ATA8204P3-TKQY [ATMEL]

Industrial UHF ASK/FSK Receiver; 工业超高频ASK / FSK接收器
ATA8204P3-TKQY
型号: ATA8204P3-TKQY
厂家: ATMEL    ATMEL
描述:

Industrial UHF ASK/FSK Receiver
工业超高频ASK / FSK接收器

电信集成电路 电信电路 光电二极管
文件: 总46页 (文件大小:812K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Frequency Receiving Range of (3 Versions)  
– f0 = 312.5 MHz to 317.5 MHz or  
– f0 = 431.5 MHz to 436.5 MHz or  
– f0 = 868 MHz to 870 MHz  
30 dB Image Rejection  
Receiving Bandwidth  
– BIF = 300 kHz for 315 MHz/433 MHz Version  
– BIF = 600 kHz for 868 MHz Version  
Industrial UHF  
ASK/FSK  
Receiver  
Fully Integrated LC-VCO and PLL Loop Filter  
Very High Sensitivity with Power Matched LNA  
ATA8203/ATA8204:  
–107 dBm, FSK, BR_0 (1.0 kbit/s to 1.8 kBit/s), Manchester, BER 10E-3  
–113 dBm, ASK, BR_0 (1.0 kbit/s to 1.8 kBit/s), Manchester, BER 10E-3  
ATA8205:  
–105 dBm, FSK, BR_0 (1.0 kbit/s to 1.8 kBit/s), Manchester, BER 10E-3  
–111 dBm, ASK, BR_0 (1.0 kbit/s to 1.8 kBit/s), Manchester, BER 10E-3  
High System IIP3  
ATA8203  
ATA8204  
ATA8205  
– –18 dBm at 868 MHz  
– –23 dBm at 433 MHz  
– –24 dBm at 315 MHz  
System 1-dB Compression Point  
– –27.7 dBm at 868 MHz  
– –32.7 dBm at 433 MHz  
– –33.7 dBm at 315 MHz  
High Large-signal Capability at GSM Band (Blocking –33 dBm at +10 MHz,  
IIP3 = –24 dBm at +20 MHz)  
Logarithmic RSSI Output  
XTO Start-up with Negative Resistor of 1.5 kΩ  
5V to 20V Automotive Compatible Data Interface  
Data Clock Available for Manchester and Bi-phase-coded Signals  
Programmable Digital Noise Suppression  
Low Power Consumption Due to Configurable Polling  
Temperature Range –40°C to +85°C  
ESD Protection 2 kV HBM, All Pins  
Communication to Microcontroller Possible using a Single Bi-directional Data Line  
Low-cost Solution Due to High Integration Level with Minimum External Circuitry  
Requirements  
Supply Voltage Range 4.5V to 5.5V  
Benefits  
Low BOM List Due to High Integration  
Use of Low-cost 13 MHz Crystal  
Lowest Average Current Consumption for Application Due to Self Polling Feature  
Reuse of ATA5743 Software  
World-wide Coverage with One PCB Due to 3 Versions are Pin Compatible  
9121B–INDCO–04/09  
1. Description  
The ATA8203/ATA8204/ATA8205 is a multi-chip PLL receiver device supplied in an SSO20  
package. It has been specially developed for the demands of RF low-cost data transmission sys-  
tems with data rates from 1 kBit/s to 10 kBbit/s in Manchester or Bi-phase code. Its main  
applications are in the areas of aftermarket keyless entry systems, and tire pressure monitoring  
systems, telemetering, consumer/industrial remote control applications, home entertainment,  
access control systems,and security technology systems. It can be used in the frequency receiv-  
ing range of f0 = 312.5 MHz to 317.5 MHz, f0 = 431.5 MHz to 436.5 MHz or f0 = 868 MHz to  
870 MHz for ASK or FSK data transmission. All the statements made below refer to 315 MHz,  
433 MHz and 868.3 MHz applications.  
Figure 1-1. System Block Diagram  
UHF ASK/FSK  
UHF ASK/FSK  
Remote control transmitter  
Remote control receiver  
ATA8401/02/03/04/05  
ATA8203/  
ATA8204/  
ATA8205  
1 to 5 Micro-  
controller  
Demod.  
IF Amp  
Control  
XTO  
PLL  
Antenna Antenna  
VCO  
PLL  
XTO  
Power  
amp.  
LNA  
VCO  
2
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
Figure 1-2. Block Diagram  
FSK/ASK  
Demodulator  
and Data Filter  
Dem_out  
Data  
DATA  
CDEM  
RSSI  
Interface  
RSSI  
Limiter out  
RSSI  
POLLING/_ON  
Polling Circuit  
SENS  
IF  
Amp.  
Sensitivity  
reduction  
and Control Logic  
DATA_CLK  
AVCC  
AGND  
DGND  
DVCC  
MODE  
4. Order  
FE  
CLK  
f
= 1 MHz  
0
IC_ACTIVE  
Standby  
Logic  
LPF  
= 2.2 MHz  
f
g
IF  
Loop  
Amp.  
Filter  
XTAL2  
XTAL1  
XTO  
Poly-LPF  
= 7 MHz  
f
f
g
LC-VCO  
:2  
or :3  
LNAREF  
LNA_IN  
f
f
LNA  
:2  
:128  
or :4  
or :64  
LNAGND  
3
9121B–INDCO–04/09  
2. Pin Configuration  
Figure 2-1. Pinning SSO20  
SENS  
IC_ACTIVE  
CDEM  
1
2
3
4
5
6
7
8
9
20 DATA  
19 POLLING/_ON  
18 DGND  
AVCC  
17 DATA_CLK  
16 MODE  
15 DVCC  
TEST1  
ATA8203/  
ATA8204/  
ATA8205  
RSSI  
AGND  
14 XTAL2  
LNAREF  
LNA_IN  
13 XTAL1  
12 TEST3  
11 TEST2  
LNAGND 10  
Table 2-1.  
Pin Description  
Symbol  
SENS  
Pin  
1
Function  
Sensitivity-control resistor  
2
IC_ACTIVE  
CDEM  
IC condition indicator: Low = sleep mode, High = active mode  
Lower cut-off frequency data filter  
Analog power supply  
3
4
AVCC  
5
TEST 1  
RSSI  
Test pin, during operation at GND  
RSSI output  
6
7
AGND  
Analog ground  
8
LNAREF  
LNA_IN  
LNAGND  
TEST 2  
TEST 3  
XTAL1  
High-frequency reference node LNA and mixer  
RF input  
9
10  
11  
12  
13  
14  
15  
DC ground LNA and mixer  
Do not connect during operating  
Test pin, during operation at GND  
Crystal oscillator XTAL connection 1  
Crystal oscillator XTAL connection 2  
Digital power supply  
XTAL2  
DVCC  
Selecting 315 MHz/other versions  
16  
MODE  
Low: 315 MHz version (ATA8203)  
High: 433 MHz/868 MHz versions (ATA8204/ATA8205)  
17  
18  
19  
20  
DATA_CLK  
DGND  
Bit clock of data stream  
Digital ground  
POLLING/_ON  
DATA  
Selects polling or receiving mode; Low: receiving mode, High: polling mode  
Data output/configuration input  
4
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
3. RF Front-end  
The RF front-end of the receiver is a low-IF heterodyne configuration that converts the input sig-  
nal into about 1 MHz IF signal with a typical image rejection of 30 dB. According to Figure Figure  
1-2 on page 3 the front-end consists of an LNA (Low Noise Amplifier), LO (Local Oscillator), I/Q  
mixer, polyphase low-pass filter and an IF amplifier.  
The PLL generates the drive frequency fLO for the mixer using a fully integrated synthesizer with  
integrated low noise LC-VCO (Voltage Controlled Oscillator) and PLL-loop filter. The XTO (crys-  
tal oscillator) generates the reference frequency fREF = fXTO/2 (868 MHz and 433 MHz versions)  
or fREF = fXTO/3 (315 MHz version). The integrated LC-VCO generates two or four times the  
mixer drive frequency fVCO. The I/Q signals for the mixer are generated with a divide by two or  
four circuit (fLO = fVCO/2 for 868 MHz version, fLO = fVCO/4 for 433 MHz and 315 MHz versions).  
f
VCO is divided by a factor of 128 or 64 and feeds into a phase frequency detector and is com-  
pared with fREF. The output of the phase frequency detector is fed into an integrated loop filter  
and thereby generates the control voltage for the VCO. If fLO is determined, fXTO can be calcu-  
lated using the following formula:  
f
REF = fLO/128 for 868 MHz band, fREF = fLO/64 for 433 MHz bands, fREF = fLO/64 for 315 MHz  
bands.  
The XTO is a two-pin oscillator that operates at the series resonance of the quartz crystal with  
high current but low voltage signal, so that there is only a small voltage at the crystal oscillator  
frequency at pins XTAL1 and XTAL2. According to Figure 3-1, the crystal should be connected  
to GND with two capacitors CL1 and CL2 from XTAL1 and XTAL2 respectively. The value of  
these capacitors are recommended by the crystal supplier. Due to an inductive impedance at  
steady state oscillation and some PCB parasitics, a lower value of CL1 and CL2 is normally  
necessary.  
The value of CLx should be optimized for the individual board layout to achieve the exact value of  
fXTO and hence of fLO. (The best way is to use a crystal with known load resonance frequency to  
find the right value for this capacitor.) When designing the system in terms of receiving band-  
width and local oscillator accuracy, the accuracy of the crystal and the XTO must be considered.  
Figure 3-1. XTO Peripherals  
V
S
DVCC  
XTAL2  
XTAL1  
TEST3  
TEST2  
C
C
L2  
L1  
The nominal frequency fLO is determined by the RF input frequency fRF and the IF frequency fIF  
using the following formula (low-side injection):  
fLO = fRF – fIF  
5
9121B–INDCO–04/09  
To determine fLO, the construction of the IF filter must be considered. The nominal IF frequency  
is fIF = 950 kHz. To achieve a good accuracy of the filter corner frequencies, the filter is tuned by  
the crystal frequency fXTO. This means that there is a fixed relationship between fIF and fLO.  
fIF = fLO/318 for the 315 MHz band (ATA8203)  
fIF = fLO/438 for the 433.92 MHz band (ATA8204)  
fIF = fLO/915 for the 868.3 MHz band (ATA8205)  
The relationship is designed to achieve the nominal IF frequency of:  
fIF = 987 kHz for the 315 MHz and BIF = 300 kHz (ATA8203)  
fIF = 987 kHz for the 433.92 MHz and BIF = 300 kHz (ATA8204)  
fIF = 947.8 kHz for the 868.3 MHz and BIF = 600 kHz (ATA8205)  
The RF input either from an antenna or from an RF generator must be transformed to the RF  
input pin LNA_IN. The input impedance of this pin is provided in the electrical parameters. The  
parasitic board inductances and capacitances influence the input matching. The RF receiver  
ATA8203/ATA8204/ATA8205 exhibits its highest sensitivity if the LNA is power matched.  
Because of this, matching to a SAW filter, a 50Ω or an antenna is easier.  
Figure 14-1 on page 32 “Application Circuit” shows a typical input matching network for  
fRF = 315 MHz, fRF = 433.92 MHz or fRF = 868.3 MHz to 50Ω. The input matching network shown  
in Table 14-2 on page 32 is the reference network for the parameters given in the electrical  
characteristics.  
4. Analog Signal Processing  
4.1  
IF Filter  
The signals coming from the RF front-end are filtered by the fully integrated 4th-order IF filter.  
The IF center frequency is:  
fIF = 987 kHz for the 315 MHz and BIF = 300 kHz (ATA8203)  
fIF = 987 kHz for the 433.92 MHz and BIF = 300 kHz (ATA8204)  
fIF = 947.9 kHz for the 868.3 MHz and BIF = 600 kHz (ATA8205)  
The nominal bandwidth is 300 kHz for ATA8203 and ATA8204 and 600 kHz for ATA8205.  
4.2  
Limiting RSSI Amplifier  
The subsequent RSSI amplifier enhances the output signal of the IF amplifier before it is fed into  
the demodulator. The dynamic range of this amplifier is ΔRRSSI = 60 dB. If the RSSI amplifier is  
operated within its linear range, the best S/N ratio is maintained in ASK mode. If the dynamic  
range is exceeded by the transmitter signal, the S/N ratio is defined by the ratio of the maximum  
RSSI output voltage and the RSSI output voltage due to a disturber. The dynamic range of the  
RSSI amplifier is exceeded if the RF input signal is approximately 60 dB higher compared to the  
RF input signal at full sensitivity.  
The S/N ratio is not affected by the dynamic range of the RSSI amplifier in FSK mode because  
only the hard limited signal from a high-gain limiting amplifier is used by the demodulator.  
The output voltage of the RSSI amplifier (VRSSI) is available at pin RSSI. Using the RSSI output  
signal, the signal strength of different transmitters can be distinguished. The usable input power  
range PRef is –100 dBm to –55 dBm.  
6
