
–107dBm, FSK, BR_0 (1.0Kbit/s to 1.8Kbit/s), Manchester, BER 10E-3  
–113dBm, ASK, BR_0 (1.0Kbit/s to 1.8Kbit/s), Manchester, BER 10E-3  
Atmel ATA5728C:  
–105dBm, FSK, BR_0 (1.0Kbit/s to 1.8Kbit/s), Manchester, BER 10E-3  
–111dBm, ASK, BR_0 (1.0Kbit/s to 1.8Kbit/s), Manchester, BER 10E-3  
High system IIP3  
–18dBm at 868MHz  
–23dBm at 433MHz  
–24dBm at 315MHz  
System 1-dB compression point  
–27.7dBm at 868MHz  
–32.7dBm at 433MHz  
–33.7dBm at 315MHz  
High large-signal capability at GSM band (blocking –33dBm at +10MHz,  
IIP3 = –24dBm at +20MHz)  
Logarithmic RSSI output  
XTO start-up with negative resistor of 1.5kΩ  
5V to 20V automotive compatible data interface  
Data clock available for Manchester and bi-phase-coded signals  
Programmable digital noise suppression  
9248D-RKE-10/14  
Low power consumption due to configurable polling  
Temperature range –40°C to +105°C  
ESD protection 2kV HBM, all pins  
Communication to microcontroller possible using a single bi-directional data line  
Low-cost solution due to high integration level with minimum external circuitry requirements  
Supply voltage range 4.5V to 5.5V  
Benefits  
Low BOM list due to high integration  
Use of low-cost 13MHz crystal  
Lowest average current consumption for application due to self polling feature  
Reuse of Atmel® ATA5743 software  
World-wide coverage with one PCB due to 3 versions are pin compatible  
2
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
1.  
Description  
The Atmel® ATA5723C/ATA5724C/ATA5728C is a multi-chip PLL receiver device supplied in an SSO20 package. It has  
been specially developed for the demands of RF low-cost data transmission systems with data rates from 1Kbit/s to  
10kBbit/s in Manchester or bi-phase code. Its main applications are in the areas of keyless entry systems, tire pressure  
monitoring systems, telemetering, and security technology systems. It can be used in the frequency receiving range of  
f0 = 312.5MHz to 317.5MHz, f0 = 431.5MHz to 436.5MHz or f0 = 868MHz to 870MHz for ASK or FSK data transmission. All  
the statements made below refer to 315MHz, 433MHz and 868.3MHz applications.  
Figure 1-1. System Block Diagram  
UHF ASK/FSK  
Remote Control Transmitter  
UHF ASK/FSK  
Remote Control Receiver  
T5750/53/54  
ATA5723C/  
ATA5724C/  
ATA5728C  
1 to 5 Micro-  
controller  
Demod.  
IF Amp  
Control  
XTO  
XTO  
PLL  
Antenna Antenna  
VCO  
PLL  
Power  
amp.  
LNA  
VCO  
Figure 1-2. Block Diagram  
FSK/ASK  
Demodulator  
and Data Filter  
Dem_out  
Data  
Interface  
CDEM  
RSSI  
DATA  
RSSI  
Limiter out  
RSSI  
POLLING/_ON  
SENS  
IF  
Amp.  
Sensitivity  
Reduction  
Polling Circuit  
and Control Logic  
DATA_CLK  
MODE  
AVCC  
AGND  
DGND  
DVCC  
4. Order  
f0 = 1MHz  
FE  
CLK  
IC_ACTIVE  
Standby  
Logic  
LPF  
g = 2.2MHz  
f
IF  
Amp.  
Loop  
Filter  
XTAL2  
XTAL1  
XTO  
Poly-LPF  
g = 7MHz  
f
f
LC-VCO  
f
:2  
or :3  
LNAREF  
LNA_IN  
f
LNA  
:2  
or :4  
:128  
or :64  
LNAGND  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
3
9248D–RKE–10/14  
2.  
Pin Configuration  
Figure 2-1. Pinning SSO20  
SENS  
IC_ACTIVE  
CDEM  
1
2
3
4
5
6
7
8
9
20 DATA  
19 POLLING/_ON  
18 DGND  
AVCC  
17 DATA_CLK  
16 MODE  
TEST1  
ATA5723C/  
ATA5724C/  
ATA5728C  
RSSI  
15 DVCC  
AGND  
14 XTAL2  
LNAREF  
LNA_IN  
13 XTAL1  
12 TEST3  
11 TEST2  
LNAGND 10  
Table 2-1. Pin Description  
Pin  
1
Symbol  
Function  
SENS  
IC_ACTIVE  
CDEM  
Sensitivity-control resistor  
2
IC condition indicator: Low = sleep mode, High = active mode  
Lower cut-off frequency data filter  
Analog power supply  
3
4
AVCC  
5
TEST 1  
RSSI  
Test pin, during operation at GND  
RSSI output  
6
7
AGND  
Analog ground  
8
LNAREF  
LNA_IN  
LNAGND  
TEST 2  
TEST 3  
XTAL1  
High-frequency reference node LNA and mixer  
RF input  
9
10  
11  
12  
13  
14  
15  
DC ground LNA and mixer  
Do not connect during operating  
Test pin, during operation at GND  
Crystal oscillator XTAL connection 1  
Crystal oscillator XTAL connection 2  
Digital power supply  
XTAL2  
DVCC  
Selecting 315MHz/other versions  
16  
MODE  
Low: 315MHz version (Atmel ATA5723C)  
High: 433MHz/868MHz versions (Atmel ATA5724C/ATA5728C)  
17  
18  
19  
20  
DATA_CLK  
DGND  
Bit clock of data stream  
Digital ground  
POLLING/_ON  
DATA  
Selects polling or receiving mode; Low: receiving mode, High: polling mode  
Data output/configuration input  
4
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
3.  
RF Front-end  
The RF front-end of the receiver is a low-IF heterodyne configuration that converts the input signal into about 1MHz IF signal  
with a typical image rejection of 30dB. According to Figure Figure 1-2 on page 3 the front-end consists of an LNA (low noise  
amplifier), LO (local oscillator), I/Q mixer, polyphase low-pass filter and an IF amplifier.  
The PLL generates the drive frequency fLO for the mixer using a fully integrated synthesizer with integrated low noise  
LC-VCO (voltage controlled oscillator) and PLL-loop filter. The XTO (crystal oscillator) generates the reference frequency  
f
REF = fXTO/2 (868MHz and 433MHz versions) or fREF = fXTO/3 (315MHz version). The integrated LC-VCO generates two or  
four times the mixer drive frequency fVCO. The I/Q signals for the mixer are generated with a divide by two or four circuit  
(fLO = fVCO/2 for 868MHz version, fLO = fVCO/4 for 433MHz and 315MHz versions). fVCO is divided by a factor of 128 or 64 and  
feeds into a phase frequency detector and is compared with fREF. The output of the phase frequency detector is fed into an  
integrated loop filter and thereby generates the control voltage for the VCO. If fLO is determined, fXTO can be calculated using  
the following formula:  
f
REF = fLO/128 for 868MHz band, fREF = fLO/64 for 433MHz bands, fREF = fLO/64 for 315MHz bands.  
The XTO is a two-pin oscillator that operates at the series resonance of the quartz crystal with high current but low voltage  
signal, so that there is only a small voltage at the crystal oscillator frequency at pins XTAL1 and XTAL2. According to  
Figure 3-1, the crystal should be connected to GND with two capacitors CL1 and CL2 from XTAL1 and XTAL2 respectively.  
The value of these capacitors are recommended by the crystal supplier. Due to an inductive impedance at steady state  
oscillation and some PCB parasitics, a lower value of CL1 and CL2 is normally necessary.  
The value of CLx should be optimized for the individual board layout to achieve the exact value of fXTO and hence of fLO. (The  
best way is to use a crystal with known load resonance frequency to find the right value for this capacitor.) When designing  
the system in terms of receiving bandwidth and local oscillator accuracy, the accuracy of the crystal and the XTO must be  
considered.  
Figure 3-1. XTO Peripherals  
V
S
DVCC  
XTAL2  
XTAL1  
TEST3  
TEST2  
C
C
L2  
L1  
The nominal frequency fLO is determined by the RF input frequency fRF and the IF frequency fIF using the following formula  
(low-side injection):  
f
LO = fRF – fIF  
To determine fLO, the construction of the IF filter must be considered. The nominal IF frequency is fIF = 950kHz. To achieve a  
good accuracy of the filter corner frequencies, the filter is tuned by the crystal frequency fXTO. This means that there is a fixed  
relationship between fIF and fLO  
.
fIF = fLO/318 for the 315MHz band (Atmel® ATA5723C)  
f
f
IF = fLO/438 for the 433.92MHz band (Atmel ATA5724C)  
IF = fLO/915 for the 868.3MHz band (Atmel ATA5728C)  
The relationship is designed to achieve the nominal IF frequency of:  
f
f
f
IF = 987kHz for the 315MHz and BIF = 300kHz (Atmel ATA5723C)  
IF = 987kHz for the 433.92MHz and BIF = 300kHz (Atmel ATA5724C)  
IF = 947.8kHz for the 868.3MHz and BIF = 600kHz (Atmel ATA5728C)  
The RF input either from an antenna or from an RF generator must be transformed to the RF input pin LNA_IN. The input  
impedance of this pin is provided in the electrical parameters. The parasitic board inductances and capacitances influence  
the input matching. The RF receiver Atmel ATA5723C/ATA5724C/ATA5728C exhibits its highest sensitivity if the LNA is  
power matched. Because of this, matching to a SAW filter, a 50Ω or an antenna is easier. Figure 14-1 on page 29 shows a  
typical input matching network for fRF = 315MHz, fRF = 433.92MHz or fRF = 868.3MHz to 50Ω. The input matching network  
shown in Table 14-2 on page 29 is the reference network for the parameters given in the electrical characteristics.  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
5
9248D–RKE–10/14  
4.  
Analog Signal Processing  
4.1  
IF Filter  
The signals coming from the RF front-end are filtered by the fully integrated 4th-order IF filter. The IF center frequency is:  
fIF = 987kHz for the 315MHz and BIF = 300kHz (Atmel® ATA5723C)  
f
f
IF = 987kHz for the 433.92MHz and BIF = 300kHz (Atmel ATA5724C)  
IF = 947.9kHz for the 868.3MHz and BIF = 600kHz (Atmel ATA5728C)  
The nominal bandwidth is 300kHz for Atmel ATA5723C and Atmel ATA5724C and 600kHz for Atmel ATA5728C.  
4.2  
Limiting RSSI Amplifier  
The subsequent RSSI amplifier enhances the output signal of the IF amplifier before it is fed into the demodulator. The  
dynamic range of this amplifier is ΔRRSSI = 60dB. If the RSSI amplifier is operated within its linear range, the best S/N ratio is  
maintained in ASK mode. If the dynamic range is exceeded by the transmitter signal, the S/N ratio is defined by the ratio of  
the maximum RSSI output voltage and the RSSI output voltage due to a disturber. The dynamic range of the RSSI amplifier  
is exceeded if the RF input signal is approximately 60dB higher compared to the RF input signal at full sensitivity.  
The S/N ratio is not affected by the dynamic range of the RSSI amplifier in FSK mode because only the hard limited signal  
from a high-gain limiting amplifier is used by the demodulator.  
The output voltage of the RSSI amplifier (VRSSI) is available at pin RSSI. Using the RSSI output signal, the signal strength  
of different transmitters can be distinguished. The usable input power range PRef is –100dBm to –55dBm.  
Figure 4-1. RSSI Characteristics Atmel ATA5724C  
RSSI Characteristics  
3.5  
4.5V -40 C  
°
5V -40 C  
°
5.5V -40 C  
3
2.5  
2
°
4.5V 25 C  
°
5V 25 C  
°
5.5V 25 C  
°
4.5V 85 C  
°
5V 85 C  
°
5.5V 85 C  
°
4.5V 105 C  
°
1.5  
5V 105 C  
°
5.5V 105 C  
°
1
-120  
-110  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
PIN (dBm)  
The output voltage of the RSSI amplifier is internally compared to a threshold voltage VTh_red. VTh_red is determined by the  
value of the external resistor RSens. RSens is connected between pin SENS and GND or VS. The output of the comparator is  
fed into the digital control logic. By this means, it is possible to operate the receiver at a lower sensitivity.  
If RSens is connected to GND, the receiver switches to full sensitivity. It is also possible to connect the pin SENS directly to  
GND to get the maximum sensitivity.  
