ATF1508BE-5CX132 [ATMEL]

Highperformance CPLD; 高性能CPLD
ATF1508BE-5CX132
型号: ATF1508BE-5CX132
厂家: ATMEL    ATMEL
描述:

Highperformance CPLD
高性能CPLD

文件: 总30页 (文件大小:769K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High-density, High-performance Fully CMOS, Electrically-erasable Complex  
Programmable Logic Device  
– 128 Macrocells  
– 5.0 ns Pin-to-pin Propagation Delay  
– Registered Operation up to 333 MHz  
– Enhanced Routing Resources  
– Optimized for 1.8V Operation  
– 2 I/O Banks to Facilitate Multi-voltage I/O Operation: 1.5V, 1.8V, 2.5V, 3.3V  
– SSTL2 and SSTL3 I/O Standards  
In-System Programming (ISP) Supported  
– ISP Using IEEE 1532 (JTAG) Interface  
– IEEE 1149.1 JTAG Boundary Scan Test  
Flexible Logic Macrocell  
High-  
performance  
CPLD  
– D/T/Latch Configurable Flip-flops  
– 5 Product Terms per Macrocell, Expandable up to 40  
– Global and Individual Register Control Signals  
– Global and Individual Output Enable  
– Programmable Output Slew Rate with Low Output Drive  
– Programmable Open Collector Output Option  
– Maximum Logic Utilization by Burying a Register with a Combinatorial Output and  
Vice Versa  
ATF1508BE  
Fully Green (RoHS Compliant)  
As Low As 10 µA Standby Current  
Power Saving Option During Operation Using PD1 and PD2 Pins  
Programmable Pin-keeper Option on Inputs and I/Os  
Programmable Schmitt Trigger Input Option on Input and I/O Pins  
Programmable Input and I/O Pull-up Option  
Unused I/O Pins Can Be Configured as Ground (Optional)  
Available in Commercial and Industrial Temperature Ranges  
Available in 100-lead TQFP and 132-ball CBGA  
Advanced Digital CMOS Technology  
– 100% Tested  
– Completely Reprogrammable  
– 10,000 Program/Erase Cycles  
– 20-year Data Retention  
– 2000V ESD Protection  
– 200 mA Latch-up Immunity  
Security Fuse Feature  
Hot-Socketing Supported  
3663A–PLD–1/08  
Enhanced Features  
Improved Connectivity (Additional Feedback Routing, Alternate Input Routing)  
Output Enable Product Terms  
Outputs Can Be Configured for High or Low Drive  
Combinatorial Output with Registered Feedback and Vice Versa within each Macrocell  
Three Global Clock Pins  
Fast Registered Input from Product Term  
Pull-up Option on TMS and TDI JTAG Pins  
OTF (On-the-Fly) Reconfiguration Mode  
DRA (Direct Reconfiguration Access)  
1. Description  
The ATF1508BE is a high-performance, high-density complex programmable logic device  
(CPLD) that utilizes Atmel’s proven electrically-erasable memory technology. With 128 logic  
macrocells and up to 84 inputs, it easily integrates logic from several TTL, SSI, MSI, LSI and  
classic PLDs. The ATF1508BE’s enhanced routing switch matrices increase usable gate count  
and the odds of successful pin-locked design modifications.  
The ATF1508BE has up to 80 bi-directional I/O pins and four dedicated input pins. Each dedi-  
cated input pin can also serve as a global control signal, register clock, register reset or output  
enable. Each of these control signals can be selected for use individually within each macrocell.  
Figures 1-1 and 1-2 show the pin assignments for the 100-lead TQFP and 132-ball CBGA pack-  
ages, respectively.  
2
ATF1508BE  
3663A–PLD–1/08  
ATF1508BE  
Figure 1-1. 100-lead TQFP Top View  
I/O/PD1  
I/O  
1
2
3
4
5
6
7
8
9
75 I/O  
74 GND  
73 I/O/TDO  
72 I/O  
VCCIOA  
I/O/TDI  
I/O  
71 I/O  
I/O  
70 I/O  
I/O  
69 I/O  
I/O  
68 I/O  
I/O  
67 I/O  
I/O 10  
GND 11  
VREFA / I/O 12  
I/O 13  
66 VCCIOB  
65 I/O  
64 I/O  
63 I/O  
I/O 14  
62 I/O/TCK  
61 I/O  
I/O/TMS 15  
I/O 16  
60 I/O / VREFB  
59 GND  
58 I/O  
I/O 17  
VCCIOA 18  
I/O 19  
57 I/O  
I/O 20  
56 I/O  
I/O 21  
55 I/O  
I/O 22  
54 I/O  
I/O 23  
53 I/O  
I/O 24  
52 I/O  
I/O 25  
51 VCCIOB  
3
3663A–PLD–1/08  
Figure 1-2. 132-CBGA Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
C
D
E
F
I/O  
I/O  
VCCINT I/GCLR  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
VCCIOB  
NC  
NC  
NC  
NC  
GND  
I/O/TDO  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCIOB  
GND  
NC  
I/O  
GND  
I/O  
I/OE1 I/OE2/ VCCIOB  
GCLK2  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O/PD1  
I/O  
I/O  
I/O  
G
H
J
I/O  
I/O/PD2  
I/O  
VCCIOA  
GND  
GND  
I/O  
I/O/VREFA I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/GCLK1  
NC  
VCCIOA  
I/O  
I/O  
K
L
VCCNT  
NC  
NC  
I/O I/O/VREFB I/O  
M
N
P
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
I/O  
NC  
NC  
I/O/TDI I/O/TCK  
GND I/O/TMS  
I/O  
I/O  
I/O  
NC  
GND  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
GND  
VCCINT  
NC  
I/O  
I/O  
I/O  
GND  
VCCIOA  
I/O  
I/O  
VCCIOA  
Note:  
1. The 132-ball CBGA package is 8 x 8 x 1.2 mm in size with 0.5 mm ball spacing.  
4
ATF1508BE  
3663A–PLD–1/08  
ATF1508BE  
Figure 1-3. Block Diagram  
10  
16  
10  
5
3663A–PLD–1/08  
Each of the 128 macrocells generates a buried feedback signal that goes to the global bus (see  
Figure 1-3). Each input and I/O pin also feeds into the global bus. The switch matrix in each logic  
block then selects 40 individual signals from the global bus. Each macrocell also generates a  
foldback logic term that goes to a regional bus. Cascade logic between macrocells in the  
ATF1508BE allows fast, efficient generation of complex logic functions. The ATF1508BE con-  
tains eight such logic chains, each capable of creating sum term logic with a fan-in of up to 40  
product terms.  
