ATMEGA1281V-8AUR [ATMEL]

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 8MHz, CMOS, PQFP64, 14 X 14 MM, 1 MM HEIGHT, 0.80 MM PITCH, GREEN, PLASTIC, MS-026AEB, TQFP-64;
ATMEGA1281V-8AUR
型号: ATMEGA1281V-8AUR
厂家: ATMEL    ATMEL
描述:

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 8MHz, CMOS, PQFP64, 14 X 14 MM, 1 MM HEIGHT, 0.80 MM PITCH, GREEN, PLASTIC, MS-026AEB, TQFP-64

时钟 微控制器 外围集成电路 闪存
文件: 总34页 (文件大小:573K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V  
8-bit Atmel Microcontroller with 16/32/64KB In-System Programmable Flash  
SUMMARY  
Features  
High Performance, Low Power Atmel® AVR® 8-Bit Microcontroller  
Advanced RISC Architecture  
135 Powerful Instructions – Most Single Clock Cycle Execution  
32 × 8 General Purpose Working Registers  
Fully Static Operation  
Up to 16 MIPS Throughput at 16MHz  
On-Chip 2-cycle Multiplier  
High Endurance Non-volatile Memory Segments  
64K/128K/256KBytes of In-System Self-Programmable Flash  
4Kbytes EEPROM  
8Kbytes Internal SRAM  
Write/Erase Cycles:10,000 Flash/100,000 EEPROM  
Data retention: 20 years at 85C/ 100 years at 25C  
Optional Boot Code Section with Independent Lock Bits  
• In-System Programming by On-chip Boot Program  
• True Read-While-Write Operation  
Programming Lock for Software Security  
• Endurance: Up to 64Kbytes Optional External Memory Space  
Atmel® QTouch® library support  
Capacitive touch buttons, sliders and wheels  
QTouch and QMatrix acquisition  
Up to 64 sense channels  
JTAG (IEEE® std. 1149.1 compliant) Interface  
Boundary-scan Capabilities According to the JTAG Standard  
Extensive On-chip Debug Support  
Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface  
Peripheral Features  
Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode  
Four 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode  
Real Time Counter with Separate Oscillator  
Four 8-bit PWM Channels  
Six/Twelve PWM Channels with Programmable Resolution from 2 to 16 Bits  
(ATmega1281/2561, ATmega640/1280/2560)  
Output Compare Modulator  
8/16-channel, 10-bit ADC (ATmega1281/2561, ATmega640/1280/2560)  
Two/Four Programmable Serial USART (ATmega1281/2561, ATmega640/1280/2560)  
Master/Slave SPI Serial Interface  
Byte Oriented 2-wire Serial Interface  
Programmable Watchdog Timer with Separate On-chip Oscillator  
On-chip Analog Comparator  
Interrupt and Wake-up on Pin Change  
Special Microcontroller Features  
Power-on Reset and Programmable Brown-out Detection  
Internal Calibrated Oscillator  
External and Internal Interrupt Sources  
Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,  
and Extended Standby  
I/O and Packages  
54/86 Programmable I/O Lines (ATmega1281/2561, ATmega640/1280/2560)  
64-pad QFN/MLF, 64-lead TQFP (ATmega1281/2561)  
100-lead TQFP, 100-ball CBGA (ATmega640/1280/2560)  
RoHS/Fully Green  
Temperature Range:  
-40C to 85C Industrial  
Ultra-Low Power Consumption  
Active Mode: 1MHz, 1.8V: 500µA  
Power-down Mode: 0.1µA at 1.8V  
Speed Grade:  
ATmega640V/ATmega1280V/ATmega1281V:  
• 0 - 4MHz @ 1.8V - 5.5V, 0 - 8MHz @ 2.7V - 5.5V  
ATmega2560V/ATmega2561V:  
• 0 - 2MHz @ 1.8V - 5.5V, 0 - 8MHz @ 2.7V - 5.5V  
ATmega640/ATmega1280/ATmega1281:  
• 0 - 8MHz @ 2.7V - 5.5V, 0 - 16MHz @ 4.5V - 5.5V  
ATmega2560/ATmega2561:  
• 0 - 16MHz @ 4.5V - 5.5V  
2549QS–AVR–02/2014  
1. Pin Configurations  
Figure 1-1. TQFP-pinout ATmega640/1280/2560  
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
100  
(OC0B) PG5  
(RXD0/PCINT8) PE0  
(TXD0) PE1  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PA3 (AD3)  
2
PA4 (AD4)  
INDEX CORNER  
3
PA5 (AD5)  
(XCK0/AIN0) PE2  
(OC3A/AIN1) PE3  
(OC3B/INT4) PE4  
(OC3C/INT5) PE5  
(T3/INT6) PE6  
4
PA6 (AD6)  
5
PA7 (AD7)  
6
PG2 (ALE)  
7
PJ6 (PCINT15)  
PJ5 (PCINT14)  
PJ4 (PCINT13)  
PJ3 (PCINT12)  
PJ2 (XCK3/PCINT11)  
PJ1 (TXD3/PCINT10)  
PJ0 (RXD3/PCINT9)  
GND  
8
(CLKO/ICP3/INT7) PE7  
VCC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
GND  
(RXD2) PH0  
(TXD2) PH1  
(XCK2) PH2  
(OC4A) PH3  
VCC  
(OC4B) PH4  
PC7 (A15)  
(OC4C) PH5  
PC6 (A14)  
(OC2B) PH6  
PC5 (A13)  
(SS/PCINT0) PB0  
(SCK/PCINT1) PB1  
(MOSI/PCINT2) PB2  
(MISO/PCINT3) PB3  
(OC2A/PCINT4) PB4  
(OC1A/PCINT5) PB5  
(OC1B/PCINT6) PB6  
PC4 (A12)  
PC3 (A11)  
PC2 (A10)  
PC1 (A9)  
PC0 (A8)  
PG1 (RD)  
PG0 (WR)  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
2
2549QS–AVR–02/2014  
 