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
Figure 4-1. RSSI Characteristics ATA8204  
RSSI Characteristics  
3.5  
3
4.5V -40 C  
˚
5V -40 C  
˚
5.5V -40 C  
˚
4.5V 25 C  
˚
5V 25 C  
˚
2.5  
2
5.5V 25 C  
˚
4.5V 85 C  
˚
5V 85 C  
˚
5.5V 85 C  
˚
1.5  
1
-120  
-110  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
PIN (dBm)  
The output voltage of the RSSI amplifier is internally compared to a threshold voltage VTh_red  
.
V
Th_red is determined by the value of the external resistor RSens. RSens is connected between pin  
SENS and GND or VS. The output of the comparator is fed into the digital control logic. By this  
means, it is possible to operate the receiver at a lower sensitivity.  
If RSens is connected to GND, the receiver switches to full sensitivity. It is also possible to con-  
nect the pin SENS directly to GND to get the maximum sensitivity.  
If RSens is connected to VS, the receiver operates at a lower sensitivity. The reduced sensitivity is  
defined by the value of RSens, and the maximum sensitivity is defined by the signal-to-noise ratio  
of the LNA input. The reduced sensitivity depends on the signal strength at the output of the  
RSSI amplifier.  
Since different RF input networks may exhibit slightly different values for the LNA gain, the sen-  
sitivity values given in the electrical characteristics refer to a specific input matching. This  
matching is described and illustrated in Section 14. “Data Interface” on page 32.  
RSens can be connected to VS or GND using a microcontroller. The receiver can be switched  
from full sensitivity to reduced sensitivity or vice versa at any time. In polling mode, the receiver  
does not wake up if the RF input signal does not exceed the selected sensitivity. If the receiver is  
already active, the data stream at pin DATA disappears when the input signal is lower than  
defined by the reduced sensitivity. Instead of the data stream, the pattern according to Figure  
4-2 “Steady L State Limited DATA Output Pattern” is issued at pin DATA to indicate that the  
receiver is still active (see Figure 13-2 on page 30 “Data Interface”).  
Figure 4-2. Steady L State Limited DATA Output Pattern  
DATA  
tDATA_min  
tDATA_L_max  
7
9121B–INDCO–04/09  
4.3  
FSK/ASK Demodulator and Data Filter  
The signal coming from the RSSI amplifier is converted into the raw data signal by the ASK/FSK  
demodulator. The operating mode of the demodulator is set using the bit ASK/_FSK in the  
OPMODE register. Logic L sets the demodulator to FSK, applying H to ASK mode.  
In ASK mode an automatic threshold control circuit (ATC) is employed to set the detection refer-  
ence voltage to a value where a good signal to noise ratio is achieved. This circuit also  
implements the effective suppression of any kind of in-band noise signals or competing transmit-  
ters. If the S/N (ratio to suppress in-band noise signals) exceeds about 10 dB the data signal can  
be detected properly. However, better values are found for many modulation schemes of the  
competing transmitter.  
The FSK demodulator is intended to be used for an FSK deviation of 10 kHz Δf 100 kHz. The  
data signal in FSK mode can be detected if the S/N (ratio to suppress in-band noise signals)  
exceeds about 2 dB. This value is valid for all modulation schemes of a disturber signal.  
The output signal of the demodulator is filtered by the data filter before it is fed into the digital  
signal processing circuit. The data filter improves the S/N ratio as its pass-band can be adopted  
to the characteristics of the data signal. The data filter consists of a 1st order high-pass and a 2nd  
order low-pass filter.  
The high-pass filter cut-off frequency is defined by an external capacitor connected to pin  
CDEM. The cut-off frequency of the high-pass filter is defined by the following formula:  
1
fcu_DF = ------------------------------------------------------------  
2 × π × 30 kΩ× CDEM  
In self-polling mode the data filter must settle very rapidly to achieve a low current consumption.  
Therefore, CDEM cannot be increased to very high values if self-polling is used. On the other  
hand, CDEM must be large enough to meet the data filter requirements according to the data  
signal. Recommended values for CDEM are given in the electrical characteristics.  
The cut-off frequency of the low-pass filter is defined by the selected baud-rate range  
(BR_Range). The BR_Range is defined in the OPMODE register (refer to Section 11. “Configur-  
ing the Receiver” on page 25). The BR_Range must be set in accordance to the baud-rate used.  
The ATA8203/ATA8204/ATA8205 is designed to operate with data coding where the DC level of  
the data signal is 50%. This is valid for Manchester and Bi-phase coding. If other modulation  
schemes are used, the DC level should always remain within the range of VDC_min = 33% and  
V
DC_max = 66%. The sensitivity may be reduced by up to 2 dB in that condition.  
Each BR_Range is also defined by a minimum and a maximum edge-to-edge time (tee_sig).  
These limits are defined in the electrical characteristics. They should not be exceeded to main-  
tain full sensitivity of the receiver.  
8
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
5. Receiving Characteristics  
The RF receiver ATA8203/ATA8204/ATA8205 can be operated with and without a SAW  
front-end filter. In a typical automotive application, a SAW filter is used to achieve better selectiv-  
ity and large signal capability. The receiving frequency response without a SAW front-end filter is  
illustrated in Figure 5-1 “Narrow Band Receiving Frequency Response ATA8204”. This example  
relates to ASK mode. FSK mode exhibits a similar behavior. The plots are printed relatively to  
the maximum sensitivity. If a SAW filter is used, an insertion loss of about 3 dB must be consid-  
ered, but the overall selectivity is much better.  
When designing the system in terms of receiving bandwidth, the LO deviation must be consid-  
ered as it also determines the IF center frequency. The total LO deviation is calculated, to be the  
sum of the deviation of the crystal and the XTO deviation of the ATA8203/ATA8204/ATA8205.  
Low-cost crystals are specified to be within ±90 ppm over tolerance, temperature, and aging.  
The XTO deviation of the ATA8203/ATA8204/ATA8205 is an additional deviation due to the  
XTO circuit. This deviation is specified to be ±10 ppm worst case for a crystal with CM = 7 fF. If  
a crystal of ±90 ppm is used, the total deviation is ±100 ppm in that case. Note that the receiving  
bandwidth and the IF-filter bandwidth are equivalent in ASK mode but not in FSK mode.  
Figure 5-1. Narrow Band Receiving Frequency Response ATA8204  
Image Rejection versus RF Frequency  
10  
0
4.5V -40 C  
˚
5V -40 C  
˚
-10  
-20  
-30  
-40  
-50  
-60  
-70  
5.5V -40 C  
˚
4.5V 25 C  
˚
5V 25 C  
˚
5.5V 25 C  
˚
430  
431  
432  
433  
434  
435  
436  
437  
438  
(MHz)  
9
9121B–INDCO–04/09  
6. Polling Circuit and Control Logic  
The receiver is designed to consume less than 1 mA while being sensitive to signals from a cor-  
responding transmitter. This is achieved using the polling circuit. This circuit enables the signal  
path periodically for a short time. During this time the bit-check logic verifies the presence of a  
valid transmitter signal. Only if a valid signal is detected, the receiver remains active and trans-  
fers the data to the connected microcontroller. If there is no valid signal present, the receiver is  
in sleep mode most of the time resulting in low current consumption. This condition is called poll-  
ing mode. A connected microcontroller is disabled during that time.  
All relevant parameters of the polling logic can be configured by the connected microcontroller.  
This flexibility enables the user to meet the specifications in terms of current consumption, sys-  
tem response time, data rate etc.  
The receiver is very flexible with regards to the number of connection wires to the microcon-  
troller. It can be either operated by a single bi-directional line to save ports to the connected  
microcontroller or it can be operated by up to five uni-directional ports.  
7. Basic Clock Cycle of the Digital Circuitry  
The complete timing of the digital circuitry and the analog filtering is derived from one clock. This  
clock cycle TClk is derived from the crystal oscillator (XTO) in combination with a divide by 28 or  
30 circuit. According to Section 3. “RF Front-end” on page 5, the frequency of the crystal oscilla-  
tor (fXTO) is defined by the RF input signal (fRFin) which also defines the operating frequency of  
the local oscillator (fLO). The basic clock cycle for ATA8204 and ATA8205 is TClk 28/fXTO giving  
T
Clk = 2.066 µs for fRF = 868.3 MHz and TClk = 2.069 µs for fRF = 433.92 MHz. For ATA8203 the  
basic clock cycle is TClk = 30/fREF giving TClk = 2.0382 µs for fRF = 315 MHz.  
T
Clk controls the following application-relevant parameters:  
• Timing of the polling circuit including bit check  
• Timing of the analog and digital signal processing  
• Timing of the register programming  
• Frequency of the reset marker  
• IF filter center frequency (fIF0)  
Most applications are dominated by three transmission frequencies: fTransmit = 315 MHz is mainly  
used in USA, fTransmit = 868.3 MHz and 433.92 MHz in Europe. All timings are based on TClk. For  
the aforementioned frequencies, TClk is given as:  
• Application 315 MHz band (fXTO = 14.71875 MHz, fLO = 314.13 MHz, TClk = 2.0382 µs)  
• Application 868.3 MHz band (fXTO = 13.55234 MHz, fLO = 867.35 MHz, TClk = 2.066 µs)  
• Application 433.92 MHz band (fXTO = 13.52875 MHz, fLO = 432.93 MHz, TClk = 2.0696 µs)  
For calculation of TClk for applications using other frequency bands, see table in Section 18.  
“Electrical Characteristics ATA8204, ATA8205” on page 37.  
10  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
The clock cycle of some function blocks depends on the selected baud-rate range (BR_Range),  
which is defined in the OPMODE register. This clock cycle TXClk is defined by the following  
formulas:  
BR_Range =  
BR_Range0:  
BR_Range1:  
BR_Range2:  
BR_Range3:  
TXClk = 8 × TClk  
TXClk = 4 × TClk  
TXClk = 2 × TClk  
TXClk = 1 × TClk  
8. Polling Mode  
According to Figure 8-1 on page 12, the receiver stays in polling mode in a continuous cycle of  
three different modes. In sleep mode the signal processing circuitry is disabled for the time  
period TSleep while consuming low current of IS = ISoff. During the start-up period, TStartup, all sig-  
nal processing circuits are enabled and settled. In the following bit-check mode, the incoming  
data stream is analyzed bit-by-bit and compared with a valid transmitter signal. If no valid signal  
is present, the receiver is set back to sleep mode after the period TBit-check. This period varies  