The ATF1508BE macrocell, shown in Figure 1-4, is highly flexible and capable of supporting  
complex logic functions operating at high speed. The macrocell consists of five sections: product  
terms and product term select multiplexer, OR/XOR/CASCADE logic, a flip-flop, output select  
and enable, and logic array inputs.  
A security fuse, when programmed, protects the contents of the ATF1508BE. Two bytes  
(16 bits) of User Electronic Signature are accessible to the user for purposes such as storing  
project name, part number, revision or date. The User Electronic Signature is accessible regard-  
less of the state of the security fuse.  
The ATF1508BE device supports In-System Programming (ISP) via the industry-standard 4-pin  
JTAG interface (IEEE 1532 standard), and is fully compliant with IEEE 1149.1 for Boundary  
Scan Test. ISP allows the device to be programmed without removing it from the printed circuit  
board. In addition to simplifying the manufacturing flow, ISP also allows design modifications to  
be made in the field via software.  
Figure 1-4. ATF1508BE Macrocell  
BURIED FEEDBACK  
SCHMITT  
TRIGGER  
SSTL  
6
ATF1508BE  
3663A–PLD–1/08  
ATF1508BE  
1.1  
1.2  
Product Terms and Select Mux  
Each ATF1508BE macrocell has five product terms. Each product term receives as its inputs all  
signals from the switch matrix and regional bus.  
The product term select multiplexer (PTMUX) allocates the five product terms as needed to the  
macrocell logic gates and control signals. The PTMUX configuration is determined by the design  
compiler, which selects the optimum macrocell configuration.  
OR/XOR/CASCADE Logic  
The ATF1508BE’s logic structure is designed to efficiently support all types of logic. Within a sin-  
gle macrocell, all the product terms can be routed to the OR gate, creating a 5-input AND/OR  
sum term. With the addition of the CASIN from neighboring macrocells, this can be expanded to  
as many as 40 product terms with minimal additional delay.  
The macrocell’s XOR gate allows efficient implementation of compare and arithmetic functions.  
One input to the XOR comes from the OR sum term. The other XOR input can be a product term  
or a fixed high or low level. For combinatorial outputs, the fixed level input allows polarity selec-  
tion. For registered functions, the fixed levels allow DeMorgan minimization of product terms.  
1.3  
Flip-flop  
The ATF1508BE’s flip-flop has very flexible data and control functions. The data input can come  
from either the XOR gate, from a separate product term or directly from the I/O pin. Selecting the  
separate product term allows creation of a buried registered feedback within a combinatorial out-  
put macrocell. (This feature is automatically implemented by the fitter software). In addition to D,  
T, JK and SR operation, the flip-flop can also be configured as a flow-through latch. In this  
mode, data passes through when the clock is high and is latched when the clock is low.  
The clock itself can be any one of the Global CLK signals (GCK[0 : 2]) or an individual product  
term. The flip-flop changes state on the clock’s rising edge. When the GCK signal is used as the  
clock, one of the macrocell product terms can be selected as a clock enable. When the clock  
enable function is active and the enable signal (product term) is low, all clock edges are ignored.  
The flip-flop’s asynchronous reset signal (AR) can be either the Global Clear (GCLEAR), a prod-  
uct term, or always off. AR can also be a logic OR of GCLEAR with a product term. The  
asynchronous preset (AP) can be a product term or always off.  
1.4  
1.5  
Extra Feedback  
The ATF1508BE macrocell output can be selected as registered or combinatorial. The extra bur-  
ied feedback signal can be either combinatorial or a registered signal regardless of whether the  
output is combinatorial or registered. (This enhancement function is automatically implemented  
by the fitter software.) Feedback of a buried combinatorial output allows the creation of a second  
latch within a macrocell.  
I/O Control  
The output enable multiplexer (MOE) controls the output enable signal. Each I/O can be individ-  
ually configured as an input, output or bi-directional pin. The output enable for each macrocell  
can be selected from the true or complement of the two output enable pins, a subset of the I/O  
pins, or a subset of the I/O macrocells. This selection is automatically done by the fitter software  
when the I/O is configured as an input or bi-directional pin.  
7
3663A–PLD–1/08  
1.6  
1.7  
Global Bus/Switch Matrix  
The global bus contains all input and I/O pin signals as well as the buried feedback signal from  
all 128 macrocells. The switch matrix in each logic block receives as its inputs all signals from  
the global bus. Under software control, up to 40 of these signals can be selected as inputs to the  
logic block.  
Foldback Bus  
Each macrocell also generates a foldback product term. This signal goes to the regional bus and  
is available to all 16 macrocells within the logic block. The foldback is an inverse polarity of one  
of the macrocell’s product terms. The 16 foldback terms in each logic block allow generation of  
high fan-in sum terms or other complex logic functions with little additional delay.  
2. Input and I/O Pins  
2.1  
Programmable Pin-keeper Option for Inputs and I/Os  