If RSens is connected to VS, the receiver operates at a lower sensitivity. The reduced sensitivity is defined by the value of  
RSens, and the maximum sensitivity is defined by the signal-to-noise ratio of the LNA input. The reduced sensitivity depends  
on the signal strength at the output of the RSSI amplifier.  
Since different RF input networks may exhibit slightly different values for the LNA gain, the sensitivity values given in the  
electrical characteristics refer to a specific input matching. This matching is described and illustrated in Section 14. “Data  
Interface” on page 29.  
6
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
RSens can be connected to VS or GND using a microcontroller. The receiver can be switched from full sensitivity to reduced  
sensitivity or vice versa at any time. In polling mode, the receiver does not wake up if the RF input signal does not exceed  
the selected sensitivity. If the receiver is already active, the data stream at pin DATA disappears when the input signal is  
lower than defined by the reduced sensitivity. Instead of the data stream, the pattern according to Figure 4-2 “Steady L State  
Limited DATA Output Pattern” is issued at pin DATA to indicate that the receiver is still active (see Figure 13-2 on page 27).  
Figure 4-2. Steady L State Limited DATA Output Pattern  
DATA  
tDATA_min  
tDATA_L_max  
4.3  
FSK/ASK Demodulator and Data Filter  
The signal coming from the RSSI amplifier is converted into the raw data signal by the ASK/FSK demodulator. The operating  
mode of the demodulator is set using the bit ASK/_FSK in the OPMODE register. Logic L sets the demodulator to FSK,  
applying H to ASK mode.  
In ASK mode an automatic threshold control circuit (ATC) is employed to set the detection reference voltage to a value  
where a good signal to noise ratio is achieved. This circuit also implements the effective suppression of any kind of in-band  
noise signals or competing transmitters. If the S/N (ratio to suppress in-band noise signals) exceeds about 10dB the data  
signal can be detected properly. However, better values are found for many modulation schemes of the competing  
transmitter.  
The FSK demodulator is intended to be used for an FSK deviation of 10kHz Δf 100kHz. The data signal in FSK mode can  
be detected if the S/N (ratio to suppress in-band noise signals) exceeds about 2dB. This value is valid for all modulation  
schemes of a disturber signal.  
The output signal of the demodulator is filtered by the data filter before it is fed into the digital signal processing circuit. The  
data filter improves the S/N ratio as its pass-band can be adopted to the characteristics of the data signal. The data filter  
consists of a 1st order high-pass and a 2nd order low-pass filter.  
The high-pass filter cut-off frequency is defined by an external capacitor connected to pin CDEM. The cut-off frequency of  
the high-pass filter is defined by the following formula:  
1
---------------------------------------------------------  
fcu_DF =  
2 × π × 30 kΩ × CDEM  
In self-polling mode the data filter must settle very rapidly to achieve a low current consumption. Therefore, CDEM cannot be  
increased to very high values if self-polling is used. On the other hand, CDEM must be large enough to meet the data filter  
requirements according to the data signal. Recommended values for CDEM are given in the electrical characteristics.  
The cut-off frequency of the low-pass filter is defined by the selected baud-rate range (BR_Range). The BR_Range is  
defined in the OPMODE register (refer to Section 11. “Configuring the Receiver” on page 22). The BR_Range must be set in  
accordance to the baud-rate used.  
The Atmel® ATA5723C/ATA5724C/ATA5728C is designed to operate with data coding where the DC level of the data signal  
is 50%. This is valid for Manchester and Bi-phase coding. If other modulation schemes are used, the DC level should always  
remain within the range of VDC_min = 33% and VDC_max = 66%. The sensitivity may be reduced by up to 2dB in that condition.  
Each BR_Range is also defined by a minimum and a maximum edge-to-edge time (tee_sig). These limits are defined in the  
electrical characteristics. They should not be exceeded to maintain full sensitivity of the receiver.  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
7
9248D–RKE–10/14  
5.  
Receiving Characteristics  
The Atmel® RF receiver ATA5723C/ATA5724C/ATA5728C can be operated with and without a SAW front-end filter. In a  
typical automotive application, a SAW filter is used to achieve better selectivity and large signal capability. The receiving  
frequency response without a SAW front-end filter is illustrated in Figure 5-1. This example relates to ASK mode. FSK mode  
exhibits a similar behavior. The plots are printed relatively to the maximum sensitivity. If a SAW filter is used, an insertion  
loss of about 3dB must be considered, but the overall selectivity is much better.  
When designing the system in terms of receiving bandwidth, the LO deviation must be considered as it also determines the  
IF center frequency. The total LO deviation is calculated, to be the sum of the deviation of the crystal and the XTO deviation  
of the Atmel ATA5723C/ATA5724C/ATA5728C. Low-cost crystals are specified to be within ±90ppm over tolerance,  
temperature, and aging. The XTO deviation of the Atmel ATA5723C/ATA5724C/ATA5728C is an additional deviation due to  
the XTO circuit. This deviation is specified to be ±10ppm worst case for a crystal with CM = 7fF. If a crystal of ±90ppm is  
used, the total deviation is ±100ppm in that case. Note that the receiving bandwidth and the IF-filter bandwidth are  
equivalent in ASK mode but not in FSK mode.  
Figure 5-1. Narrow Band Receiving Frequency Response Atmel ATA5724C  
Image Rejection versus RF Frequency  
10  
0
4.5V -40 C  
°
5V -40 C  
°
-10  
-20  
-30  
-40  
-50  
-60  
-70  
5.5V -40 C  
°
4.5V 25 C  
°
5V 25 C  
°
5.5V 25 C  
°
4.5V 105 C  
°
5V 105 C  
°
5.5V 105 C  
°
430  
431  
432  
433  
434  
435  
436  
437  
438  
(MHz)  
6.  
Polling Circuit and Control Logic  
The receiver is designed to consume less than 1mA while being sensitive to signals from a corresponding transmitter. This is  
achieved using the polling circuit. This circuit enables the signal path periodically for a short time. During this time the bit-  
check logic verifies the presence of a valid transmitter signal. Only if a valid signal is detected, the receiver remains active  
and transfers the data to the connected microcontroller. If there is no valid signal present, the receiver is in sleep mode most  
of the time resulting in low current consumption. This condition is called polling mode. A connected microcontroller is  
disabled during that time.  
All relevant parameters of the polling logic can be configured by the connected microcontroller. This flexibility enables the  
user to meet the specifications in terms of current consumption, system response time, data rate etc.  
The receiver is very flexible with regards to the number of connection wires to the microcontroller. It can be either operated  
by a single bi-directional line to save ports to the connected microcontroller or it can be operated by up to five uni-directional  
ports.  
8
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
7.  
Basic Clock Cycle of the Digital Circuitry  
The complete timing of the digital circuitry and the analog filtering is derived from one clock. This clock cycle TClk is derived  
from the crystal oscillator (XTO) in combination with a divide by 28 or 30 circuit. According to Section 3. “RF Front-end” on  
page 5, the frequency of the crystal oscillator (fXTO) is defined by the RF input signal (fRFin) which also defines the operating  
frequency of the local oscillator (fLO). The basic clock cycle for Atmel® ATA5724C and Atmel ATA5728C is TClk 28/fXTO giving  
T
T
Clk = 2.066µs for fRF = 868.3MHz and TClk = 2.069µs for fRF = 433.92MHz. For Atmel ATA5723C the basic clock cycle is  
Clk = 30/fREF giving TClk = 2.0382µs for fRF = 315MHz.  
TClk controls the following application-relevant parameters:  
Timing of the polling circuit including bit check  
Timing of the analog and digital signal processing  
Timing of the register programming  
Frequency of the reset marker  
IF filter center frequency (fIF0)  
Most applications are dominated by three transmission frequencies: fTransmit = 315MHz is mainly used in USA,  
Transmit = 868.3MHz and 433.92MHz in Europe. All timings are based on TClk. For the aforementioned frequencies, TClk is  
given as:  
f
Application 315MHz band (fXTO = 14.71875MHz, fLO = 314.13MHz, TClk = 2.0382µs)  
Application 868.3MHz band (fXTO = 13.55234MHz, fLO = 867.35MHz, TClk = 2.066µs)  
Application 433.92MHz band (fXTO = 13.52875MHz, fLO = 432.93MHz, TClk = 2.0696µs)  
For calculation of TClk for applications using other frequency bands, see table in Section 18. “Electrical Characteristics Atmel  
ATA5724C, ATA5728C” on page 34.  
The clock cycle of some function blocks depends on the selected baud-rate range (BR_Range), which is defined in the  
OPMODE register. This clock cycle TXClk is defined by the following formulas:  
BR_Range = BR_Range0:  
BR_Range1:  
TXClk = 8 × TClk  
TXClk = 4 × TClk  
TXClk = 2 × TClk  
TXClk = 1 × TClk  
BR_Range2:  
BR_Range3:  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9
9248D–RKE–10/14  
8.  
Polling Mode  
According to Figure 8-1 on page 11, the receiver stays in polling mode in a continuous cycle of three different modes. In  
sleep mode the signal processing circuitry is disabled for the time period TSleep while consuming low current of IS = ISoff  
.
During the start-up period, TStartup, all signal processing circuits are enabled and settled. In the following bit-check mode, the  
incoming data stream is analyzed bit-by-bit and compared with a valid transmitter signal. If no valid signal is present, the  
receiver is set back to sleep mode after the period TBit-check. This period varies according to each check as it is a statistical  
process. An average value for TBitcheck is given in the electrical characteristics. During TStartup and TBit-check, the current  
consumption is IS = ISon. The condition of the receiver is indicated on pin IC_ACTIVE. The average current consumption in  
polling mode is dependent on the duty cycle of the active mode and can be calculated as:  
I
× T  
+ I  
× (T  
+ T  
)
Bit-check  
Soff  
Sleep  
Son  
Startup  
--------------------------------------------------------------------------------------------------------  
=
I
Spoll  
T
+ T  
+ T  
Startup Bit-check  
Sleep  
During TSleep and TStartup, the receiver is not sensitive to a transmitter signal. To guarantee the reception of a transmitted  
command, the transmitter must start the telegram with an adequate preburst. The required length of the preburst depends on  
the polling parameters TSleep, TStartup, TBit-check and the start-up time of a connected microcontroller, TStart_microcontroller. Thus,  