according to each check as it is a statistical process. An average value for TBitcheck is given in the  
electrical characteristics. During TStartup and TBit-check, the current consumption is IS = ISon. The  
condition of the receiver is indicated on pin IC_ACTIVE. The average current consumption in  
polling mode is dependent on the duty cycle of the active mode and can be calculated as:  
I
× T  
+ I  
× (T  
+ T  
)
Bit-check  
Soff  
Sleep  
Son  
Startup  
I
= ---------------------------------------------------------------------------------------------------------------  
Spoll  
T
+ T  
+ T  
Startup Bit-check  
Sleep  
During TSleep and TStartup, the receiver is not sensitive to a transmitter signal. To guarantee the  
reception of a transmitted command, the transmitter must start the telegram with an adequate  
preburst. The required length of the preburst depends on the polling parameters TSleep, TStartup  
,
T
Bit-check and the start-up time of a connected microcontroller, TStart_microcontroller. Thus, TBit-check  
depends on the actual bit rate and the number of bits (NBit-check) to be tested.  
The following formula indicates how to calculate the preburst length.  
T
Preburst TSleep + TStartup + TBit-check + TStart_microcontroller  
8.1  
Sleep Mode  
The length of period TSleep is defined by the 5-bit word Sleep of the OPMODE register, the exten-  
sion factor XSleep (according to Table 11-8 on page 27), and the basic clock cycle TClk. It is  
calculated to be:  
T
Sleep = Sleep × XSleep × 1024 × TClk  
The maximum value of TSleep is about 60 ms if XSleep is set to 1. The time resolution is about  
2 ms in that case. The sleep time can be extended to almost half a second by setting XSleep to 8.  
X
Sleep can be set to 8 by bit XSleepStd to “1”.  
Setting the configuration word Sleep to its maximal value puts the receiver into a permanent  
sleep mode. The receiver remains in this state until another value for Sleep is programmed into  
the OPMODE register. This is particularily useful when several devices share a single data line.  
(It can also be used for microcontroller polling: using pin POLLING/_ON, the receiver can be  
switched on and off.)  
11  
9121B–INDCO–04/09  
Figure 8-1. Polling Mode Flow Chart  
Sleep Mode:  
All circuits for signal processing are  
disabled. Only XTO and Polling logic are  
enabled.  
Output level on Pin IC_ACTIVE = > low  
Sleep:  
XSleep  
TClk  
TStartup  
5-bit word defined by Sleep 0 to  
Sleep 4 in OPMODE register  
IS = ISoff  
TSleep = Sleep  
×
XSleep  
×
1024  
×
TClk  
:
Extension factor defined by  
XSleepStd according to Table 11-8  
:
Basic clock cycle defined by fXTO  
and Pin MODE  
Start-up Mode:  
:
Is defined by the selected baud rate  
range and TClk. The baud-rate range  
is defined by Baud 0 and Baud 1 in  
the OPMODE register.  
The signal processing circuits are  
enabled. After the start-up time (TStartup  
all circuits are in stable  
)
condition and ready to receive.  
Output level on Pin IC_ACTIVE = > high  
IS = ISon  
TStartup  
Bit-check Mode:  
The incoming data stream is  
analyzed. If the timing indicates a valid  
transmitter signal, the receiver is set to  
receiving mode. Otherwise it is set to  
Sleep mode.  
TBit-check  
:
Depends on the result of the bit check  
If the bit check is ok, TBit-check  
depends on the number of bits to be  
checked (NBit-check) and on the  
data rate used.  
Output level on Pin IC_ACTIVE = > high  
IS = ISon  
TBit-check  
Bit Check  
OK ?  
If the bit check fails, the average  
time period for that check depends  
on the selected baud-rate range and  
on TClk. The baud-rate range is  
defined by Baud 0 and Baud 1 in the  
OPMODE register.  
NO  
YES  
Receiving Mode:  
The receiver is turned on permanently  
and passes the data stream to the  
connected microcontroller.  
It can be set to Sleep mode through an  
OFF command via Pin DATA or  
Polling/_ON.  
Output level on Pin IC_ACTIVE = > high  
IS = ISon  
OFF Command  
12  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
8.2  
8.3  
Bit-check Mode  
In bit-check mode the incoming data stream is examined to distinguish between a valid signal  
from a corresponding transmitter and signals due to noise. This is done by subsequent time  
frame checks where the distances between 2 signal edges are continuously compared to a pro-  
grammable time window. The maximum number of these edge-to-edge tests, before the  
receiver switches to receiving mode, is also programmable.  
Configuring the Bit Check  
Assuming a modulation scheme that contains two edges per bit, two time frame checks verify  
one bit. This is valid for Manchester, Bi-phase, and most other modulation schemes. The maxi-  
mum count of bits to be checked can be set to 0, 3, 6, or 9 bits using the variable NBit-check in the  
OPMODE register. This implies 0, 6, 12, and 18 edge-to-edge checks respectively. If NBit-check is  
set to a higher value, the receiver is less likely to switch to receiving mode due to noise. In the  
presence of a valid transmitter signal, the bit check takes less time if NBit-check is set to a lower  
value. In polling mode, the bit-check time is not dependent on NBit-check. Figure 8-2 shows an  
example where three bits are tested successfully and the data signal is transferred to pin DATA.  
Figure 8-2. Timing Diagram for Complete Successful Bit Check  
Bit check ok  
(Number of checked Bits: 3)  
IC_ACTIVE  
Bit check  
1/2 Bit  
1/2 Bit 1/2 Bit  
1/2 Bit  
1/2 Bit  
1/2 Bit  
Dem_out  
Data_out (DATA)  
TStart-up  
TBit-check  
Start-check mode  
Start-up mode  
Receiving mode  
According to Figure 8-3, the time window for the bit check is defined by two separate time limits.  
If the edge-to-edge time tee is in between the lower bit-check limit TLim_min and the upper  
bit-check limit TLim_max, the check continues. If tee is smaller than TLim_min or tee exceeds TLim_max  
,
the bit check is terminated and the receiver switches to sleep mode.  
Figure 8-3. Valid Time Window for Bit Check  
1/fSig  
tee  
Dem_out  
TLim_min  
TLim_max  
13  
9121B–INDCO–04/09  
For best noise immunity using a low span between TLim_min and TLim_max is recommended. This is  
achieved using a fixed frequency at a 50% duty cycle for the transmitter preburst. A “11111...” or  
a “10101...” sequence in Manchester or Bi-phase is suitable for this. A good compromise  
between receiver sensitivity and susceptibility to noise is a time window of ±30% regarding the  
expected edge-to-edge time tee. Using pre-burst patterns that contain various edge-to-edge time  
periods, the bit-check limits must be programmed according to the required span.  
The bit-check limits are determined by means of the formula below.  
T
Lim_min = Lim_min × TXClk  
TLim_max = (Lim_max – 1) × TXClk  
Lim_min and Lim_max are defined by a 5-bit word each within the LIMIT register.  
Using above formulas, Lim_min and Lim_max can be determined according to the required  
T
Lim_min, TLim_max and TXClk. The time resolution defining TLim_min and TLim_max is TXClk. The mini-  
mum edge-to-edge time tee (tDATA_L_min, tDATA_H_min) is defined according to the Section 8.6  
“Digital Signal Processing” on page 16. The lower limit should be set to Lim_min 10. The max-  
imum value of the upper limit is Lim_max = 63.  
If the calculated value for Lim_min is < 19, it is recommended to check 6 or 9 bits (NBit-check) to  
prevent switching to receiving mode due to noise.  
Figure 8-4, Figure 8-5, and Figure 8-6 illustrate the bit check for the bit-check limits  
Lim_min = 14 and Lim_max = 24. When the IC is enabled, the signal processing circuits are  
enabled during TStartup. The output of the ASK/FSK demodulator (Dem_out) is undefined during  
that period. When the bit check becomes active, the bit-check counter is clocked with the cycle  
TXClk  
.
Figure 8-4 shows how the bit check proceeds if the bit-check counter value CV_Lim is within the  
limits defined by Lim_min and Lim_max at the occurrence of a signal edge. In Figure 8-5 the bit  
check fails as the value CV_Lim is lower than the limit Lim_min. The bit check also fails if  
CV_Lim reaches Lim_max. This is illustrated in Figure 8-6.  
Figure 8-4. Timing Diagram During Bit Check  
Bit check ok  
Bit check ok  
(Lim_min = 14, Lim_max = 24)  
IC_ACTIVE  
Bit check  
1/2 Bit  
1/2 Bit  
1/2 Bit  
Dem_out  
Bit-check  
0
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9 10 111213 141516 17 18 1 2 3 4 5 6 7 8 9 10 1112 13 1415 1 2 3 4  
counter  
TXClk  
TStart-up  
TBit-check  
Start-up mode  
Bit-check mode  
14  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
Figure 8-5. Timing Diagram for Failed Bit Check (Condition: CV_Lim < Lim_min)  
(Lim_min = 14, Lim_max = 24)  
Bit check failed (CV_Lim_ < Lim_min)  
IC_ACTIVE  
Bit check  
1/2 Bit  
Dem_out  
Bit-check  
counter  
0
1
2
3
4
5
6
1
2
3
4
5
6
7
8
9 10 1112  
0
TStart-up  
TBit-check  
Bit-check mode  
TSleep  
Start-up mode  
Sleep mode  
Figure 8-6. Timing Diagram for Failed Bit Check (Condition: CV_Lim Lim_max)  
(Lim_min = 14, Lim_max = 24)  
Bit check failed (CV_Lim >= Lim_max)  
IC_ACTIVE  
Bit check  
1/2 Bit  
Dem_out  
Bit-check  
counter  
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
9 10 111213 1415 16 17 18 19 2021 222324  
0
TStart-up  
TBit-check  
Bit-check mode  
TSleep  
Start-up mode  
Sleep mode  
8.4  
Duration of the Bit Check  
If no transmitter signal is present during the bit check, the output of the ASK/FSK demodulator  
delivers random signals. The bit check is a statistical process and TBit-check varies for each check.  
Therefore, an average value for TBit-check is given in the electrical characteristics. TBit-check  
depends on the selected baud-rate range and on TClk. A higher baud-rate range causes a lower  
value for TBit-check resulting in a lower current consumption in polling mode.  
In the presence of a valid transmitter signal, TBit-check is dependent on the frequency of that sig-  
nal, fSig, and the count of the checked bits, NBit-check. A higher value for NBit-check thereby results in  
a longer period for TBit-check requiring a higher value for the transmitter pre-burst TPreburst  
.
8.5  
Receiving Mode  
If the bit check was successful for all bits specified by NBit-check, the receiver switches to receiving  
mode. According to Figure 8-2 on page 13, the internal data signal is switched to pin DATA in  
that case, and the data clock is available after the start bit has been detected (see Figure 9-1 on  
page 20). A connected microcontroller can be woken up by the negative edge at pin DATA or by  
the data clock at pin DATA_CLK. The receiver stays in that condition until it is switched back to  
polling mode explicitly.  
15  
9121B–INDCO–04/09  
8.6  
Digital Signal Processing  
The data from the ASK/FSK demodulator (Dem_out) is digitally processed in different ways and  
as a result converted into the output signal data. This processing depends on the selected  