The ATF1508BE offers the option of individually programming each of its input or I/O pin so that  
pin-keeper circuit can be utilized. When any pin is driven high or low and then subsequently left  
floating, it will stay at that previous high or low level. This circuitry prevents undriven input and  
I/O lines from floating to intermediate voltage levels, which causes unnecessary power con-  
sumption and system noise. The keeper circuits eliminate the need for external pull-up resistors  
and eliminate their DC power consumption.  
Figure 2-1 shows the pin-keeper circuit for an Input Pin and Figure 2-2 shows the same for an  
I/O pin. The pin-keeper circuit is a weak feedback latch and has an effective resistance that is  
approximately 50 k.  
Figure 2-1. Input with Programmable Pin-keeper  
VCCINT  
50K  
8
ATF1508BE  
3663A–PLD–1/08  
ATF1508BE  
Figure 2-2. I/O with Programmable Pin-keeper  
VCCIO  
VCCINT  
50K  
2.2  
2.3  
Schmitt Trigger  
The Input Buffer of each input and I/O pin has an optional schmitt trigger setting. The schmitt  
trigger option can be used to buffer inputs with slow rise times.  
Output Drive Capability  
Each output has a high/low drive option. The low drive option (slow slew rate) can be used to  
reduce system noise by slowing down outputs that do not need to operate at maximum speed or  
drive strength. Outputs default to high drive strength by Atmel software and can be set to low  
drive strength through the slew rate option.  
2.4  
2.5  
I/O Bank  
The I/O pins of the ATF1508BE are grouped into two banks, Bank A and Bank B. Bank A com-  
prises of I/O pins for macrocells 1 to 64 (Logic Block A, B, C, and D), and it is powered by  
V
CCIOA. Bank B comprises of I/O pins for macrocells 65 to 128 (Logic Block E, F, G, and H), and  
it is powered by VCCIOB  
.
I/O Standard  
The ATF1508BE supports a wide range of I/O standards which include LVTTL, LVCMOS33,  
LVCMOS25, LVCMOS18 and LVCMOS15. The I/O pins of the ATF1508BE can also be individ-  
ually configured to support SSTL-2 (Class I) and SSTL-3 (Class I) advanced I/O standards.  
This and the two I/O banks, together, allow the ATF1508BE to be used for voltage level  
translation.  
9
3663A–PLD–1/08  
3. Power Management  
Unlike conventional CPLDs with sense amplifiers, the ATF1508BE is designed using low-power  
full CMOS design techniques. This enables the ATF1508BE to achieve extremely low power  
consumption over the full operating frequency spectrum.  
The ATF1508BE also has an optional power-down mode. In this mode, current drops to below  
100 µA. When the power-down option is selected, either PD1 or PD2 pins (or both) can be used  
to power down the part. When enabled, the device goes into power-down when either PD1 or  
PD2 is high. In the power-down mode, all internal logic signals are latched and held, as are any  
enabled outputs.  
All pin transitions are ignored until the PD pin is brought low. When the power-down feature is  
enabled, the PD1 or PD2 pin cannot be used as a logic input or output. However, the pin’s mac-  
rocell may still be used to generate buried foldback and cascade logic signals.  
All power-down AC characteristic parameters are computed from external input or I/O pins.  
4. Security Feature  
A fuse is provided to prevent unauthorized copying of the ATF1508BE fuse patterns. Once  
enabled, fuse reading or verification is inhibited. However, the 16-bit User Electronic Signature  
remains accessible. To reset this feature, the entire memory array in the device must be erased.  
5. Programming Methods  
The ATF1508BE devices are In-System Programmable (ISP) or In-System Configurable (ISC)  
devices utilizing the 4-pin JTAG protocol. This capability eliminates package handling normally  
required for programming and facilitates rapid design iterations and field changes.  
When using the ISP hardware or software to program the ATF1508BE devices, four I/O pins  
must be reserved for the JTAG interface. However, the logic features that the macrocells have  
associated with these I/O pins are still available to the design for buried logic functions.  
To facilitate ISP programming by the Automated Test Equipment (ATE) vendors, Serial Vector  
Format (SVF) files can be created by Atmel-provided software utilities. ATF1508BE devices can  
also be programmed using standard third-party programmers. With a third-party programmer,  
the JTAG ISP port can be disabled, thereby allowing four additional I/O pins to be used for logic.  
The ATF1508BE device supports several configuration modes which gives designers several  
unique options for programming.  
The different modes of programming are:  
• ISC – In-System Configuration  
• OTF – On-the-Fly Reconfiguration  
• DRA – Direct Reconfiguration Access  
10  
ATF1508BE  
3663A–PLD–1/08  
ATF1508BE  
5.1  
In-System Configuration – ISC (Also Referred to as ISP)  
This mode is the de-facto standard used to program the CPLD when it is attached to a PCB. The  
term ISC can also be used interchangeably with ISP (In-system Programming). ISC or ISP elim-  
inates the need for an external device programmer, and the devices can be soldered to a PCB  
without being preprogrammed.  
In the ISC mode, the logic operation of the ATF1508BE is halted and the embedded configura-  
tion memory is programmed. The device is programmed by first erasing the configuration  