Figure 1-2. CBGA-pinout ATmega640/1280/2560  
Top view  
Bottom view  
1
2
3
4
5
6
7
8
9
10  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
K
Table 1-1.  
CBGA-pinout ATmega640/1280/2560  
1
2
3
PF0  
4
5
6
7
8
9
10  
A
B
C
D
E
F
GND  
AVCC  
PE2  
AREF  
PG5  
PE0  
PE4  
PH0  
PH4  
PB1  
PB4  
PG3  
PG4  
PF2  
PF3  
PF4  
PE6  
PH3  
PB0  
PB5  
PL1  
PL0  
GND  
PF5  
PK0  
PK1  
PK2  
PA4  
PJ6  
PD1  
PD0  
PL7  
PL6  
PL5  
PK3  
PK4  
PK5  
PA5  
PJ5  
PJ1  
PD5  
PD4  
PD3  
PD2  
PK6  
GND  
PA0  
PA1  
PA7  
PJ3  
PC7  
PC6  
PC3  
PC0  
PD7  
VCC  
PA2  
PF1  
PF6  
PK7  
PJ7  
PA6  
PJ4  
PJ0  
PC5  
PC4  
PC1  
PD6  
PE1  
PE5  
PH1  
PH6  
PB2  
RESET  
PB6  
VCC  
PF7  
PA3  
PE3  
PH2  
PH5  
PL4  
PG2  
PJ2  
PE7  
VCC  
GND  
PB3  
GND  
VCC  
PC2  
PG1  
PG0  
G
H
J
PL2  
PL3  
PH7  
PB7  
XTAL2  
XTAL1  
K
Note:  
The functions for each pin is the same as for the 100 pin packages shown in Figure 1-1 on page 2.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
3
2549QS–AVR–02/2014  
Figure 1-3. Pinout ATmega1281/2561  
1
PA3 (AD3)  
PA4 (AD4)  
PA5 (AD5)  
PA6 (AD6)  
PA7 (AD7)  
PG2 (ALE)  
PC7 (A15)  
PC6 (A14)  
PC5 (A13)  
PC4 (A12)  
PC3 (A11)  
PC2 (A10)  
PC1 (A9)  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
(OC0B) PG5  
2
3
(RXD0/PCINT8/PDI) PE0  
(TXD0/PDO) PE1  
INDEX CORNER  
4
(XCK0/AIN0) PE2  
5
(OC3A/AIN1) PE3  
(OC3B/INT4) PE4  
(OC3C/INT5) PE5  
(T3/INT6) PE6  
6
7
8
9
(ICP3/CLKO/INT7) PE7  
(SS/PCINT0) PB0  
(SCK/PCINT1) PB1  
(MOSI/PCINT2) PB2  
(MISO/PCINT3) PB3  
(OC2A/PCINT4) PB4  
(OC1A/PCINT5) PB5  
(OC1B/PCINT6) PB6  
10  
11  
12  
13  
14  
15  
16  
PC0 (A8)  
PG1 (RD)  
PG0 (WR)  
Note:  
The large center pad underneath the QFN/MLF package is made of metal and internally connected to GND. It should  
be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the pack-  
age might loosen from the board.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
4
2549QS–AVR–02/2014  
2. Overview  
The ATmega640/1280/1281/2560/2561 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced  
RISC architecture. By executing powerful instructions in single clock cycle, the  
a
ATmega640/1280/1281/2560/2561 achieves throughputs approaching 1 MIPS per MHz allowing the system  
designer to optimize power consumption versus processing speed.  
2.1  
Block Diagram  
Figure 2-1. Block Diagram  
PF7..0  
PK7..0  
PJ7..0  
PE7..0  
VCC  
Power  
Supervision  
POR/ BOD &  
RESET  
RESET  
PORT F (8)  
PORT K (8)  
PORT J (8)  
PORT E (8)  
Watchdog  
Timer  
GND  
Analog  
Comparat or  
A/D  
Conver t er  
Watchdog  
Oscillator  
JTAG  
USART 0  
USART 3  
USART 1  
USART 2  
XTAL1  
Oscillator  
Circuit s /  
Clock  
Internal  
Bandgap reference  
16 bit T/C3  
EEPROM  
Generat ion  
16 bit T/C5  
16 bit T/C4  
16 bit T/C1  
XTAL2  
CPU  
PORT A (8)  
PORT G (6)  
PA7..0  
PG5..0  
FLASH  
SPI  
SRAM  
XRAM  
TWI  
8 bit T/C0  
8 bit T/C2  
PC7..0  
PORT C (8)  
NOTE:  
Shaded parts only available  
in the 100-pin version.  
Completefunctionality for  
t he ADC, T/ C4, and T/ C5 only  
available in the 100-pin version.  
PORT D (8)  
PD7..0  
PORT B (8)  
PORT H (8)  
PORT L (8)  
PL7..0  
PB7..0  
PH7..0  
The Atmel® AVR® core combines a rich instruction set with 32 general purpose working registers. All the 32 regis-  
ters are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in  
one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving  
throughputs up to ten times faster than conventional CISC microcontrollers.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
5
2549QS–AVR–02/2014  
The ATmega640/1280/1281/2560/2561 provides the following features: 64K/128K/256K bytes of In-System Pro-  
grammable Flash with Read-While-Write capabilities, 4Kbytes EEPROM, 8Kbytes SRAM, 54/86 general purpose  
I/O lines, 32 general purpose working registers, Real Time Counter (RTC), six flexible Timer/Counters with com-  
pare modes and PWM, four USARTs, a byte oriented 2-wire Serial Interface, a 16-channel, 10-bit ADC with  
optional differential input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator,  
an SPI serial port, IEEE® std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug  
system and programming and six software selectable power saving modes. The Idle mode stops the CPU while  
allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down  
mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt  
or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a  
timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O mod-  
ules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby  
mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast  
start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator and the  
Asynchronous Timer continue to run.  
Atmel offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels functionality into AVR  
microcontrollers. The patented charge-transfer signal acquisition offersrobust sensing and includes fully  
debounced reporting of touch keys and includes Adjacent Key Suppression® (AKS®) technology for unambiguous  
detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your  
own touch applications.  
The device is manufactured using the Atmel high-density nonvolatile memory technology. The On-chip ISP Flash  
allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional non-  
volatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use  
any interface to download the application program in the application Flash memory. Software in the Boot Flash  
section will continue to run while the Application Flash section is updated, providing true Read-While-Write opera-  
tion. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel  
ATmega640/1280/1281/2560/2561 is a powerful microcontroller that provides a highly flexible and cost effective  
solution to many embedded control applications.  
The ATmega640/1280/1281/2560/2561 AVR is supported with a full suite of program and system development  
tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation  
kits.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
6
2549QS–AVR–02/2014  
2.2  
Comparison Between ATmega1281/2561 and ATmega640/1280/2560  
Each device in the ATmega640/1280/1281/2560/2561 family differs only in memory size and number of pins. Table  
2-1 summarizes the different configurations for the six devices.  
Table 2-1.  
Configuration Summary  
General  
Purpose I/O pins  
16 bits resolution  
PWM channels  
Serial  
USARTs  
ADC  
Channels  
Device  
Flash  
64KB  
EEPROM  
4KB  
RAM  
8KB  
8KB  
8KB  
8KB  
8KB  
ATmega640  
ATmega1280  
ATmega1281  
ATmega2560  
ATmega2561  
86  
86  
54  
86  
54  
12  
12  
6
4
4
2
4
2
16  
16  
8
128KB  
128KB  
256KB  
256KB  
4KB  
4KB  
4KB  
12  
6
16  
8
4KB  
2.3  
Pin Descriptions  
2.3.1  
VCC  
Digital supply voltage.  
2.3.2  
2.3.3  
GND  
Ground.  
Port A (PA7..PA0)  
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buf-  
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are  
externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a  
reset condition becomes active, even if the clock is not running.  
Port A also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on  
page 75.  
2.3.4  
Port B (PB7..PB0)  
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buf-  
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are  
externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a  
reset condition becomes active, even if the clock is not running.  
Port B has better driving capabilities than the other ports.  
Port B also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on  
page 76.  
2.3.5  
Port C (PC7..PC0)  
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buf-  
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are  
externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a  
reset condition becomes active, even if the clock is not running.  
Port C also serves the functions of special features of the ATmega640/1280/1281/2560/2561 as listed on page 79.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
7
2549QS–AVR–02/2014  
 
