ATMEGA128L-8MC [ATMEL]

8-bit Microcontroller with 128K Bytes In-System Programmable Flash; 8位微控制器,带有128K字节的系统内可编程闪存
ATMEGA128L-8MC
型号: ATMEGA128L-8MC
厂家: ATMEL    ATMEL
描述:

8-bit Microcontroller with 128K Bytes In-System Programmable Flash
8位微控制器,带有128K字节的系统内可编程闪存

闪存 微控制器
文件: 总31页 (文件大小:308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High-performance, Low-power AVR® 8-bit Microcontroller  
Advanced RISC Architecture  
– 133 Powerful Instructions – Most Single Clock Cycle Execution  
– 32 x 8 General Purpose Working Registers + Peripheral Control Registers  
– Fully Static Operation  
– Up to 16 MIPS Throughput at 16 MHz  
– On-chip 2-cycle Multiplier  
Nonvolatile Program and Data Memories  
– 128K Bytes of In-System Reprogrammable Flash  
Endurance: 10,000 Write/Erase Cycles  
– Optional Boot Code Section with Independent Lock Bits  
In-System Programming by On-chip Boot Program  
True Read-While-Write Operation  
8-bit  
Microcontroller  
with 128K Bytes  
In-System  
Programmable  
Flash  
– 4K Bytes EEPROM  
Endurance: 100,000 Write/Erase Cycles  
– 4K Bytes Internal SRAM  
– Up to 64K Bytes Optional External Memory Space  
– Programming Lock for Software Security  
– SPI Interface for In-System Programming  
JTAG (IEEE std. 1149.1 Compliant) Interface  
– Boundary-scan Capabilities According to the JTAG Standard  
– Extensive On-chip Debug Support  
– Programming of Flash, EEPROM, Fuses and Lock Bits through the JTAG Interface  
Peripheral Features  
– Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes  
– Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode and  
Capture Mode  
– Real Time Counter with Separate Oscillator  
– Two 8-bit PWM Channels  
ATmega128  
ATmega128L  
– 6 PWM Channels with Programmable Resolution from 2 to 16 Bits  
– Output Compare Modulator  
– 8-channel, 10-bit ADC  
Summary  
8 Single-ended Channels  
7 Differential Channels  
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x  
– Byte-oriented Two-wire Serial Interface  
– Dual Programmable Serial USARTs  
– Master/Slave SPI Serial Interface  
– Programmable Watchdog Timer with On-chip Oscillator  
– On-chip Analog Comparator  
Special Microcontroller Features  
– Power-on Reset and Programmable Brown-out Detection  
– Internal Calibrated RC Oscillator  
– External and Internal Interrupt Sources  
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,  
and Extended Standby  
– Software Selectable Clock Frequency  
ATmega103 Compatibility Mode Selected by a Fuse  
– Global Pull-up Disable  
I/O and Packages  
– 53 Programmable I/O Lines  
– 64-lead TQFP and 64-pad QFN/MLF  
Operating Voltages  
– 2.7 - 5.5V for ATmega128L  
– 4.5 - 5.5V for ATmega128  
Speed Grades  
Rev. 2467OS–AVR–10/06  
– 0 - 8 MHz for ATmega128L  
– 0 - 16 MHz for ATmega128  
Pin Configurations  
Figure 1. Pinout ATmega128  
PEN  
RXD0/(PDI) PE0  
(TXD0/PDO) PE1  
(XCK0/AIN0) PE2  
(OC3A/AIN1) PE3  
(OC3B/INT4) PE4  
(OC3C/INT5) PE5  
(T3/INT6) PE6  
1
2
3
4
5
6
7
8
9
48 PA3 (AD3)  
47 PA4 (AD4)  
46 PA5 (AD5)  
45 PA6 (AD6)  
44 PA7 (AD7)  
43 PG2(ALE)  
42 PC7 (A15)  
41 PC6 (A14)  
40 PC5 (A13)  
39 PC4 (A12)  
38 PC3 (A11)  
37 PC2 (A10)  
36 PC1 (A9)  
35 PC0 (A8)  
34 PG1(RD)  
33 PG0(WR)  
(ICP3/INT7) PE7  
(SS) PB0 10  
(SCK) PB1 11  
(MOSI) PB2 12  
(MISO) PB3 13  
(OC0) PB4 14  
(OC1A) PB5 15  
(OC1B) PB6 16  
Note:  
The Pinout figure applies to both TQFP and MLF packages. The bottom pad under the  
QFN/MLF package should be soldered to ground.  