memory in the CPLD and then loading the new configuration data into the memory, which in-turn  
configures the PLD for functional mode. When the device is in the ISC programming mode, all  
user I/Os are held in the high impedance state.  
The ISC mode is best suited for working with the ATF1508BE device in a design development or  
production environment. Configuration of the ATF1508BE device done via a Download Cable  
(see Figure 5-1 on page 11) is the default mode used to program the device in the ISC mode. In  
this mode, the PC is typically the controlling device that communicates with the CPLD.  
Figure 5-1. Configuration of ATF1508BE Device Using a Download Cable  
Connect  
ISP Download  
Cable to 10-pin  
ATF1508BE  
CPLD Device  
JTAG Header  
TCK  
VCC  
TDO  
2
1
3
5
7
9
4
6
TMS  
TDI  
8
10  
JTAG  
Connector  
5.2  
On-the-Fly Reconfiguration – OTF  
In this mode, the CPLD design pattern stored in the internal configuration memory can be modi-  
fied while the previously-programmed design pattern is operating with minimal disturbance to  
the programming operation of the new design. The new configuration will take affect after the  
OTF programming process is completed and the OTF mode is exited.  
The configuration data for any design is stored in the internal configuration memory. Once the  
configuration data is transferred to the internal static registers of the CPLD, the CPLD operates  
with the design pattern and the configuration memory is free to be re-loaded with a new set of  
configuration data. The design pattern due to the new configuration content is activated through  
an initialization cycle that occurs on exiting the OTF mode or after the next power up sequence.  
Figure 5-2 shows the electrical interface for configuration of the ATF1508BE device in the OTF  
mode. The processor is the controlling device that communicates with the CPLD and uses con-  
figuration data stored in the external memory to configure the CPLD.  
11  
3663A–PLD–1/08  
Figure 5-2. Configuration of ATF1508BE Device Using a Processor and Memory  
ATF1508BE  
CPLD Device  
TCK  
TDO  
Processor  
TMS  
TDI  
Serial Data  
Data  
Address  
Memory  
5.3  
Direct Reconfiguration Access – DRA  
This reconfiguration mode allows the user to directly modify the internal static registers of the  
CPLD without affecting the configuration data stored in the embedded memory. It is more useful  
in cases where immediate and temporary context change in the function of the hardware is  
desired.  
The embedded configuration memory in the ATF1508BE does not change when a new set of  
configuration data is passed to the ATF1508BE using the DRA mode. Instead, the internal static  
registers of the CPLD are directly written with the data entering the device via the JTAG port. In  
other words, it's a temporary change in the function performed by the CPLD since a power  
sequence results in the device being configured again by the data stored in the embedded  
memory.  
5.4  
ISP Programming Protection  
The ATF1508BE has a special feature that locks the device and prevents the inputs and I/O  
from driving if the programming process is interrupted for any reason. The I/O pins default to  
high-Z state during such a condition.  
All ATF1508BE devices are initially shipped in the erased state, thereby making them ready to  
use for ISP.  
12  
ATF1508BE  
3663A–PLD–1/08  
ATF1508BE  
6. JTAG-BST/ISP Overview  
The JTAG boundary-scan testing is controlled by the Test Access Port (TAP) controller in the  
ATF1508BE. The boundary-scan technique involves the inclusion of a shift-register stage (con-  
tained in a boundary-scan cell) adjacent to each component so that signals at component  
boundaries can be controlled and observed using scan testing methods. Each input pin and I/O  
pin has its own boundary-scan cell (BSC) to support boundary-scan testing. The TAP controller  
is automatically reset at power-up. The five JTAG modes supported include: SAMPLE/PRE-  
LOAD, EXTEST, BYPASS, IDCODE and HIGHZ. The ATF1508BE’s BSC can be fully described  
using a BSDL file as described in IEEE 1149.1 standard. This allows ATF1508BE testing to be  
described and implemented using any one of the third-party development tools supporting this  
standard.  
The ATF1508BE also has the option of using the four JTAG-standard I/O pins for ISP. The  
ATF1508BE is programmable through the four JTAG pins using the IEEE standard JTAG pro-  
gramming protocol established by IEEE 1532 standard using 1.8V/2.5V/3.3V LVCMOS level  
programming signals from the ISP interface for in-system programming. The JTAG feature is a  
programmable option. If JTAG (BST or ISP) is not needed, then the four JTAG control pins are  
available as I/O pins.  
6.1  
JTAG Boundary-scan Cell (BSC) Testing  
The ATF1508BE contains 80 I/O pins and four dedicated input pins. Each input pin and I/O pin  
has its own boundary-scan cell (BSC) in order to support boundary-scan testing as described in  
detail by IEEE 1532 standard. A typical BSC consists of three capture registers or scan registers  
and up to two update registers. There are two types of BSCs, one for input or I/O pin, and one  
for the macrocells. The BSCs in the device are chained together through the capture registers.  
Input to the capture register chain is fed in from the TDI pin while the output is directed to the  