2.3.6  
2.3.7  
2.3.8  
Port D (PD7..PD0)  
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buf-  
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are  
externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a  
reset condition becomes active, even if the clock is not running.  
Port D also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on  
page 80.  
Port E (PE7..PE0)  
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buf-  
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are  
externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a  
reset condition becomes active, even if the clock is not running.  
Port E also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on  
page 82.  
Port F (PF7..PF0)  
Port F serves as analog inputs to the A/D Converter.  
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal  
pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both  
high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not  
running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be  
activated even if a reset occurs.  
Port F also serves the functions of the JTAG interface.  
2.3.9  
Port G (PG5..PG0)  
Port G is a 6-bit I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have sym-  
metrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally  
pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset con-  
dition becomes active, even if the clock is not running.  
Port G also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on  
page 86.  
2.3.10  
2.3.11  
Port H (PH7..PH0)  
Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port H output buf-  
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port H pins that are  
externally pulled low will source current if the pull-up resistors are activated. The Port H pins are tri-stated when a  
reset condition becomes active, even if the clock is not running.  
Port H also serves the functions of various special features of the ATmega640/1280/2560 as listed on page 88.  
Port J (PJ7..PJ0)  
Port J is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port J output buffers  
have symmetrical drive characteristics with both high sink and source capability. As inputs, Port J pins that are  
externally pulled low will source current if the pull-up resistors are activated. The Port J pins are tri-stated when a  
reset condition becomes active, even if the clock is not running. Port J also serves the functions of various special  
features of the ATmega640/1280/2560 as listed on page 90.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
8
2549QS–AVR–02/2014  
2.3.12  
Port K (PK7..PK0)  
Port K serves as analog inputs to the A/D Converter.  
Port K is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port K output buffers  
have symmetrical drive characteristics with both high sink and source capability. As inputs, Port K pins that are  
externally pulled low will source current if the pull-up resistors are activated. The Port K pins are tri-stated when a  
reset condition becomes active, even if the clock is not running.  
Port K also serves the functions of various special features of the ATmega640/1280/2560 as listed on page 92.  
2.3.13  
2.3.14  
Port L (PL7..PL0)  
Port L is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port L output buffers  
have symmetrical drive characteristics with both high sink and source capability. As inputs, Port L pins that are  
externally pulled low will source current if the pull-up resistors are activated. The Port L pins are tri-stated when a  
reset condition becomes active, even if the clock is not running.  
Port L also serves the functions of various special features of the ATmega640/1280/2560 as listed on page 94.  
RESET  
Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock  
is not running. The minimum pulse length is given in “System and Reset Characteristics” on page 360. Shorter  
pulses are not guaranteed to generate a reset.  
2.3.15  
2.3.16  
2.3.17  
XTAL1  
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.  
XTAL2  
Output from the inverting Oscillator amplifier.  
AVCC  
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to VCC, even if  
the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter.  
2.3.18  
AREF  
This is the analog reference pin for the A/D Converter.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
9
2549QS–AVR–02/2014  
3. Resources  
A comprehensive set of development tools and application notes, and datasheets are available for download on  
http://www.atmel.com/avr.  
4. About Code Examples  
This documentation contains simple code examples that briefly show how to use various parts of the device. Be  
aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is com-  
piler dependent. Confirm with the C compiler documentation for more details.  
These code examples assume that the part specific header file is included before compilation. For I/O registers  
located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with  
instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR",  
and "CBR".  
5. Data Retention  
Reliability Qualification results show that the projected data retention failure rate is much less than 1 ppm over 20  
years at 85°C or 100 years at 25°C.  
6. Capacitive touch sensing  
The Atmel® QTouch® Library provides a simple to use solution to realize touch sensitive interfaces on most Atmel  
AVR® microcontrollers. The QTouch Library includes support for the QTouch and QMatrix acquisition methods.  
Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR Micro-  
controller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the  
touch sensing API’s to retrieve the channel information and determine the touch sensor states.  
The QTouch Library is FREE and downloadable from the Atmel website at the following location:  
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch Library  
User Guide - also available for download from the Atmel website.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
10  
2549QS–AVR–02/2014  
7. Register Summary  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
(0x1FF)  
...  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UDR3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(0x13F)  
(0x13E)  
(0x13D)  
(0x13C)  
(0x13B)  
(0x13A)  
(0x139)  
(0x138)  
(0x137)  
(0x136)  
(0x135)  
(0x134)  
(0x133)  
(0x132)  
(0x131)  
(0x130)  
(0x12F)  
(0x12E)  
(0x12D)  
(0x12C)  
(0x12B)  
(0x12A)  
(0x129)  
(0x128)  
(0x127)  
(0x126)  
(0x125)  
(0x124)  
(0x123)  
(0x122)  
(0x121)  
(0x120)  
(0x11F)  
(0x11E)  
(0x11D)  
(0x11C)  
(0x11B)  
(0x11A)  
(0x119)  
(0x118)  
(0x117)  
(0x116)  
(0x115)  
(0x114)  
(0x113)  
(0x112)  
(0x111)  
(0x110)  
(0x10F)  
(0x10E)  
(0x10D)  
(0x10C)  
(0x10B)  
(0x10A)  
(0x109)  
(0x108)  
(0x107)  
(0x106)  
(0x105)  
(0x104)  
(0x103)  
(0x102)  
(0x101)  
USART3 I/O Data Register  
- USART3 Baud Rate Register High Byte  
page 218  
page 222  
page 222  
UBRR3H  
UBRR3L  
Reserved  
UCSR3C  
UCSR3B  
UCSR3A  
Reserved  
Reserved  
OCR5CH  
OCR5CL  
OCR5BH  
OCR5BL  
OCR5AH  
OCR5AL  
ICR5H  
-
-
-
USART3 Baud Rate Register Low Byte  
-
-
-
UPM31  
UDRIE3  
UDRE3  
-
-
-
USBS3  
TXEN3  
DOR3  
-
-
-
UCSZ30  
RXB83  
U2X3  
-
-
UMSEL31  
UMSEL30  
UPM30  
UCSZ31  
UCPOL3  
page 235  
page 234  
page 233  
RXCIE3  
TXCIE3  
RXEN3  
UCSZ32  
TXB83  
RXC3  
TXC3  
FE3  
UPE3  
MPCM3  
-
-
-
-
-
-
-
-
-
-
-
-
-
Timer/Counter5 - Output Compare Register C High Byte  
Timer/Counter5 - Output Compare Register C Low Byte  
Timer/Counter5 - Output Compare Register B High Byte  
Timer/Counter5 - Output Compare Register B Low Byte  
Timer/Counter5 - Output Compare Register A High Byte  
Timer/Counter5 - Output Compare Register A Low Byte  
Timer/Counter5 - Input Capture Register High Byte  
Timer/Counter5 - Input Capture Register Low Byte  
Timer/Counter5 - Counter Register High Byte  
page 160  
page 160  
page 160  
page 160  
page 160  
page 160  
page 161  
page 161  
page 158  
page 158  
ICR5L  
TCNT5H  
TCNT5L  
Reserved  
TCCR5C  
TCCR5B  
TCCR5A  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PORTL  
Timer/Counter5 - Counter Register Low Byte  
-
-
-
-
-
-
-
-
FOC5A  
FOC5B  
FOC5C  
-
-
-
-
-
page 157  
page 156  
page 154  
ICNC5  
ICES5  
-
WGM53  
WGM52  
CS52  
CS51  
CS50  
COM5A1  
COM5A0  
COM5B1  
COM5B0  
COM5C1  
COM5C0  
WGM51  
WGM50  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PORTL7  
DDL7  
PINL7  
PORTK7  
DDK7  
PINK7  
PORTJ7  
DDJ7  
PINJ7  
PORTH7  
DDH7  
PORTL6  
DDL6  
PINL6  
PORTK6  
DDK6  
PINK6  
PORTJ6  
DDJ6  
PINJ6  
PORTH6  
DDH6  
PORTL5  
DDL5  
PINL5  
PORTK5  
DDK5  
PINK5  
PORTJ5  
DDJ5  
PINJ5  
PORTH5  
DDH5  
PORTL4  
DDL4  
PINL4  
PORTK4  
DDK4  
PINK4  
PORTJ4  
DDJ4  
PINJ4  
PORTH4  
DDH4  
PORTL3  
DDL3  
PINL3  
PORTK3  
DDK3  
PINK3  
PORTJ3  
DDJ3  
PINJ3  
PORTH3  
DDH3  
PORTL2  
DDL2  
PINL2  
PORTK2  
DDK2  
PINK2  
PORTJ2  
DDJ2  
PINJ2  
PORTH2  
DDH2  
PORTL1  
DDL1  
PINL1  
PORTK1  
DDK1  
PINK1  
PORTJ1  
DDJ1  
PINJ1  
PORTH1  
DDH1  
PORTL0  
DDL0  
PINL0  
PORTK0  
DDK0  
PINK0  
PORTJ0  
DDJ0  
PINJ0  
PORTH0  
DDH0  
page 100  
page 100  
page 100  
page 99  
page 99  
page 99  
page 99  
page 99  
page 99  
page 98  
page 99  
DDRL  
PINL  
PORTK  
DDRK  
PINK  
PORTJ  
DDRJ  
PINJ  
PORTH  
DDRH  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]  
11  
2549QS–AVR–02/2014  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
(0x100)  
(0xFF)  
(0xFE)  
(0xFD)  
(0xFC)  
(0xFB)  
(0xFA)  
(0xF9)  
(0xF8)  
(0xF7)  
(0xF6)  
(0xF5)  
(0xF4)  
(0xF3)  
(0xF2)  
(0xF1)  
(0xF0)  
(0xEF)  
(0xEE)  
(0xED)  
(0xEC)  
(0xEB)  
(0xEA)  
(0xE9)  
(0xE8)  
(0xE7)  
(0xE6)  
(0xE5)  
(0xE4)  
(0xE3)  
(0xE2)  
(0xE1)  
(0xE0)  
(0xDF)  
(0xDE)  
(0xDD)  
(0xDC)  
(0xDB)  
(0xDA)  
(0xD9)  
(0xD8)  
(0xD7)  
(0xD6)  
(0xD5)  
(0xD4)  
(0xD3)  
(0xD2)  
(0xD1)  
(0xD0)  
(0xCF)  
(0xCE)  
(0xCD)  
(0xCC)  
(0xCB)  
(0xCA)  
(0xC9)  
(0xC8)  
(0xC7)  
(0xC6)  
(0xC5)  
(0xC4)  
(0xC3)  
(0xC2)  
(0xC1)  
(0xC0)  
(0xBF)  
(0xBE)  
(0xBD)  
PINH  
PINH7  
PINH6  
PINH5  
PINH4  
PINH3  
PINH2  
PINH1  
PINH0  
page 99  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UDR2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART2 I/O Data Register  
- USART2 Baud Rate Register High Byte  
page 218  
page 222  
page 222  
UBRR2H  
UBRR2L  
Reserved  
UCSR2C  
UCSR2B  
UCSR2A  
Reserved  
UDR1  
-
-
-
USART2 Baud Rate Register Low Byte  
-
-
UMSEL20  
TXCIE2  
TXC2  
-
-
-
-
-
-
-
UMSEL21  
RXCIE2  
RXC2  
-
UPM21  
UDRIE2  
UDRE2  
-
UPM20  
RXEN2  
FE2  
USBS2  
TXEN2  
DOR2  
-
UCSZ21  
UCSZ22  
UPE2  
-
UCSZ20  
RXB82  
U2X2  
-
UCPOL2  
TXB82  
MPCM2  
-
page 235  
page 234  
page 233  
-
USART1 I/O Data Register  
- USART1 Baud Rate Register High Byte  
page 218  
page 222  
page 222  
UBRR1H  
UBRR1L  
Reserved  
UCSR1C  
UCSR1B  
UCSR1A  
Reserved  
UDR0  
-
-
-
USART1 Baud Rate Register Low Byte  
-
-
UMSEL10  
TXCIE1  
TXC1  
-
-
-
-
-
-
-
UMSEL11  
RXCIE1  
RXC1  
-
UPM11  
UDRIE1  
UDRE1  
-
UPM10  
RXEN1  
FE1  
USBS1  
TXEN1  
DOR1  
-
UCSZ11  
UCSZ12  
UPE1  
-
UCSZ10  
RXB81  
U2X1  
-
UCPOL1  
TXB81  
MPCM1  
-
page 235  
page 234  
page 233  
-
USART0 I/O Data Register  
- USART0 Baud Rate Register High Byte  
page 218  
page 222  
page 222  
UBRR0H  
UBRR0L  
Reserved  
UCSR0C  
UCSR0B  
UCSR0A  
Reserved  