Overview  
The ATmega128 is a low-power CMOS 8-bit microcontroller based on the AVR  
enhanced RISC architecture. By executing powerful instructions in a single clock cycle,  
the ATmega128 achieves throughputs approaching 1 MIPS per MHz allowing the sys-  
tem designer to optimize power consumption versus processing speed.  
2
ATmega128  
2467OS–AVR–10/06  
ATmega128  
Block Diagram  
Figure 2. Block Diagram  
PF0 - PF7  
PA0 - PA7  
PC0 - PC7  
VCC  
GND  
PORTA DRIVERS  
PORTF DRIVERS  
PORTC DRIVERS  
DATA REGISTER  
PORTF  
DATA DIR.  
REG. PORTF  
DATA REGISTER  
PORTA  
DATA DIR.  
REG. PORTA  
DATA REGISTER  
PORTC  
DATA DIR.  
REG. PORTC  
8-BIT DATA BUS  
AVCC  
CALIB. OSC  
INTERNAL  
OSCILLATOR  
ADC  
AGND  
AREF  
OSCILLATOR  
OSCILLATOR  
PROGRAM  
COUNTER  
STACK  
POINTER  
WATCHDOG  
TIMER  
JTAG TAP  
TIMING AND  
CONTROL  
PROGRAM  
FLASH  
MCU CONTROL  
REGISTER  
SRAM  
ON-CHIP DEBUG  
BOUNDARY-  
SCAN  
INSTRUCTION  
REGISTER  
TIMER/  
COUNTERS  
GENERAL  
PURPOSE  
REGISTERS  
X
Y
Z
PROGRAMMING  
LOGIC  
INSTRUCTION  
DECODER  
INTERRUPT  
UNIT  
PEN  
CONTROL  
LINES  
ALU  
EEPROM  
STATUS  
REGISTER  
TWO-WIRE SERIAL  
INTERFACE  
SPI  
USART0  
USART1  
DATA REGISTER  
PORTE  
DATA DIR.  
REG. PORTE  
DATA REGISTER  
PORTB  
DATA DIR.  
REG. PORTB  
DATA REGISTER  
PORTD  
DATA DIR.  
REG. PORTD  
DATA REG. DATA DIR.  
PORTG  
REG. PORTG  
PORTB DRIVERS  
PORTD DRIVERS  
PORTG DRIVERS  
PORTE DRIVERS  
PE0 - PE7  
PB0 - PB7  
PD0 - PD7  
PG0 - PG4  
3
2467OS–AVR–10/06  
The AVR core combines a rich instruction set with 32 general purpose working registers.  
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing  
two independent registers to be accessed in one single instruction executed in one clock  
cycle. The resulting architecture is more code efficient while achieving throughputs up to  
ten times faster than conventional CISC microcontrollers.  
The ATmega128 provides the following features: 128K bytes of In-System Programma-  
ble Flash with Read-While-Write capabilities, 4K bytes EEPROM, 4K bytes SRAM, 53  
general purpose I/O lines, 32 general purpose working registers, Real Time Counter  
(RTC), four flexible Timer/Counters with compare modes and PWM, 2 USARTs, a byte  
oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential  
input stage with programmable gain, programmable Watchdog Timer with Internal Oscil-  
lator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for  
accessing the On-chip Debug system and programming and six software selectable  
power saving modes. The Idle mode stops the CPU while allowing the SRAM,  
Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-  
down mode saves the register contents but freezes the Oscillator, disabling all other  
chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asyn-  
chronous timer continues to run, allowing the user to maintain a timer base while the  
rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all  
I/O modules except Asynchronous Timer and ADC, to minimize switching noise during  
ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while  
the rest of the device is sleeping. This allows very fast start-up combined with low power  
consumption. In Extended Standby mode, both the main Oscillator and the Asynchro-  
nous Timer continue to run.  
The device is manufactured using Atmel’s high-density nonvolatile memory technology.  