T
Bit-check depends on the actual bit rate and the number of bits (NBit-check) to be tested.  
The following formula indicates how to calculate the preburst length.  
Preburst TSleep + TStartup + TBit-check + TStart_microcontroller  
T
8.1  
Sleep Mode  
The length of period TSleep is defined by the 5-bit word sleep of the OPMODE register, the extension factor XSleep (according  
to Table 11-8 on page 24), and the basic clock cycle TClk. It is calculated to be:  
TSleep = Sleep × XSleep × 1024 × TClk  
The maximum value of TSleep is about 60ms if XSleep is set to 1. The time resolution is about 2ms in that case. The sleep time  
can be extended to almost half a second by setting XSleep to 8. XSleep can be set to 8 by bit XSleepStd to “1”.  
Setting the configuration word sleep to its maximal value puts the receiver into a permanent sleep mode. The receiver  
remains in this state until another value for Sleep is programmed into the OPMODE register. This is particularly useful when  
several devices share a single data line. (It can also be used for microcontroller polling: using pin POLLING/_ON, the  
receiver can be switched on and off.)  
10  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
Figure 8-1. Polling Mode Flow Chart  
Sleep Mode:  
All circuits for signal processing are  
disabled. Only XTO and Polling logic are  
enabled.  
Output level on Pin IC_ACTIVE = > low  
Sleep:  
XSleep  
TClk  
TStartup  
5-bit word defined by Sleep 0 to  
Sleep 4 in OPMODE register  
IS = ISoff  
TSleep = Sleep x XSleep x 1024 x TClk  
:
Extension factor defined by  
XSleepStd according to Table 11-8  
:
Basic clock cycle defined by fXTO  
and Pin MODE  
Start-up Mode:  
:
Is defined by the selected baud rate  
range and TClk. The baud-rate range  
is defined by Baud 0 and Baud 1 in  
the OPMODE register.  
The signal processing circuits are  
enabled. After the start-up time (TStartup  
all circuits are in stable  
)
condition and ready to receive.  
Output level on Pin IC_ACTIVE = > high  
IS = ISon  
TStartup  
Bit-check Mode:  
The incoming data stream is  
analyzed. If the timing indicates a valid  
transmitter signal, the receiver is set to  
receiving mode. Otherwise it is set to  
Sleep mode.  
TBit-check  
:
Depends on the result of the bit check  
If the bit check is ok, TBit-check  
depends on the number of bits to be  
checked (NBit-check) and on the  
data rate used.  
Output level on Pin IC_ACTIVE = > high  
IS = ISon  
TBit-check  
Bit Check  
OK ?  
If the bit check fails, the average  
time period for that check depends  
on the selected baud-rate range and  
on TClk. The baud-rate range is  
defined by Baud 0 and Baud 1 in the  
OPMODE register.  
NO  
YES  
Receiving Mode:  
The receiver is turned on permanently  
and passes the data stream to the  
connected microcontroller.  
It can be set to Sleep mode through an  
OFF command via Pin DATA or  
Polling/_ON.  
Output level on Pin IC_ACTIVE = > high  
IS = ISon  
OFF Command  
8.2  
Bit-check Mode  
In bit-check mode the incoming data stream is examined to distinguish between a valid signal from a corresponding  
transmitter and signals due to noise. This is done by subsequent time frame checks where the distances between 2 signal  
edges are continuously compared to a programmable time window. The maximum number of these edge-to-edge tests,  
before the receiver switches to receiving mode, is also programmable.  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
11  
9248D–RKE–10/14  
8.3  
Configuring the Bit Check  
Assuming a modulation scheme that contains two edges per bit, two time frame checks verify one bit. This is valid for  
Manchester, bi-phase, and most other modulation schemes. The maximum count of bits to be checked can be set to 0, 3, 6,  
or 9 bits using the variable NBit-check in the OPMODE register. This implies 0, 6, 12, and 18 edge-to-edge checks respectively.  
If NBit-check is set to a higher value, the receiver is less likely to switch to receiving mode due to noise. In the presence of a  
valid transmitter signal, the bit check takes less time if NBit-check is set to a lower value. In polling mode, the bit-check time is  
not dependent on NBit-check. Figure 8-2 shows an example where three bits are tested successfully and the data signal is  
transferred to pin DATA.  
Figure 8-2. Timing Diagram for Complete Successful Bit Check  
Bit Check ok  
(Number of checked Bits: 3)  
IC_ACTIVE  
Bit Check  
1/2 Bit  
1/2 Bit 1/2 Bit  
1/2 Bit  
1/2 Bit  
1/2 Bit  
Dem_out  
Data_out (DATA)  
TStart-up  
TBit-check  
Start-up Mode  
Start-check Mode  
Receiving Mode  
According to Figure 8-3, the time window for the bit check is defined by two separate time limits. If the edge-to-edge time tee  
is in between the lower bit-check limit TLim_min and the upper bit-check limit TLim_max, the check continues. If tee is smaller than  
T
Lim_min or tee exceeds TLim_max, the bit check is terminated and the receiver switches to sleep mode.  
Figure 8-3. Valid Time Window for Bit Check  
1/fSig  
tee  
Dem_out  
TLim_min  
TLim_max  
For best noise immunity using a low span between TLim_min and TLim_max is recommended. This is achieved using a fixed  
frequency at a 50% duty cycle for the transmitter preburst. A “11111...” or a “10101...” sequence in Manchester or bi-phase  
is suitable for this. A good compromise between receiver sensitivity and susceptibility to noise is a time window of ±30%  
regarding the expected edge-to-edge time tee. Using pre-burst patterns that contain various edge-to-edge time periods, the  
bit-check limits must be programmed according to the required span.  
The bit-check limits are determined by means of the formula below.  
T
Lim_min = Lim_min × TXClk  
TLim_max = (Lim_max – 1) × TXClk  
Lim_min and Lim_max are defined by a 5-bit word each within the LIMIT register.  
Using above formulas, Lim_min and Lim_max can be determined according to the required TLim_min, TLim_max and TXClk. The  
time resolution defining TLim_min and TLim_max is TXClk. The minimum edge-to-edge time tee (tDATA_L_min, tDATA_H_min) is defined  
according to the Section 8.6 “Digital Signal Processing” on page 14. The lower limit should be set to Lim_min 10. The  
maximum value of the upper limit is Lim_max = 63.  
If the calculated value for Lim_min is < 19, it is recommended to check 6 or 9 bits (NBit-check) to prevent switching to receiving  
mode due to noise.  
12  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
Figure 8-4, Figure 8-5, and Figure 8-6 illustrate the bit check for the bit-check limits Lim_min = 14 and Lim_max = 24. When  
the IC is enabled, the signal processing circuits are enabled during TStartup. The output of the ASK/FSK demodulator  
(Dem_out) is undefined during that period. When the bit check becomes active, the bit-check counter is clocked with the  
cycle TXClk  
.
Figure 8-4 shows how the bit check proceeds if the bit-check counter value CV_Lim is within the limits defined by Lim_min  
and Lim_max at the occurrence of a signal edge. In Figure 8-5 the bit check fails as the value CV_Lim is lower than the limit  
Lim_min. The bit check also fails if CV_Lim reaches Lim_max. This is illustrated in Figure 8-6.  
Figure 8-4. Timing Diagram During Bit Check  
Bit Check ok  
Bit Check ok  
(Lim_min = 14, Lim_max = 24)  
IC_ACTIVE  
Bit Check  
1/2 Bit  
1/2 Bit  
1/2 Bit  
Dem_out  
Bit-check  
0
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9 10 11 12 13 141516 17 18 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 1 2 3 4  
counter  
TXClk  
TStart-up  
TBit-check  
Start-up Mode  
Bit-check Mode  
Figure 8-5. Timing Diagram for Failed Bit Check (Condition: CV_Lim < Lim_min)  
(Lim_min = 14, Lim_max = 24)  
Bit Check failed (CV_Lim_ < Lim_min)  
IC_ACTIVE  
Bit Check  
1/2 Bit  
Dem_out  
Bit-check  
0
1
2
3
4
5
6
1
2
3
4
5
6
7
8
9 10 1112  
0
counter  
TStart-up  
TBit-check  
Bit-check Mode  
TSleep  
Start-up Mode  
Sleep Mode  
Figure 8-6. Timing Diagram for Failed Bit Check (Condition: CV_Lim Lim_max)  
(Lim_min = 14, Lim_max = 24)  
Bit Check failed (CV_Lim ≥ Lim_max)  
IC_ACTIVE  
Bit Check  
1/2 Bit  
Dem_out  
Bit-check  
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
9 10 11 12 13 1415 16 17 18 19 2021 222324  
0
counter  
TStart-up  
TBit-check  
Bit-check Mode  
TSleep  
Start-up Mode  
Sleep Mode  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
13  
9248D–RKE–10/14  
8.4  
Duration of the Bit Check  
If no transmitter signal is present during the bit check, the output of the ASK/FSK demodulator delivers random signals. The  
bit check is a statistical process and TBit-check varies for each check. Therefore, an average value for TBit-check is given in the  
electrical characteristics. TBit-check depends on the selected baud-rate range and on TClk. A higher baud-rate range causes a  
lower value for TBit-check resulting in a lower current consumption in polling mode.  
In the presence of a valid transmitter signal, TBit-check is dependent on the frequency of that signal, fSig, and the count of the  
checked bits, NBit-check. A higher value for NBit-check thereby results in a longer period for TBit-check requiring a higher value for  
the transmitter pre-burst TPreburst  
.
8.5  
8.6  
Receiving Mode  
If the bit check was successful for all bits specified by NBit-check, the receiver switches to receiving mode. According to  
Figure 8-2 on page 12, the internal data signal is switched to pin DATA in that case, and the data clock is available after the  
start bit has been detected (see Figure 9-1 on page 17). A connected microcontroller can be woken up by the negative edge  
at pin DATA or by the data clock at pin DATA_CLK. The receiver stays in that condition until it is switched back to polling  
mode explicitly.  
Digital Signal Processing  
The data from the ASK/FSK demodulator (Dem_out) is digitally processed in different ways and as a result converted into  
the output signal data. This processing depends on the selected baud-rate range (BR_Range). Figure 8-7 illustrates how  
Dem_out is synchronized by the extended clock cycle TXClk. This clock is also used for the bit-check counter. Data can  
change its state only after TXClk has elapsed. The edge-to-edge time period tee of the Data signal as a result is always an  
integral multiple of TXClk  
.
The minimum time period between two edges of the data signal is limited to tee TDATA_min. This implies an efficient  
suppression of spikes at the DATA output. At the same time it limits the maximum frequency of edges at DATA. This eases  
the interrupt handling of a connected microcontroller.  
The maximum time period for DATA to stay low is limited to TDATA_L_max. This function is employed to ensure a finite  
response time in programming or switching off the receiver via pin DATA. TDATA_L_max is therefore longer than the maximum  
time period indicated by the transmitter data stream. Figure 8-9 on page 15 gives an example where Dem_out remains Low  