Reserved  
TWAMR  
-
-
-
USART0 Baud Rate Register Low Byte  
-
UMSEL01  
RXCIE0  
RXC0  
-
-
UMSEL00  
TXCIE0  
TXC0  
-
-
-
UPM00  
RXEN0  
FE0  
-
-
-
UCSZ00  
RXB80  
U2X0  
-
-
UPM01  
UDRIE0  
UDRE0  
-
USBS0  
TXEN0  
DOR0  
-
UCSZ01  
UCSZ02  
UPE0  
-
UCPOL0  
page 235  
page 234  
page 234  
TXB80  
MPCM0  
-
-
-
-
-
-
-
-
-
-
-
TWAM6  
TWAM5  
TWAM4  
TWAM3  
TWAM2  
TWAM1  
TWAM0  
page 264  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]  
12  
2549QS–AVR–02/2014  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
(0xBC)  
(0xBB)  
(0xBA)  
(0xB9)  
(0xB8)  
(0xB7)  
(0xB6)  
(0xB5)  
(0xB4)  
(0xB3)  
(0xB2)  
(0xB1)  
(0xB0)  
(0xAF)  
(0xAE)  
(0xAD)  
(0xAC)  
(0xAB)  
(0xAA)  
(0xA9)  
(0xA8)  
(0xA7)  
(0xA6)  
(0xA5)  
(0xA4)  
(0xA3)  
(0xA2)  
(0xA1)  
(0xA0)  
(0x9F)  
(0x9E)  
(0x9D)  
(0x9C)  
(0x9B)  
(0x9A)  
(0x99)  
(0x98)  
(0x97)  
(0x96)  
(0x95)  
(0x94)  
(0x93)  
(0x92)  
(0x91)  
(0x90)  
(0x8F)  
(0x8E)  
(0x8D)  
(0x8C)  
(0x8B)  
(0x8A)  
(0x89)  
(0x88)  
(0x87)  
(0x86)  
(0x85)  
(0x84)  
(0x83)  
(0x82)  
(0x81)  
(0x80)  
(0x7F)  
(0x7E)  
(0x7D)  
(0x7C)  
(0x7B)  
(0x7A)  
(0x79)  
TWCR  
TWDR  
TWINT  
TWEA  
TWSTA  
TWSTO  
TWWC  
TWEN  
-
TWIE  
page 261  
page 263  
page 263  
page 262  
page 261  
2-wire Serial Interface Data Register  
TWAR  
TWA6  
TWS7  
TWA5  
TWS6  
TWA4  
TWS5  
TWA3  
TWS4  
TWA2  
TWS3  
TWA1  
TWA0  
TWGCE  
TWPS0  
TWSR  
-
TWPS1  
TWBR  
2-wire Serial Interface Bit Rate Register  
Reserved  
ASSR  
-
-
-
-
-
AS2  
-
-
-
-
-
-
EXCLK  
-
TCN2UB  
OCR2AUB  
-
OCR2BUB  
-
TCR2AUB  
-
TCR2BUB  
-
page 179  
Reserved  
OCR2B  
-
Timer/Counter2 Output Compare Register B  
Timer/Counter2 Output Compare Register A  
Timer/Counter2 (8 Bit)  
page 186  
page 186  
page 186  
page 185  
page 186  
OCR2A  
TCNT2  
TCCR2B  
TCCR2A  
Reserved  
Reserved  
OCR4CH  
OCR4CL  
OCR4BH  
OCR4BL  
OCR4AH  
OCR4AL  
ICR4H  
FOC2A  
FOC2B  
-
-
WGM22  
CS22  
CS21  
CS20  
COM2A1  
COM2A0  
COM2B1  
COM2B0  
-
-
-
-
-
-
WGM21  
WGM20  
-
-
-
-
-
-
-
-
-
-
-
-
Timer/Counter4 - Output Compare Register C High Byte  
Timer/Counter4 - Output Compare Register C Low Byte  
Timer/Counter4 - Output Compare Register B High Byte  
Timer/Counter4 - Output Compare Register B Low Byte  
Timer/Counter4 - Output Compare Register A High Byte  
Timer/Counter4 - Output Compare Register A Low Byte  
Timer/Counter4 - Input Capture Register High Byte  
Timer/Counter4 - Input Capture Register Low Byte  
Timer/Counter4 - Counter Register High Byte  
page 160  
page 160  
page 160  
page 160  
page 159  
page 159  
page 161  
page 161  
page 158  
page 158  
ICR4L  
TCNT4H  
TCNT4L  
Reserved  
TCCR4C  
TCCR4B  
TCCR4A  
Reserved  
Reserved  
OCR3CH  
OCR3CL  
OCR3BH  
OCR3BL  
OCR3AH  
OCR3AL  
ICR3H  
Timer/Counter4 - Counter Register Low Byte  
-
-
-
-
-
-
-
-
FOC4A  
FOC4B  
FOC4C  
-
-
-
-
-
page 157  
page 156  
page 154  
ICNC4  
ICES4  
-
WGM43  
WGM42  
CS42  
CS41  
CS40  
COM4A1  
COM4A0  
COM4B1  
COM4B0  
COM4C1  
COM4C0  
WGM41  
WGM40  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Timer/Counter3 - Output Compare Register C High Byte  
Timer/Counter3 - Output Compare Register C Low Byte  
Timer/Counter3 - Output Compare Register B High Byte  
Timer/Counter3 - Output Compare Register B Low Byte  
Timer/Counter3 - Output Compare Register A High Byte  
Timer/Counter3 - Output Compare Register A Low Byte  
Timer/Counter3 - Input Capture Register High Byte  
Timer/Counter3 - Input Capture Register Low Byte  
Timer/Counter3 - Counter Register High Byte  
page 159  
page 159  
page 159  
page 159  
page 159  
page 159  
page 161  
page 161  
page 158  
page 158  
ICR3L  
TCNT3H  
TCNT3L  
Reserved  
TCCR3C  
TCCR3B  
TCCR3A  
Reserved  
Reserved  
OCR1CH  
OCR1CL  
OCR1BH  
OCR1BL  
OCR1AH  
OCR1AL  
ICR1H  
Timer/Counter3 - Counter Register Low Byte  
-
-
-
-
-
-
-
-
FOC3A  
FOC3B  
FOC3C  
-
-
-
-
-
page 157  
page 156  
page 154  
ICNC3  
ICES3  
-
WGM33  
WGM32  
CS32  
CS31  
CS30  
COM3A1  
COM3A0  
COM3B1  
COM3B0  
COM3C1  
COM3C0  
WGM31  
WGM30  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Timer/Counter1 - Output Compare Register C High Byte  
Timer/Counter1 - Output Compare Register C Low Byte  
Timer/Counter1 - Output Compare Register B High Byte  
Timer/Counter1 - Output Compare Register B Low Byte  
Timer/Counter1 - Output Compare Register A High Byte  
Timer/Counter1 - Output Compare Register A Low Byte  
Timer/Counter1 - Input Capture Register High Byte  
Timer/Counter1 - Input Capture Register Low Byte  
Timer/Counter1 - Counter Register High Byte  
page 159  
page 159  
page 159  
page 159  
page 159  
page 159  
page 160  
page 160  
page 158  
page 158  
ICR1L  
TCNT1H  
TCNT1L  
Reserved  
TCCR1C  
TCCR1B  
TCCR1A  
DIDR1  
Timer/Counter1 - Counter Register Low Byte  
-
-
-
-
-
-
-
-
-
FOC1A  
ICNC1  
COM1A1  
-
FOC1B  
ICES1  
COM1A0  
-
FOC1C  
-
-
-
-
-
page 157  
page 156  
WGM13  
COM1B0  
-
WGM12  
COM1C1  
-
CS12  
COM1C0  
-
CS11  
WGM11  
AIN1D  
ADC1D  
ADC9D  
MUX1  
ADTS1  
ADPS1  
CS10  
WGM10  
AIN0D  
ADC0D  
ADC8D  
MUX0  
ADTS0  
ADPS0  
COM1B1  
-
page 154  
page 267  
DIDR0  
ADC7D  
ADC15D  
REFS1  
-
ADC6D  
ADC14D  
REFS0  
ACME  
ADSC  
ADC5D  
ADC13D  
ADLAR  
-
ADC4D  
ADC12D  
MUX4  
-
ADC3D  
ADC11D  
MUX3  
MUX5  
ADIE  
ADC2D  
ADC10D  
MUX2  
ADTS2  
ADPS2  
page 287  
DIDR2  
page 288  
ADMUX  
ADCSRB  
ADCSRA  
ADCH  
page 281  
page 266, 282, 287  
page 285  
ADEN  
ADATE  
ADIF  
ADC Data Register High byte  
page 286  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]  
13  
2549QS–AVR–02/2014  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
(0x78)  
(0x77)  
ADCL  
Reserved  
Reserved  
XMCRB  
XMCRA  
TIMSK5  
TIMSK4  
TIMSK3  
TIMSK2  
TIMSK1  
TIMSK0  
PCMSK2  
PCMSK1  
PCMSK0  
EICRB  
ADC Data Register Low byte  
page 286  
-
-
-
-
-
-
-
-
(0x76)  
-
-
-
-
-
-
-
-
-
(0x75)  
XMBK  
-
-
-
XMM2  
SRW10  
OCIE5B  
OCIE4B  
OCIE3B  
OCIE2B  
OCIE1B  
OCIE0B  
PCINT18  
PCINT10  
PCINT2  
ISC50  
ISC10  
PCIE2  
-
XMM1  
SRW01  
OCIE5A  
OCIE4A  
OCIE3A  
OCIE2A  
OCIE1A  
OCIE0A  
PCINT17  
PCINT9  
PCINT1  
ISC41  
ISC01  
PCIE1  
-
XMM0  
SRW00  
TOIE5  
TOIE4  
TOIE3  
TOIE2  
TOIE1  
TOIE0  
PCINT16  
PCINT8  
PCINT0  
ISC40  
ISC00  
PCIE0  
-
page 38  
page 36  
(0x74)  
SRE  
SRL2  
SRL1  
ICIE5  
ICIE4  
ICIE3  
-
SRL0  
SRW11  
OCIE5C  
OCIE4C  
OCIE3C  
-
(0x73)  
-
-
-
page 162  
page 161  
page 161  
page 188  
page 161  
page 131  
page 113  
page 113  
page 114  
page 110  
page 110  
page 112  
(0x72)  
-
-
-
(0x71)  
-
-
-
(0x70)  
-
-
-
(0x6F)  
-
-
ICIE1  
-
-
OCIE1C  
-
(0x6E)  
-
-
-
(0x6D)  
PCINT23  
PCINT15  
PCINT7  
ISC71  
ISC31  
-
PCINT22  
PCINT14  
PCINT6  
ISC70  
ISC30  
-
PCINT21  
PCINT13  
PCINT5  
ISC61  
ISC21  
-
PCINT20  
PCINT12  
PCINT4  
ISC60  
ISC20  
-
PCINT19  
PCINT11  
PCINT3  
ISC51  
ISC11  
-
(0x6C)  
(0x6B)  
(0x6A)  
(0x69)  
EICRA  
(0x68)  
PCICR  
(0x67)  
Reserved  
OSCCAL  
PRR1  
-
-
-
-
-
(0x66)  
Oscillator Calibration Register  
page 48  
page 56  
page 55  
(0x65)  
-
-
PRTIM5  
PRTIM4  
PRTIM3  
PRUSART3  
PRUSART2  
PRUSART1  
(0x64)  
PRR0  
PRTWI  
PRTIM2  
PRTIM0  
-
PRTIM1  
PRSPI  
PRUSART0  
PRADC  
(0x63)  
Reserved  
Reserved  
CLKPR  
WDTCSR  
SREG  
-
-
-
-
-
-
-
-
(0x62)  
-
-
-
-
-
-
-
-
(0x61)  
CLKPCE  
-
-
-
CLKPS3  
CLKPS2  
CLKPS1  
CLKPS0  
page 48  
page 65  
page 13  
page 15  
page 15  
page 16  
page 16  
(0x60)  
WDIF  
WDIE  
WDP3  
WDCE  
WDE  
WDP2  
WDP1  
WDP0  
0x3F (0x5F)  
0x3E (0x5E)  
0x3D (0x5D)  
0x3C (0x5C)  
0x3B (0x5B)  
0x3A (0x5A)  
0x39 (0x59)  
0x38 (0x58)  
0x37 (0x57)  
0x36 (0x56)  
0x35 (0x55)  
0x34 (0x54)  
0x33 (0x53)  
0x32 (0x52)  
0x31 (0x51)  
0x30 (0x50)  
0x2F (0x4F)  
0x2E (0x4E)  
0x2D (0x4D)  
0x2C (0x4C)  
0x2B (0x4B)  
0x2A (0x4A)  
0x29 (0x49)  
0x28 (0x48)  
0x27 (0x47)  
0x26 (0x46)  
0x25 (0x45)  
0x24 (0x44)  
0x23 (0x43)  
0x22 (0x42)  
0x21 (0x41)  
0x20 (0x40)  
0x1F (0x3F)  
0x1E (0x3E)  
0x1D (0x3D)  
0x1C (0x3C)  
0x1B (0x3B)  
0x1A (0x3A)  
0x19 (0x39)  
0x18 (0x38)  
0x17 (0x37)  
0x16 (0x36)  
0x15 (0x35)  
I
T
H
S
V
N
Z
C
SPH  
SP15  
SP14  
SP13  
SP12  
SP11  
SP10  
SP9  
SP8  
SPL  
SP7  
SP6  
SP5  
SP4  
SP3  
SP2  
SP1  
SP0  
EIND  
-
-
-
-
-
-
-
EIND0  
RAMPZ  
Reserved  
Reserved  
Reserved  
SPMCSR  
Reserved  
MCUCR  
MCUSR  
SMCR  
-
-
-
-
-
-
RAMPZ1  
RAMPZ0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PGERS  
-
-
SPMEN  
-
SPMIE  
RWWSB  
SIGRD  
RWWSRE  
BLBSET  
PGWRT  
page 323  
-
-
-
-
-
-
JTD  
-
-
PUD  
-
WDRF  
SM2  
-
-
BORF  
SM1  
-
IVSEL  
EXTRF  
SM0  
-
IVCE  
PORF  
SE  
page 64, 108, 96, 301  
page 301  
-
-
-
JTRF  
-
-
-
-
page 50  
Reserved  
OCDR  
-
OCDR7  
ACD  
-
-
-
OCDR5  
ACO  
-
-
OCDR4  
ACI  
-
OCDR6  
ACBG  
-
OCDR3  
ACIE  
-
OCDR2  
ACIC  
-
OCDR1  
ACIS1  
-
OCDR0  
ACIS0  
-
page 294  
page 266  
ACSR  
Reserved  
SPDR  
-
SPI Data Register  
page 199  
page 198  
page 197  
page 36  
page 36  
SPSR  
SPIF  
SPIE  
WCOL  
-
-
-
-
-
SPI2X  
SPR0  
SPCR  
SPE  
DORD  
MSTR  
CPOL  
CPHA  
SPR1  
GPIOR2  
GPIOR1  
Reserved  
OCR0B  
OCR0A  
TCNT0  
TCCR0B  
TCCR0A  
GTCCR  
EEARH  
EEARL  
EEDR  
General Purpose I/O Register 2  
General Purpose I/O Register 1  
-
-
-
-
-
-
-
-
Timer/Counter0 Output Compare Register B  
Timer/Counter0 Output Compare Register A  
Timer/Counter0 (8 Bit)  
page 130  
page 130  
page 130  
page 129  
page 126  
page 166, 189  
page 34  
FOC0A  
COM0A1  
TSM  
FOC0B  
-
-
WGM02  
CS02  
CS01  
CS00  
COM0A0  
COM0B1  
COM0B0  
-
-
-
-
WGM01  
PSRASY  
WGM00  
-
-
-
-
-
-
PSRSYNC  
-
EEPROM Address Register High Byte  
EEPROM Address Register Low Byte  
EEPROM Data Register  
page 34  
page 34  
EECR  
-
-
EEPM1  
EEPM0  
EERIE  
EEMPE  
EEPE  
EERE  
page 34  
GPIOR0  
EIMSK  
General Purpose I/O Register 0  
page 36  
INT7  
INT6  
INT5  
INTF5  
-
INT4  
INT3  
INTF3  
-
INT2  
INT1  
INT0  
INTF0  
PCIF0  
TOV5  
TOV4  
TOV3  
TOV2  
TOV1  
TOV0  
page 111  
page 112  
page 113  
page 162  
page 162  
page 162  
page 188  
page 162  
page 131  
EIFR  
INTF7  
INTF6  
INTF4  
INTF2  
INTF1  
PCIFR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PCIF2  
PCIF1  
TIFR5  
ICF5  
ICF4  
ICF3  
-
OCF5C  
OCF4C  
OCF3C  
-
OCF5B  
OCF4B  
OCF3B  
OCF2B  
OCF1B  
OCF0B  
OCF5A  
OCF4A  
OCF3A  
OCF2A  
OCF1A  
OCF0A  
TIFR4  
TIFR3  
TIFR2  
TIFR1  
ICF1  
-
OCF1C  
-
TIFR0  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]  
14  
2549QS–AVR–02/2014  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
0x14 (0x34)  
0x13 (0x33)  
0x12 (0x32)  
0x11 (0x31)  
0x10 (0x30)  
0x0F (0x2F)  
0x0E (0x2E)  
0x0D (0x2D)  
0x0C (0x2C)  
0x0B (0x2B)  
0x0A (0x2A)  
0x09 (0x29)  
0x08 (0x28)  
0x07 (0x27)  
0x06 (0x26)  
0x05 (0x25)  
0x04 (0x24)  
0x03 (0x23)  
0x02 (0x22)  
0x01 (0x21)  
0x00 (0x20)  
PORTG  
DDRG  
PING  
-
-
PORTG5  
DDG5  
PORTG4  
DDG4  
PORTG3  
DDG3  
PORTG2  
DDG2  
PORTG1  
DDG1  
PORTG0  
DDG0  
page 98  
page 98  
page 98  
page 97  
page 98  
page 98  
page 97  
page 97  
page 98  
page 97  
page 97  
page 97  
page 97  
page 97  
page 97  
page 96  
page 96  
page 96  
page 96  
page 96  
page 96  
-
-
-
-
PING5  
PORTF5  
DDF5  
PING4  
PORTF4  
DDF4  
PING3  
PORTF3  
DDF3  
PING2  
PORTF2  
DDF2  
PING1  
PORTF1  
DDF1  
PING0  
PORTF0  
DDF0  
PORTF  
DDRF  
PINF  
PORTF7  
DDF7  
PORTF6  
DDF6  
PINF6  
PORTE6  
DDE6  
PINE6  