The On-chip ISP Flash allows the program memory to be reprogrammed in-system  
through an SPI serial interface, by a conventional nonvolatile memory programmer, or  
by an On-chip Boot program running on the AVR core. The boot program can use any  
interface to download the application program in the application Flash memory. Soft-  
ware in the Boot Flash section will continue to run while the Application Flash section is  
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU  
with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega128 is  
a powerful microcontroller that provides a highly flexible and cost effective solution to  
many embedded control applications.  
The ATmega128 AVR is supported with a full suite of program and system development  
tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit  
emulators, and evaluation kits.  
ATmega103 and  
ATmega128  
Compatibility  
The ATmega128 is a highly complex microcontroller where the number of I/O locations  
supersedes the 64 I/O locations reserved in the AVR instruction set. To ensure back-  
ward compatibility with the ATmega103, all I/O locations present in ATmega103 have  
the same location in ATmega128. Most additional I/O locations are added in an  
Extended I/O space starting from $60 to $FF, (i.e., in the ATmega103 internal RAM  
space). These locations can be reached by using LD/LDS/LDD and ST/STS/STD  
instructions only, not by using IN and OUT instructions. The relocation of the internal  
RAM space may still be a problem for ATmega103 users. Also, the increased number of  
interrupt vectors might be a problem if the code uses absolute addresses. To solve  
these problems, an ATmega103 compatibility mode can be selected by programming  
the fuse M103C. In this mode, none of the functions in the Extended I/O space are in  
use, so the internal RAM is located as in ATmega103. Also, the Extended Interrupt vec-  
tors are removed.  
4
ATmega128  
2467OS–AVR–10/06  
ATmega128  
The ATmega128 is 100% pin compatible with ATmega103, and can replace the  
ATmega103 on current Printed Circuit Boards. The application note “Replacing  
ATmega103 by ATmega128” describes what the user should be aware of replacing the  
ATmega103 by an ATmega128.  
ATmega103 Compatibility  
Mode  
By programming the M103C fuse, the ATmega128 will be compatible with the  
ATmega103 regards to RAM, I/O pins and interrupt vectors as described above. How-  
ever, some new features in ATmega128 are not available in this compatibility mode,  
these features are listed below:  
One USART instead of two, Asynchronous mode only. Only the eight least  
significant bits of the Baud Rate Register is available.  
One 16 bits Timer/Counter with two compare registers instead of two 16-bit  
Timer/Counters with three compare registers.  
Two-wire serial interface is not supported.  
Port C is output only.  
Port G serves alternate functions only (not a general I/O port).  
Port F serves as digital input only in addition to analog input to the ADC.  
Boot Loader capabilities is not supported.  
It is not possible to adjust the frequency of the internal calibrated RC Oscillator.  
The External Memory Interface can not release any Address pins for general I/O,  
neither configure different wait-states to different External Memory Address  
sections.  
In addition, there are some other minor differences to make it more compatible to  
ATmega103:  
Only EXTRF and PORF exists in MCUCSR.  
Timed sequence not required for Watchdog Time-out change.  
External Interrupt pins 3 - 0 serve as level interrupt only.  
USART has no FIFO buffer, so data overrun comes earlier.  
Unused I/O bits in ATmega103 should be written to 0 to ensure same operation in  
ATmega128.  
Pin Descriptions  
VCC  
Digital supply voltage.  
Ground.  
GND  
Port A (PA7..PA0)  
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each  
bit). The Port A output buffers have symmetrical drive characteristics with both high sink  
and source capability. As inputs, Port A pins that are externally pulled low will source  
current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset  
condition becomes active, even if the clock is not running.  
Port A also serves the functions of various special features of the ATmega128 as listed  
on page 72.  
Port B (PB7..PB0)  
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each  
bit). The Port B output buffers have symmetrical drive characteristics with both high sink  
and source capability. As inputs, Port B pins that are externally pulled low will source  
5
2467OS–AVR–10/06  
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset  
condition becomes active, even if the clock is not running.  
Port B also serves the functions of various special features of the ATmega128 as listed  
on page 73.  
Port C (PC7..PC0)  
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each  
bit). The Port C output buffers have symmetrical drive characteristics with both high sink  
and source capability. As inputs, Port C pins that are externally pulled low will source  
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset  
condition becomes active, even if the clock is not running.  