after the receiver has switched to receiving mode.  
Figure 8-7. Synchronization of the Demodulator Output  
TXClk  
Clock bit-check  
counter  
Dem_out  
Data_out (DATA)  
tee  
Figure 8-8. Debouncing of the Demodulator Output  
Dem_out  
Data_out (DATA)  
tDATA_min  
tDATA_min  
tDATA_min  
tee  
tee  
tee  
14  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
Figure 8-9. Steady L State Limited DATA Output Pattern after Transmission  
IC_ACTIVE  
Bit Check  
Dem_out  
Data_out (DATA)  
tDATA_min  
tDATA_L_max  
Start-up Mode  
Bit-check Mode  
Receiving Mode  
After the end of a data transmission, the receiver remains active. Depending of the bit Noise_Disable in the OPMODE  
register, the output signal at pin DATA is high or random noise pulses appear at pin DATA (see Section 10. “Digital Noise  
Suppression” on page 20). The edge-to-edge time period tee of the majority of these noise pulses is equal or slightly higher  
than TDATA_min  
.
8.7  
Switching the Receiver Back to Sleep Mode  
The receiver can be set back to polling mode via pin DATA or via pin POLLING/_ON.  
When using pin DATA, this pin must be pulled to low by the connected microcontroller for the period t1. Figure 8-10 on page  
15 illustrates the timing of the OFF command (see Figure 13-2 on page 27). The minimum value of t1 depends on the  
BR_Range. The maximum value for t1 is not limited; however, exceeding the specified value to prevent erasing the reset  
marker is not recommended. Note also that an internal reset for the OPMODE and the LIMIT register is generated if t1  
exceeds the specified values. This item is explained in more detail in the Section 11. “Configuring the Receiver” on page 22.  
Setting the receiver to sleep mode via DATA is achieved by programming bit 1 to “1” during the register configuration. Only  
one sync pulse (t3) is issued.  
The duration of the OFF command is determined by the sum of t1, t2, and t10. The sleep time TSleep elapses after the OFF  
command. Note that the capacitive load at pin DATA is limited (see Section 14. “Data Interface” on page 29).  
Figure 8-10. Timing Diagram of the OFF Command using Pin DATA  
IC_ACTIVE  
t1  
t2  
t3  
t5  
t4  
t10  
t7  
Out1  
(Microcontroller)  
X
X
Data_out (DATA)  
Serial bi-directional  
Data Line  
Bit 1  
("1")  
(Start Bit)  
OFF-command  
TSleep  
TStart-up  
Receiving Mode  
Sleep Mode  
Start-up Mode  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
15  
9248D–RKE–10/14  
Figure 8-11. Timing Diagram of the OFF Command using Pin POLLING/_ON  
IC_ACTIVE  
ton2  
ton3  
Bit Check ok  
POLLING/_ON  
X
X
X
Data_out (DATA)  
Serial bi-directional  
Data Line  
X
Receiving Mode  
Sleep Mode Start-up Mode Bit-check Mode  
Receiving Mode  
Figure 8-12. Activating the Receiving Mode using Pin POLLING/_ON  
IC_ACTIVE  
ton1  
POLLING/_ON  
X
Data_out (DATA)  
Serial bi-directional  
Data Line  
X
Sleep Mode  
Start-up Mode  
Receiving Mode  
Figure 8-11 illustrates how to set the receiver back to polling mode using pin POLLING/_ON. The pin POLLING/_ON must  
be held to low for the time period ton2. After the positive edge on pin POLLING/_ON and the delay ton3, the polling mode is  
active and the sleep time TSleep elapses.  
Using the POLLING/_ON command is faster than using pin DATA; however, this requires the use of an additional connection  
to the microcontroller.  
Figure 8-12 illustrates how to set the receiver to receiving mode using the pin POLLING/_ON. The pin POLLING/_ON must  
be held to low. After the delay ton1, the receiver changes from sleep mode to start-up mode regardless of the programmed  
values for TSleep and NBit-check. As long as POLLING/_ON is held to low, the values for TSleep and NBit-check is ignored, but not  
deleted (see Section 10. “Digital Noise Suppression” on page 20).  
If the receiver is polled exclusively by a microcontroller, TSleep must be programmed to 31 (permanent sleep mode). In this  
case the receiver remains in sleep mode as long as POLLING/_ON is held to high.  
16  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
9.  
Data Clock  
The pin DATA_CLK makes a data shift clock available to sample the data stream into a shift register. Using this data clock,  
a microcontroller can easily synchronize the data stream. This clock can only be used for Manchester and bi-phase coded  
signals.  
9.1  
Generation of the Data Clock  
After a successful bit check, the receiver switches from polling mode to receiving mode and the data stream is available at  
pin DATA. In receiving mode, the data clock control logic (Manchester/bi-phase demodulator) is active and examines the  
incoming data stream. This is done, as with the bit check, by subsequent time frame checks where the distance between two  
edges is continuously compared to a programmable time window. As illustrated in Figure 9-1 on page 17, only two distances  
between two edges in Manchester and bi-phase coded signals are valid (T and 2T).  
The limits for T are the same as used with the bit check. They can be programmed in the LIMIT-register (Lim_min and  
Lim_max, see Table 11-10 on page 25 and Table 11-11 on page 25).  
The limits for 2T are calculated as follows:  
Lower limit of 2T:  
Upper limit of 2T:  
Lim_min_2T = (Lim_min + Lim_max) – (Lim_max – Lim_min)/2  
Lim_max_2T= (Lim_min + Lim_max) + (Lim_max – Lim_min)/2  
(If the result for ‘Lim_min_2T’ or ‘Lim_max_2T’ is not an integer value, it is rounded up.)  
The data clock is available, after the data clock control logic has detected the distance 2T (Start bit) and is issued with the  
delay tDelay after the edge on pin DATA (see Figure 9-1 on page 17).  
If the data clock control logic detects a timing or logical error (Manchester code violation), as illustrated in Figure 9-2 on page  
18 and Figure 9-3 on page 18, it stops the output of the data clock. The receiver remains in receiving mode and starts with  
the bit check. If the bit check was successful and the start bit has been detected, the data clock control logic starts again with  
the generation of the data clock (see Figure 9-4 on page 18).  
Use the function of the data clock only in conjunction with the bit check 3, 6 or 9 is recommended. If the bit check is set to 0  
or the receiver is set to receiving mode using the pin POLLING/_ON, the data clock is available if the data clock control logic  
has detected the distance 2T (Start bit).  
Note that for bi-phase-coded signals, the data clock is issued at the end of the bit.  
Figure 9-1. Timing Diagram of the Data Clock  
Preburst  
Data  
Bit Check ok  
'1'  
T
2T  
'1'  
'1'  
'1'  
'1'  
'0'  
'1'  
'1'  
'0'  
'1'  
'0'  
Dem_out  
Data_out (DATA)  
DATA_CLK  
tDelay  
tP_Data_Clk  
Bit-check Mode  
Start bit  
Receiving Mode,  
data clock control logic active  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
17  
9248D–RKE–10/14  
Figure 9-2. Data Clock Disappears Because of a Timing Error  
Data  
Timing error  
'1'  
Tee < TLim_min or TLim_max < Tee < TLim_min_2T or Tee > TLim_max_2T  
Tee  
'1'  
'1'  
'1'  
'1'  
'0'  
'1'  
'1'  
'0'  
'1'  
'0'  
Dem_out  
Data_out (DATA)  
DATA_CLK  
Receiving Mode,  
data clock control  
logic active  
Receiving Mode,  
bit check active  
Figure 9-3. Data Clock Disappears Because of a Logical Error  
Data  
Logical error (Manchester code violation)  
'1'  
'1'  
'1'  
'0'  
'1'  
'1'  
'?'  
'0'  
'0'  
'1'  
'0'  
Dem_out  
Data_out (DATA)  
DATA_CLK  
Receiving Mode,  
data clock control  
logic active  
Receiving Mode,  
bit check active  
Figure 9-4. Output of the Data Clock After a Successful Bit Check  
Data  
Bit Check ok  
'1'  
'1'  
'1'  
'1'  
'1'  
'0'  
'1'  
'1'  
'0'  
'1'  
'0'  
Dem_out  
Data_out (DATA)  
DATA_CLK  
Start bit  
Receiving Mode,  
bit check active  
Receiving Mode,  
data clock control  
logic active  
18  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
The delay of the data clock is calculated as follows: tDelay = tDelay1 + tDelay2  
tDelay1 is the delay between the internal signals Data_Out and Data_In. For the rising edge, tDelay1 depends on the capacitive  
load CL at pin DATA and the external pull-up resistor Rpup. For the falling edge, tDelay1 depends additionally on the external  
voltage VX (see Figure 9-5, Figure 9-6 and Figure 13-2 on page 27). When the level of Data_In is equal to the level of  
Data_Out, the data clock is issued after an additional delay tDelay2  
.
Note that the capacitive load at pin DATA is limited. If the maximum tolerated capacitive load at pin DATA is exceeded, the  
data clock disappears (see Section 14. “Data Interface” on page 29).  
Figure 9-5. Timing Characteristic of the Data Clock (Rising Edge on Pin DATA)  
Data_Out  
VX  
VIH = 0.65 VS  
VS  
VII = 0.35  
Serial bi-directional  
Data Line  
Data_In  
DATA_CLK  
tDelay1  
tDelay2  
tDelay tP_Data_Clk  
Figure 9-6. Timing Characteristic of the Data Clock (Falling Edge of the Pin DATA)  
Data_Out  
VX  
VS  
VS  
VIH = 0.65  
VII = 0.35  
Serial bi-directional  
Data Line  
Data_In  
DATA_CLK  
tDelay1  
tDelay2  
tDelay tP_Data_Clk  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
19  
9248D–RKE–10/14  
10. Digital Noise Suppression  
After a data transmission, digital noise appears on the data output (see Figure 10-1). To prevent digital noise keeping the  
connected microcontroller busy, it can be suppressed in two different ways:  
Automatic noise suppression  
Controlled noise suppression by the microcontroller  
10.1 Automatic Noise Suppression  
The receiver changes to bit-check mode at the end of a valid data stream if the bit Noise_Disable (Table 11-9 on page 24) in  
the OPMODE register is set to 1 (default). The digital noise is suppressed, and the level at pin DATA is high. The receiver  
changes back to receiving mode, if the bit check was successful.  
This method of noise suppression is recommended if the data stream is Manchester or bi-phase coded and is active after  
power on.  
Figure 10-3 illustrates the behavior of the data output at the end of a data stream. If the last period of the data stream is a  
high period (rising edge to falling edge), a pulse occurs on pin DATA. The length of the pulse depends on the selected baud-  
rate range.  
Figure 10-1. Output of Digital Noise at the End of the Data Stream  
Bit Check ok  
Bit Check ok  
Preburst  
Data  
Digital Noise  
Digital Noise Preburst  
Data  
Digital Noise  
Data_out (DATA)  
DATA_CLK  
Bit-check  
mode  
Receiving Mode,  
data clock control  
logic active  
Receiving Mode,  
bit check active  
Receiving Mode,  
data clock control  
logic active  
Receiving Mode,  
bit check active  
Figure 10-2. Automatic Noise Suppression  
Bit Check ok  
Bit Check ok  
Preburst  
Data  
Preburst  
Data  
Data_out (DATA)  
DATA_CLK  
Bit-check  
Mode  
Receiving Mode,  
data clock control  
logic active  
Bit-check  
Mode  
Receiving Mode,  
data clock control  
logic active  
Bit-check  
Mode  
Figure 10-3. Occurrence of a Pulse at the End of the Data Stream  