PORTD6  
DDD6  
PIND6  
PORTC6  
DDC6  
PINC6  
PORTB6  
DDB6  
PINB6  
PORTA6  
DDA6  
PINA6  
PINF7  
PORTE7  
DDE7  
PINE7  
PORTD7  
DDD7  
PIND7  
PORTC7  
DDC7  
PINC7  
PORTB7  
DDB7  
PINB7  
PORTA7  
DDA7  
PINA7  
PINF5  
PINF4  
PINF3  
PINF2  
PINF1  
PINF0  
PORTE  
DDRE  
PINE  
PORTE5  
DDE5  
PORTE4  
DDE4  
PORTE3  
DDE3  
PORTE2  
DDE2  
PORTE1  
DDE1  
PORTE0  
DDE0  
PINE5  
PINE4  
PINE3  
PINE2  
PINE1  
PINE0  
PORTD  
DDRD  
PIND  
PORTD5  
DDD5  
PORTD4  
DDD4  
PORTD3  
DDD3  
PORTD2  
DDD2  
PORTD1  
DDD1  
PORTD0  
DDD0  
PIND5  
PORTC5  
DDC5  
PIND4  
PORTC4  
DDC4  
PIND3  
PORTC3  
DDC3  
PIND2  
PORTC2  
DDC2  
PIND1  
PORTC1  
DDC1  
PIND0  
PORTC0  
DDC0  
PORTC  
DDRC  
PINC  
PINC5  
PORTB5  
DDB5  
PINC4  
PORTB4  
DDB4  
PINC3  
PORTB3  
DDB3  
PINC2  
PORTB2  
DDB2  
PINC1  
PORTB1  
DDB1  
PINC0  
PORTB0  
DDB0  
PORTB  
DDRB  
PINB  
PINB5  
PINB4  
PINB3  
PINB2  
PINB1  
PINB0  
PORTA  
DDRA  
PINA  
PORTA5  
DDA5  
PORTA4  
DDA4  
PORTA3  
DDA3  
PORTA2  
DDA2  
PORTA1  
DDA1  
PORTA0  
DDA0  
PINA5  
PINA4  
PINA3  
PINA2  
PINA1  
PINA0  
Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses  
should never be written.  
2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these reg-  
isters, the value of single bits can be checked by using the SBIS and SBIC instructions.  
3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on  
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions  
work with registers 0x00 to 0x1F only.  
4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O regis-  
ters as data space using LD and ST instructions, $20 must be added to these addresses. The  
ATmega640/1280/1281/2560/2561 is a complex microcontroller with more peripheral units than can be supported within the  
64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from $60 - $1FF in SRAM, only  
the ST/STS/STD and LD/LDS/LDD instructions can be used.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]  
15  
2549QS–AVR–02/2014  
8. Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
ARITHMETIC AND LOGIC INSTRUCTIONS  
ADD  
Rd, Rr  
Rd, Rr  
Rdl,K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rdl,K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add two Registers  
Rd Rd + Rr  
Z, C, N, V, H  
Z, C, N, V, H  
Z, C, N, V, S  
Z, C, N, V, H  
Z, C, N, V, H  
Z, C, N, V, H  
Z, C, N, V, H  
Z, C, N, V, S  
Z, N, V  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
ADC  
Add with Carry two Registers  
Add Immediate to Word  
Subtract two Registers  
Subtract Constant from Register  
Subtract with Carry two Registers  
Subtract with Carry Constant from Reg.  
Subtract Immediate from Word  
Logical AND Registers  
Logical AND Register and Constant  
Logical OR Registers  
Rd Rd + Rr + C  
Rdh:Rdl Rdh:Rdl + K  
Rd Rd - Rr  
ADIW  
SUB  
SUBI  
SBC  
Rd Rd - K  
Rd Rd - Rr - C  
Rd Rd - K - C  
Rdh:Rdl Rdh:Rdl - K  
Rd Rd Rr  
SBCI  
SBIW  
AND  
ANDI  
OR  
Rd Rd K  
Z, N, V  
Rd Rd v Rr  
Z, N, V  
ORI  
Logical OR Register and Constant  
Exclusive OR Registers  
One’s Complement  
Rd Rd v K  
Z, N, V  
EOR  
COM  
NEG  
SBR  
Rd Rd Rr  
Z, N, V  
Rd 0xFF Rd  
Rd 0x00 Rd  
Rd Rd v K  
Z, C, N, V  
Z, C, N, V, H  
Z, N, V  
Rd  
Two’s Complement  
Rd,K  
Rd,K  
Rd  
Set Bit(s) in Register  
CBR  
Clear Bit(s) in Register  
Increment  
Rd Rd (0xFF - K)  
Rd Rd + 1  
Z, N, V  
INC  
Z, N, V  
DEC  
Rd  
Decrement  
Rd Rd 1  
Z, N, V  
TST  
Rd  
Test for Zero or Minus  
Clear Register  
Rd Rd Rd  
Z, N, V  
CLR  
Rd  
Rd Rd Rd  
Rd 0xFF  
Z, N, V  
SER  
Rd  
Set Register  
None  
MUL  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Multiply Unsigned  
R1:R0 Rd x Rr  
R1:R0 Rd x Rr  
R1:R0 Rd x Rr  
R1:R0 (Rd x Rr) << 1  
R1:R0 (Rd x Rr) << 1  
R1:R0 (Rd x Rr) << 1  
Z, C  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
Multiply Signed  
Z, C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Z, C  
Z, C  
Z, C  
Z, C  
BRANCH INSTRUCTIONS  
RJMP  
IJMP  
k
Relative Jump  
PC PC + k + 1  
PC Z  
None  
None  
None  
None  
None  
None  
None  
None  
None  
I
2
2
Indirect Jump to (Z)  
PC (EIND:Z)  
EIJMP  
JMP  
Extended Indirect Jump to (Z)  
Direct Jump  
2
k
k
PC k  
3
RCALL  
ICALL  
EICALL  
CALL  
RET  
Relative Subroutine Call  
Indirect Call to (Z)  
PC PC + k + 1  
PC Z  
4
4
PC (EIND:Z)  
Extended Indirect Call to (Z)  
Direct Subroutine Call  
Subroutine Return  
4
k
PC k  
5
PC STACK  
5
RETI  
Interrupt Return  
PC STACK  
5
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC PC + 2 or 3  
Rd Rr  
None  
Z, N, V, C, H  
Z, N, V, C, H  
Z, N, V, C, H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1/2/3  
1
Rd,Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd Rr C  
1
CPI  
Rd,K  
Compare Register with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register is Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register is Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd K  
1
SBRC  
SBRS  
SBIC  
Rr, b  
if (Rr(b)=0) PC PC + 2 or 3  
if (Rr(b)=1) PC PC + 2 or 3  
if (P(b)=0) PC PC + 2 or 3  
if (P(b)=1) PC PC + 2 or 3  
if (SREG(s) = 1) then PCPC+k + 1  
if (SREG(s) = 0) then PCPC+k + 1  
if (Z = 1) then PC PC + k + 1  
if (Z = 0) then PC PC + k + 1  
if (C = 1) then PC PC + k + 1  
if (C = 0) then PC PC + k + 1  
if (C = 0) then PC PC + k + 1  
if (C = 1) then PC PC + k + 1  
if (N = 1) then PC PC + k + 1  
if (N = 0) then PC PC + k + 1  
if (N V= 0) then PC PC + k + 1  
if (N V= 1) then PC PC + k + 1  
if (H = 1) then PC PC + k + 1  
if (H = 0) then PC PC + k + 1  
if (T = 1) then PC PC + k + 1  
if (T = 0) then PC PC + k + 1  
if (V = 1) then PC PC + k + 1  
1/2/3  
1/2/3  
1/2/3  
1/2/3  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
Rr, b  
P, b  
P, b  
s, k  
s, k  
k
SBIS  
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
k
Branch if Not Equal  
k
Branch if Carry Set  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
k
k
k
Branch if Minus  
k
Branch if Plus  
k
Branch if Greater or Equal, Signed  
Branch if Less Than Zero, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
k
k
k
k
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
k
ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]  
16  
2549QS–AVR–02/2014  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
BRVC  
BRIE  
BRID  
k
k
k
Branch if Overflow Flag is Cleared  
if (V = 0) then PC PC + k + 1  
if ( I = 1) then PC PC + k + 1  
if ( I = 0) then PC PC + k + 1  
None  
1/2  
1/2  
1/2  
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
None  
None  
BIT AND BIT-TEST INSTRUCTIONS  
SBI  
P,b  
P,b  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
s
Set Bit in I/O Register  
Clear Bit in I/O Register  
Logical Shift Left  
I/O(P,b) 1  
None  
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CBI  
I/O(P,b) 0  
None  
LSL  
Rd(n+1) Rd(n), Rd(0) 0  
Z, C, N, V  
LSR  
ROL  
ROR  
ASR  
SWAP  
BSET  
BCLR  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
Logical Shift Right  
Rd(n) Rd(n+1), Rd(7) 0  
Z, C, N, V  
Rotate Left Through Carry  
Rotate Right Through Carry  
Arithmetic Shift Right  
Swap Nibbles  
Rd(0)C,Rd(n+1)Rd(n),CRd(7)  
Z, C, N, V  
Rd(7)C,Rd(n)Rd(n+1),CRd(0)  
Z, C, N, V  
Rd(n) Rd(n+1), n=0..6  
Z, C, N, V  
Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0)  
None  
Flag Set  
SREG(s) 1  
SREG(s) 0  
T Rr(b)  
Rd(b) T  
C 1  
SREG(s)  
s
Flag Clear  
SREG(s)  
Rr, b  
Rd, b  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
T
None  
C
C
N
N
Z
Clear Carry  
C 0  
Set Negative Flag  
N 1  
Clear Negative Flag  
Set Zero Flag  
N 0  
Z 1  
Clear Zero Flag  
Z 0  
Z
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
Set Twos Complement Overflow.  
Clear Twos Complement Overflow  
Set T in SREG  
I 1  
I
CLI  
I 0  
I
SES  
CLS  
SEV  
CLV  
SET  
CLT  
SEH  
CLH  
S 1  
S
S
V
V
T
S 0  
V 1  
V 0  
T 1  
Clear T in SREG  
T 0  
T
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
H 1  
H
H
H 0  
DATA TRANSFER INSTRUCTIONS  
MOV  
MOVW  
LDI  
LD  
Rd, Rr  
Rd, Rr  
Rd, K  
Move Between Registers  
Copy Register Word  
Rd Rr  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
-
Rd+1:Rd Rr+1:Rr  
Load Immediate  
Rd K  
Rd, X  
Load Indirect  
Rd (X)  
LD  
Rd, X+  
Rd, - X  
Rd, Y  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect  
Rd (X), X X + 1  
X X - 1, Rd (X)  
Rd (Y)  
LD  
LD  
LD  
Rd, Y+  
Rd, - Y  
Rd,Y+q  
Rd, Z  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect with Displacement  
Load Indirect  
Rd (Y), Y Y + 1  
Y Y - 1, Rd (Y)  
Rd (Y + q)  
LD  
LDD  
LD  
Rd (Z)  
LD  
Rd, Z+  
Rd, -Z  
Rd, Z+q  
Rd, k  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect with Displacement  
Load Direct from SRAM  
Store Indirect  
Rd (Z), Z Z+1  
Z Z - 1, Rd (Z)  
Rd (Z + q)  
LD  
LDD  
LDS  
ST  
Rd (k)  
X, Rr  
(X) Rr  
ST  
X+, Rr  
- X, Rr  
Y, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect  
(X) Rr, X X + 1  
X X - 1, (X) Rr  
(Y) Rr  
ST  
ST  
ST  
Y+, Rr  
- Y, Rr  
Y+q,Rr  
Z, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect with Displacement  
Store Indirect  
(Y) Rr, Y Y + 1  
Y Y - 1, (Y) Rr  
(Y + q) Rr  
ST  
STD  
ST  
(Z) Rr  
ST  
Z+, Rr  
-Z, Rr  
Z+q,Rr  
k, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect with Displacement  
Store Direct to SRAM  
(Z) Rr, Z Z + 1  
Z Z - 1, (Z) Rr  
(Z + q) Rr  
ST  
STD  
STS  
LPM  
LPM  
LPM  
ELPM  
ELPM  
ELPM  
SPM  
IN  
(k) Rr  
Load Program Memory  
Load Program Memory  
Load Program Memory and Post-Inc  
Extended Load Program Memory  
Extended Load Program Memory  
Extended Load Program Memory  
Store Program Memory  
In Port  
R0 (Z)  
Rd, Z  
Rd (Z)  
Rd, Z+  
Rd (Z), Z Z+1  
R0 (RAMPZ:Z)  
Rd (RAMPZ:Z)  
Rd (RAMPZ:Z), RAMPZ:Z RAMPZ:Z+1  
(Z) R1:R0  
Rd, Z  
Rd, Z+  
Rd, P  
Rd P  
1
ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]  
17  
2549QS–AVR–02/2014  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
OUT  
P, Rr  
Out Port  
P Rr  
None  
1
2
2
PUSH  
POP  
Rr  
Push Register on Stack  
Pop Register from Stack  
STACK Rr  
Rd STACK  
None  
None  
Rd  
MCU CONTROL INSTRUCTIONS  
NOP  
No Operation  
Sleep  
None  
None  
None  
None  
1
1
SLEEP  
WDR  
(see specific descr. for Sleep function)  
(see specific descr. for WDR/timer)  
For On-chip Debug Only  
Watchdog Reset  
Break  
1
BREAK  
N/A  
Note:  
EICALL and EIJMP do not exist in ATmega640/1280/1281.  
ELPM does not exist in ATmega640.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]  
18  
2549QS–AVR–02/2014  
9. Ordering Information  
9.1  
ATmega640  
Speed [MHz](2)  
Power Supply  
Ordering Code  
Package(1)(3)  
100A  
100A  
100C1  
100C1  
Operation Range  
ATmega640V-8AU  
ATmega640V-8AUR(4)  
ATmega640V-8CU  
8
1.8 - 5.5V  
2.7 - 5.5V  
ATmega640V-8CUR(4)  
Industrial (-40C to 85C)  
ATmega640-16AU  
100A  
100A  
100C1  
100C1  
ATmega640-16AUR(4)  
ATmega640-16CU  
ATmega640-16CUR(4)  
16  
Notes: 1. This device can also be supplied in wafer form. Contact your local Atmel sales office for detailed ordering information and  
minimum quantities.  
2. See “Speed Grades” on page 357.  
3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
4. Tape & Reel.  
Package Type  
100A  
100-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)  
100C1  
100-ball, Chip Ball Grid Array (CBGA)  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
19  
2549QS–AVR–02/2014  
 