TDO pin. Capture registers are used to capture active device data signals, to shift data in and  
out of the device and to load data into the update registers. Control signals are generated inter-  
nally by the JTAG TAP controller. The BSC configuration for the input and I/O pins and  
macrocells is shown below.  
Figure 6-1. BSC Configuration for Input and I/O Pins (Except JTAG TAP Pins)  
Note:  
The ATF1508BE has a pull-up option on TMS and TDI pins. This feature is selected as a design  
option.  
13  
3663A–PLD–1/08  
Figure 6-2. BSC Configuration for Macrocell  
TDO  
0
1
D
Q
TDI  
CLOCK  
TDO  
OEJ  
0
1
0
1
D Q  
D Q  
OUTJ  
0
1
Pin  
0
1
D Q  
D Q  
Capture  
DR  
Update  
DR  
Mode  
TDI  
Clock  
Shift  
BSC for I/O Pins and Macrocells  
7. Design Software Support  
ATF1508BE designs are supported by several third-party tools. Automated fitters allow logic  
synthesis using a variety of high-level description languages such as VHDL® and Verilog®. Third  
party synthesis and simulation tools from Mentor Graphics® are integrated into Atmel’s software  
tools.  
14  
ATF1508BE  
3663A–PLD–1/08  
ATF1508BE  
8. Electrical Specifications  
Table 8-1.  
Absolute Maximum Ratings*  
*NOTICE:  
Stresses beyond those listed under “Absolute  
Maximum Ratings” may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or any  
other conditions beyond those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device  
reliability.  
Operating Temperature...................................–40°C to +85° C  
Storage Temperature....................................–65°C to +150° C  
Supply Voltage (VCCINT) ....................................0.5V to +2.5V  
Supply Voltage for Output Drivers (VCCIO) ........0.5V to +4.5V  
Junction Temperature ...................................–55°C to +155° C  
Table 8-2.  
Operating Temperature Range  
Commercial  
0° C - 70° C  
Industrial  
Operating Temperature (Ambient)  
-40°C - 85°C  
Table 8-3.  
Pin Capacitance(1)  
Typ  
8
Max  
10  
Units  
pF  
Conditions  
CIN  
VIN = 0V; f = 1.0 MHz  
VOUT = 0V; f = 1.0 MHz  
CI/O  
8
10  
pF  
Note:  
1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.  
15  
3663A–PLD–1/08  
Table 8-4.  
Symbol  
DC Characteristics  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Supply Voltage for internal  
logic and input buffers  
VCCINT  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
1.7  
1.8  
1.9  
V
Supply Voltage for output  
drivers at 3.3V  
3.0  
2.3  
1.7  
1.4  
3.3  
2.5  
1.8  
1.5  
3.6  
2.7  
1.9  
1.6  
V
V
V
V
Supply Voltage for output  
drivers at 2.5V  
Supply Voltage for output  
drivers at 1.8V  
Supply Voltage for Output  
Drivers at 1.5V  
ISB_IO  
Standby Current, VCCIO  
VCCIO = 3.3V, VCCINT = 1.8V  
VCCINT = 1.9V, VCCIO = 3.6V  
1
µA  
µA  
ISB_INT  
Standby Current, VCC Core(1)  
20  
Operating Current(1)  
for VCCINT (supply voltage)  
VCCINT = 1.8V, VCCIO = 3.3V,  
f = 1 MHz  
ICC_INT(HD)  
ICC_IO(HD)  
ICC_INT(LD)  
ICC_IO(LD)  
315  
330  
145  
60  
µA  
µA  
µA  
µA  
Operating Current(1)  
for VCCIO (supply voltage for  
output drivers), per LAB  
VCCINT = 1.8V, VCCIO = 3.3V,  
f = 1 MHz  
Operating Current(1)  
for VCCINT (low drive)  
VCCINT = 1.8V, VCCIO = 3.3V,  
f = 1 MHz  
Operating Current(1)  
for VCCIO (supply voltage for  
output drivers), per LAB  
VCCINT = 1.8V, VCCIO = 3.3V,  
f = 1 MHz  
IIL, IIH  
Input Leakage  
VCCINT = 1.8V, VIN = 0V or VCCINT  
1
1
µA  
µA  
VCCINT = 1.8V, VCCIO = 3.6V,  
IOZH, IOH  
Output or IO Leakage  
VIN = 0V or VCCIO  
LVCMOS 3.3V & LVTTL (HD: High Drive, LD: Low Drive)  
VIL  
VIH  
Input Low-voltage  
Input High-voltage  
-0.3  
2
0.8  
3.9  
0.4  
0.4  
V
V
V
V
V
V
HD: IOL = 8 mA, VCCIO = 3V  
LD: IOL = 1 mA, VCCIO = 3V  
HD: IOH = -8 mA, VCCIO = 3V  
LD: IOH = -1 mA, VCCIO = 3V  
VOL  
Output Low-voltage  
Output High-voltage  
VCCIO - 0.4V  
VCCIO - 0.4V  
VOH  
LVCMOS 2.5V  
VIL  
VIH  
Input Low-voltage  
Input High-voltage  
-0.3  
1.7  
0.7  
3.9  
0.4  
0.4  
V
V
V
V
V
V
HD: IOL = 8 mA, VCCIO = 2.3V  
LD: IOL = 1 mA, VCCIO = 2.3V  
HD: IOH = -8 mA, VCCIO = 2.3V  
LD: IOH = -1 mA, VCCIO = 2.3V  
VOL  
Output Low-voltage  
Output High-voltage  
VCCIO - 0.4V  
VCCIO - 0.4V  
VOH  
16  
ATF1508BE  
3663A–PLD–1/08  
ATF1508BE  
Table 8-4.  
Symbol  
LVCMOS 1.8V  
VIL  
DC Characteristics (Continued)  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Input Low-voltage  
Input High-voltage  
-0.3  
1.2  
0.35 x VCCIO  
V
V
V
V
V
V
VIH  
3.9  
0.45  
0.2  
HD: IOL = 2 mA, VCCIO = 1.7V  
LD: IOL = 1 mA, VCCIO = 1.7V  
HD: IOH = -2 mA, VCCIO = 1.7V  
LD: IOH = -1 mA, VCCIO = 1.7V  
VOL  
Output Low-voltage  
Output High-voltage  
VCCIO - 0.45V  
VCCIO - 0.45V  
VOH  
LVCMOS 1.5V  
VIL  
VIH  
Input Low-voltage  
Input High-voltage  
-0.3  
1.2  
0.35 x VCCIO  
V
V
V
V
V
V
3.9  
0.45  
0.2  
HD: IOL = 2 mA, VCCIO = 1.4V  
LD: IOL = 1 mA, VCCIO = 1.4V  
HD: IOH = -2 mA, VCCIO = 1.4V  
LD: IOH = -1 mA, VCCIO = 1.4V  
VOL  
Output Low-voltage  
Output High-voltage  
VCCIO - 0.45V  
VCCIO - 0.45V  
VOH  
Note:  
1. 16-bit up/down counter used in each LAB.  
Table 8-5.  
Schmitt Trigger Input Threshold Voltage  
VTHL  
VTLH  
VCCINT  
Min  
0.68  
0.81  
Max  
0.73  
0.88  
Min  
1.05  
1.18  
Max  
1.08  
1.22  
1.70  
1.95  
Table 8-6.  
Symbol  
VCCIO  
SSTL2-1 DC Voltage Specifications  
Parameter  
Conditions  
Min  
2.3  
Typ  
2.5  
Max  
2.7  
Units  
V
Input Source Voltage  
Input Reference Voltage  