baud-rate range (BR_Range). Figure 8-7 illustrates how Dem_out is synchronized by the  
extended clock cycle TXClk. This clock is also used for the bit-check counter. Data can change its  
state only after TXClk has elapsed. The edge-to-edge time period tee of the Data signal as a result  
is always an integral multiple of TXClk  
.
The minimum time period between two edges of the data signal is limited to tee TDATA_min. This  
implies an efficient suppression of spikes at the DATA output. At the same time it limits the max-  
imum frequency of edges at DATA. This eases the interrupt handling of a connected  
microcontroller.  
The maximum time period for DATA to stay low is limited to TDATA_L_max. This function is  
employed to ensure a finite response time in programming or switching off the receiver via pin  
DATA. TDATA_L_max is therefore longer than the maximum time period indicated by the transmitter  
data stream. Figure 8-9 on page 17 gives an example where Dem_out remains Low after the  
receiver has switched to receiving mode.  
Figure 8-7. Synchronization of the Demodulator Output  
TXClk  
Clock bit-check  
counter  
Dem_out  
Data_out (DATA)  
tee  
Figure 8-8. Debouncing of the Demodulator Output  
Dem_out  
Data_out (DATA)  
tDATA_min  
tDATA_min  
tDATA_min  
tee  
tee  
tee  
16  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
Figure 8-9. Steady L State Limited DATA Output Pattern After Transmission  
IC_ACTIVE  
Bit check  
Dem_out  
Data_out (DATA)  
tDATA_min  
tDATA_L_max  
Start-up mode  
Bit-check mode  
Receiving mode  
After the end of a data transmission, the receiver remains active. Depending of the bit  
Noise_Disable in the OPMODE register, the output signal at pin DATA is high or random noise  
pulses appear at pin DATA (see Section 10. “Digital Noise Suppression” on page 23). The  
edge-to-edge time period tee of the majority of these noise pulses is equal or slightly higher than  
TDATA_min  
.
8.7  
Switching the Receiver Back to Sleep Mode  
The receiver can be set back to polling mode via pin DATA or via pin POLLING/_ON.  
When using pin DATA, this pin must be pulled to low by the connected microcontroller for the  
period t1. Figure 8-10 on page 18 illustrates the timing of the OFF command (see Figure 13-2 on  
page 30). The minimum value of t1 depends on the BR_Range. The maximum value for t1 is not  
limited; however, exceeding the specified value to prevent erasing the reset marker is not rec-  
ommended. Note also that an internal reset for the OPMODE and the LIMIT register is  
generated if t1 exceeds the specified values. This item is explained in more detail in the Section  
11. “Configuring the Receiver” on page 25. Setting the receiver to sleep mode via DATA is  
achieved by programming bit 1 to “1” during the register configuration. Only one sync pulse (t3)  
is issued.  
The duration of the OFF command is determined by the sum of t1, t2, and t10. The sleep time  
T
Sleep elapses after the OFF command. Note that the capacitive load at pin DATA is limited (see  
Section 14. “Data Interface” on page 32).  
17  
9121B–INDCO–04/09  
Figure 8-10. Timing Diagram of the OFF Command using Pin DATA  
IC_ACTIVE  
t1  
t2  
t3  
t5  
t4  
t10  
t7  
Out1  
(microcontroller)  
X
X
Data_out (DATA)  
Serial bi-directional  
data line  
Bit 1  
("1")  
(Start Bit)  
OFF-command  
TSleep  
TStart-up  
Receiving mode  
Sleep mode  
Start-up mode  
Figure 8-11. Timing Diagram of the OFF Command using Pin POLLING/_ON  
IC_ACTIVE  
ton2  
ton3  
Bit check ok  
POLLING/_ON  
X
X
X
X
Data_out (DATA)  
Serial bi-directional  
data line  
Receiving mode  
Sleep mode Start-up mode Bit-check mode  
Receiving mode  
Figure 8-12. Activating the Receiving Mode using Pin POLLING/_ON  
IC_ACTIVE  
ton1  
POLLING/_ON  
X
Data_out (DATA)  
Serial bi-directional  
data line  
X
Sleep mode  
Start-up mode  
Receiving mode  
18  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
Figure 8-11 “Timing Diagram of the OFF Command using Pin POLLING/_ON” illustrates how to  
set the receiver back to polling mode using pin POLLING/_ON. The pin POLLING/_ON must be  
held to low for the time period ton2. After the positive edge on pin POLLING/_ON and the delay  
ton3, the polling mode is active and the sleep time TSleep elapses.  
Using the POLLING/_ON command is faster than using pin DATA; however, this requires the  
use of an additional connection to the microcontroller.  
Figure 8-12 “Activating the Receiving Mode using Pin “POLLING/_ON” illustrates how to set the  
receiver to receiving mode using the pin POLLING/_ON. The pin POLLING/_ON must be held to  
low. After the delay ton1, the receiver changes from sleep mode to start-up mode regardless of  
the programmed values for TSleep and NBit-check. As long as POLLING/_ON is held to low, the val-  
ues for TSleep and NBit-check is ignored, but not deleted (see Section 10. “Digital Noise  
Suppression” on page 23).  
If the receiver is polled exclusively by a microcontroller, TSleep must be programmed to 31 (per-  
manent sleep mode). In this case the receiver remains in sleep mode as long as POLLING/_ON  
is held to high.  
9. Data Clock  
The pin DATA_CLK makes a data shift clock available to sample the data stream into a shift reg-  
ister. Using this data clock, a microcontroller can easily synchronize the data stream. This clock  
can only be used for Manchester and Bi-phase coded signals.  
9.1  
Generation of the Data Clock  
After a successful bit check, the receiver switches from polling mode to receiving mode and the  
data stream is available at pin DATA. In receiving mode, the data clock control logic (Man-  
chester/Bi-phase demodulator) is active and examines the incoming data stream. This is done,  
as with the bit check, by subsequent time frame checks where the distance between two edges  
is continuously compared to a programmable time window. As illustrated in Figure 9-1 on page  
20, only two distances between two edges in Manchester and Bi-phase coded signals are valid  
(T and 2T).  
The limits for T are the same as used with the bit check. They can be programmed in the  
LIMIT-register (Lim_min and Lim_max, see Table 11-10 on page 28 and Table 11-11 on page  
28).  
The limits for 2T are calculated as follows:  
Lower limit of 2T:  
Upper limit of 2T:  
Lim_min_2T = (Lim_min + Lim_max) – (Lim_max – Lim_min)/2  
Lim_max_2T= (Lim_min + Lim_max) + (Lim_max – Lim_min)/2  
(If the result for ’Lim_min_2T’ or ’Lim_max_2T’ is not an integer value, it is rounded up.)  
The data clock is available, after the data clock control logic has detected the distance 2T (Start  
bit) and is issued with the delay tDelay after the edge on pin DATA (see Figure 9-1 on page 20).  
If the data clock control logic detects a timing or logical error (Manchester code violation), as  
illustrated in Figure 9-2 on page 20 and Figure 9-3 on page 21, it stops the output of the data  
clock. The receiver remains in receiving mode and starts with the bit check. If the bit check was  
successful and the start bit has been detected, the data clock control logic starts again with the  
generation of the data clock (see Figure 9-4 on page 21).  
19  
9121B–INDCO–04/09  
Use the function of the data clock only in conjunction with the bit check 3, 6 or 9 is recom-  
mended. If the bit check is set to 0 or the receiver is set to receiving mode using the pin  
POLLING/_ON, the data clock is available if the data clock control logic has detected the dis-  
tance 2T (Start bit).  
Note that for Bi-phase-coded signals, the data clock is issued at the end of the bit.  
Figure 9-1. Timing Diagram of the Data Clock  
Preburst  
Data  
Bit check ok  
'1'  
T
2T  
'1'  
'1'  
'1'  
'1'  
'0'  
'1'  
'1'  
'0'  
'1'  
'0'  
Dem_out  
Data_out (DATA)  
DATA_CLK  
tDelay  
tP_Data_Clk  
Bit-check mode  
Start bit  
Receiving mode,  
data clock control logic active  
Figure 9-2. Data Clock Disappears Because of a Timing Error  
Data  
Timing error  
Tee < TLim_min or tLim_max < Tee < TLim_min_2T or Tee > TLim_max_2T  
Tee  
'1'  
'1'  
'1'  
'1'  
'1'  
'0'  
'1'  
'1'  
'0'  
'1'  
'0'  
Dem_out  
Data_out (DATA)  
DATA_CLK  
Receiving mode,  
data clock control  
logic active  
Receiving mode,  
bit check active  
20  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
Figure 9-3. Data Clock Disappears Because of a Logical Error  
Data  
Logical error (Manchester code violation)  
'1'  
'1'  
'1'  
'0'  
'1'  
'1'  
'?'  
'0'  
'0'  
'1'  
'0'  
Dem_out  
Data_out (DATA)  
DATA_CLK  
Receiving mode,  
data clock control  
logic active  
Receiving mode,  
bit check active  
Figure 9-4. Output of the Data Clock After a Successful Bit Check  
Data  
Bit check ok  
'1'  
'1'  
'1'  
'1'  
'1'  
'0'  
'1'  
'1'  
'0'  
'1'  
'0'  
Dem_out  
Data_out (DATA)  
DATA_CLK  
Start bit  
Receiving mode,  
bit check active  
Receiving mode,  
data clock control  
logic active  
The delay of the data clock is calculated as follows: tDelay = tDelay1 + tDelay2  
tDelay1 is the delay between the internal signals Data_Out and Data_In. For the rising edge, tDelay1  
depends on the capacitive load CL at pin DATA and the external pull-up resistor Rpup. For the  
falling edge, tDelay1 depends additionally on the external voltage VX (see Figure 9-5, Figure 9-6  
on page 22 and Figure 13-2 on page 30). When the level of Data_In is equal to the level of  
Data_Out, the data clock is issued after an additional delay tDelay2  
.
Note that the capacitive load at pin DATA is limited. If the maximum tolerated capacitive load at  
pin DATA is exceeded, the data clock disappears (see Section 14. “Data Interface” on page 32).  
21  
9121B–INDCO–04/09  
Figure 9-5. Timing Characteristic of the Data Clock (Rising Edge on Pin DATA)  
Data_Out  
VX  
VIH = 0.65 VS  
VS  
VII = 0.35  
Serial bi-directional  
data line  
Data_In  
DATA_CLK  
tDelay1  
tDelay2  
tDelay tP_Data_Clk  
Figure 9-6. Timing Characteristic of the Data Clock (Falling Edge of the Pin DATA)  
Data_Out  
VX  
VS  
VS  
VIH = 0.65  
VII = 0.35  
Serial bi-directional  
data line  
Data_In  
DATA_CLK  
tDelay1  
tDelay2  
tDelay tP_Data_Clk  
22  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
10. Digital Noise Suppression  
After a data transmission, digital noise appears on the data output (see Figure 10-1 “Output of  
Digital Noise at the End of the Data Stream”). To prevent digital noise keeping the connected  
microcontroller busy, it can be suppressed in two different ways:  
• Automatic Noise Suppression  
• Controlled Noise Suppression by the Microcontroller  
10.1 Automatic Noise Suppression  
The receiver changes to bit-check mode at the end of a valid data stream if the bit  
Noise_Disable (Table 11-9 on page 27) in the OPMODE register is set to 1 (default). The digital  
noise is suppressed, and the level at pin DATA is high. The receiver changes back to receiving  