 
 
9.2  
ATmega1280  
Speed [MHz](2)  
Power Supply  
Ordering Code  
Package(1)(3)  
100A  
100A  
100C1  
100C1  
Operation Range  
ATmega1280V-8AU  
ATmega1280V-8AUR(4)  
ATmega1280V-8CU  
ATmega1280V-8CUR(4)  
8
1.8V - 5.5V  
2.7V - 5.5V  
Industrial (-40C to 85C)  
ATmega1280-16AU  
ATmega1280-16AUR(4)  
ATmega1280-16CU  
ATmega1280-16CUR(4)  
100A  
100A  
100C1  
100C1  
16  
Notes: 1. This device can also be supplied in wafer form. Contact your local Atmel sales office for detailed ordering information and  
minimum quantities.  
2. See “Speed Grades” on page 357.  
3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
4. Tape & Reel.  
Package Type  
100A  
100-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)  
100C1  
100-ball, Chip Ball Grid Array (CBGA)  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
20  
2549QS–AVR–02/2014  
 
9.3  
ATmega1281  
Speed [MHz](2)  
Power Supply  
Ordering Code  
Package(1)(3)  
Operation Range  
ATmega1281V-8AU  
64A  
64A  
64M2  
64M2  
ATmega1281V-8AUR(4)  
ATmega1281V-8MU  
ATmega1281V-8MUR(4)  
8
1.8 - 5.5V  
2.7 - 5.5V  
Industrial  
(-40C to 85C)  
ATmega1281-16AU  
64A  
64A  
64M2  
64M2  
ATmega1281-16AUR(4)  
ATmega1281-16MU  
ATmega1281-16MUR(4)  
16  
Notes: 1. This device can also be supplied in wafer form. Contact your local Atmel sales office for detailed ordering information and  
minimum quantities.  
2. See “Speed Grades” on page 357.  
3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
4. Tape & Reel.  
Package Type  
64A  
64-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)  
64M2  
64-pad, 9mm × 9mm × 1.0mm Body, Quad Flat No-lead/Micro Lead Frame Package (QFN/MLF)  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
21  
2549QS–AVR–02/2014  
 