Termination Voltage  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Voltage  
Input High Voltage  
Input Low Voltage  
(1)  
VREF  
1.15  
1.25  
1.25  
1.35  
V
(2)  
VTT  
VREF - 0.05  
VREF + 0.45  
-0.3  
VREF + 0.04  
3.9  
V
VIH  
V
VIL  
VREF - 0.6  
V
VOH  
IOH = -8 mA, VCCIO = 2.3V  
IOL = 8 mA, VCCIO = 2.3V  
VCCIO - 0.6  
V
VOL  
0.54  
V
VIH(DC)  
VIL(DC)  
VREF + 0.15  
-0.3  
VCCIO + 0.3  
VREF - 0.15  
V
V
Notes: 1. Peak-to-peak noise on VREF may not exceed 2% VREF, VREF should track the variations in VCCIO  
.
2. VTT of transmitting device must track VREF of receiving devices.  
17  
3663A–PLD–1/08  
Table 8-7.  
Symbol  
VCCIO  
SSTL3-1 DC Voltage Specifications  
Parameter  
Conditions  
Min  
3.0  
Typ  
3.3  
1.5  
1.5  
Max  
3.6  
Units  
V
Input Source Voltage  
Input Reference Voltage  
Termination Voltage  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Voltage  
Input High Voltage  
Input Low Voltage  
(1)  
VREF  
1.3  
1.7  
V
(2)  
VTT  
VREF - 0.05  
VREF + 0.4  
-0.3  
VREF + 0.05  
VCCIO + 0.3  
VREF - 0.6  
V
VIH  
V
VIL  
V
VOH  
IOH = -8 mA, VCCIO = 3V  
IOL = 8 mA, VCCIO = 2.3V  
VCCIO - 1.1  
V
VOL  
0.7  
V
VIH(DC)  
VIL(DC)  
VREF + 0.18  
-0.3  
VCCIO + 0.3  
VREF - 0.18  
V
V
Notes: 1. Peak-to-peak noise on VREF may not exceed 2% VREF, VREF should track the variations in VCCIO  
.
2. VTT of transmitting device must track VREF of receiving devices.  
9. Timing Model  
Internal Output  
Enable Delay  
tIOE  
Global Control  
Delay  
Input  
Delay  
tIN  
Register/  
Combinatorial  
tGLOB  
Cascade Logic  
Delay  
Delays  
tSUI  
tHI  
tPRE  
tCLR  
tRD  
tCOMB  
tFSUI  
tFHI  
Output  
Delay  
tOD1  
(+tSCH  
)
Logic Array  
Delay  
tPEXP  
Switch  
Matrix  
tUIM  
tLAD  
(+tSSO  
)
Register  
Control  
Delay  
tXZ  
tZX1  
tZX2  
Fast Input  
Delay  
tFIN  
tLAC tIC tEN  
(+SSTL2-1_OAD)  
(+SSTL3-1_OAD)  
I/O  
Delay  
tIO  
Foldback Term  
Delay  
tSEXP  
(+tSCH  
)
(+SSTL2-1_IAD)  
(+SSTL3-1_IAD)  
18  
ATF1508BE  
3663A–PLD–1/08  
ATF1508BE  
10. Output AC Test Loads  
VCCIO  
R1  
R2  
Device  
Under Test  
Test Point  
CL  
R1  
R2  
CL  
LVTTL  
350 Ohm  
300 Ohm  
200 Ohm  
150 Ohm  
350 Ohm  
300 Ohm  
200 Ohm  
150 Ohm  
35 pF  
35 pF  
35 pF  
35 pF  
LVCMOS33  
LVCMOS25  
LVCMOS18  
Note:  
CL includes test fixtures and probe capacitance.  
19  
3663A–PLD–1/08  
11. AC Characteristics  
Table 11-1. AC Characteristics (1)  
-5  
-7  
Symbol  
tPD1_INP  
tPD1  
Parameter  
Min  
Max  
5.0  
7
Min  
Max  
6
Units  
ns  
Delay for Single Input to Non-registered Output  
Input or Feedback to Non-registered Output  
Input or Feedback to Non-registered Feedback  
Global Clock Setup Time  
7.5  
4.7  
ns  
tPD2  
4.2  
ns  
tSU  
2.2  
0
2.8  
0
ns  
tH  
Global Clock Hold Time  
ns  
tFSU  
Global Clock Setup Time of Fast Input  
Global Clock Hold Time of Fast Input  
Global Clock to Output Delay  
Global Clock High Time  
1
2
ns  
tFH  
0.5  
0.75  
ns  
tCOP  
6
6.9  
7.5  
ns  
tCH  
1.25  
1.25  
1.7  
2
2
ns  
tCL  
Global Clock Low Time  
ns  
tASU  
Array Clock Setup Time  
2.2  
0.60  
ns  
tAH  
Array Clock Hold Time  
0.50  
ns  
tACOP  
tACH  
Array Clock to Output Delay  
Array Clock High Time  
6.5  
ns  
1.75  
1.75  
2.5  
2.5  
ns  
tACL  
Array Clock Low Time  
ns  
tCNT  
Minimum Global Clock Period  
Maximum Internal Global Clock Frequency  
Minimum Array Clock Period  
Maximum Internal Array Clock Frequency  
3
4
4.75  
5.5  
ns  
fCNT  
333  
250  
210  
181  
MHz  
ns  
tACNT  
fACNT  
fMAX_EXT_SYNC  
fMAX_EXT_ASYNC  
tIN  
MHz  
MHz  
MHz  
ns  
Maximum External Frequency  
Maximum External Frequency  
Input Pad and Buffer Delay  
I/O Input Pad and Buffer Delay  
Fast Input Delay  
VCCIO = 3.3V  
VCCIO = 3.3V  
122  
122  
103  
103  
0.9  
0.9  
1
0.7  
0.7  
tIO  
ns  
tFIN  
1
2
ns  
tSEXP  
tPEXP  
tLAD  
Foldback Term Delay  
3
ns  
Cascade Logic Delay  
0.5  
1.8  
1.5  
2
1.0  
1.8  
2
ns  
Logic Array Delay  
ns  
tLAC  
Logic Control Delay  
ns  
tIOE  
Internal Output Enable Delay  
2
ns  
V
CCIO = 1.5V  
4.5  
4.0  
3.5  
2.8  
4.5  
4.0  
3.5  
2.8  
VCCIO = 1.8V  
VCCIO = 2.5V  
VCCIO = 3.3V  
Output Buffer Delay (HD)  
(High Drive; CL = 35 pF)  
tOD1  
ns  
20  
ATF1508BE  
3663A–PLD–1/08  
ATF1508BE  
Table 11-1. AC Characteristics (Continued)(1)  
-5  
-7  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Units  
V
CCIO = 1.5V  
5.0  
4.5  
3.5  
3.0  
6.0  
5.5  
4.5  
4.0  
VCCIO = 1.8V  
VCCIO = 2.5V  
VCCIO = 3.3V  
Output Buffer Enable Delay  
(High Drive; CL = 35 pF)  
tZX1  
ns  
VCCIO = 1.5V  
VCCIO = 1.8V  
VCCIO = 2.5V  
VCCIO = 3.3V  
6.0  
5.5  
4.5  
4.0  
7.0  
6.5  
5.5  
5.0  
Output Buffer Enable Delay  
(Low Drive; CL = 35 pF)  
tZX2  
ns  
tXZ  
Output Buffer Disable Delay (CL = 5 pF)  
Register Setup Time  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUI  
tHI  
tFSUI  
tFHI  
1.7  
0.5  
0.5  
0.5  
2.2  
0.6  
0.6  
0.6  
Register Hold Time  
Register Setup Time of Fast Input  
Register Hold Time of Fast Input  
Register Delay  
tRD  
0.7  
1.2  
1.2  
1.2  
1.8  
3
tCOMB  
tIC  
Combinatorial Delay  
Array Clock Delay  
1.8  
tEN  
Register Enable Time  
Global Control Delay  
2.5  
tGLOB  
tPRE  
tCLR  
tUIM  
tSCH  
1.8  
2
Register Preset Time  
1.75  
1.75  
0.5  
2
Register Clear Time  
2
Switch Matrix Delay  
0.8  
2
Schmitt Trigger Added Delay  
1.5  
VCCIO = 1.5V  
VCCIO = 1.8V  
VCCIO = 2.5V  
VCCIO = 3.3V  