Timing error  
tee < TLim_min or TLim_max < tee < tLim_min_2T or tee > TLim_max_2T  
Tee  
Data Stream  
'1'  
Digital Noise  
'1'  
'1'  
Dem_out  
Data_out (DATA)  
DATA_CLK  
Tpulse  
Receiving Mode,  
data clock control  
logic active  
Bit-check Mode  
20  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
10.2 Controlled Noise Suppression by the Microcontroller  
Digital noise appears at the end of a valid data stream if the bit Noise_Disable (see Table 11-9 on page 24) in the OPMODE  
register is set to 0. To suppress the noise, the pin POLLING/_ON must be set to low. The receiver remains in receiving  
mode. The OFF command then causes a change to start-up mode. The programmed sleep time (see Table 11-7 on page 24)  
is not executed because the level at pin POLLING/_ON is low; however, the bit check is active in this case. The OFF  
command also activates the bit check if the pin POLLING/_ON is held to low. The receiver changes back to receiving mode  
if the bit check was successful. To activate the polling mode at the end of the data transmission, the pin POLLING/_ON must  
be set to high. This way of suppressing the noise is recommended if the data stream is not Manchester or bi-phase coded.  
Figure 10-4. Controlled Noise Suppression  
Bit Check ok  
OFF-command  
Bit Check ok  
Serial bi-directional  
Data Line  
Preburst  
Data Digital Noise  
Preburst  
Data  
Digital Noise  
(DATA_CLK)  
POLLING/_ON  
Bit-check  
Mode  
Receiving Mode  
Start-up Bit-check  
Mode Mode  
Receiving Mode  
Sleep  
Mode  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
21  
9248D–RKE–10/14  
11. Configuring the Receiver  
The Atmel® ATA5723C/ATA5724C/ATA5728C receiver is configured using two 12-bit RAM registers called OPMODE and  
LIMIT. The registers can be programmed by means of the bidirectional DATA port. If the register content has changed due to  
a voltage drop, this condition is indicated by a the output pattern called reset marker (RM). If this occurs, the receiver must  
be reprogrammed. After a power-on reset (POR), the registers are set to default mode. If the receiver is operated in default  
mode, there is no need to program the registers. Table 11-3 on page 22 shows the structure of the registers. According to  
Table 11-1, bit 1 defines whether the receiver is set back to polling mode using the OFF command (see “Receiving Mode” on  
page 14) or whether it is programmed. Bit 2 represents the register address. It selects the appropriate register to be  
programmed. For high programming reliability, bit 15 (Stop bit), at the end of the programming operation, must be set to 0.  
Table 11-1. Effect of Bit 1 and Bit 2 on Programming the Registers  
Bit 1  
Bit 2  
Action  
1
0
0
x
1
0
The receiver is set back to polling mode (OFF command)  
The OPMODE register is programmed  
The LIMIT register is programmed  
Table 11-2. Effect of Bit 15 on Programming the Register  
Bit 15  
Action  
0
1
The values are written into the register (OPMODE or LIMIT)  
The values are not written into the register  
Table 11-3. Effect of the Configuration Words within the Registers  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Bit 8  
Bit 9  
Bit 10  
Bit 11  
Bit 12  
Bit 13  
Bit 14  
Bit 15  
OFF command  
1
OPMODE register  
Modu-  
lation  
Noise  
Suppression  
BR_Range  
NBit-check  
BitChk1 BitChk0  
Sleep  
XSleep  
0
1
0
ASK/  
_FSK  
Noise_  
Disable  
Baud1  
0
Baud0  
0
Sleep4 Sleep3 Sleep2 Sleep1 Sleep0 XSleepStd  
Default  
values of  
Bit 3...14  
0
1
0
0
0
1
1
0
0
1
LIMIT register  
Lim_min  
Lim_max  
Lim_  
0
0
Lim_  
min5  
Lim_  
min4  
Lim_  
min3  
Lim_  
min2  
Lim_  
min1  
Lim_  
min0  
Lim_  
max5  
Lim_  
max4  
Lim_  
Lim_  
max1  
Lim_  
max0  
0
max3  
max2  
Default  
values of  
Bit 3...14  
0
1
0
1
0
1
1
0
1
0
0
1
22  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
The following tables illustrate the effect of the individual configuration words. The default configuration is highlighted for each  
word.  
BR_Range sets the appropriate baud-rate range and simultaneously defines XLim. XLim is used to define the bit-check  
limits TLim_min and TLim_max as shown in Table 11-10 on page 25 and Table 11-11 on page 25.  
Table 11-4. Effect of the configuration word BR_Range  
BR_Range  
Baud1  
Baud0  
Baud-rate Range/Extension Factor for Bit-check Limits (XLim)  
BR_Range0  
0
0
(BR_Range0 = 1.0Kbit/s to 1.8Kbit/s)  
XLim = 8 (default)  
BR_Range1  
0
1
1
1
0
1
(BR_Range1 = 1.8Kbit/s to 3.2Kbit/s)  
XLim = 4  
BR_Range2  
(BR_Range2 = 3.2Kbit/s to 5.6Kbit/s)  
XLim = 2  
BR_Range3  
(BR_Range3 = 5.6Kbit/s to 10Kbit/s)  
XLim = 1  
Table 11-5. Effect of the Configuration word NBit-check  
NBit-check  
BitChk1  
BitChk0  
Number of Bits to be Checked  
0
0
1
1
0
1
0
1
0
3 (default)  
6
9
Table 11-6. Effect of the Configuration Bit Modulation  
Modulation  
Selected Modulation  
ASK/_FSK  
0
1
FSK (default)  
ASK  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
23  
9248D–RKE–10/14  
Table 11-7. Effect of the Configuration Word Sleep  
Sleep  
Start Value for Sleep Counter  
Sleep4  
Sleep3  
Sleep2  
Sleep1  
Sleep0  
(TSleep = Sleep × XSleep × 1024 × TClk)  
0 (Receiver polls continuously until a valid signal  
occurs)  
0
0
0
0
0
If XSleep = 1  
TSleep = 2.11ms for fRF = 868.3MHz,  
TSleep = 2.12ms for fRF = 433.92MHz  
TSleep = 2.08ms for fRF = 315MHz  
0
0
0
0
1
0
0
0
0
0
0
1
1
0
1
2
3
...  
...  
...  
...  
...  
...  
If XSleep = 1  
T
Sleep = 12.69ms for fRF = 868.3MHz,  
0
0
1
1
0
TSleep = 12.71ms for fRF = 433.92MHz  
TSleep = 12.52ms for fRF = 315MHz  
...  
1
...  
1
...  
1
...  
0
...  
1
...  
29  
1
1
1
1
0
30  
1
1
1
1
1
31 (permanent sleep mode)  
Table 11-8. Effect of the Configuration Bit XSleep  
XSleep  
Extension Factor for Sleep Time  
XSleepStd  
(TSleep = Sleep × XSleep × 1024 × TClk)  
0
1
1 (default)  
8
Table 11-9. Effect of the Configuration Bit Noise Suppression  
Noise Suppression  
Noise_Disable  
Suppression of the Digital Noise at Pin DATA  
Noise suppression is inactive  
0
1
Noise suppression is active (default)  
24  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
Table 11-10. Effect of the Configuration Word Lim_min  
Lim_min(1) (Lim_min < 10 is not Applicable)  
Lower Limit Value for Bit Check  
Lim_min5  
Lim_min4  
Lim_min3  
Lim_min2  
Lim_min1  
Lim_min0  
(TLim_min = Lim_min × XLim × TClk)  
0
0
0
..  
0
0
0
..  
1
1
1
..  
0
0
1
..  
1
1
0
..  
0
1
0
..  
10  
11  
12  
21 (default, BR_Range0)  
(TLim_min = 347µs for fRF = 868.3MHz  
TLim_min = 347µs for fRF = 433.92MHz  
TLim_min = 342µs for fRF = 315MHz)  
0
1
0
1
0
1
..  
1
1
1
..  
1
1
1
..  
1
1
1
..  
1
1
1
..  
0
1
1
..  
1
0
1
61  
62  
63  
Note:  
1. Lim_min is also used to determine the margins of the data clock control logic (see Section 9. “Data Clock” on page 17).  
Table 11-11. Effect of the Configuration Word Lim_max  
Lim_max(1) (Lim_max < 12 is not applicable)  
Upper Limit Value for Bit Check  
Lim_max5 Lim_max4 Lim_max3 Lim_max2 Lim_max1 Lim_max0 (TLim_max = (Lim_max – 1) × XLim × TClk  
)
0
0
0
..  
0
0
0
..  
1
1
1
..  
1
1
1
..  
0
0
1
..  
0
1
0
..  
12  
13  
14  
41 (default, BR_Range0)  
(TLim_max = 661µs for fRF = 868.3MHz  
TLim_max = 662µs for fRF = 433.92MHz  
TLim_max = 652µs for fRF = 315MHz)  
1
0
1
0
0
1
..  
1
1
1
..  
1
1
1
..  
1
1
1
..  
1
1
1
..  
0
1
1
..  
1
0
1
61  
62  
63  
Note:  
1. Lim_max is also used to determine the margins of the data clock control logic (see Section 9. “Data Clock” on page 17).  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
25  
9248D–RKE–10/14  
12. Conservation of the Register Information  
The Atmel® ATA5723C/ATA5724C uses an integrated power-on reset and brown-out detection circuitry as a mechanism to  
preserve the RAM register information.  
According to Figure 12-1, a power-on reset (POR) is generated if the supply voltage VS drops below the threshold voltage  
VThReset. The default parameters are programmed into the configuration registers in that condition. The POR is cancelled  
after the minimum reset period tRst when VS exceeds VThReset. A POR is also generated when the supply voltage of the  
receiver is turned on.  
To indicate that condition, the receiver displays a reset marker (RM) at pin DATA after a reset. The RM is represented by the  
fixed frequency fRM at a 50% duty-cycle. RM can be cancelled using a low pulse t1 at pin DATA. The RM has the following  
characteristics:  
fRM is lower than the lowest feasible frequency of a data signal. Due to this, RM cannot be misinterpreted by the  
connected microcontroller.  
If the receiver is set back to polling mode using pin DATA, RM cannot be cancelled accidentally if t1 is applied as  
described in the proposal in Section 13. “Programming the Configuration Register” on page 27.  
Using this conservation mechanism, the receiver cannot lose its register information without communicating this condition  
using the reset marker RM.  
Figure 12-1. Generation of the Power-on Reset  
VS  
VThreset  
POR  
tRst  
Data_out (DATA)  
X
1/fRM  
26  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
13. Programming the Configuration Register  
Figure 13-1. Timing of the Register Programming  
IC_ACTIVE  
t1  
t2  
t3  
t5  
t9  
t8  
t4  
t6  
t7  
Out1  
(Microcontroller)  
X
X
Data_out (DATA)  
Serial bi-directional  
Data Line  
Bit 1  
("0")  
(Start Bit)  
Bit 2  
("1")  
(Register  
select)  
Bit 14  
("0")  
(Poll 8)  
Bit 15  
("0")  
(Stop Bit)  
TSleep TStart-up  
Programming Frame  
Receiving  
Mode  
Sleep Start-up  
Mode Mode  
Figure 13-2. Data Interface  
V
X = 5V to 20V  
ATA5723C  
ATA5724C  
ATA5728C  
Microcontroller  
VS = 4.5V to 5.5V  
Rpup  
DATA  
I/O  
0V/5V  
0V to 20V  
Input  
Interface  
Data_in  
Serial bi-directional data line  
CL  
ID  
Data_out  
Out1 (Microcontroller)  
The configuration registers are serially programmed using the bi-directional data line as shown in Figure 13-1 and  
Figure 13-2.  
To start programming, the serial data line DATA is pulled to low by the microcontroller for the time period t1. When DATA  
has been released, the receiver becomes the master device. When the programming delay period t2 has elapsed, the  
receiver emits 15 subsequent synchronization pulses with the pulse length t3. After each of these pulses, a programming  
window occurs. The delay until the program window starts is determined by t4, the duration is defined by t5. The individual  
bits are set within the programming window. If the microcontroller pulls down pin DATA for the time period t7 during t5, the  
corresponding bit is set to “0”. If no programming pulse t7 is issued, this bit is set to “1”. All 15 bits are programmed this way.  
The time frame to program a bit is defined by t6.  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
27  
9248D–RKE–10/14  
Bit 15 is followed by the equivalent time window t9. During this window, the equivalence acknowledge pulse t8 (E_Ack)  
occurs if the just programmed mode word is equivalent to the mode word that was already stored in that register. E_Ack  