Port C also serves the functions of special features of the ATmega128 as listed on page  
76. In ATmega103 compatibility mode, Port C is output only, and the port C pins are not  
tri-stated when a reset condition becomes active.  
Note:  
The ATmega128 is by default shipped in ATmega103 compatibility mode. Thus, if the  
parts are not programmed before they are put on the PCB, PORTC will be output during  
first power up, and until the ATmega103 compatibility mode is disabled.  
Port D (PD7..PD0)  
Port E (PE7..PE0)  
Port F (PF7..PF0)  
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each  
bit). The Port D output buffers have symmetrical drive characteristics with both high sink  
and source capability. As inputs, Port D pins that are externally pulled low will source  
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset  
condition becomes active, even if the clock is not running.  
Port D also serves the functions of various special features of the ATmega128 as listed  
on page 77.  
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each  
bit). The Port E output buffers have symmetrical drive characteristics with both high sink  
and source capability. As inputs, Port E pins that are externally pulled low will source  
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset  
condition becomes active, even if the clock is not running.  
Port E also serves the functions of various special features of the ATmega128 as listed  
on page 80.  
Port F serves as the analog inputs to the A/D Converter.  
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.  
Port pins can provide internal pull-up resistors (selected for each bit). The Port F output  
buffers have symmetrical drive characteristics with both high sink and source capability.  
As inputs, Port F pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port F pins are tri-stated when a reset condition becomes  
active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resis-  
tors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a Reset  
occurs.  
The TDO pin is tri-stated unless TAP states that shift out data are entered.  
Port F also serves the functions of the JTAG interface.  
In ATmega103 compatibility mode, Port F is an input Port only.  
6
ATmega128  
2467OS–AVR–10/06  
ATmega128  
Port G (PG4..PG0)  
Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each  
bit). The Port G output buffers have symmetrical drive characteristics with both high sink  
and source capability. As inputs, Port G pins that are externally pulled low will source  
current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset  
condition becomes active, even if the clock is not running.  
Port G also serves the functions of various special features.  
The port G pins are tri-stated when a reset condition becomes active, even if the clock is  
not running.  
In ATmega103 compatibility mode, these pins only serves as strobes signals to the  
external memory as well as input to the 32 kHz Oscillator, and the pins are initialized to  
PG0 = 1, PG1 = 1, and PG2 = 0 asynchronously when a reset condition becomes active,  
even if the clock is not running. PG3 and PG4 are oscillator pins.  
RESET  
Reset input. A low level on this pin for longer than the minimum pulse length will gener-  
ate a reset, even if the clock is not running. The minimum pulse length is given in Table  
19 on page 50. Shorter pulses are not guaranteed to generate a reset.  
XTAL1  
XTAL2  
AVCC  
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.  
Output from the inverting Oscillator amplifier.  
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally  
connected to VCC, even if the ADC is not used. If the ADC is used, it should be con-  
nected to VCC through a low-pass filter.  
AREF  
PEN  
AREF is the analog reference pin for the A/D Converter.  
PEN is a programming enable pin for the SPI Serial Programming mode, and is inter-  
nally pulled high . By holding this pin low during a Power-on Reset, the device will enter  
the SPI Serial Programming mode. PEN has no function during normal operation.  
Resources  
A comprehensive set of development tools, application notes, and datasheets are avail-  
able for download on http://www.atmel.com/avr.  
7
2467OS–AVR–10/06  
Register Summary  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
($FF)  
..  