6.5  
5.5  
5.25  
5
8.5  
7.5  
7.25  
7
Output Added Delay for VCCIO Level  
(LD)  
tSSO  
ns  
SSTL2-1_IAD(2)  
SSTL3-1_IAD(2)  
V
CCIO = 2.5V  
VCCIO = 3.3V  
CCIO = 2.5V  
VCCIO = 3.3V  
1.5  
1.5  
1.5  
1.5  
SSTL Input Delay Adder (HD)  
SSTL Output Delay Adder (HD)  
ns  
ns  
SSTL2-1_OAD(2)  
SSTL3-1_OAD(2)  
V
1
1
1
1
Note:  
1. See ordering information for valid part numbers.  
2. SSTL is not supported for low drive output (LD).  
21  
3663A–PLD–1/08  
12. Power-down Mode  
The ATF1508BE includes an optional pin-controlled power-down feature. When this mode is  
enabled, the PD pin acts as the power-down pin. When the PD pin is high, the device supply cur-  
rent is reduced to less than 100 µA. During power-down, all output data and internal logic states  
are latched and held. Therefore, all registered and combinatorial output data remain valid. Any  
outputs that were in a high-Z state at the onset will remain at high-Z. During power-down, all  
input signals except the power-down pin are blocked. Input and I/O hold latches remain active to  
ensure that pins do not float to indeterminate levels, further reducing system power. The power-  
down pin feature is enabled in the logic design file or through Atmel software. Designs using the  
power-down pin may not use the PD pin logic array input. However, all other PD pin macrocell  
resources may still be used, including the buried feedback and foldback product term array  
inputs.  
Table 12-1. Power-down AC Characteristics(1)(2)  
-5/-7  
Symbol  
tIVDH  
Parameter  
Min  
10  
Max  
Units  
ns  
Valid I, I/O before PD High  
Valid OE(2) before PD High  
Valid Clock(2) before PD High  
I, I/O Don’t Care after PD High  
OE(2) Don’t Care after PD High  
Clock(2) Don’t Care after PD High  
PD Low to Valid I, I/O  
tGVDH  
tCVDH  
tDHIX  
10  
ns  
10  
ns  
5
5
5
2
2
2
2
ns  
tDHGX  
tDHCX  
tDLIV  
ns  
ns  
µs  
tDLGV  
tDLCV  
tDLOV  
PD Low to Valid OE (Pin or Term)  
PD Low to Valid Clock (Pin or Term)  
PD Low to Valid Output  
µs  
µs  
µs  
Notes: 1. For low-drive outputs, add tSSO  
.
2. Pin or product term.  
22  
ATF1508BE  
3663A–PLD–1/08  
ATF1508BE  
13. ATF1508BE Dedicated Pinouts  
Table 13-1. ATF1508BE Dedicated Pinouts  
Dedicated Pin  
INPUT / OE2 / GCLK2  
INPUT / GCLR  
INPUT / OE1  
132-ball CBGA  
100-lead TQFP  
C3  
A3  
90  
89  
88  
87  
85  
1, 41  
12  
60  
4
C2  
INPUT / GCLK1  
I/O / GCLK3  
L2  
M8  
I/O / PD (1,2)  
F1, G12  
H1  
I/O / VREFA  
I/O / VREFB  
L13  
M9  
I/O / TDI (JTAG)  
I/O / TMS (JTAG)  
I/O / TCK (JTAG)  
I/O / TDO (JTAG)  
N10  
M10  
B9  
15  
62  
73  
A9, B14, B3, E14, H14, J14, K2, N1, N9,  
N12, P4  
GND  
11, 26, 38, 43, 59, 74, 86, 95  
VCCINT  
VCCIOA  
VCCIOB  
A2, K12, P1  
J3, P7, P13, G14  
A7, A14, C4  
39, 91  
3, 18, 34  
51, 66, 82  
L1, L3, M1, N4, C13, B10, D3, P6, P8, N2,  
N7, N8, M7, M2, M12, M13, M14, C7, C8,  
C14, B6, B7, B8, B13, A6, A8, A13  
N/C  
# of Signal Pins  
# User I/O Pins  
OE (1, 2)  
84  
80  
84  
80  
Global OE pins  
GCLR  
Global Clear pin  
Global Clock pins  
Power-down pins  
GCLK (1, 2, 3)  
PD (1, 2)  
TDI, TMS, TCK, TDO  
JTAG pins used for boundary-scan testing or in-system  
programming  
GND  
Ground pins  
VCCINT  
VCCIOA  
VCC pins for the device (+1.8V)  
LAB A and B – VCC supply pins for I/Os (1.5V, 1.8V, 2.5V, or  
3.3V)  
VCCIOB  
LAB C and D – VCC supply pins for I/Os (1.5V, 1.8V, 2.5V, or  
3.3V)  
VREFA  
VREFB  
Reference voltage pin for SSTL inputs in bank A  
Reference voltage pin for SSTL inputs in bank B  
23  
3663A–PLD–1/08  
Table 13-2. ATF1508BE I/O Pinouts  
Logic  
Block  
100-lead  
TQFP  
132-ball  
CBGA  
Logic  
Block  
100-lead  
TQFP  
132-ball  
CBGA  
MC  
1
MC  
33  
A
A
2
-
G1  
-
C
C
25  
-
B1  
-
2
34  
A/  
PD1  
3
1
F1  
35  
C
24  
B2  
4
5
A
A
A
A
A
A
A
A
A
A
A
A
-
100  
99  
-
-
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
C
C
C
C
C
C
C
C
C
C
C
C
-
-
F2  
F3  
-
23  
22  
-
A1  
B4  
-
6
7
8
98  
97  
-
E1  
E2  
-
21  
20  
-
A4  
C5  
-
9
10  
11  
12  
13  
14  
15  
96  
-
E3  
-
19  
-
B5  
-
94  
93  
-
D1  
D2  
-
17  
16  
-
A5  
C6  
-
C/  
TMS  
16  
A
92  
C1  
48  
15  
N10  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
B
14  
-
C2  
-
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
37  
-
P2  
-
B
B
13  
-
G3  
-
36  
-
M3  
-
B
B/VREFA  
12  
10  
-
H1  
H2  
-
35  
33  
-
N3  
P3  
-
B
B
B
B
B
B
B
B
B
B
9
H3  
J1  
-
32  
31  
-
M4  
M5  
-
8
-
7
J2  
-
30  
-
N5  
-
-
6
K1  
K3  
-
29  
28  
-
P5  
M6  
-
5
-
B/  
TDI  
32  
4
M9  
64  
D
27  
N6  
24  
ATF1508BE  
3663A–PLD–1/08  
ATF1508BE  
Table 13-2. ATF1508BE I/O Pinouts (Continued)  
Logic  
Block  
100-lead  
TQFP  
132-ball  
CBGA  
Logic  
Block  
100-lead  
TQFP  
132-ball  
CBGA  
MC  
65  
MC  
97  
E
E
40  
-
G13  
-
G
G
63  
-
C12  
-
66  
98  
E/  
PD2  
67  
41  
G12  
99  
G
64  
B12  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
E
E
E
E
E
E
E
E
E
E
E
E
-
-
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
G
G
G
G
G
G
G
G
G
G
G
G
-
-
42  
44  
-
F14  
F13  
-
65  
67  
-
A12  
C11  
-
45  
46  
-
F12  
E13  
-
68  
69  
-
B11  
A11  
-
47  
-
E12  
-
70  
-
C10  
-
48  
49  
-
D14  
D13  
-
71  
72  
-
A10  
C9  
-
G/  
TDO  
80  
E
50  
D12  
112  
73  
B9  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
F
52  
-
H12  
-
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
75  
-
N14  
-
F
F
53  
-
H13  