should be used to verify that the mode word was correctly transferred to the register. The register must be programmed  
twice in that case.  
A register can be programmed when the receiver is in both sleep-mode and active mode. During programming, the LNA, LO,  
low-pass filter, IF-amplifier, and the FSK/MSK demodulator are disabled. The t1 pulse is used to start the programming or to  
switch the receiver back to polling mode (OFF command). (The receiver is switched back to polling mode with the OFF  
command if bit 1 is set to “1”.) The following convention should be considered for the length of the programming start pulse  
t1:  
Using a t1 value of t1 (min) < t1 < 5632 TClk (where t1 (min) is the minimum specified value for the relevant BR_Range)  
when the receiver is active i.e., not in reset mode initiates the programming or OFF command. However, if this t1 value is  
used when the receiver is in reset mode, programming or OFF command is NOT initiated and RM remains present at pin  
DATA. Note, the RM cannot be deleted when using this t1 value.  
Using a t1 value of t1 > 7936 × TClk, programming or OFF command is initiated when the receiver is in both reset mode and  
active mode. The registers PMODE and LIMIT are set to the default values and the RM is deleted, if present. This t1 values  
can be used if the connected microcontroller detects an RM. Additionally, this t1 value can generally be used if the receiver  
operates in default mode.  
Note that the capacitive load at pin DATA is limited.  
28  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
14. Data Interface  
The data interface (see Figure 13-2 on page 27) is designed for automotive requirements. It can be connected using the pull-  
up resistor Rpup up to 20V and is short-circuit-protected.  
The applicable pull-up resistor Rpup depends on the load capacity CL at pin DATA and the selected BR_range (see  
Table 14-1).  
Table 14-1. Applicable Rpup  
-
BR_range  
Applicable Rpup  
1.6kΩ to 47kΩ  
1.6kΩ to 22kΩ  
1.6kΩ to 12kΩ  
1.6kΩ to 5.6kΩ  
1.6kΩ to 470kΩ  
1.6kΩ to 220kΩ  
1.6kΩ to 120kΩ  
1.6kΩ to 56kΩ  
B0  
B1  
B2  
B3  
B0  
B1  
B2  
B3  
CL 1nF  
CL 100pF  
Figure 14-1. Application Circuit: fRF = 315MHz(1), 433.92MHz or without SAW Filter  
VS  
RSSI  
C7  
4.7μF  
10%  
IC_ACTIVE  
+
R2  
Sensitivity Reduction  
VX = 5V to 20V  
56kΩ to 150kΩ  
GND  
R3  
1.6kΩ  
C14  
39nF  
5%  
1
2
3
20  
19  
18  
17  
16  
SENS  
DATA  
DATA  
IC_ACTIVE POLLING/_ON  
POLLING/_ON  
CDEM  
DGND  
DATA_CLK  
MODE  
DATA_CLK  
4
5
6
7
AVCC  
TEST1  
RSSI  
C12  
ATA5723C  
C13  
10nF  
10%  
10nF  
10%  
ATA5724C  
ATA5728C  
15  
14  
DVCC  
XTAL2  
CL2  
CL1  
AGND  
F
crystal  
8
9
13  
12  
11  
C17  
RF_IN  
LNAREF  
LNA_IN  
XTAL1  
TEST3  
TEST2  
10  
C16  
LNAGND  
L1  
Note:  
For 315MHz application pin MODE must be connected to GND.  
Table 14-2. Input Matching to 50Ω  
LNA Matching  
Crystal Frequency  
fXTAL (MHz)  
RF Frequency (MHz)  
C16 (pF)  
C17 (pF)  
L1 (nH)  
39  
315  
Not connected  
Not connected  
1
3
3
3
14.71875  
13.52875  
13.55234  
433.92  
868.3  
20  
6.8  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
29  
9248D–RKE–10/14  
15. Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Parameters  
Symbol  
VS  
Min.  
Max.  
6
Unit  
V
Supply voltage  
Power dissipation  
Ptot  
1000  
150  
+125  
+105  
10  
mW  
°C  
Junction temperature  
Storage temperature  
Ambient temperature  
Maximum input level, input matched to 50Ω  
Tj  
Tstg  
–55  
–40  
°C  
Tamb  
Pin_max  
°C  
dBm  
16. Thermal Resistance  
Parameters  
Symbol  
Value  
Unit  
Junction ambient  
RthJA  
100  
K/W  
30  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
17. Electrical Characteristics Atmel ATA5723C  
All parameters refer to GND, Tamb = –40°C to +105°C, VS = 4.5V to 5.5V, f0 = 315MHz unless otherwise specified  
(For typical values: VS = 5V, Tamb = 25°C).  
fRF = 315MHz  
14.71875MHz Oscillator  
Variable Oscillator  
Test  
No. Parameter Conditions  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ. Max.  
Min.  
Typ.  
Max.  
Unit Type*  
1
Basic Clock Cycle of the Digital Circuitry  
Basic clock  
cycle  
1.1  
TClk  
2.0382  
2.0382  
30/fXTO  
30/fXTO  
µs  
A
A
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
16.3057  
8.1528  
4.0764  
2.0382  
16.3057  
8.1528  
4.0764  
2.0382  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
µs  
µs  
µs  
µs  
Extended  
1.2 basic clock  
cycle  
TXClk  
2
Polling Mode  
Sleep time  
(see  
Figure 8-1,  
Figure 8-10  
and  
Sleep and  
XSleep are  
defined in the  
OPMODE  
register  
Sleep ×  
Sleep ×  
XSleep ×  
1024 ×  
2.0382  
Sleep ×  
Sleep ×  
XSleep  
×
2.1  
TSleep  
XSleep  
×
XSleep  
×
ms  
A
A
1024 ×  
2.0382  
1024 × TClk  
1024 × TClk  
Figure 13-1)  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
1827  
1044  
1044  
653  
1827  
1044  
1044  
653  
896.5  
512.5  
512.5  
320.5  
× TClk  
896.5  
512.5  
512.5  
320.5  
× TClk  
µs  
µs  
µs  
µs  
µs  
Start-up time  
(see Figure  
8-1 and  
2.2  
TStartup  
Figure 8-4)  
Average bit-  
check time  
while polling,  
no RF applied  
(see Figure 8-5  
and Figure 8-6)  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
Time for bit  
2.3 check (see  
Figure 8-1  
TBit-check  
C
0.45  
0.24  
0.14  
0.08  
0.45  
0.24  
0.14  
0.08  
ms  
ms  
ms  
ms  
Bit-check time  
for a valid input  
signal fSig (see  
Figure 8-5)  
Time for bit  
2.4 check (see  
Figure 8-1  
TBit-check  
C
N
N
N
N
Bit-check = 0  
Bit-check = 3  
Bit-check = 6  
Bit-check = 9  
1 × TXClk  
3/fSig  
6/fSig  
1 × TXClk  
3.5/fSig  
6.5/fSig  
9.5/fSig  
1 × TXClk  
3/fSig  
6/fSig  
1 × TClk  
3.5/fSig  
6.5/fSig  
9.5/fSig  
ms  
ms  
ms  
ms  
9/fSig  
9/fSig  
3
Receiving Mode  
Intermediate  
frequency  
3.1  
fIF  
987  
fIF = fLO/318  
kHz  
A
A
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
1.0  
1.8  
3.2  
5.6  
1.8  
3.2  
5.6  
BR_Range0 × 2 µs/TClk  
BR_Range1 × 2 µs/TClk  
BR_Range2 × 2 µs/TClk  
BR_Range3 × 2 µs/TClk  
Kbit/s  
Kbit/s  
Kbit/s  
Kbit/s  
Baud-rate  
range  
3.2  
BR_Range  
10.0  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
31  
9248D–RKE–10/14  
17. Electrical Characteristics Atmel ATA5723C (Continued)  
All parameters refer to GND, Tamb = –40°C to +105°C, VS = 4.5V to 5.5V, f0 = 315MHz unless otherwise specified  
(For typical values: VS = 5V, Tamb = 25°C).  
fRF = 315MHz  
14.71875MHz Oscillator  
Variable Oscillator  
Min. Typ. Max.  
Test  
No. Parameter Conditions  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ. Max.  
Unit Type*  
Minimum  
time period  
between  
edges at pin  
DATA  
BR_Range =  
BR_Range0  
163.06  
81.53  
40.76  
20.38  
163.06  
81.53  
40.76  
20.38  
10 × TXClk  
10 × TXClk  
10 × TXClk  
10 × TXClk  
10 × TXClk µs  
(see Figure BR_Range1  
10 × TXClk µs  
10 × TXClk µs  
10 × TXClk µs  
3.3 4-2 and  
BR_Range2  
Figure 8-8, BR_Range3  
Figure 8-9)  
tDATA_min  
A
(With the  
exception of  
parameter  
TPulse  
Maximum  
Low period at BR_Range0  
)
BR_Range =  
2120  
tDATA_L_max 1060  
2120  
1060  
530  
130 × TXClk  
130 × TXClk  
130 × TXClk  
130 × TXClk  
130 × TXClk µs  
130 × TXClk µs  
130 × TXClk µs  
130 × TXClk µs  
3.4 pin DATA  
(see  
BR_Range1  
BR_Range2  
A
A
530  
265  
Figure 4-2) BR_Range3  
265  
Delay to  
activate the  
3.5 start-up  
Ton1  
Ton2  
Ton3  
TPulse  
19.36  
16.3  
21.4  
9.5 × TClk  
10.5 × TClk µs  
mode (see  
Figure 8-12)  
OFF  
command at  
pin  
POLLING/  
_ON (see  
Figure 8-11)  
3.6  
8 × TClk  
µs  
A
A
C
Delay to  
activate the  
3.7 sleep mode  
(see  
17.32  
19.36  
8.5 × TClk  
9.5 × TClk  
µs  
Figure 8-11)  
Pulse on pin  
DATA at the BR_Range =  
end of a data BR_Range0  
stream  
(see  
Figure 10-3) BR_Range3  
16.3  
8.15  
4.07  
2.04  
16.3  
8.15  
4.07  
2.04  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
µs  
µs  
µs  
µs  
3.8  
BR_Range1  
BR_Range2  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
32  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
17. Electrical Characteristics Atmel ATA5723C (Continued)  
All parameters refer to GND, Tamb = –40°C to +105°C, VS = 4.5V to 5.5V, f0 = 315MHz unless otherwise specified  
(For typical values: VS = 5V, Tamb = 25°C).  
fRF = 315MHz  
14.71875MHz Oscillator  
Variable Oscillator  
Min. Typ. Max.  
Test  
No. Parameter Conditions  
Symbol  
Min. Typ. Max.  
Min.  
Typ. Max.  
Unit Type*  
4
Configuration of the Receiver (see Figure 12-1 and Figure 13-1)  
Frequency is  
stable within  
50ms after  
POR  
Frequency of  
4.1 the reset  
marker  
1/  
1/  
fRM  
119.78  
119.78  
(4096 ×  
TClk  
(4096 ×  
TClk)  
Hz  
A
A
)
BR_Range =  
BR_Range0  
Programming BR_Range1  
3310  
2242  
1708  
1441  
16175  
11479  
11479  
11479  
11479  
1624 × TClk  
1100 × TClk  
838 × TClk  
707 × TClk  
7936 × TClk  
5632 × TClk µs  
5632 × TClk µs  
5632 × TClk µs  
5632 × TClk µs  
µs  
4.2  
t1  
start pulse  
BR_Range2  
BR_Range3  
after POR  
Programming  
delay period  
384.5 ×  
TClk  
385.5 ×  
µs  
4.3  
4.4  
t2  
t3  
783  
261  
785  
261  
A
A
TClk  
Synchroniza-  
tion pulse  
128 × TClk  
63.5 × TClk  
128 × TClk µs  
63.5 × TClk µs  
Delay until of  
4.5 the program  
window starts  
t4  
129  
129  
A
Programming  
window  
4.6  
t5  
t6  
t7  
522  
1044  
130.5  
522  
1044  
522  
256 × TClk  
512 × TClk  
64 × TClk  
256 × TClk µs  
512 × TClk µs  
256 × TClk µs  
A
A
C
Time frame  
4.7  
of a bit  
Programming  
pulse  
4.8  
Equivalent  
4.9 acknowledge  
pulse: E_Ack  
t8  
t9  
261  
526  
916  
261  
526  
916  
128 × TClk  
258 × TClk  
128 × TClk µs  
258 × TClk µs  
A
A
A
Equivalent  
4.10  
time window  
OFF-bit  
4.11 programming  
window  
449.5 ×  
TClk  
449.5 ×  
µs  
t10  
TClk  
5
Data Clock (see Figure 9-1 and Figure 9-6)  
Minimum  
delay time  
between  
edge at  
DATA and  
DATA_CLK  
BR_Range =  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
0
0
0
0
16.3057  
8.1528  
4.0764  
2.0382  
0
0
0
0
1 × TXClk  
1 × TXClk  
1 × TXClk  
1 × TXClk  
µs  
µs  
µs  
µs  
5.1  
tDelay2  
C
A
BR_Range =  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
Pulse width  
of negative  
pulse at pin  
DATA_CLK  
65.2  
65.2  
32.6  
16.3  
8.15  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
µs  
µs  
µs  
µs  
5.2  
tP_DATA_CLK 32.6  
16.3  
8.15  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
33  
9248D–RKE–10/14  
18. Electrical Characteristics Atmel ATA5724C, ATA5728C  
All parameters refer to GND, Tamb = –40°C to +105°C, VS = 4.5V to 5.5V, f0 = 433.92MHz and f0 = 868.3MHz unless otherwise  
specified (for typical values: VS = 5V, Tamb = 25°C).  
fRF = 433.92MHz  
fRF = 868.3MHz,  
13.52875MHz Oscillator 13.55234MHz Oscillator  
Variable Oscillator  
Test  
No. Parameter  
Conditions  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Unit Type*  
6
Basic Clock Cycle of the Digital Circuitry  
Basic clock  
TClk  
6.1  
2.0696  
2.0696 2.066  
16.557 16.528  
2.066  