mode, if the bit check was successful.  
This method of noise suppression is recommended if the data stream is Manchester or Bi-phase  
coded and is active after power on.  
Figure 10-3 “Occurrence of a Pulse at the End of the Data Stream” illustrates the behavior of the  
data output at the end of a data stream. If the last period of the data stream is a high period (ris-  
ing edge to falling edge), a pulse occurs on pin DATA. The length of the pulse depends on the  
selected baud-rate range.  
Figure 10-1. Output of Digital Noise at the End of the Data Stream  
Bit check ok  
Bit check ok  
Preburst  
Data  
Digital Noise  
Digital Noise Preburst  
Data  
Digital Noise  
Data_out (DATA)  
DATA_CLK  
Bit-check  
mode  
Receiving mode,  
data clock control  
logic active  
Receiving mode,  
bit check active  
Receiving mode,  
data clock control  
logic active  
Receiving mode,  
bit check active  
Figure 10-2. Automatic Noise Suppression  
Bit check ok  
Bit check ok  
Preburst  
Data  
Preburst  
Data  
Data_out (DATA)  
DATA_CLK  
Bit-check  
mode  
Receiving mode,  
data clock control  
logic active  
Bit-check  
mode  
Receiving mode,  
data clock control  
logic active  
Bit-check  
mode  
23  
9121B–INDCO–04/09  
Figure 10-3. Occurrence of a Pulse at the End of the Data Stream  
Timing error  
tee < TLim_min or TLim_max < tee < tLim_min_2T or tee > TLim_max_2T  
Tee  
Data stream  
'1'  
Digital noise  
'1'  
'1'  
Dem_out  
Data_out (DATA)  
DATA_CLK  
Tpulse  
Receiving mode,  
Bit-check mode  
data clock control  
logic active  
10.2 Controlled Noise Suppression by the Microcontroller  
Digital noise appears at the end of a valid data stream if the bit Noise_Disable (see Table 11-9  
on page 27) in the OPMODE register is set to 0. To suppress the noise, the pin POLLING/_ON  
must be set to low. The receiver remains in receiving mode. The OFF command then causes a  
change to start-up mode. The programmed sleep time (see Table 11-7 on page 27) is not exe-  
cuted because the level at pin POLLING/_ON is low; however, the bit check is active in this  
case. The OFF command also activates the bit check if the pin POLLING/_ON is held to low.  
The receiver changes back to receiving mode if the bit check was successful. To activate the  
polling mode at the end of the data transmission, the pin POLLING/_ON must be set to high.  
This way of suppressing the noise is recommended if the data stream is not Manchester or  
Bi-phase coded.  
Figure 10-4. Controlled Noise Suppression  
Bit check ok  
OFF-command  
Bit check ok  
Serial bi-directional  
data line  
Preburst  
Data Digital Noise  
Preburst  
Data  
Digital Noise  
(DATA_CLK)  
POLLING/_ON  
Bit-check  
mode  
Receiving mode  
Start-up Bit-check  
mode mode  
Receiving mode  
Sleep  
mode  
24  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
11. Configuring the Receiver  
The ATA8203/ATA8204/ATA8205 receiver is configured using two 12-bit RAM registers called  
OPMODE and LIMIT. The registers can be programmed by means of the bidirectional DATA  
port. If the register content has changed due to a voltage drop, this condition is indicated by a  
the output pattern called reset marker (RM). If this occurs, the receiver must be reprogrammed.  
After a Power-On Reset (POR), the registers are set to default mode. If the receiver is operated  
in default mode, there is no need to program the registers. Table 11-3 on page 25 shows the  
structure of the registers. According to Table 11-1, bit 1 defines whether the receiver is set back  
to polling mode using the OFF command (see “Receiving Mode” on page 15) or whether it is  
programmed. Bit 2 represents the register address. It selects the appropriate register to be pro-  
grammed. For high programming reliability, bit 15 (Stop bit), at the end of the programming  
operation, must be set to 0.  
Table 11-1. Effect of Bit 1 and Bit 2 on Programming the Registers  
Bit 1  
Bit 2  
Action  
1
0
0
x
1
0
The receiver is set back to polling mode (OFF command)  
The OPMODE register is programmed  
The LIMIT register is programmed  
Table 11-2. Effect of Bit 15 on Programming the Register  
Bit 15  
Action  
0
1
The values are written into the register (OPMODE or LIMIT)  
The values are not written into the register  
Table 11-3. Effect of the Configuration Words within the Registers  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Bit 8  
Bit 9  
Bit 10  
Bit 11  
Bit 12  
Bit 13  
Bit 14  
Bit 15  
OFF command  
1
OPMODE register  
Modu-  
lation  
Noise  
Suppression  
BR_Range  
NBit-check  
Sleep  
XSleep  
0
1
0
ASK/  
_FSK  
Noise_  
Disable  
Baud1  
0
Baud0  
0
BitChk1  
0
BitChk0  
1
Sleep4 Sleep3 Sleep2 Sleep1 Sleep0 XSleepStd  
Default  
values of  
Bit 3...14  
0
0
0
1
1
0
0
1
LIMIT register  
Lim_min  
Lim_max  
0
0
Lim_  
min5  
Lim_  
min4  
Lim_  
min3  
Lim_  
min2  
Lim_  
min1  
Lim_  
min0  
Lim_  
max5  
Lim_  
max4  
Lim_  
max3  
Lim_  
max2  
Lim_  
max1  
Lim_  
max0  
0
Default  
values of  
Bit 3...14  
0
1
0
1
0
1
1
0
1
0
0
1
25  
9121B–INDCO–04/09  
The following tables illustrate the effect of the individual configuration words. The default config-  
uration is highlighted for each word.  
BR_Range sets the appropriate baud-rate range and simultaneously defines XLim. XLim is used  
to define the bit-check limits TLim_min and TLim_max as shown in Table 11-10 on page 28 and Table  
11-11 on page 28.  
Table 11-4. Effect of the configuration word BR_Range  
BR_Range  
Baud1  
Baud0  
Baud-rate Range/Extension Factor for Bit-check Limits (XLim)  
BR_Range0  
0
0
(BR_Range0 = 1.0 kBit/s to 1.8 kBit/s)  
XLim = 8 (default)  
BR_Range1  
0
1
1
1
0
1
(BR_Range1 = 1.8 kBit/s to 3.2 kBit/s)  
XLim = 4  
BR_Range2  
(BR_Range2 = 3.2 kBit/s to 5.6 kBit/s)  
XLim = 2  
BR_Range3  
(BR_Range3 = 5.6 kBit/s to 10 kBit/s)  
XLim = 1  
Table 11-5. Effect of the Configuration word NBit-check  
NBit-check  
BitChk1  
BitChk0  
Number of Bits to be Checked  
0
0
1
1
0
1
0
1
0
3 (default)  
6
9
Table 11-6. Effect of the Configuration Bit Modulation  
Modulation  
Selected Modulation  
ASK/_FSK  
0
1
FSK (default)  
ASK  
26  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
Table 11-7. Effect of the Configuration Word Sleep  
Sleep  
Start Value for Sleep Counter  
Sleep4  
Sleep3  
Sleep2  
Sleep1  
Sleep0 (TSleep = Sleep × XSleep × 1024 × TClk)  
0 (Receiver polls continuously until a valid signal  
occurs)  
0
0
0
0
0
0
If XSleep = 1  
TSleep = 2.11 ms for fRF = 868.3 MHz,  
TSleep = 2.12 ms for fRF = 433.92 MHz  
0
0
0
1
T
2
3
Sleep = 2.08 ms for fRF = 315 MHz  
0
0
0
0
0
0
1
1
0
1
...  
...  
...  
...  
...  
...  
If XSleep = 1  
T
T
Sleep = 12.69 ms for fRF = 868.3 MHz,  
Sleep = 12.71 ms for fRF = 433.92 MHz  
0
0
1
1
0
TSleep = 12.52 ms for fRF = 315 MHz  
...  
1
...  
1
...  
1
...  
0
...  
1
...  
29  
1
1
1
1
0
30  
1
1
1
1
1
31 (permanent sleep mode)  
Table 11-8. Effect of the Configuration Bit XSleep  
XSleep  
Extension Factor for Sleep Time  
XSleepStd  
(TSleep = Sleep × XSleep × 1024 × TClk)  
0
1
1 (default)  
8
Table 11-9. Effect of the Configuration Bit Noise Suppression  
Noise Suppression  
Noise_Disable  
Suppression of the Digital Noise at Pin DATA  
0
1
Noise suppression is inactive  
Noise suppression is active (default)  
27  
9121B–INDCO–04/09  
Table 11-10. Effect of the Configuration Word Lim_min  
Lim_min(1) (Lim_min < 10 is not Applicable)  
Lower Limit Value for Bit Check  
Lim_min5  
Lim_min4  
Lim_min3  
Lim_min2  
Lim_min1  
Lim_min0  
(TLim_min = Lim_min × XLim × TClk)  
0
0
0
..  
0
0
0
..  
1
1
1
..  
0
0
1
..  
1
1
0
..  
0
1
0
..  
10  
11  
12  
21 (default, BR_Range0)  
(TLim_min = 347 µs for fRF = 868.3 MHz  
TLim_min = 347 µs for fRF = 433.92 MHz  
0
1
0
1
0
1
T
Lim_min = 342 µs for fRF = 315 MHz)  
..  
1
1
1
..  
1
1
1
..  
1
1
1
..  
1
1
1
..  
0
1
1
..  
1
0
1
61  
62  
63  
Note:  
1. Lim_min is also used to determine the margins of the data clock control logic (see Section 9. “Data Clock” on page 19).  
Table 11-11. Effect of the Configuration Word Lim_max  
Lim_max(1) (Lim_max < 12 is not applicable)  
Upper Limit Value for Bit Check  
Lim_max5  
Lim_max4  
Lim_max3  
Lim_max2  
Lim_max1  
Lim_max0 (TLim_max = (Lim_max – 1) × XLim × TClk)  
0
0
0
..  
0
0
0
..  
1
1
1
..  
1
1
1
..  
0
0
1
..  
0
1
0
..  
12  
13  
14  
41 (default, BR_Range0)  
(TLim_max = 661 µs for fRF = 868.3 MHz  
TLim_max = 662 µs for fRF = 433.92 MHz  
TLim_max = 652 µs for fRF = 315 MHz)  
1
0
1
0
0
1
..  
1
1
1
..  
1
1
1
..  
1
1
1
..  
1
1
1
..  
0
1
1
..  
1
0
1
61  
62  
63  
Note:  
1. Lim_max is also used to determine the margins of the data clock control logic (see Section 9. “Data Clock” on page 19).  
28  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
12. Conservation of the Register Information  
The ATA8203/ATA8204/ATA8205 uses an integrated power-on reset and brown-out detection  
circuitry as a mechanism to preserve the RAM register information.  
According to Figure 12-1, a power-on reset (POR) is generated if the supply voltage VS drops  
below the threshold voltage VThReset. The default parameters are programmed into the configura-  
tion registers in that condition. The POR is cancelled after the minimum reset period tRst when VS  
exceeds VThReset. A POR is also generated when the supply voltage of the receiver is turned on.  
To indicate that condition, the receiver displays a reset marker (RM) at pin DATA after a reset.  
The RM is represented by the fixed frequency fRM at a 50% duty-cycle. RM can be cancelled  
using a low pulse t1 at pin DATA. The RM has the following characteristics:  
• fRM is lower than the lowest feasible frequency of a data signal. Due to this, RM cannot be  
misinterpreted by the connected microcontroller.  
• If the receiver is set back to polling mode using pin DATA, RM cannot be cancelled  
accidentally if t1 is applied as described in the proposal in Section 13. “Programming the  
Configuration Register” on page 30.  
Using this conservation mechanism, the receiver cannot lose its register information without  
communicating this condition using the reset marker RM.  
Figure 12-1. Generation of the Power-on Reset  
VS  
VThreset  
POR  
tRst  
Data_out (DATA)  
X
1/fRM  
29  
9121B–INDCO–04/09  
13. Programming the Configuration Register  
Figure 13-1. Timing of the Register Programming  
IC_ACTIVE  
t1  
t2  
t3  
t5  
t9  
t8  
t4  
t6  
t7  
Out1  
(microcontroller)  
X
X
Data_out (DATA)  
Serial bi-directional  
data line  
Bit 1  
("0")  
Bit 2  
("1")  
Bit 14  
("0")  
Bit 15  
("0")  
(Start bit)  
(Register  
select)  
(Poll 8)  
(Stop bit)  
TSleep TStart-up  
Programming frame  
Receiving  
mode  
Sleep Start-up  
mode mode  
Figure 13-2. Data Interface  
VX = 5V to 20V  
Rpup  
ATA8203  
ATA8204  
ATA8205  
Microcontroller  
VS = 4.5V to 5.5V  
DATA  
I/O  
0V/5V  
0V to 20V  
Input  
Interface  