Reserved  
Reserved  
Reserved  
UCSR1C  
UDR1  
($9E)  
($9D)  
($9C)  
($9B)  
($9A)  
($99)  
($98)  
($97)  
($96)  
UMSEL1  
UPM11  
UPM10  
USBS1  
UCSZ11  
UCSZ10  
UCPOL1  
192  
190  
190  
191  
194  
194  
USART1 I/O Data Register  
UCSR1A  
UCSR1B  
UBRR1L  
UBRR1H  
Reserved  
Reserved  
UCSR0C  
Reserved  
Reserved  
Reserved  
Reserved  
UBRR0H  
Reserved  
Reserved  
Reserved  
TCCR3C  
TCCR3A  
TCCR3B  
TCNT3H  
TCNT3L  
OCR3AH  
OCR3AL  
OCR3BH  
OCR3BL  
OCR3CH  
OCR3CL  
ICR3H  
RXC1  
TXC1  
UDRE1  
UDRIE1  
FE1  
DOR1  
UPE1  
U2X1  
MPCM1  
TXB81  
RXCIE1  
TXCIE1  
RXEN1  
TXEN1  
UCSZ12  
RXB81  
USART1 Baud Rate Register Low  
– USART1 Baud Rate Register High  
($95)  
($94)  
($93)  
($92)  
($91)  
UMSEL0  
UPM01  
UPM00  
USBS0  
UCSZ01  
UCSZ00  
UCPOL0  
192  
194  
($90)  
($8F)  
($8E)  
($8D)  
($8C)  
USART0 Baud Rate Register High  
FOC3A  
COM3A1  
ICNC3  
FOC3B  
COM3A0  
ICES3  
FOC3C  
COM3B1  
137  
133  
136  
138  
138  
138  
138  
139  
139  
139  
139  
139  
139  
($8B)  
($8A)  
($89)  
($88)  
($87)  
($86)  
($85)  
($84)  
($83)  
($82)  
($81)  
($80)  
($7F)  
($7E)  
COM3B0  
WGM33  
COM3C1  
WGM32  
COM3C0  
CS32  
WGM31  
CS31  
WGM30  
CS30  
Timer/Counter3 – Counter Register High Byte  
Timer/Counter3 – Counter Register Low Byte  
Timer/Counter3 – Output Compare Register A High Byte  
Timer/Counter3 – Output Compare Register A Low Byte  
Timer/Counter3 – Output Compare Register B High Byte  
Timer/Counter3 – Output Compare Register B Low Byte  
Timer/Counter3 – Output Compare Register C High Byte  
Timer/Counter3 – Output Compare Register C Low Byte  
Timer/Counter3 – Input Capture Register High Byte  
Timer/Counter3 – Input Capture Register Low Byte  
ICR3L  
Reserved  
Reserved  
ETIMSK  
ETIFR  
OCIE3A  
OCF3A  
OCIE3B  
OCF3B  
TOIE3  
TOV3  
OCIE3C  
OCF3C  
OCIE1C  
OCF1C  
($7D)  
($7C)  
($7B)  
($7A)  
TICIE3  
ICF3  
140  
141  
Reserved  
TCCR1C  
OCR1CH  
OCR1CL  
Reserved  
Reserved  
Reserved  
TWCR  
FOC1A  
FOC1B  
FOC1C  
137  
138  
138  
($79)  
($78)  
($77)  
($76)  
($75)  
Timer/Counter1 – Output Compare Register C High Byte  
Timer/Counter1 – Output Compare Register C Low Byte  
($74)  
($73)  
($72)  
($71)  
($70)  
($6F)  
($6E)  
($6D)  
($6C)  
($6B)  
TWINT  
TWEA  
TWSTA  
TWSTO  
TWWC  
TWEN  
TWIE  
207  
209  
209  
208  
207  
41  
TWDR  
Two-wire Serial Interface Data Register  
TWAR  
TWA6  
TWS7  
TWA5  
TWS6  
TWA4  
TWS5  
TWA3  
TWS4  
TWA2  
TWS3  
TWA1  
TWA0  
TWGCE  
TWPS0  
TWSR  
TWPS1  
TWBR  
Two-wire Serial Interface Bit Rate Register  