 
 
 
9.4  
ATmega2560  
Speed [MHz](2)  
Power Supply  
Ordering Code  
Package(1)(3)  
Operation Range  
ATmega2560V-8AU  
ATmega2560V-8AUR(4)  
ATmega2560V-8CU  
ATmega2560V-8CUR(4)  
100A  
100A  
100C1  
100C1  
8
1.8V - 5.5V  
4.5V - 5.5V  
Industrial (-40C to 85C)  
ATmega2560-16AU  
ATmega2560-16AUR(4)  
ATmega2560-16CU  
ATmega2560-16CUR(4)  
100A  
100A  
100C1  
100C1  
16  
Notes: 1. This device can also be supplied in wafer form. Contact your local Atmel sales office for detailed ordering information and  
minimum quantities.  
2. See “Speed Grades” on page 357.  
3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
4. Tape & Reel.  
Package Type  
100A  
100-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)  
100C1  
100-ball, Chip Ball Grid Array (CBGA)  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
22  
2549QS–AVR–02/2014  
 
9.5  
ATmega2561  
Speed [MHz](2)  
Power Supply  
Ordering Code  
Package(1)(3)  
Operation Range  
ATmega2561V-8AU  
64A  
64A  
64M2  
64M2  
ATmega2561V-8AUR(4)  
ATmega2561V-8MU  
8
1.8V - 5.5V  
4.5V - 5.5V  
ATmega2561V-8MUR(4)  
Industrial  
(-40C to 85C)  
ATmega2561-16AU  
64A  
64A  
64M2  
64M2  
ATmega2561-16AUR(4)  
ATmega2561-16MU  
ATmega2561-16MUR(4)  
16  
Notes: 1. This device can also be supplied in wafer form.Contact your local Atmel sales office for detailed ordering information and  
minimum quantities.  
2. See “Speed Grades” on page 357.  
3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
4. Tape & Reel.  
Package Type  
64A  
64-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)  
64M2  
64-pad, 9mm × 9mm × 1.0mm Body, Quad Flat No-lead/Micro Lead Frame Package (QFN/MLF)  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
23  
2549QS–AVR–02/2014  
 