Data_in  
Serial bi-directional data line  
CL  
ID  
Data_out  
Out1 (microcontroller)  
The configuration registers are serially programmed using the bi-directional data line as shown  
in Figure 13-1 and Figure 13-2.  
To start programming, the serial data line DATA is pulled to low by the microcontroller for the  
time period t1. When DATA has been released, the receiver becomes the master device. When  
the programming delay period t2 has elapsed, the receiver emits 15 subsequent synchronization  
pulses with the pulse length t3. After each of these pulses, a programming window occurs. The  
delay until the program window starts is determined by t4, the duration is defined by t5. The indi-  
vidual bits are set within the programming window. If the microcontroller pulls down pin DATA for  
the time period t7 during t5, the corresponding bit is set to “0”. If no programming pulse t7 is  
issued, this bit is set to “1”. All 15 bits are programmed this way. The time frame to program a bit  
is defined by t6.  
30  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
Bit 15 is followed by the equivalent time window t9. During this window, the equivalence  
acknowledge pulse t8 (E_Ack) occurs if the just programmed mode word is equivalent to the  
mode word that was already stored in that register. E_Ack should be used to verify that the  
mode word was correctly transferred to the register. The register must be programmed twice in  
that case.  
A register can be programmed when the receiver is in both sleep-mode and active mode. During  
programming, the LNA, LO, low-pass filter, IF-amplifier, and the FSK/MSK demodulator are dis-  
abled. The t1 pulse is used to start the programming or to switch the receiver back to polling  
mode (OFF command). (The receiver is switched back to polling mode with the OFF command if  
bit 1 is set to „1“.) The following convention should be considered for the length of the program-  
ming start pulse t1:  
Using a t1 value of t1 (min) < t1 < 5632 TClk (where t1 (min) is the minimum specified value for  
the relevant BR_Range) when the receiver is active i.e., not in reset mode initiates the program-  
ming or OFF command. However, if this t1 value is used when the receiver is in reset mode,  
programming or OFF command is NOT initiated and RM remains present at pin DATA. Note, the  
RM cannot be deleted when using this t1 value.  
Using a t1 value of t1 > 7936 ´ TClk, programming or OFF command is initiated when the  
receiver is in both reset mode and active mode. The registers PMODE and LIMIT are set to the  
default values and the RM is deleted, if present. This t1 values can be used if the connected  
microcontroller detects an RM. Additionally, this t1 value can generally be used if the receiver  
operates in default mode.  
Note that the capacitive load at pin DATA is limited.  
31  
9121B–INDCO–04/09  
14. Data Interface  
The data interface (see Figure 13-2 on page 30) is designed for automotive requirements. It can  
be connected using the pull-up resistor Rpup up to 20V and is short-circuit-protected.  
The applicable pull-up resistor Rpup depends on the load capacity CL at pin DATA and the  
selected BR_range (see Table 14-1).  
Table 14-1. Applicable Rpup  
-
BR_range  
Applicable Rpup  
1.6 kΩ to 47 kΩ  
1.6 kΩ to 22 kΩ  
1.6 kΩ to 12 kΩ  
1.6 kΩ to 5.6 kΩ  
1.6 kΩ to 470 kΩ  
1.6 kΩ to 220 kΩ  
1.6 kΩ to 120 kΩ  
1.6 kΩ to 56 kΩ  
B0  
B1  
B2  
B3  
B0  
B1  
B2  
B3  
CL 1nF  
CL 100pF  
Figure 14-1. Application Circuit: fRF = 315 MHz(1), 433.92 MHz or 868 MHz without SAW Filter  
VS  
RSSI  
C7  
IC_ACTIVE  
+
4.7 µF  
10%  
R2  
Sensitivity reduction  
56 kΩ to 150 kΩ  
VX = 5V to 20V  
GND  
R3  
1.6 kΩ  
C14  
39 nF  
5%  
1
2
3
20  
19  
18  
17  
16  
SENS  
DATA  
POLLING/_ON  
DGND  
DATA  
IC_ACTIVE  
CDEM  
POLLING/_ON  
DATA_CLK  
DATA_CLK  
4
5
6
7
AVCC  
MODE  
C12  
C13  
10 nF  
10%  
ATA8203  
10 nF  
10%  
TEST1  
RSSI  
15  
14  
ATA8204  
ATA8205  
DVCC  
XTAL2  
CL2  
CL1  
AGND  
F
crystal  
8
9
13  
12  
11  
C17  
RF_IN  
LNAREF  
LNA_IN  
XTAL1  
TEST3  
TEST2  
10  
C16  
LNAGND  
L1  
Note:  
For 315 MHz application pin MODE must be connected to GND.  
Table 14-2. Input Matching to 50Ω  
LNA Matching  
RF Frequency  
Crystal Frequency  
(MHz)  
C16 (pF)  
Not connected  
Not connected  
1
C17 (pF)  
L1 (nH)  
39  
fXTAL (MHz)  
14.71875  
13.52875  
13.55234  
315  
3
3
3
433.92  
868.3  
20  
6.8  
32  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
15. Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Parameters  
Symbol  
VS  
Min.  
Max.  
6
Unit  
V
Supply voltage  
Power dissipation  
Ptot  
1000  
150  
+125  
+85  
10  
mW  
°C  
Junction temperature  
Storage temperature  
Ambient temperature  
Maximum input level, input matched to 50Ω  
Tj  
Tstg  
–55  
–40  
°C  
Tamb  
Pin_max  
°C  
dBm  
16. Thermal Resistance  
Parameters  
Symbol  
Value  
Unit  
Junction ambient  
RthJA  
100  
K/W  
33  
9121B–INDCO–04/09  
17. Electrical Characteristics ATA8203  
All parameters refer to GND, Tamb = 25°C, VS = 5V, f0 = 315 MHz unless otherwise specified.  
fRF = 315 MHz  
14.71875 MHz Oscillator  
Variable Oscillator  
Test  
No. Parameter Conditions  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Unit Type*  
1
Basic Clock Cycle of the Digital Circuitry  
Basic clock  
cycle  
1.1  
TClk  
2.0382  
2.0382  
30/fXTO  
30/fXTO  
µs  
A
A
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
16.3057  
8.1528  
4.0764  
2.0382  
16.3057  
8.1528  
4.0764  
2.0382  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
µs  
µs  
µs  
µs  
Extended  
1.2 basic clock  
cycle  
TXClk  
2
Polling Mode  
Sleep time  
(see  
Figure 8-1,  
Figure 8-10  
and  
Sleep and  
XSleep are  
defined in the  
OPMODE  
register  
Sleep ×  
Sleep ×  
Sleep ×  
XSleep ×  
1024 ×  
TClk  
Sleep ×  
XSleep  
×
XSleep  
×
2.1  
TSleep  
XSleep  
×
ms  
A
A
1024 ×  
2.0382  
1024 ×  
2.0382  
1024 × TClk  
Figure 13-1)  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
1827  
1044  
1044  
653  
1827  
1044  
1044  
653  
896.5  
512.5  
512.5  
320.5  
× TClk  
896.5  
512.5  
512.5  
320.5  
× TClk  
µs  
µs  
µs  
µs  
µs  
Start-up time  
(see Figure  
8-1 and  
2.2  
TStartup  
Figure 8-4)  
Average  
bit-check time  
while polling,  
no RF applied  
(see Figure 8-5  
and Figure 8-6)  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
Time for bit  
2.3 check (see  
Figure 8-1  
TBit-check  
C
0.45  
0.24  
0.14  
0.08  
0.45  
0.24  
0.14  
0.08  
ms  
ms  
ms  
ms  
Bit-check time  
for a valid input  
signal fSig (see  
Figure 8-5)  
Time for bit  
2.4 check (see  
Figure 8-1  
TBit-check  
C
NBit-check = 0  
NBit-check = 3  
NBit-check = 6  
NBit-check = 9  
1 × TXClk  
3/fSig  
6/fSig  
1 × TXClk  
3.5/fSig  
6.5/fSig  
9.5/fSig  
1 × TXClk  
3/fSig  
6/fSig  
1 × TClk  
3.5/fSig  
6.5/fSig  
9.5/fSig  
ms  
ms  
ms  
ms  
9/fSig  
9/fSig  
3
Receiving Mode  
Intermediate  
frequency  
3.1  
fIF  
987  
fIF = fLO/318  
kHz  
A
A
BR_Range0  
1.0  
1.8  
3.2  
5.6  
1.8  
3.2  
5.6  
BR_Range0 × 2 µs/TClk  
BR_Range1 × 2 µs/TClk  
BR_Range2 × 2 µs/TClk  
BR_Range3 × 2 µs/TClk  
kBit/s  
kBit/s  
kBit/s  
kBit/s  
Baud-rate  
range  
BR_Range1  
BR_Range2  
BR_Range3  
3.2  
BR_Range  
10.0  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
34  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
17. Electrical Characteristics ATA8203 (Continued)  
All parameters refer to GND, Tamb = 25°C, VS = 5V, f0 = 315 MHz unless otherwise specified.  
fRF = 315 MHz  
14.71875 MHz Oscillator  
Variable Oscillator  
Typ. Max.  
Test  
No. Parameter Conditions  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Min.  
Unit Type*  
Minimum  
time period  
between  
edges at pin  
DATA  
BR_Range =  
BR_Range0  
163.06  
81.53  
40.76  
20.38  
163.06  
81.53  
40.76  
20.38  
10 × TXClk  
10 × TXClk  
10 × TXClk  
10 × TXClk  
10 × TXClk  
10 × TXClk  
10 × TXClk  
10 × TXClk  
µs  
µs  
µs  
µs  
(see Figure BR_Range1  
3.3 4-2 and  
BR_Range2  
Figure 8-8, BR_Range3  
Figure 8-9)  
tDATA_min  
A
(With the  
exception of  
parameter  
TPulse  
Maximum  
Low period at BR_Range0  
)
BR_Range =  
2120  
1060  
530  
2120  
1060  
530  
130 × TXClk  
130 × TXClk  
130 × TXClk  
130 × TXClk  
130 × TXClk µs  
130 × TXClk µs  
130 × TXClk µs  
130 × TXClk µs  
3.4 pin DATA  
(see  
BR_Range1  
BR_Range2  
tDATA_L_max  
A
A
Figure 4-2) BR_Range3  
265  
265  
Delay to  
activate the  
3.5 start-up  
Ton1  
19.36  
16.3  
21.4  
9.5 × TClk  
10.5 × TClk µs  
mode (see  
Figure 8-12)  
OFF  
command at  
pin  
POLLING/  
_ON (see  
Figure 8-11)  
3.6  
Ton2  
Ton3  
TPulse  
8 × TClk  
µs  
A
A
C
Delay to  
activate the  
3.7 sleep mode  
(see  
17.32  
19.36  
8.5 × TClk  
9.5 × TClk  
µs  
Figure 8-11)  
Pulse on pin  
DATA at the BR_Range =  
end of a data BR_Range0  
stream  
(see  
Figure 10-3) BR_Range3  
16.3  
8.15  
4.07  
2.04  
16.3  
8.15  
4.07  
2.04  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
µs  
µs  
µs  
µs  
3.8  
BR_Range1  
BR_Range2  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
35  
9121B–INDCO–04/09  
17. Electrical Characteristics ATA8203 (Continued)  
All parameters refer to GND, Tamb = 25°C, VS = 5V, f0 = 315 MHz unless otherwise specified.  
fRF = 315 MHz  
14.71875 MHz Oscillator  
Variable Oscillator  
Typ. Max.  
Test  
No. Parameter Conditions  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Min.  
Unit Type*  
4
Configuration of the Receiver (see Figure 12-1 and Figure 13-1)  
Frequency is  
stable within  
50 ms after  
POR  
Frequency of  
4.1 the reset  
marker  
1/  
1/  
fRM  
119.78  
119.78  
(4096 ×  
TClk  
(4096 ×  
TClk)  
Hz  
A
A
)
1624 ×  
TClk  
1100 ×  
TClk  
838 × TClk  
707 × TClk  
7936 ×  
TClk  
BR_Range =  
BR_Range0  
Programming BR_Range1  
3310  
2242  
1708  
1441  
16175  
11479  
11479  
11479  
11479  
5632 × TClk µs  
5632 × TClk µs  
5632 × TClk µs  
5632 × TClk µs  
µs  
4.2  
t1  
start pulse  
BR_Range2  
BR_Range3  
after POR  
Programming  
delay period  
384.5 ×  
TClk  
385.5 ×  
µs  
4.3  
4.4  
t2  
t3  
783  
261  
785  
261  
A
A
TClk  
Synchroniza-  
tion pulse  
128 × TClk  
63.5 × TClk  
128 × TClk  
µs  
Delay until of  
the program  
window  
4.5  
t4  
129  
129  
63.5 × TClk µs  
A
starts  
Programming  
window  
4.6  
4.7  
4.8  
t5  
t6  
t7  
522  
1044  
130.5  
522  
1044  
522  
256 × TClk  
512 × TClk  
64 × TClk  
256 × TClk  
512 × TClk  
256 × TClk  
µs  
µs  
µs  
A
A
C
Time frame  
of a bit  
Programming  
pulse  
Equivalent  
4.9 acknowledge  
pulse: E_Ack  
t8  
t9  
261  
526  
916  
261  
526  
916  
128 × TClk  
258 × TClk  
128 × TClk  
258 × TClk  
µs  
µs  
µs  
A
A
A
Equivalent  
4.10  
time window  
OFF-bit  
4.11 programming  
window  
449.5 ×  
TClk  
449.5 ×  
TClk  
t10  
5
Data Clock (see Figure 9-1 and Figure 9-6)  
Minimum  
delay time  
between  