28/fXTO  
28/fXTO  
µs  
A
A
cycle  
BR_Range0  
Extended  
16.557  
8.278  
4.139  
2.069  
16.528  
8.264  
4.132  
2.066  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
µs  
µs  
µs  
µs  
BR_Range1  
BR_Range2  
BR_Range3  
8.278  
4.139  
2.069  
8.264  
4.132  
2.066  
6.2 basic clock  
cycle  
TXClk  
7
Polling Mode  
Sleep time  
(see  
Figure 8-1,  
Figure 8-10  
and  
Sleep and  
XSleep are  
defined in the  
OPMODE  
register  
Sleep ×  
Sleep × Sleep ×  
XSleep XSleep  
1024 × 1024 ×  
Sleep ×  
XSleep ×  
1024 ×  
2.066  
Sleep ×  
Sleep ×  
XSleep  
×
×
×
7.1  
TSleep  
XSleep  
×
XSleep  
×
ms  
A
A
1024 ×  
2.0696  
1024 × TClk  
1024 × TClk  
2.0696 2.066  
Figure 13-1)  
Start-up time BR_Range0  
1855  
1060  
1060  
663  
1855  
1060  
1060  
663  
1852  
1058  
1058  
662  
1852  
1058  
1058  
662  
896.5  
512.5  
512.5  
320.5  
× TClk  
896.5  
512.5  
512.5  
320.5  
× TClk  
µs  
µs  
µs  
µs  
µs  
(see  
BR_Range1  
BR_Range2  
BR_Range3  
7.2 Figure 8-1  
and  
TStartup  
Figure 8-4)  
Average bit-  
check time  
while polling,  
no RF applied  
(see Figure 8-  
8 on page 14  
and Figure 8-9  
on page 15)  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
Time for bit  
7.3 check (see  
Figure 8-1  
TBit-check  
C
0.45  
0.24  
0.14  
0.08  
0.45  
0.24  
0.14  
0.08  
0.45  
0.24  
0.14  
0.08  
ms  
ms  
ms  
ms  
Bit-check time  
for a valid  
input signal fSig  
Time for bit (see Figure 8-  
7.4 check (see  
Figure 8-1  
5 on page 13) TBit-check  
C
N
N
N
N
Bit-check = 0  
Bit-check = 3  
Bit-check = 6  
Bit-check = 9  
1 × TXClk  
3/fSig  
6/fSig  
1 × TXClk 1 × TXClk  
1 × TXClk 1 × TXClk  
1 × TClk  
3.5/fSig  
6.5/fSig  
9.5/fSig  
ms  
ms  
ms  
ms  
3.5/fSig  
6.5/fSig  
9.5/fSig  
3/fSig  
6/fSig  
9/fSig  
3.5/fSig  
6.5/fSig  
9.5/fSig  
3/fSig  
6/fSig  
9/fSig  
9/fSig  
8
Receiving Mode  
fIF = fLO/438 for the 433.92MHz  
band (Atmel ATA5724C)  
fIF =fLO/915 for the 868.3MHz band  
(Atmel ATA5728C)  
Intermediate  
frequency  
8.1  
fIF  
987  
947.9  
kHz  
A
A
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
1.0  
1.8  
3.2  
5.6  
1.8  
3.2  
5.6  
1.0  
1.8  
3.2  
5.6  
1.8  
3.2  
5.6  
BR_Range0 × 2 µs/TClk  
BR_Range1 × 2 µs/TClk  
BR_Range2 × 2 µs/TClk  
BR_Range3 × 2 µs/TClk  
Kbit/s  
Kbit/s  
Kbit/s  
Kbit/s  
Baud-rate  
range  
BR_Rang  
e
8.2  
10.0  
10.0  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
34  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
18. Electrical Characteristics Atmel ATA5724C, ATA5728C (Continued)  
All parameters refer to GND, Tamb = –40°C to +105°C, VS = 4.5V to 5.5V, f0 = 433.92MHz and f0 = 868.3MHz unless otherwise  
specified (for typical values: VS = 5V, Tamb = 25°C).  
fRF = 433.92MHz  
fRF = 868.3MHz,  
13.52875MHz Oscillator 13.55234MHz Oscillator  
Variable Oscillator  
Min. Typ. Max.  
Test  
Conditions  
No. Parameter  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Unit Type*  
Minimum  
time period  
between  
BR_Range =  
edges at pin  
DATA (see  
Figure 4-2,  
8.3 Figure 8-8,  
and  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
165.5  
82.8  
41.4  
20.7  
165.5  
82.8  
41.4  
20.7  
165.3  
82.6  
41.3  
20.6  
165.3 10 × TXClk  
10 × TXClk µs  
82.6  
41.3  
20.6  
10 × TXClk  
10 × TXClk  
10 × TXClk  
10 × TXClk µs  
10 × TXClk µs  
10 × TXClk µs  
tDATA_min  
A
Figure 8-9)  
(With the  
exception of  
parameter  
TPulse  
)
Maximum  
BR_Range =  
Low period at BR_Range0  
2152  
tDATA_L_max 1076  
2152  
1076  
538  
2148  
1074  
537  
2148 130 × TXClk  
1074 130 × TXClk  
130 × TXClk µs  
130 × TXClk µs  
130 × TXClk µs  
130 × TXClk µs  
8.4 pin DATA  
BR_Range1  
BR_Range2  
BR_Range3  
A
A
(see  
538  
269  
537  
130 × TXClk  
Figure 4-2)  
269  
268.5  
268.5 130 × TXClk  
Delay to  
activate the  
8.5 start-upmode  
(see  
Ton1  
Ton2  
Ton3  
TPulse  
19.6  
16.5  
17.6  
21.7  
19.6  
16.5  
17.6  
21.7  
9.5 × TClk  
10.5 × TClk µs  
Figure 8-12)  
OFF  
command at  
pin  
POLLING/  
8.6  
8 × TClk  
µs  
A
A
C
_ON (see  
Figure 8-11)  
Delay to  
activate the  
8.7 sleep mode  
(see  
19.6  
19.6  
8.5 × TClk  
9.5 × TClk  
µs  
Figure 8-11)  
Pulse on pin  
DATA at the BR_Range =  
end of a data BR_Range0  
stream  
(see  
16.557  
8.278  
4.139  
2.069  
16.557 16.528  
16.528  
8.264  
4.132  
2.066  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
µs  
µs  
µs  
µs  
8.8  
BR_Range1  
BR_Range2  
8.278  
4.139  
2.069  
8.264  
4.132  
2.066  
Figure 10-3) BR_Range3  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
35  
9248D–RKE–10/14  
18. Electrical Characteristics Atmel ATA5724C, ATA5728C (Continued)  
All parameters refer to GND, Tamb = –40°C to +105°C, VS = 4.5V to 5.5V, f0 = 433.92MHz and f0 = 868.3MHz unless otherwise  
specified (for typical values: VS = 5V, Tamb = 25°C).  
fRF = 433.92MHz  
fRF = 868.3MHz,  
13.52875MHz Oscillator 13.55234MHz Oscillator  
Variable Oscillator  
Min. Typ. Max.  
Test  
Conditions  
No. Parameter  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Unit Type*  
9
Configuration of the Receiver (see Figure 12-1 and Figure 13-1)  
Frequency is  
Frequency of  
1/  
1/  
stable within  
9.1 the reset  
marker  
fRM  
117.9  
117.9  
118.2  
118.2  
(4096 ×  
TClk  
(4096 ×  
TClk)  
Hz  
A
A
50ms after  
POR  
)
BR_Range =  
BR_Range0  
Programming BR_Range1  
3361  
2276  
1734  
1463  
16425  
11656  
11656  
11656  
11656  
3355  
2272  
1731  
1460  
11636 1624 × TClk  
11636 1100 × TClk  
11636 838 × TClk  
11636 707 × TClk  
7936 × TClk  
5632 × TClk µs  
5632 × TClk µs  
5632 × TClk µs  
5632 × TClk µs  
µs  
9.2  
t1  
start pulse  
BR_Range2  
BR_Range3  
after POR  
Programming  
delay period  
384.5 ×  
385.5 ×  
µs  
9.3  
9.4  
t2  
t3  
796  
265  
798  
265  
794  
264  
796  
TClk  
A
A
TClk  
Synchroniza-  
tion pulse  
264  
131  
529  
128 × TClk  
63.5 × TClk  
256 × TClk  
128 × TClk µs  
63.5 × TClk µs  
Delay until of  
9.5 the program  
window starts  
t4  
131  
131  
131  
A
Programming  
window  
9.6  
t5  
t6  
t7  
530  
1060  
132  
530  
1060  
530  
529  
1058  
132  
256 × TClk µs  
512 × TClk µs  
256 × TClk µs  
A
A
C
Time frame  
9.7  
1058 512 × TClk  
of a bit  
Programming  
pulse  
9.8  
529  
264  
533  
929  
64 × TClk  
128 × TClk  
258 × TClk  
Equivalent  
9.9 acknowledge  
pulse: E_Ack  
t8  
t9  
265  
534  
930  
265  
534  
930  
264  
533  
929  
128 × TClk µs  
258 × TClk µs  
A
A
A
Equivalent  
9.10  
time window  
OFF-bit  
9.11 programming  
window  
449.5 ×  
TClk  
449.5 ×  
µs  
t10  
TClk  
10 Data Clock (see Figure 9-1 and Figure 9-6)  
Minimum  
delay time  
between  
edge at DATA BR_Range2  
and  
BR_Range =  
BR_Range0  
BR_Range1  
0
0
0
0
16.557  
8.278  
4.139  
2.069  
0
0
0
0
16.528  
8.264  
4.132  
2.066  
0
0
0
0
1 × TXClk  
1 × TXClk  
1 × TXClk  
1 × TXClk  
µs  
µs  
µs  
µs  
10.1  
10.2  
tDelay2  
C
A
BR_Range3  
DATA_CLK  
BR_Range =  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
Pulse width of  
negative  
pulse at pin  
DATA_CLK  
66.2  
62.2  
33.1  
16.5  
8.3  
66.1  
33.0  
16.5  
8.25  
66.1  
33.0  
16.5  
8.25  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
µs  
µs  
µs  
µs  
tP_DATA_CLK 33.1  
16.5  
8.3  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
36  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
19. Electrical Characteristics Atmel ATA5723C/24C/28C  
All parameters refer to GND, Tamb = –40°C to +105°C, VS = 4.5V to 5.5V, f0 = 868.3MHz, f0 = 433.92MHz and f0 = 315MHz,  
unless otherwise specified. (For typical values: VS = 5V, Tamb = 25°C)  
No. Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit Type*  
11 Current Consumption  
Sleep mode  
(XTO and polling logic active)  
ISoff  
170  
290  
µA  
A
A
IC active (start-up-, bit-check-, receiving  
mode) Pin DATA = H  
FSK  
ASK  
11.1 Current consumption  
ISon  
8.5  
8.0  
11.0  
10.4  
mA  
mA  
12 LNA, Mixer, Polyphase Low-pass and IF Amplifier (Input Matched According to Figure 14-1 on page 29 Referred to RFIN)  
LNA/mixer/IF amplifier  
868MHz  
433MHz  
315MHz  
–18  
–23  
–24  
12.1 Third-order intercept point  
IIP3  
dBm  
C
12.2 LO spurious emission  
12.3 System noise figure  
Required according to I-ETS 300220  
With power matching |S11| < –10dB  
ISLORF  
NF  
–70  
5
–57  
dBm  
dB  
A
B
(14.15 –  
j73.53)  
At 868.3MHz  
AT 433.92MHz  
At 315MHz  
Ω
Ω
Ω
(19.3 –  
j113.3)  
12.4 LNA_IN input impedance  
ZiLNA_IN  
C
(26.97 –  
j158.7)  
At 868.3MHz  
AT 433.92MHz  
At 315MHz  
–27.7  
–32.7  
–33.7  
12.5 1 dB compression point  
12.6 Image rejection  
IP1db  
dBm  
dB  
C
A
C
Within the complete image band  
20  
30  
BER 10-3,  
FSK mode  
ASK mode  
12.7 Maximum input level  
13 Local Oscillator  
Pin_max  
–10  
–10  
dBm  
dBm  
Atmel ATA5728C  
Atmel ATA5724C  
Atmel ATA5723C  
868  
431.5  
312.5  
870  
436.5  
317.5  
MHz  
MHz  
MHz  
Operating frequency range  
VCO  
13.1  
fVCO  
A
fosc = 868.3MHz at 10MHz  
13.2 Phase noise local oscillator fosc = 433.92MHz at 10MHz  
fosc = 315MHz at 10MHz  
–140  
–143  
–143  
–130  
–133 dBC/Hz  
–133  
L (fm)  
B
B
13.3 Spurious of the VCO  
At ±fXTO  
–55  
–45  
dBC  
XTO pulling,  
appropriate load capacitance must be  
connected to XTAL, crystal CL1 and  
CL2  
fXTAL = 14.71875MHz (315MHz band)  
fXTAL = 13.52875MHz (433MHz band)  
fXTAL = 13.55234MHz (868MHz band)  
13.4 XTO pulling  
B
B
fXTO  
–10ppm  
fXTAL +10ppm MHz  
Series resonance resistor of  
13.5  
Parameter of the supplied crystal  
RS  
120  
Ω
the crystal  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
37  
9248D–RKE–10/14  
19. Electrical Characteristics Atmel ATA5723C/24C/28C (Continued)  
All parameters refer to GND, Tamb = –40°C to +105°C, VS = 4.5V to 5.5V, f0 = 868.3MHz, f0 = 433.92MHz and f0 = 315MHz,  
unless otherwise specified. (For typical values: VS = 5V, Tamb = 25°C)  
No. Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit Type*  
Static capacitance at pin  
XTAL1 to GND  
Parameter of the supplied crystal and  
board parasitics  
13.6  
13.7  
CL1  
–5%  
18  
+5%  
pF  
pF  
kΩ  
B
B
B
Static capacitance at pin  
XTAL2 to GND  
Parameter of the supplied crystal and  
board parasitics  
CL2  
–5%  
18  
+5%  
C0 < 1.8pF, CL = 9pF  
1.5  
fXTAL = 14.71875MHz  
Crystal series resistor Rm at  
start-up  
13.8  
C0 < 2.0pF, CL = 9pF  
fXTAL = 13.52875MHz  
fXTAL = 13.55234MHz  
1.5  
kΩ  
B
14 Analog Signal Processing (Input Matched According to Figure 14-1 on page 29 Referred to RFIN)  
ASK (level of carrier)  
BER 10-3, 100% Mod  
fin = 315MHz/433.92MHz  
VS = 5V, Tamb = 25°C  
fIF = 987kHz  
Input sensitivity ASK  
300kHz IF Filter  
(Atmel  
14.1  
PRef_ASK  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
–111  
–113  
–115  
dBm  
dBm  
dBm  
dBm  
B
B
B
B
ATA5723C/ATA5724C)  
–109.5 –111.5 –113.5  
–109  
–107  
–111  
–109  
–113  
–111  
ASK (level of carrier)  
BER 10-3, 100% Mod  
fin = 868.3MHz  
VS = 5V, Tamb = 25°C  
fIF = 948kHz  
Input sensitivity ASK  
14.2 600kHz IF Filter  
(Atmel ATA5728C)  