10. Packaging Information  
10.1 100A  
PIN 1  
B
PIN 1 IDENTIFIER  
E1  
E
e
D1  
D
C
0°~7°  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
15.75  
13.90  
15.75  
13.90  
0.17  
0.09  
0.45  
0.15  
1.00  
16.00  
14.00  
16.00  
14.00  
1.05  
16.25  
D1  
E
14.10 Note 2  
16.25  
Notes:  
E1  
B
14.10 Note 2  
0.27  
1. This package conforms to JEDEC reference MS-026, Variation AED.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
C
0.20  
3. Lead coplanarity is 0.08 mm maximum.  
L
0.75  
e
0.50 TYP  
2010-10-20  
100A, 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,  
0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
100A  
D
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
24  
2549QS–AVR–02/2014  
10.2 100C1  
0.12  
Z
E
Marked A1 Identifier  
SIDE VIEW  
D
A
TOP VIEW  
A1  
Øb  
e
A1 Corner  
0.90 TYP  
10  
8
7
6
9
5
4
3
2
1
A
B
C
D
0.90 TYP  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
E
F
D1  
MIN  
1.10  
0.30  
8.90  
8.90  
7.10  
7.10  
0.35  
MAX  
1.20  
0.40  
9.10  
9.10  
7.30  
7.30  
0.45  
NOM  
NOTE  
SYMBOL  
G
e
A
H
I
A1  
D
0.35  
J
9.00  
E
9.00  
E1  
D1  
E1  
Øb  
e
7.20  
7.20  
BOTTOM VIEW  
0.40  
0.80 TYP  
5/25/06  
DRAWING NO. REV.  
100C1  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
100C1, 100-ball, 9 x 9 x 1.2 mm Body, Ball Pitch 0.80 mm  
Chip Array BGA Package (CBGA)  
A
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
25  
2549QS–AVR–02/2014  
10.3 64A  
PIN 1  
B
e
PIN 1 IDENTIFIER  
E1  
E
D1  
D
C
0°~7°  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
15.75  
13.90  
15.75  
13.90  
0.30  
0.09  
0.45  
0.15  
1.00  
16.00  
14.00  
16.00  
14.00  
1.05  
16.25  
D1  
E
14.10 Note 2  
16.25  
Notes:  
E1  
B
14.10 Note 2  
0.45  
1.This package conforms to JEDEC reference MS-026, Variation AEB.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
C
0.20  
3. Lead coplanarity is 0.10mm maximum.  
L
0.75  
e
0.80 TYP  
2010-10-20  
DRAWING NO. REV.  
64A  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
64A, 64-lead, 14 x 14mm Body Size, 1.0mm Body Thickness,  
0.8mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
C
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
26  
2549QS–AVR–02/2014  
10.4 64M2  
D
Marked pin# 1 ID  
E
SEATING PLANE  
C
A1  
A3  
TOP VIEW  
A
K
0.08  
C
L
Pin #1 Corner  
SIDE VIEW  
D2  
Pin #1  
Triangle  
Option A  
1
2
3
COMMON DIMENSIONS  
(Unit of measure = mm)  
MIN  
0.80  
MAX  
1.00  
0.05  
NOM  
NOTE  
SYMBOL  
E2  
Option B  
Option C  
Pin #1  
A
0.90  
Chamfer  
(C 0.30)  
A1  
A3  
0.02  
0.20 REF  
b
0.18  
8.90  
7.50  
8.90  
0.25  
9.00  
7.65  
9.00  
0.30  
9.10  
7.80  
9.10  
D
D2  
E
K
Pin #1  
Notch  
(0.20 R)  
e
b
BOTTOM VIEW  
E2  
e
7.50  
7.65  
0.50 BSC  
0.40  
7.80  
L
0.35  
0.20  
0.45  
0.40  
0.27  
K
1. JEDEC Standard MO-220, (SAW Singulation) fig . 1, VMMD.  
Notes:  
2. Dimension and tolerance conform to ASMEY14.5M-1994.  
2014-02-12  
TITLE  
DRAWING NO. REV.  
64M2  
2325 Orchard Parkway  
San Jose, CA 95131  
64M2, 64-pad, 9 x 9 x 1.0mm Bod y, Lead Pitch 0.50mm ,  
7.65mm Exposed Pad, Micro Lead Frame Package (MLF)  
E
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
27  
2549QS–AVR–02/2014  
11. Errata  
11.1 ATmega640 rev. B  
Inaccurate ADC conversion in differential mode with 200× gain  
High current consumption in sleep mode  
1. Inaccurate ADC conversion in differential mode with 200× gain  
With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may reach 64 LSB.  
Problem Fix/Workaround  
None.  
2. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will  
increase during sleep when executing the SLEEP instruction directly after a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.  
11.2 ATmega640 rev. A  
Inaccurate ADC conversion in differential mode with 200× gain  
High current consumption in sleep mode  
1. Inaccurate ADC conversion in differential mode with 200× gain  
With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may reach 64 LSB.  
Problem Fix/Workaround  
None.  
2. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will  
increase during sleep when executing the SLEEP instruction directly after a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.  
11.3 ATmega1280 rev. B  
High current consumption in sleep mode  
1. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will  
increase during sleep when executing the SLEEP instruction directly after a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.  
11.4 ATmega1280 rev. A  
Inaccurate ADC conversion in differential mode with 200× gain  
High current consumption in sleep mode  
1. Inaccurate ADC conversion in differential mode with 200× gain  
With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may reach 64 LSB.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
28  
2549QS–AVR–02/2014  
Problem Fix/Workaround  
None.  
2. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will  
increase during sleep when executing the SLEEP instruction directly after a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.  
11.5 ATmega1281 rev. B  
High current consumption in sleep mode  
1. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will  
increase during sleep when executing the SLEEP instruction directly after a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.  
11.6 ATmega1281 rev. A  
Inaccurate ADC conversion in differential mode with 200× gain  
High current consumption in sleep mode  
1. Inaccurate ADC conversion in differential mode with 200× gain  
With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may reach 64 LSB.  
Problem Fix/Workaround  
None.  
2. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will  
increase during sleep when executing the SLEEP instruction directly after a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.  
11.7 ATmega2560 rev. F  
ADC differential input amplification by 46dB (200x) not functional  
1. ADC differential input amplification by 46dB (200x) not functional  
Problem Fix/Workaround  
None.  
11.8 ATmega2560 rev. E  
No known errata.  
11.9 ATmega2560 rev. D  
Not sampled.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
29  
2549QS–AVR–02/2014  
11.10 ATmega2560 rev. C  
High current consumption in sleep mode  
1. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will  
increase during sleep when executing the SLEEP instruction directly after a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.  
11.11 ATmega2560 rev. B  
Not sampled.  
11.12 ATmega2560 rev. A  
Non-Read-While-Write area of flash not functional  
Part does not work under 2.4 volts  
Incorrect ADC reading in differential mode  
Internal ADC reference has too low value  
IN/OUT instructions may be executed twice when Stack is in external RAM  
EEPROM read from application code does not work in Lock Bit Mode 3  
1. Non-Read-While-Write area of flash not functional  
The Non-Read-While-Write area of the flash is not working as expected. The problem is related to the speed of  
the part when reading the flash of this area.  
Problem Fix/Workaround  
- Only use the first 248K of the flash.  
- If boot functionality is needed, run the code in the Non-Read-While-Write area at maximum 1/4th of the max-  
imum frequency of the device at any given voltage. This is done by writing the CLKPR register before entering  
the boot section of the code.  
2. Part does not work under 2.4 volts  
The part does not execute code correctly below 2.4 volts.  
Problem Fix/Workaround  
Do not use the part at voltages below 2.4 volts.  
3. Incorrect ADC reading in differential mode  
The ADC has high noise in differential mode. It can give up to 7 LSB error.  
Problem Fix/Workaround  
Use only the 7 MSB of the result when using the ADC in differential mode.  
4. Internal ADC reference has too low value  
The internal ADC reference has a value lower than specified.  
Problem Fix/Workaround  
- Use AVCC or external reference.  
- The actual value of the reference can be measured by applying a known voltage to the ADC when using the  
internal reference. The result when doing later conversions can then be calibrated.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
30  
2549QS–AVR–02/2014  
5. IN/OUT instructions may be executed twice when Stack is in external RAM  
If either an IN or an OUT instruction is executed directly before an interrupt occurs and the stack pointer is  
located in external ram, the instruction will be executed twice. In some cases this will cause a problem, for  
example:  
- If reading SREG it will appear that the I-flag is cleared.  
- If writing to the PIN registers, the port will toggle twice.  
- If reading registers with interrupt flags, the flags will appear to be cleared.  
Problem Fix/Workaround  
There are two application workarounds, where selecting one of them, will be omitting the issue:  
- Replace IN and OUT with LD/LDS/LDD and ST/STS/STD instructions.  
- Use internal RAM for stack pointer.  
6. EEPROM read from application code does not work in Lock Bit Mode 3  
When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the  
application code.  
Problem Fix/Workaround  
Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM.  
11.13 ATmega2561 rev. F  
ADC differential input amplification by 46dB (200x) not functional  
1. ADC differential input amplification by 46dB (200x) not functional  
Problem Fix/Workaround  
None.  
11.14 ATmega2561 rev. E  
No known errata.  
11.15 ATmega2561 rev. D  
Not sampled.  
11.16 ATmega2561 rev. C  
High current consumption in sleep mode.  
1. High current consumption in sleep mode  
If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will  
increase during sleep when executing the SLEEP instruction directly after a SEI instruction.  
Problem Fix/Workaround  
Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.  
11.17 ATmega2561 rev. B  
Not sampled.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
31  
2549QS–AVR–02/2014  
11.18 ATmega2561 rev. A  
Non-Read-While-Write area of flash not functional  
Part does not work under 2.4 Volts  
Incorrect ADC reading in differential mode  
Internal ADC reference has too low value  
IN/OUT instructions may be executed twice when Stack is in external RAM  
EEPROM read from application code does not work in Lock Bit Mode 3  
1. Non-Read-While-Write area of flash not functional  
The Non-Read-While-Write area of the flash is not working as expected. The problem is related to the speed of  
the part when reading the flash of this area.  
Problem Fix/Workaround  
- Only use the first 248K of the flash.  
- If boot functionality is needed, run the code in the Non-Read-While-Write area at maximum 1/4th of the max-  
imum frequency of the device at any given voltage. This is done by writing the CLKPR register before entering  
the boot section of the code.  
2. Part does not work under 2.4 volts  
The part does not execute code correctly below 2.4 volts.  
Problem Fix/Workaround  
Do not use the part at voltages below 2.4 volts.  
3. Incorrect ADC reading in differential mode  
The ADC has high noise in differential mode. It can give up to 7 LSB error.  
Problem Fix/Workaround  
Use only the 7 MSB of the result when using the ADC in differential mode.  
4. Internal ADC reference has too low value  
The internal ADC reference has a value lower than specified.  
Problem Fix/Workaround  
- Use AVCC or external reference.  
- The actual value of the reference can be measured by applying a known voltage to the ADC when using the  
internal reference. The result when doing later conversions can then be calibrated.  
5. IN/OUT instructions may be executed twice when Stack is in external RAM  
If either an IN or an OUT instruction is executed directly before an interrupt occurs and the stack pointer is  
located in external ram, the instruction will be executed twice. In some cases this will cause a problem, for  
example:  
- If reading SREG it will appear that the I-flag is cleared.  
- If writing to the PIN registers, the port will toggle twice.  
- If reading registers with interrupt flags, the flags will appear to be cleared.  
Problem Fix/Workaround  
There are two application workarounds, where selecting one of them, will be omitting the issue:  
- Replace IN and OUT with LD/LDS/LDD and ST/STS/STD instructions.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
32  
2549QS–AVR–02/2014  
- Use internal RAM for stack pointer.  
6. EEPROM read from application code does not work in Lock Bit Mode 3  
When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the  
application code.  
Problem Fix/Workaround  
Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM.  
ATmega640/V-1280/V-1281/V-2560/V-2561/V [SUMMARY]  
33  
2549QS–AVR–02/2014  
X
X X X X  
X
Atmel Corporation  
1600 Technology Drive, San Jose, CA 95110 USA  
T: (+1)(408) 441.0311  
F: (+1)(408) 436.4200  
|
www.atmel.com  
© 2014 Atmel Corporation. / Rev.: Atmel-2549QS-AVR-ATmega640/V-1280/V-1281/V-2560/V-2561/V-Summary_02/2014.  
Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product  
names may be trademarks of others.  
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right  
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE  
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS  
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT  
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES  
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS  
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this  
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information  
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,  
authorized, or warranted for use as components in applications intended to support or sustain life.  
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where  
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written  
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.  
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are  
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.  

相关型号:

ATMEGA1281V-8MI

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 8MHz, CMOS, 9 X 9 MM, 1 MM HEIGHT, 0.50 MM PITCH, MO-220VMMD, MLF-64
ATMEL

ATMEGA1281V-8MU

8-bit Microcontroller with 64K/128K/256K Bytes In-System Programmable Flash
ATMEL

ATMEGA1281V-8MU-SL383

Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 8MHz, CMOS, 9 X 9 MM, 1 MM HEIGHT, 0.50 MM PITCH, GREEN, MO-220VMMD, MLF-64
ATMEL

ATMEGA1281V-8MUR

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 8MHz, CMOS, 9 X 9 MM, 1 MM HEIGHT, 0.50 MM PITCH, GREEN, MO-220VMMD, MLF-64
ATMEL

ATMEGA1284

8-bit Atmel Microcontroller with 16/32/64/128K Bytes In-System Programmable Flash
ATMEL

ATMEGA1284-AU

8-bit Microcontroller with 16/32/64/128K Bytes In-System Programmable Flash
ATMEL

ATMEGA1284-AU

暂无描述
MICROCHIP

ATMEGA1284-AUR

8-bit Microcontroller with 16/32/64/128K Bytes In-System Programmable Flash
ATMEL

ATMEGA1284-AUR

IC MCU 8BIT 128KB FLASH 44TQFP
MICROCHIP

ATMEGA1284-MU

8-bit Microcontroller with 16/32/64/128K Bytes In-System Programmable Flash
ATMEL

ATMEGA1284-MU

IC MCU 8BIT 128KB FLASH 44VQFN
MICROCHIP

ATMEGA1284-MUR

8-bit Microcontroller with 16/32/64/128K Bytes In-System Programmable Flash
ATMEL