edge at DATA BR_Range2  
and  
BR_Range =  
BR_Range0  
BR_Range1  
0
0
0
0
16.3057  
8.1528  
4.0764  
2.0382  
0
0
0
0
1 × TXClk  
1 × TXClk  
1 × TXClk  
1 × TXClk  
µs  
µs  
µs  
µs  
5.1  
tDelay2  
C
A
BR_Range3  
DATA_CLK  
BR_Range =  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
Pulse width  
of negative  
pulse at pin  
DATA_CLK  
65.2  
32.6  
16.3  
8.15  
65.2  
32.6  
16.3  
8.15  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
µs  
µs  
µs  
µs  
5.2  
tP_DATA_CLK  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
36  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
18. Electrical Characteristics ATA8204, ATA8205  
All parameters refer to GND, Tamb = 25°C, VS = 5V, f0 = 433.92 MHz and f0 = 868.3 MHz unless otherwise specified.  
fRF = 433.92 MHz  
fRF = 868.3 MHz,  
13.52875 MHz Oscillator 13.55234 MHz Oscillator  
Variable Oscillator  
Test  
No. Parameter Conditions  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Unit Type*  
6
Basic Clock Cycle of the Digital Circuitry  
Basic clock  
cycle  
6.1  
TClk  
2.0696  
2.0696  
2.066  
2.066  
28/fXTO  
28/fXTO  
µs  
A
A
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
16.557  
8.278  
4.139  
2.069  
16.557 16.528  
16.528  
8.264  
4.132  
2.066  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
µs  
µs  
µs  
µs  
Extended  
6.2 basic clock  
cycle  
8.278  
4.139  
2.069  
8.264  
4.132  
2.066  
TXClk  
7
Polling Mode  
Sleep time  
(see  
Figure 8-1,  
Figure 8-10  
and  
Sleep and  
XSleep are  
defined in the  
OPMODE  
register  
Sleep ×  
Sleep × Sleep ×  
XSleep XSleep  
1024 × 1024 ×  
Sleep × Sleep ×  
XSleep XSleep  
Sleep ×  
XSleep  
×
×
×
×
×
7.1  
TSleep  
XSleep  
×
ms  
A
A
1024 ×  
2.0696  
1024 ×  
1024 ×  
1024 × TClk  
2.0696  
2.066  
2.066  
TClk  
Figure 13-1)  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
1855  
1060  
1060  
663  
1855  
1060  
1060  
663  
1852  
1058  
1058  
662  
1852  
1058  
1058  
662  
896.5  
512.5  
512.5  
320.5  
× TClk  
896.5  
512.5  
512.5  
320.5  
× TClk  
µs  
µs  
µs  
µs  
µs  
Start-up time  
(see Figure  
8-1 and  
7.2  
TStartup  
Figure 8-4)  
Average  
bit-check time  
while polling,  
no RF applied  
(see Figure 8-8  
on page 16  
and Figure 8-9  
on page 17)  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
Time for bit  
7.3 check (see  
Figure 8-1  
TBit-check  
C
0.45  
0.24  
0.14  
0.08  
0.45  
0.24  
0.14  
0.08  
0.45  
0.24  
0.14  
0.08  
ms  
ms  
ms  
ms  
Bit-check time  
for a valid input  
signal fSig (see  
Time for bit Figure 8-5 on  
7.4 check (see page 15)  
Figure 8-1  
TBit-check  
C
N
N
N
N
Bit-check = 0  
Bit-check = 3  
Bit-check = 6  
Bit-check = 9  
1 × TXClk  
3/fSig  
6/fSig  
1 × TXClk 1 × TXClk  
1 × TXClk 1 × TXClk  
1 × TClk  
3.5/fSig  
6.5/fSig  
9.5/fSig  
ms  
ms  
ms  
ms  
3.5/fSig  
6.5/fSig  
9.5/fSig  
3/fSig  
6/fSig  
9/fSig  
3.5/fSig  
6.5/fSig  
9.5/fSig  
3/fSig  
6/fSig  
9/fSig  
9/fSig  
8
Receiving Mode  
fIF = fLO/438 for the 433.92 MHz  
band (ATA8204)  
fIF =fLO/915 for the 868.3 MHz band  
(ATA8205)  
Intermediate  
frequency  
8.1  
fIF  
987  
947.9  
kHz  
A
A
BR_Range0  
1.0  
1.8  
3.2  
5.6  
1.8  
3.2  
5.6  
1.0  
1.8  
3.2  
5.6  
1.8  
3.2  
5.6  
BR_Range0 × 2 µs/TClk  
BR_Range1 × 2 µs/TClk  
BR_Range2 × 2 µs/TClk  
BR_Range3 × 2 µs/TClk  
kBit/s  
kBit/s  
kBit/s  
kBit/s  
Baud-rate  
range  
BR_Range1  
BR_Range2  
BR_Range3  
8.2  
BR_Range  
10.0  
10.0  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
37  
9121B–INDCO–04/09  
18. Electrical Characteristics ATA8204, ATA8205 (Continued)  
All parameters refer to GND, Tamb = 25°C, VS = 5V, f0 = 433.92 MHz and f0 = 868.3 MHz unless otherwise specified.  
fRF = 433.92 MHz  
fRF = 868.3 MHz,  
13.52875 MHz Oscillator 13.55234 MHz Oscillator  
Variable Oscillator  
Min. Typ. Max.  
Test  
No. Parameter Conditions  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Unit Type*  
Minimum  
time period  
between  
edges at pin  
DATA  
BR_Range =  
BR_Range0  
165.5  
82.8  
41.4  
20.7  
165.5  
82.8  
41.4  
20.7  
165.3  
82.6  
41.3  
20.6  
165.3 10 × TXClk  
10 × TXClk  
10 × TXClk  
10 × TXClk  
10 × TXClk  
µs  
µs  
µs  
µs  
(see Figure BR_Range1  
82.6  
41.3  
20.6  
10 × TXClk  
10 × TXClk  
10 × TXClk  
8.3 4-2 and  
BR_Range2  
Figure 8-8, BR_Range3  
Figure 8-9)  
tDATA_min  
A
(With the  
exception of  
parameter  
TPulse  
Maximum  
Low period at BR_Range0  
)
BR_Range =  
2152  
tDATA_L_max 1076  
2152  
1076  
538  
2148  
1074  
537  
2148 130 × TXClk  
1074 130 × TXClk  
537 130 × TXClk  
268.5 130 × TXClk  
130 × TXClk µs  
130 × TXClk µs  
130 × TXClk µs  
130 × TXClk µs  
8.4 pin DATA  
(see  
BR_Range1  
BR_Range2  
A
A
538  
269  
Figure 4-2) BR_Range3  
269  
268.5  
Delay to  
activate the  
8.5 start-up  
Ton1  
Ton2  
Ton3  
TPulse  
19.6  
16.5  
17.6  
21.7  
19.6  
16.5  
17.6  
21.7  
9.5 × TClk  
10.5 × TClk µs  
mode (see  
Figure 8-12)  
OFF  
command at  
pin  
POLLING/  
_ON (see  
Figure 8-11)  
8.6  
8 × TClk  
µs  
A
A
C
Delay to  
activate the  
8.7 sleep mode  
(see  
19.6  
19.6  
8.5 × TClk  
9.5 × TClk  
µs  
Figure 8-11)  
Pulse on pin  
DATA at the BR_Range =  
end of a data BR_Range0  
stream  
(see  
Figure 10-3) BR_Range3  
16.557  
8.278  
4.139  
2.069  
16.557 16.528  
16.528  
8.264  
4.132  
2.066  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
8 × TClk  
4 × TClk  
2 × TClk  
1 × TClk  
µs  
µs  
µs  
µs  
8.8  
BR_Range1  
BR_Range2  
8.278  
4.139  
2.069  
8.264  
4.132  
2.066  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
38  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
18. Electrical Characteristics ATA8204, ATA8205 (Continued)  
All parameters refer to GND, Tamb = 25°C, VS = 5V, f0 = 433.92 MHz and f0 = 868.3 MHz unless otherwise specified.  
fRF = 433.92 MHz  
fRF = 868.3 MHz,  
13.52875 MHz Oscillator 13.55234 MHz Oscillator  
Variable Oscillator  
Typ. Max.  
Test  
No. Parameter Conditions  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Min.  
Unit Type*  
9
Configuration of the Receiver (see Figure 12-1 and Figure 13-1)  
Frequency is  
stable within  
50 ms after  
POR  
Frequency of  
9.1 the reset  
marker  
1/  
1/  
fRM  
117.9  
117.9  
118.2  
118.2  
(4096 ×  
TClk  
(4096 ×  
TClk)  
Hz  
A
A
)
1624 ×  
TClk  
1100 ×  
TClk  
838 × TClk  
707 × TClk  
7936 ×  
TClk  
BR_Range =  
BR_Range0  
Programming BR_Range1  
3361  
2276  
1734  
1463  
16425  
11656  
11656  
11656  
11656  
3355  
2272  
1731  
1460  
11636  
11636  
11636  
11636  
5632 × TClk µs  
5632 × TClk µs  
5632 × TClk µs  
5632 × TClk µs  
µs  
9.2  
t1  
start pulse  
BR_Range2  
BR_Range3  
after POR  
Programming  
delay period  
384.5 ×  
TClk  
385.5 ×  
µs  
9.3  
9.4  
t2  
t3  
796  
265  
798  
265  
794  
264  
796  
264  
A
A
TClk  
Synchroniza-  
tion pulse  
128 × TClk  
63.5 × TClk  
256 × TClk  
128 × TClk µs  
63.5 × TClk µs  
Delay until of  
9.5 the program  
window starts  
t4  
131  
131  
131  
131  
529  
A
Programming  
window  
9.6  
t5  
t6  
t7  
530  
1060  
132  
530  
1060  
530  
529  
1058  
132  
256 × TClk µs  
512 × TClk µs  
256 × TClk µs  
A
A
C
Time frame  
9.7  
1058 512 × TClk  
of a bit  
Programming  
pulse  
9.8  
529  
264  
533  
929  
64 × TClk  
128 × TClk  
258 × TClk  
Equivalent  
9.9 acknowledge  
pulse: E_Ack  
t8  
t9  
265  
534  
930  
265  
534  
930  
264  
533  
929  
128 × TClk µs  
258 × TClk µs  
A
A
A
Equivalent  
9.10  
time window  
OFF-bit  
9.11 programming  
window  
449.5 ×  
TClk  
449.5 ×  
µs  
t10  
TClk  
10 Data Clock (see Figure 9-1 and Figure 9-6)  
Minimum  
delay time  
between  
edge at DATA BR_Range2  
and  
BR_Range =  
BR_Range0  
BR_Range1  
0
0
0
0
16.557  
8.278  
4.139  
2.069  
0
0
0
0
16.528  
8.264  
4.132  
2.066  
0
0
0
0
1 × TXClk  
1 × TXClk  
1 × TXClk  
1 × TXClk  
µs  
µs  
µs  
µs  
10.1  
tDelay2  
C
A
BR_Range3  
DATA_CLK  
BR_Range =  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
Pulse width  
of negative  
pulse at pin  
DATA_CLK  
66.2  
33.1  
16.5  
8.3  
62.2  
33.1  
16.5  
8.3  
66.1  
33.0  
16.5  
8.25  
66.1  
33.0  
16.5  
8.25  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
4 × TXClk  
µs  
µs  
µs  
µs  
10.2  
tP_DATA_CLK  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
39  
9121B–INDCO–04/09  
19. Electrical Characteristics ATA8203, ATA8204, ATA8205  
All parameters refer to GND, Tamb = 25°C, VS = 5V, f0 = 868.3 MHz, f0 = 433.92 MHz and f0 = 315 MHz, unless otherwise specified.  
No. Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit Type*  
11 Current Consumption  
Sleep mode  
(XTO and polling logic active)  
ISoff  
170  
290  
µA  
A
A
IC active (start-up-, bit-check-,  
receiving mode) Pin DATA = H  
FSK  
ASK  
11.1 Current consumption  
ISon  
8.5  
8.0  
11.0  
10.4  
mA  
mA  
12 LNA, Mixer, Polyphase Low-pass and IF Amplifier (Input Matched According to Figure 14-1 on page 32 Referred to RFIN)  
LNA/mixer/IF amplifier  
868 MHz  
433 MHz  
315 MHz  
–18  
–23  
–24  
12.1 Third-order intercept point  
IIP3  
dBm  
C
12.2 LO spurious emission  
12.3 System noise figure  
Required according to I-ETS 300220  
With power matching |S11| < –10 dB  
ISLORF  
NF  
–70  
5
–57  
dBm  
dB  
A
B
(14.15 –  
j73.53)  
At 868.3 MHz  
AT 433.92 MHz  
At 315 MHz  
Ω
Ω
Ω
(19.3 –  
j113.3)  
12.4 LNA_IN input impedance  
ZiLNA_IN  
C
(26.97 –  
j158.7)  
At 868.3 MHz  
AT 433.92 MHz  
At 315 MHz  
–27.7  
–32.7  
–33.7  
12.5 1 dB compression point  
12.6 Image rejection  
IP1db  
dBm  
dB  
C
A
Within the complete image band  
20  
30  
BER 10-3,  
FSK mode  
ASK mode  
12.7 Maximum input level  
13 Local Oscillator  
Pin_max  
–10  
–10  
dBm  
dBm  
C
ATA8205  
ATA8204  
ATA8203  
868  
431.5  
312.5  
870  
436.5  
317.5  
MHz  
MHz  
MHz  
Operating frequency range  
VCO  
13.1  
fVCO  
A
f
osc = 868.3 MHz at 10 MHz  
–140  
–143  
–143  
–130  
–133 dBC/Hz  
–133  
13.2 Phase noise local oscillator  
13.3 Spurious of the VCO  
fosc = 433.92 MHz at 10 MHz  
fosc = 315 MHz at 10 MHz  
L (fm)  
B
B
At ±fXTO  
–55  
–45  
dBC  
XTO pulling,  
appropriate load capacitance must be  
connected to XTAL, crystal CL1 and  
CL2  
fXTAL = 14.71875 MHz (315 MHz  
band)  
13.4 XTO pulling  
B
B
f
XTAL = 13.52875 MHz (433 MHz  
fXTO  
–10ppm  
fXTAL  
+10ppm MHz  
band)  
fXTAL = 13.55234 MHz (868 MHz  
band)  
Series resonance resistor of  
13.5  
Parameter of the supplied crystal  
RS  
120  
Ω
the crystal  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
40  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
19. Electrical Characteristics ATA8203, ATA8204, ATA8205 (Continued)  
All parameters refer to GND, Tamb = 25°C, VS = 5V, f0 = 868.3 MHz, f0 = 433.92 MHz and f0 = 315 MHz, unless otherwise specified.  
No. Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit Type*  
Static capacitance at pin  
XTAL1 to GND  
Parameter of the supplied crystal and  