PRef_ASK  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
–109  
–111  
–113  
dBm  
dBm  
dBm  
dBm  
B
B
B
B
–107.5 –109.5 –111.5  
–107  
–105  
–109  
–107  
–111  
–109  
Sensitivity variation ASK for  
the full operating range  
300kHz and 600kHz  
14.3 compared to Tamb = 25°C,  
fin = 315MHz/433.92MHz/868.3MHz  
ΔPRef  
+2.5  
–1.5  
dB  
B
VS = 5V (Atmel ATA5723C/ PASK = PRef_ASK + ΔPRef  
ATA5724C/ATA5728C)  
300kHz version (Atmel  
ATA5723C/ATA5724C)  
fin = 315MHz/433.92MHz  
fIF = 987kHz  
ΔPRef  
+5.5  
+7.5  
–1.5  
–1.5  
dB  
dB  
B
fIF = –110kHz to +110kHz  
Sensitivity variation ASK for  
full operating range including  
IF filter compared to  
fIF = –140kHz to +140kHz  
PASK = PRef_ASK + ΔPRef  
14.4  
600kHz version (Atmel ATA5728C)  
fin = 868.3MHz  
Tamb = 25°C, VS = 5V  
fIF = 948kHz  
ΔPRef  
+5.5  
+7.5  
–1.5  
–1.5  
dB  
dB  
B
fIF = –210kHz to +210kHz  
fIF = –270kHz to +270kHz  
PASK = PRef_ASK + ΔPRef  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
38  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
19. Electrical Characteristics Atmel ATA5723C/24C/28C (Continued)  
All parameters refer to GND, Tamb = –40°C to +105°C, VS = 4.5V to 5.5V, f0 = 868.3MHz, f0 = 433.92MHz and f0 = 315MHz,  
unless otherwise specified. (For typical values: VS = 5V, Tamb = 25°C)  
No. Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit Type*  
BER 10-3  
fin = 315MHz/433.92MHz  
VS = 5V, Tamb = 25°C  
fIF = 987kHz  
BR_Range0  
df = ±16kHz  
df = ±10kHz to ±30kHz  
PRef_FSK  
–104  
–102  
–107  
–105  
–108.5 dBm  
–108.5 dBm  
B
B
B
B
Input sensitivity FSK  
300kHz IF filter  
(Atmel  
BR_Range1  
df = ±16kHz  
df = ±10kHz to ±30kHz  
14.5  
PRef_FSK  
–102  
–100  
–106.5 dBm  
–106.5 dBm  
ATA5723C/ATA5724C)  
BR_Range2  
df = ±16kHz  
df = ±10kHz to ±30kHz  
PRef_FSK –100.5 –103.5  
–98.5  
–105  
–105  
dBm  
dBm  
BR_Range3  
df = ±16kHz  
df = ±10kHz to ±30kHz  
PRef_FSK  
–98.5  
–96.5  
–101.5  
–103  
–103  
dBm  
dBm  
BER 10-3  
fin = 868.3MHz  
VS = 5V, Tamb = 25°C  
fIF = 948kHz  
BR_Range0  
df = ±16kHz to ±28kHz  
df = ±10kHz to ±100kHz  
PRef_FSK  
PRef_FSK  
PRef_FSK  
PRef_FSK  
–102  
–100  
–105  
–103  
–106.5 dBm  
–106.5 dBm  
B
B
B
B
Input sensitivity FSK  
14.6 600kHz IF filter  
(Atmel ATA5728C)  
BR_Range1  
df = ±16kHz ±28kHz  
df = ±10kHz to ±100kHz  
–100  
–98  
–104.5 dBm  
–104.5 dBm  
BR_Range2  
df = ±18kHz ±31kHz  
df = ±13kHz to ±100kHz  
–98.5  
–96.5  
–101.5  
–99.5  
–103  
–103  
dBm  
dBm  
BR_Range3  
df = ±25kHz ±44kHz  
df = ±20kHz to ±100kHz  
–96.5  
–94.5  
–101  
–101  
dBm  
dBm  
Sensitivity variation FSK for  
the full operating range  
300 kHz and 600 kHz versions  
14.7 compared to Tamb = 25°C,  
fin = 315MHz/433.92MHz/868.3MHz  
ΔPRef  
+3  
–1.5  
dB  
B
VS = 5V (Atmel ATA5723C/ PFSK = PRef_FSK + ΔPRef  
ATA5724C/ATA5728C)  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
39  
9248D–RKE–10/14  
19. Electrical Characteristics Atmel ATA5723C/24C/28C (Continued)  
All parameters refer to GND, Tamb = –40°C to +105°C, VS = 4.5V to 5.5V, f0 = 868.3MHz, f0 = 433.92MHz and f0 = 315MHz,  
unless otherwise specified. (For typical values: VS = 5V, Tamb = 25°C)  
No. Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit Type*  
300kHz version (ATA5723C/ATA5724C)  
fin = 315MHz/433.92MHz  
fIF = 987kHz  
fIF = –110kHz to +110kHz  
fIF = –140kHz to +140kHz  
fIF = –180kHz to +180kHz  
PFSK = PRef_FSK + ΔPRef  
ΔPRef  
+6  
+8  
+11  
–2  
–2  
–2  
dB  
dB  
dB  
B
B
Sensitivity variation FSK for  
the full operating range  
14.8 including IF filter compared  
to Tamb = 25°C,  
600kHz version (Atmel ATA5728C)  
fin = 868.3MHz  
fIF = 948kHz  
VS = 5V  
fIF = –150kHz to +150kHz  
ΔPRef  
+6  
+8  
+11  
–2  
–2  
–2  
dB  
dB  
dB  
fIF = –200kHz to +200kHz  
fIF = –260kHz to +150kHz  
PFSK = PRef_FSK + ΔPRef  
S/N ratio to suppress in-  
band noise signals. Noise  
signals may have any  
modulation scheme  
ASK mode  
FSK mode  
SNRASK  
SNRFSK  
10  
2
12  
3
dB  
dB  
14.9  
C
A
Dynamic range RSSI  
amplifier  
14.10  
ΔRRSSI  
60  
20  
dB  
14.11 RSSI output voltage range  
14.12 RSSI gain  
VRSSI  
GRSSI  
1
3.5  
V
A
A
mV/dB  
1
---------------------------------------------------------  
=
fcu_DF  
Lower cut-off frequency of  
the data filter  
2 × π × 30 kΩ × CDEM  
14.13  
fcu_DF  
0.11  
0.16  
0.20  
kHz  
B
CDEM = 33nF  
BR_Range0 (default)  
BR_Range1  
BR_Range2  
39  
22  
12  
8.2  
nF  
nF  
nF  
nF  
Recommended CDEM for  
14.14  
CDEM  
C
C
best performance  
BR_Range3  
BR_Range0 (default)  
BR_Range1  
BR_Range2  
270  
156  
89  
1000  
560  
320  
180  
µs  
µs  
µs  
µs  
Edge-to-edge time period of  
14.15 the input data signal for full  
sensitivity  
tee_sig  
BR_Range3  
50  
Upper cut-off frequency programmable  
in 4 ranges using a serial mode word  
Upper cut-off frequency data BR_Range0 (default)  
2.8  
4.8  
8.0  
3.4  
6.0  
10.0  
19.0  
4.0  
7.2  
12.0  
23.0  
kHz  
kHz  
kHz  
kHz  
14.16  
B
filter  
BR_Range1  
BR_Range2  
BR_Range3  
fu  
15.0  
300kHz version (ATA5723C/ATA5724C)  
RSense connected from pin SENS  
to VS, input matched according to  
Figure 14-1 “Application Circuit”,  
fin = 315MHz/433.92MHz,  
dBm  
(peak  
level)  
14.17 Reduced sensitivity  
VS = 5V, Tamb = +25°C  
RSense = 56kΩ  
RSense = 100kΩ  
PRef_Red  
PRef_Red  
–74  
–83  
–79  
–88  
–83  
–93  
dBm  
dBm  
B
B
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
40  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
19. Electrical Characteristics Atmel ATA5723C/24C/28C (Continued)  
All parameters refer to GND, Tamb = –40°C to +105°C, VS = 4.5V to 5.5V, f0 = 868.3MHz, f0 = 433.92MHz and f0 = 315MHz,  
unless otherwise specified. (For typical values: VS = 5V, Tamb = 25°C)  
No. Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit Type*  
600kHz version (Atmel ATA5728C)  
RSense connected from pin SENS  
to VS, input matched according to  
Figure 14-1 “Application Circuit”,  
fin = 868.3MHz,  
dBm  
(peak  
level)  
14.18 Reduced sensitivity  
VS = 5V, Tamb = +25°C  
RSense = 56kΩ  
RSense = 100kΩ  
RSense = 56kΩ  
PRef_Red  
PRef_Red  
–63  
–72  
–68  
–77  
–73  
–82  
dBm  
dBm  
B
B
5
5
0
0
0
0
dB  
dB  
Reduced sensitivity variation  
over full operating range  
14.19  
14.20  
RSense = 100kΩ  
ΔPRed  
C
PRed = PRef_Red + ΔPRed  
Values relative to RSense = 56kΩ  
RSense = 56kΩ  
0
dB  
dB  
dB  
dB  
Reduced sensitivity variation  
for different values of RSense  
RSense = 68kΩ  
RSense = 82kΩ  
ΔPRed  
–3.5  
–6.0  
–9.0  
C
A
RSense = 100kΩ  
14.21 Threshold voltage for reset  
15 Digital Ports  
VThRESET  
1.95  
2.8  
3.75  
V
Data output  
- Saturation voltage Low  
Iol 12mA  
Iol = 2mA  
Vol  
Vol  
Voh  
Iqu  
Iol_lim  
tamb_sc  
0.35  
0.08  
0.8  
0.3  
20  
20  
45  
85  
V
V
V
µA  
mA  
°C  
- max voltage at pin DATA  
- quiescent current  
15.1 - short-circuit current  
- ambient temp. in case of  
permanent short-circuit  
Data input  
Voh = 20V  
Vol = 0.8V to 20V  
Voh = 0V to 20V  
13  
30  
A
- Input voltage Low  
- Input voltage High  
VIl  
Vich  
0.35 ×  
VS  
V
V
0.65 × VS  
DATA_CLK output  
- Saturation voltage Low  
- Saturation voltage High  
IDATA_CLK = 1mA  
IDATA_CLK = –1mA  
Vol  
Voh  
0.1  
VS –  
0.15V  
0.4  
0.4  
V
V
15.2  
A
VS –  
0.4V  
IC_ACTIVE output  
- Saturation voltage Low  
- Saturation voltage High  
IIC_ACTIVE = 1mA  
IIC_ACTIVE = –1mA  
Vol  
Voh  
0.1  
VS –  
0.15V  
V
V
15.3  
A
A
VS –  
0.4V  
POLLING/_ON input  
15.4 - Low level input voltage  
- High level input voltage  
Receiving mode  
Polling mode  
VIl  
VIh  
0.2 × VS  
V
V
0.8 × VS  
0.8 × VS  
MODE pin  
15.5  
Test input must always be set to high  
Test input must always be set to low  
A
A
- High level input voltage  
VIh  
VIl  
V
V
TEST 1 pin  
15.6  
- Low level input voltage  
0.2 × VS  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
41  
9248D–RKE–10/14  
20. Ordering Information  
Extended Type Number  
ATA5723P3C-TKQW  
ATA5724P3C-TKQW  
ATA5728P6C-TKQW  
Package  
SSO20  
SSO20  
SSO20  
MOQ  
4,000  
4,000  
4,000  
Remarks  
315MHz version  
433MHz version  
868MHz version  
21. Package Information  
E1  
D
L
b
E
e
20  
11  
technical drawings  
according to DIN  
specifications  
Dimensions in mm  
1
10  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
Symbol MIN  
NOM  
1.0  
MAX NOTE  
A
A1  
A2  
D
0.9  
0.05  
0.85  
6.4  
1.1  
0.15  
0.95  
6.6  
0.1  
0.9  
6.5  
E
6.3  
6.4  
6.5  
E1  
L
4.3  
4.4  
4.5  
0.5  
0.6  
0.7  
C
0.1  
0.15  
0.25  
0.65 BSC  
0.2  
b
e
0.2  
0.3  
04/16/14  
TITLE  
DRAWING NO.  
6.543-5182.01-4  
REV.  
GPC  
Package Drawing Contact:  
packagedrawings@atmel.com  
Package: SSO20  
4.4mm  
1
42  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
9248D–RKE–10/14  
22. Revision History  
Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this  
document.  
Revision No.  
History  
Section 20 “Ordering Information” on page 42 updated  
Section 21 “Package Information” on page 42 updated  
Put datasheet in the latest template  
9248D-RKE-10/14  
9248C-RKE-08/14  
ATA5723C/ATA5724C/ATA5728C [DATASHEET]  
43  
9248D–RKE–10/14  
X
X X X X  
X
Atmel Corporation  
1600 Technology Drive, San Jose, CA 95110 USA  
T: (+1)(408) 441.0311  
F: (+1)(408) 436.4200  
|
www.atmel.com  
© 2014 Atmel Corporation. / Rev.: 9248D–RKE–10/14  
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and  
other countries. Other terms and product names may be trademarks of others.  
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right  
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE  
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS  
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT  
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES  
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS  
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this  
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information  
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,  
authorized, or warranted for use as components in applications intended to support or sustain life.  
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where  
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written  
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.  
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are  
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.  

相关型号:

ATA5723P3C-TKQY

Telecom Circuit, 1-Func, PDSO20
MICROCHIP

ATA5724

UHF ASK/FSK Receiver
ATMEL

ATA5724C_14

UHF ASK/FSK Receiver
ATMEL

ATA5724P3-TKQY

UHF ASK/FSK Receiver
ATMEL

ATA5724P3C-TKQW

Telecom Circuit, 1-Func, PDSO20, 4.40 MM, SSOP-20
ATMEL

ATA5724P3C-TKQY

Telecom Circuit, 1-Func, PDSO20
MICROCHIP

ATA5728

UHF ASK/FSK Receiver
ATMEL

ATA5728C_14

UHF ASK/FSK Receiver
ATMEL

ATA5728P6-TKQY

UHF ASK/FSK Receiver
ATMEL

ATA5728P6C-TKQW

Telecom Circuit, 1-Func, PDSO20, 4.40 MM, SSOP-20
ATMEL

ATA5728P6C-TKQW

Telecom Circuit
MICROCHIP

ATA5728P6C-TKQY

Telecom Circuit, 1-Func, PDSO20, SSOP-20
ATMEL