-
76  
-
N13  
-
F
F
54  
55  
-
J13  
J12  
-
77  
78  
-
P14  
P12  
-
F
F
F
56  
57  
-
K14  
K13  
-
79  
80  
-
M11  
N11  
-
F
F
F
58  
-
L14  
-
81  
-
P11  
-
F
F/VREFB  
60  
61  
-
L13  
L12  
-
83  
84  
-
P10  
P9  
-
F
F
F/  
TCK  
H/  
GCLK3  
96  
62  
M10  
128  
85  
M8  
25  
3663A–PLD–1/08  
14. Typical DC and AC Characteristic Graphs  
ICCINT & ICCIO PER LAB @  
ICCINT & ICCIO PER LAB @  
VCCINT = 1.8V (HD) OVER FREQUENCY  
VCCINT = 1.8V (HD) OVER FREQUENCY  
35  
30  
25  
20  
15  
10  
5
800  
700  
600  
500  
400  
300  
200  
100  
0
Iccio_Vccio_1.5V  
Iccio_Vccio_1.8V  
Iccio_Vccio_2.5V  
Iccio_Vccio_3.3V  
Iccint_vccio_3.3V  
Iccio_Vccio_1.5V  
Iccio_Vccio_1.8V  
Iccio_Vccio_2.5V  
Iccio_Vccio_3.3V  
Iccint_vccio_3.3V  
0
0.025  
0.1  
0.2  
0.5  
1
2
1
2
5
10  
20  
50  
75  
100  
FREQUENCY (MHz)  
FREQUENCY (MHZ)  
ICCINT & ICCIO (LD) @  
VCCINT = 1.8V OVER FREQUENCY  
ICCINT & ICCIO (LD)@  
VCCINT = 1.8V OVER FREQUENCY  
700  
600  
500  
400  
300  
200  
100  
0
30  
25  
20  
15  
10  
5
Iccio_Vccio_1.5V  
Iccio_Vccio_1.8V  
Iccio_Vccio_2.5V  
Iccio_Vccio_3.3V  
Iccint_Vccio_3.3V  
Iccio_Vccio_1.5V  
Iccio_Vccio_1.8V  
Iccio_Vccio_2.5V  
Iccio_Vccio_3.3V  
Iccint_Vccio_3.3V  
0
0.025  
0.1  
0.2  
0.5  
1
2
1
2
5
10  
20  
50  
75  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
OUTPUT SINK CURRENT(IOL) VS. OUTPUT VOLTAGE  
OUTPUT SOURCE CURRENT(IOH) VS. OUTPUT VOLTAGE  
(VCCINT = 1.8V, VCCIO = 1.5-3.3V, TA = 25C), High Drive  
(VCCINT = 1.8V, VCCIO = 1.5-3.3V, TA = 25C), High Drive  
0
-20  
160  
120  
80  
40  
0
-40  
1.5V  
1.8V  
2.5V  
3.3V  
1.5V  
1.8V  
2.5V  
3.3V  
-60  
-80  
-100  
-120  
OUTPUT VOLTAGE ( V )  
OUTPUT VOLTAGE ( V )  
26  
ATF1508BE  
3663A–PLD–1/08  
ATF1508BE  
OUTPUT SINK CURRENT(IOL) VS. OUTPUT VOLTAGE  
OUTPUT SOURCE CURRENT(IOH) VS. OUTPUT VOLTAGE  
(VCCINT = 1.8V, VCCIO = 1.5-3.3V, TA = 25C), Low Drive  
(VCCINT = 1.8V, VCCIO =1.5-3.3V, TA = 25C), Low Drive  
25  
20  
15  
10  
5
0
-5  
1.5V  
1.8V  
2.5V  
3.3V  
1.5V  
1.8V  
2.5V  
3.3V  
-10  
-15  
-20  
-25  
0
OUTPUT VOLTAGE ( V )  
OUTPUT VOLTAGE ( V )  
INPUT & I/O CURRENT VS. INPUT VOLTAGE  
INPUT CURRENT VS. INPUT VOLTAGE  
INPUT PIN (VCCINT = 1.8V, TA = 25C)  
(PIN-KEEPER ON)  
V
CCINT = 1.8V, VCCIO = 1.8V (TA = 25°C)  
(Pull-Up On)  
0.0  
80  
60  
40  
20  
0
-5.0  
-10.0  
-15.0  
-20.0  
-25.0  
-30.0  
-35.0  
-40.0  
-20  
-40  
0
0.5  
1
1.5  
1.8  
INPUT VOLTAGE ( V )  
INPUT VOLTAGE (V)  
TPD VS. # MC SWITCHING  
(VCCINT = 1.8V, VCCIO = 1.5-3.3V, TA = 25C)  
I/O PIN CURRENT VS. I/O PIN VOLTAGE  
I/O PIN (VCCINT = 1.8V, VCCIO = 1.5V-3.3V, TA = 25C)  
(PIN KEEPER ON)  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
200  
150  
100  
50  
1.5V  
1.8V  
2.5V  
3.3V  
1.5V  
1.8V  
2.5V  
3.3V  
0
-50  
-100  
-150  
I/O PIN VOLTAGE ( V )  
# MC SWITCHING  
27  
3663A–PLD–1/08  
15. Ordering Information  
15.1 Lead-free Package Options (RoHS Compliant)  
tPD  
tCO  
(ns)  
(ns)  
Ordering Code  
Package  
Operation Range  
Commercial  
5
7
5
7
6
ATF1508BE-5AX100  
100A  
(0° C to +70°C)  
Industrial  
6.5  
6
ATF1508BE-7AU100  
ATF1508BE-5CX132  
ATF1508BE-7CU132  
100A  
(-40°C to +85°C)  
Commercial  
132C1  
132C1  
(0° C to +70°C)  
Industrial  
6.5  
(-40°C to +85°C)  
Note:  
For shaded devices, contact marketing for availability.  
Package Type  
100A  
132C1  
100-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)  
132-ball, Plastic Chip-Size Ball Grid Array Package (CBGA)  
28  
ATF1508BE  
3663A–PLD–1/08  
ATF1508BE  
16. Packaging Information  
16.1 100A – TQFP  
PIN 1  
B
PIN 1 IDENTIFIER  
E1  
E
e
D1  
D
C
0˚~7˚  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
15.75  
13.90  
15.75  
13.90  
0.17  
0.09  
0.45  
0.15  
1.00  
16.00  
14.00  
16.00  
14.00  
1.05  
16.25  
D1  
E
14.10 Note 2  
16.25  
Notes: 1. This package conforms to JEDEC reference MS-026, Variation AED.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
E1  
B
14.10 Note 2  
0.27  
C
0.20  
3.  
Lead coplanarity is 0.08 mm maximum.  
L
0.75  
e
0.50 TYP  
10/5/2001  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
100A, 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,  
0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
100A  
C
R
29  
3663A–PLD–1/08  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
Technical Support  
Sales Contact  
www.atmel.com  
pld@atmel.com  
www.atmel.com/contacts  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF  
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
©
2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others are  
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Mentor Graphics® is the registered trademark of Mentor Graphics  
®
®
Corporation. Verilog is the registered trademarks of Cadence Design Systems, Inc. VHDL is the trademark of Synopsys, Inc. Other terms  
and product names may be trademarks of others.  
3663A–PLD–1/08  

相关型号:

ATF1508BE-7AU100

Highperformance CPLD
ATMEL

ATF1508BE-7CU132

Highperformance CPLD
ATMEL

ATF1508JC68-10

Flash Complex PLD
ETC

ATF1508JC68-15

Flash Complex PLD
ETC

ATF1508JC68-7

Flash Complex PLD
ETC

ATF1508JC84-10

Flash Complex PLD
ETC

ATF1508JC84-15

Flash Complex PLD
ETC

ATF1508JC84-7

Flash Complex PLD
ETC

ATF1508JI68-15

Flash Complex PLD
ETC

ATF1508JI84-15

Flash Complex PLD
ETC

ATF1508QC100-10

Flash Complex PLD
ETC

ATF1508QC100-15

Flash Complex PLD
ETC