board parasitics  
13.6  
13.7  
CL1  
–5%  
18  
+5%  
pF  
pF  
kΩ  
B
B
B
Static capacitance at pin  
XTAL2 to GND  
Parameter of the supplied crystal and  
board parasitics  
CL2  
–5%  
18  
+5%  
C0 < 1.8 pF, CL = 9 pF  
fXTAL = 14.71875 MHz  
1.5  
Crystal series resistor Rm at  
start-up  
13.8  
C0 < 2.0 pF, CL = 9 pF  
fXTAL = 13.52875 MHz  
fXTAL = 13.55234 MHz  
1.5  
kΩ  
B
14 Analog Signal Processing (Input Matched According to Figure 14-1 on page 32 Referred to RFIN)  
ASK (level of carrier)  
BER 10-3, 100% Mod  
fin = 315 MHz/433.92 MHz  
VS = 5V, Tamb = 25°C  
fIF = 987 kHz  
Input sensitivity ASK  
14.1 300 kHz IF Filter  
(ATA8203/ATA8204)  
PRef_ASK  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
–111  
–109.5  
–109  
–113  
–111.5  
–111  
–115  
–113.5  
–113  
dBm  
dBm  
dBm  
dBm  
B
B
B
B
–107  
–109  
–111  
ASK (level of carrier)  
BER 10-3, 100% Mod  
fin = 868.3 MHz  
VS = 5V, Tamb = 25°C  
fIF = 948 kHz  
Input sensitivity ASK  
14.2 600 kHz IF Filter  
(ATA8205)  
PRef_ASK  
BR_Range0  
BR_Range1  
BR_Range2  
BR_Range3  
–109  
–107.5  
–107  
–111  
–109.5  
–109  
–113  
–111.5  
–111  
dBm  
dBm  
dBm  
dBm  
B
B
B
B
–105  
–107  
–109  
Sensitivity variation ASK for  
the full operating range  
14.3 compared to Tamb = 25°C,  
VS = 5V  
300 kHz and 600 kHz  
fin = 315 MHz/433.92 MHz/868.3 MHz  
PASK = PRef_ASK + ΔPRef  
ΔPRef  
+2.5  
–1.5  
dB  
B
(ATA8203/ATA8204/ATA8205)  
300 kHz version (ATA8203/ATA8204)  
fin = 315 MHz/433.92 MHz  
f
IF = 987 kHz  
ΔPRef  
+7.5  
+9.5  
–1.5  
–1.5  
dB  
dB  
B
fIF = –110 kHz to +110 kHz  
fIF = –140 kHz to +140 kHz  
Sensitivity variation ASK for full  
operating range including IF  
PASK = PRef_ASK + ΔPRef  
14.4  
filter compared to Tamb = 25°C,  
VS = 5V  
600 kHz version (ATA8205)  
fin = 868.3 MHz  
f
IF = 948 kHz  
ΔPRef  
+6.5  
+8.5  
–1.5  
–1.5  
dB  
dB  
B
fIF = –210 kHz to +210 kHz  
fIF = –270 kHz to +270 kHz  
PASK = PRef_ASK + ΔPRef  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
41  
9121B–INDCO–04/09  
19. Electrical Characteristics ATA8203, ATA8204, ATA8205 (Continued)  
All parameters refer to GND, Tamb = 25°C, VS = 5V, f0 = 868.3 MHz, f0 = 433.92 MHz and f0 = 315 MHz, unless otherwise specified.  
No. Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit Type*  
BER 10-3  
fin = 315 MHz/433.92 MHz  
VS = 5V, Tamb = 25°C  
f
IF = 987 kHz  
BR_Range0  
df = ±16 kHz  
df = ±10 kHz to ±30 kHz  
PRef_FSK  
PRef_FSK  
PRef_FSK  
PRef_FSK  
–104  
–102  
–107  
–105  
–108.5  
–108.5  
dBm  
dBm  
B
B
B
B
Input sensitivity FSK  
14.5 300 kHz IF filter  
(ATA8203/ATA8204)  
BR_Range1  
df = ±16 kHz  
df = ±10 kHz to ±30 kHz  
–102  
–100  
–106.5  
–106.5  
dBm  
dBm  
BR_Range2  
df = ±16 kHz  
df = ±10 kHz to ±30 kHz  
–100.5  
–98.5  
–103.5  
–101.5  
–105  
–105  
dBm  
dBm  
BR_Range3  
df = ±16 kHz  
df = ±10 kHz to ±30 kHz  
–98.5  
–96.5  
–103  
–103  
dBm  
dBm  
BER 10-3  
fin = 868.3 MHz  
VS = 5V, Tamb = 25°C  
fIF = 948 kHz  
BR_Range0  
df = ±16 kHz to ±28 kHz  
df = ±10 kHz to ±100 kHz  
PRef_FSK  
PRef_FSK  
PRef_FSK  
PRef_FSK  
–102  
–100  
–105  
–103  
–106.5  
–106.5  
dBm  
dBm  
B
B
B
B
Input sensitivity FSK  
14.6 600 kHz IF filter  
(ATA8205)  
BR_Range1  
df = ±16 kHz ±28 kHz  
df = ±10 kHz to ±100 kHz  
–100  
–98  
–104.5  
–104.5  
dBm  
dBm  
BR_Range2  
df = ±18 kHz ±31 kHz  
df = ±13 kHz to ±100 kHz  
–98.5  
–96.5  
–101.5  
–99.5  
–103  
–103  
dBm  
dBm  
BR_Range3  
df = ±25 kHz ±44 kHz  
df = ±20 kHz to ±100 kHz  
–96.5  
–94.5  
–101  
–101  
dBm  
dBm  
Sensitivity variation FSK for  
the full operating range  
300 kHz and 600 kHz versions  
14.7 compared to Tamb = 25°C, VS = fin = 315 MHz/433.92 MHz/868.3 MHz  
ΔPRef  
+3  
–1.5  
dB  
B
5V  
PFSK = PRef_FSK + ΔPRef  
(ATA8203/ATA8204/ATA8205)  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
42  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
19. Electrical Characteristics ATA8203, ATA8204, ATA8205 (Continued)  
All parameters refer to GND, Tamb = 25°C, VS = 5V, f0 = 868.3 MHz, f0 = 433.92 MHz and f0 = 315 MHz, unless otherwise specified.  
No. Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit Type*  
300 kHz version (ATA8203/ATA8204)  
fin = 315 MHz/433.92 MHz  
fIF = 987 kHz  
+8  
+10  
+13  
–2  
–2  
–2  
dB  
B
f
IF = –110 kHz to +110 kHz  
ΔPRef  
dB  
fIF = –140 kHz to +140 kHz  
fIF = –180 kHz to +180 kHz  
dB  
Sensitivity variation FSK for  
the full operating range  
14.8 including IF filter compared to  
P
FSK = PRef_FSK + ΔPRef  
600 kHz version (ATA8205)  
fin = 868.3 MHz  
T
amb = 25°C,  
VS = 5V  
f
IF = 948 kHz  
+7  
+9  
+12  
–2  
–2  
–2  
dB  
B
fIF = –150 kHz to +150 kHz  
ΔPRef  
dB  
f
f
IF = –200 kHz to +200 kHz  
IF = –260 kHz to +150 kHz  
dB  
PFSK = PRef_FSK + ΔPRef  
S/N ratio to suppress in-band  
noise signals. Noise signals  
may have any modulation  
scheme  
ASK mode  
FSK mode  
SNRASK  
SNRFSK  
10  
2
12  
3
dB  
C
14.9  
dB  
14.10 Dynamic range RSSI amplifier  
14.11 RSSI output voltage range  
14.12 RSSI gain  
ΔRRSSI  
VRSSI  
60  
20  
dB  
V
A
A
A
1
3.5  
GRSSI  
mV/dB  
1
fcu_DF = ------------------------------------------------------------  
Lower cut-off frequency of the  
data filter  
2 × π × 30 kΩ× CDEM  
14.13  
fcu_DF  
0.11  
0.16  
0.20  
kHz  
B
CDEM = 33 nF  
BR_Range0 (default)  
Recommended CDEM for best BR_Range1  
39  
22  
12  
8.2  
nF  
nF  
nF  
nF  
14.14  
CDEM  
C
C
performance  
BR_Range2  
BR_Range3  
BR_Range0 (default)  
BR_Range1  
BR_Range2  
270  
156  
89  
1000  
560  
320  
180  
ms  
ms  
ms  
ms  
Edge-to-edge time period of  
14.15 the input data signal for full  
sensitivity  
tee_sig  
BR_Range3  
50  
Upper cut-off frequency  
programmable in 4 ranges  
using a serial mode word  
BR_Range0 (default)  
BR_Range1  
Upper cut-off frequency data  
14.16  
filter  
2.8  
4.8  
8.0  
3.4  
6.0  
10.0  
19.0  
4.0  
7.2  
12.0  
23.0  
kHz  
kHz  
kHz  
kHz  
B
fu  
BR_Range2  
BR_Range3  
15.0  
300 kHz version (ATA8203/ATA8204)  
R
Sense connected from pin SENS  
dBm  
(peak  
level)  
to VS, input matched according to  
Figure 14-1 “Application Circuit,  
fin = 315 MHz/433.92 MHz,  
VS = 5V, Tamb = +25°C  
14.17 Reduced sensitivity  
RSense = 56 kΩ  
PRef_Red  
PRef_Red  
–71  
–80  
–79  
–88  
–86  
–96  
dBm  
dBm  
B
B
RSense = 100 kΩ  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
43  
9121B–INDCO–04/09  
19. Electrical Characteristics ATA8203, ATA8204, ATA8205 (Continued)  
All parameters refer to GND, Tamb = 25°C, VS = 5V, f0 = 868.3 MHz, f0 = 433.92 MHz and f0 = 315 MHz, unless otherwise specified.  
No. Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit Type*  
600 kHz version (ATA8205)  
RSense connected from pin SENS  
to VS, input matched according to  
Figure 14-1 “Application Circuit,  
fin = 868.3 MHz,  
dBm  
(peak  
level)  
14.18 Reduced sensitivity  
VS = 5V, Tamb = +25°C  
RSense = 56 kΩ  
RSense = 100 kΩ  
PRef_Red  
PRef_Red  
–60  
–69  
–68  
–77  
–76  
–85  
dBm  
dBm  
B
B
R
R
Sense = 56 kΩ  
Sense = 100 kΩ  
5
5
0
0
0
0
dB  
dB  
Reduced sensitivity variation  
14.19  
ΔPRed  
C
over full operating range  
PRed = PRef_Red + ΔPRed  
Values relative to RSense = 56 kΩ  
R
Sense = 56 kΩ  
0
dB  
dB  
dB  
dB  
Reduced sensitivity variation  
14.20  
RSense = 68 kΩ  
RSense = 82 kΩ  
ΔPRed  
–3.5  
–6.0  
–9.0  
C
A
for different values of RSense  
RSense = 100 kΩ  
14.21 Threshold voltage for reset  
VThRESET  
1.95  
2.8  
3.75  
V
15 Digital Ports  
Data output  
- Saturation voltage Low  
I
ol 12 mA  
Vol  
Vol  
Voh  
Iqu  
Iol_lim  
tamb_sc  
0.35  
0.08  
0.8  
0.3  
20  
20  
45  
85  
V
V
V
µA  
mA  
°C  
Iol = 2 mA  
- max voltage at pin DATA  
- quiescent current  
- short-circuit current  
Voh = 20V  
Vol = 0.8V to 20V  
Voh = 0V to 20V  
13  
30  
15.1  
A
- ambient temp. in case of  
permanent short-circuit  
Data input  
- Input voltage Low  
- Input voltage High  
VIl  
Vich  
0.35 ×  
VS  
V
V
0.65 ×  
VS  
DATA_CLK output  
15.2 - Saturation voltage Low  
- Saturation voltage High  
0.1  
VS –  
0.15V  
IDATA_CLK = 1mA  
IDATA_CLK = –1mA  
Vol  
Voh  
0.4  
V
V
A
VS – 0.4V  
IC_ACTIVE output  
15.3 - Saturation voltage Low  
- Saturation voltage High  
0.1  
VS –  
0.15V  
IIC_ACTIVE = 1 mA  
IIC_ACTIVE = –1 mA  
Vol  
Voh  
0.4  
V
V
A
A
VS – 0.4  
V
POLLING/_ON input  
15.4 - Low level input voltage  
- High level input voltage  
Receiving mode  
Polling mode  
VIl  
VIh  
0.2 × VS  
V
V
0.8 × VS  
0.8 × VS  
MODE pin  
15.5  
Test input must always be set to High  
Test input must always be set to Low  
A
A
- High level input voltage  
VIh  
VIl  
V
V
TEST 1 pin  
15.6  
- Low level input voltage  
0.2 × VS  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
44  
ATA8203/ATA8204/ATA8205  
9121B–INDCO–04/09  
ATA8203/ATA8204/ATA8205  
20. Ordering Information  
Extended Type Number  
ATA8203P3-TKQY  
ATA8204P3-TKQY  
ATA8205P6-TKQY  
Package  
SSO20  
SSO20  
SSO20  
Remarks  
315 MHz version, MOQ 4000  
433 MHz version, MOQ 4000  
868 MHz version, MOQ 4000  
21. Package Information  
5.4±0.2  
4.4±0.1  
6.75-0.25  
6.45±0.15  
0.25±0.05  
0.65±0.05  
5.85±0.05  
20  
11  
Package: SSO20  
Dimensions in mm  
technical drawings  
according to DIN  
specifications  
1
10  
Drawing-No.: 6.543-5056.01-4  
Issue: 1; 10.03.04  
22. Revision History  
Please note that the following page numbers referred to in this section refer to the specific revision  
mentioned, not to this document.  
Revision No.  
History  
9121B-INDCO-04/09  
Figure 1-1 “System Block Diagram” on page 2 changed  
45  
9121B–INDCO–04/09  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
8, Rue Jean-Pierre Timbaud  
BP 309  
Atmel Japan  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
78054  
Saint-Quentin-en-Yvelines Cedex Tel: (81) 3-3523-3551  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
France  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Fax: (81) 3-3523-7581  
Product Contact  
Web Site  
Technical Support  
Sales Contact  
www.atmel.com  
industrial@atmel.com  
www.atmel.com/contacts  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF  
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trade-  
marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
9121B–INDCO–04/09  

相关型号:

ATA8204P3C-TKQW

暂无描述
MICROCHIP

ATA8204P3C-TKQW

Telecom Circuit, 1-Func, PDSO20, 4.40 MM, SSOP-20
ATMEL

ATA8204P3C-TKQY

暂无描述
ATMEL

ATA8204_14

Industrial UHF ASK/FSK Receiver
ATMEL

ATA8205

Industrial UHF ASK/FSK Receiver
ATMEL

ATA8205P6-TKQY

Industrial UHF ASK/FSK Receiver
ATMEL

ATA8205P6C-TKQW

Telecom Circuit, 1-Func, PDSO20, 4.40 MM, SSOP-20
ATMEL

ATA8205P6C-TKQW

ISM RF RECEIVER 868 MHZ
MICROCHIP

ATA8205P6C-TKQY

Telecom Circuit, 1-Func, PDSO20, SSOP-20
ATMEL

ATA8205P6C-TKQY

Telecom Circuit, 1-Func, PDSO20
MICROCHIP

ATA8205_14

Industrial UHF ASK/FSK Receiver
ATMEL

ATA8210-GHQW

ISM RF RECEIVER
MICROCHIP