Oscillator Calibration Register  
OSCCAL  
Reserved  
XMCRA  
XMCRB  
Reserved  
EICRA  
SRW01  
SRW00  
XMM2  
SRW11  
XMM1  
SRL2  
SRL1  
SRL0  
31  
33  
XMBK  
XMM0  
($6A)  
($69)  
($68)  
($67)  
($66)  
($65)  
($64)  
($63)  
ISC31  
ISC30  
ISC21  
ISC20  
ISC11  
ISC10  
ISC01  
ISC00  
89  
Reserved  
SPMCSR  
Reserved  
Reserved  
PORTG  
DDRG  
SPMIE  
RWWSB  
RWWSRE  
BLBSET  
PGWRT  
PGERS  
SPMEN  
280  
PORTG4  
DDG4  
PING4  
PORTF4  
PORTG3  
DDG3  
PING3  
PORTF3  
PORTG2  
DDG2  
PING2  
PORTF2  
PORTG1  
DDG1  
PING1  
PORTF1  
PORTG0  
DDG0  
PING0  
PORTF0  
88  
88  
88  
87  
PING  
($62)  
PORTF  
PORTF7  
PORTF6  
PORTF5  
8
ATmega128  
2467OS–AVR–10/06  
ATmega128  
Register Summary (Continued)  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
($61)  
DDRF  
Reserved  
SREG  
DDF7  
DDF6  
DDF5  
DDF4  
DDF3  
DDF2  
DDF1  
DDF0  
88  
($60)  
$3F ($5F)  
$3E ($5E)  
$3D ($5D)  
$3C ($5C)  
$3B ($5B)  
$3A ($5A)  
$39 ($59)  
$38 ($58)  
$37 ($57)  
$36 ($56)  
$35 ($55)  
$34 ($54)  
$33 ($53)  
$32 ($52)  
$31 ($51)  
$30 ($50)  
$2F ($4F)  
$2E ($4E)  
$2D ($4D)  
$2C ($4C)  
$2B ($4B)  
$2A ($4A)  
$29 ($49)  
$28 ($48)  
$27 ($47)  
$26 ($46)  
$25 ($45)  
$24 ($44)  
$23 ($43)  
$22 ($42)  
$21 ($41)  
$20 ($40)  
$1F ($3F)  
$1E ($3E)  
$1D ($3D)  
$1C ($3C)  
$1B ($3B)  
$1A ($3A)  
$19 ($39)  
$18 ($38)  
$17 ($37)  
$16 ($36)  
$15 ($35)  
$14 ($34)  
$13 ($33)  
$12 ($32)  
$11 ($31)  
$10 ($30)  
$0F ($2F)  
$0E ($2E)  
$0D ($2D)  
$0C ($2C)  
$0B ($2B)  
$0A ($2A)  
$09 ($29)  
$08 ($28)  
$07 ($27)  
$06 ($26)  
$05 ($25)  
$04 ($24)  
$03 ($23)  
$02 ($22)  
I
T
H
S
V
N
Z
C
11  
SPH  
SP15  
SP7  
SP14  
SP6  
SP13  
SP5  
XDIV5  
SP12  
SP4  
SP11  
SP3  
SP10  
SP2  
SP9  
SP8  
14  
SPL  
SP1  
SP0  
14  
XDIV  
XDIVEN  
XDIV6  
XDIV4  
XDIV3  
XDIV2  
XDIV1  
XDIV0  
RAMPZ0  
ISC40  
INT0  
43  
RAMPZ  
EICRB  
EIMSK  
EIFR  
14  
ISC71  
INT7  
INTF7  
OCIE2  
OCF2  
SRE  
JTD  
ISC70  
INT6  
INTF6  
TOIE2  
TOV2  
SRW10  
ISC61  
INT5  
INTF5  
TICIE1  
ICF1  
SE  
ISC60  
INT4  
INTF4  
OCIE1A  
OCF1A  
SM1  
ISC51  
INT3  
INTF3  
OCIE1B  
OCF1B  
SM0  
ISC50  
INT2  
INTF  
TOIE1  
TOV1  
SM2  
BORF  
CS02  
ISC41  
INT1  
INTF1  
OCIE0  
OCF0  
IVSEL  
EXTRF  
CS01  
90  
91  
INTF0  
TOIE0  
TOV0  
IVCE  
PORF  
CS00  
91  
TIMSK  
TIFR  
108, 140, 160  
108, 141, 160  
MCUCR  
MCUCSR  
TCCR0  
TCNT0  
OCR0  
31, 44, 63  
JTRF  
COM00  
WDRF  
WGM01  
53, 257  
103  
105  
105  
106  
133  
136  
138  
138  
138  
138  
138  
138  
139  
139  
158  
160  
160  
254  
55  
FOC0  
WGM00  
COM01  
Timer/Counter0 (8 Bit)  
Timer/Counter0 Output Compare Register  
ASSR  
COM1B1  
AS0  
TCN0UB  
COM1C0  
CS12  
OCR0UB  
WGM11  
CS11  
TCR0UB  
WGM10  
CS10  
TCCR1A  
TCCR1B  
TCNT1H  
TCNT1L  
OCR1AH  
OCR1AL  
OCR1BH  
OCR1BL  
ICR1H  
ICR1L  
COM1A1  
ICNC1  
COM1A0  
ICES1  
COM1B0  
WGM13  
COM1C1  
WGM12  
Timer/Counter1 – Counter Register High Byte  
Timer/Counter1 – Counter Register Low Byte  
Timer/Counter1 – Output Compare Register A High Byte  
Timer/Counter1 – Output Compare Register A Low Byte  
Timer/Counter1 – Output Compare Register B High Byte  
Timer/Counter1 – Output Compare Register B Low Byte  
Timer/Counter1 – Input Capture Register High Byte  
Timer/Counter1 – Input Capture Register Low Byte  
TCCR2  
TCNT2  
OCR2  
FOC2  
WGM20  
COM21  
COM20  
WGM21  
CS22  
CS21  
CS20  
Timer/Counter2 (8 Bit)  
Timer/Counter2 Output Compare Register  
IDRD/OCDR7  
OCDR  
WDTCR  
SFIOR  
EEARH  
EEARL  
EEDR  
OCDR6  
OCDR5  
OCDR4  
OCDR3  
WDE  
OCDR2  
WDP2  
PUD  
OCDR1  
WDP1  
PSR0  
OCDR0  
WDP0  
TSM  
WDCE  
ACME  
PSR321  
72, 109, 145, 229  
21  
EEPROM Address Register High  
EEPROM Address Register Low Byte  
EEPROM Data Register  
21  
22  
EECR  
EERIE  
PORTA3  
DDA3  
EEMWE  
PORTA2  
DDA2  
EEWE  
PORTA1  
DDA1  
EERE  
PORTA0  
DDA0  
22  
PORTA  
DDRA  
PORTA7  
DDA7  
PORTA6  
DDA6  
PORTA5  
DDA5  
PORTA4  
DDA4  
86  
86  
PINA  
PINA7  
PORTB7  
DDB7  
PINA6  
PORTB6  
DDB6  
PINA5  
PORTB5  
DDB5  
PINA4  
PORTB4  
DDB4  
PINA3  
PINA2  
PINA1  
PINA0  
86  
PORTB  
DDRB  
PORTB3  
DDB3  
PORTB2  
DDB2  
PORTB1  
DDB1  
PORTB0  
DDB0  
86  
86  
PINB  
PINB7  
PORTC7  
DDC7  
PINB6  
PORTC6  
DDC6  
PINB5  
PORTC5  
DDC5  
PINB4  
PORTC4  
DDC4  
PINB3  
PINB2  
PINB1  
PINB0  
86  
PORTC  
DDRC  
PORTC3  
DDC3  
PORTC2  
DDC2  
PORTC1  
DDC1  
PORTC0  
DDC0  
86  
86  
PINC  
PINC7  
PORTD7  
DDD7  
PINC6  
PORTD6  
DDD6  
PINC5  
PORTD5  
DDD5  
PINC4  
PORTD4  
DDD4  
PINC3  
PINC2  
PINC1  
PORTD1  
DDD1  
PINC0  
PORTD0  
DDD0  
87  
PORTD  
DDRD  
PORTD3  
DDD3  
PORTD2  
DDD2  
87  
87  
PIND  
PIND7  
PIND6  
PIND5  
PIND4  
PIND3  
PIND2  
PIND1  
PIND0  
87  
SPDR  
SPI Data Register  
170  
170  
168  
190  
190  
191  
194  
229  
245  
246  
247  
247  
87  
SPSR  
SPIF  
SPIE  
WCOL  
SPE  
SPI2X  
SPR0  
SPCR  
DORD  
MSTR  
CPOL  
CPHA  
SPR1  
UDR0  
USART0 I/O Data Register  
UCSR0A  
UCSR0B  
UBRR0L  
ACSR  
RXC0  
TXC0  
UDRE0  
UDRIE0  
FE0  
DOR0  
UPE0  
U2X0  
MPCM0  
TXB80  
RXCIE0  
TXCIE0  
RXEN0  
TXEN0  
UCSZ02  
RXB80  
USART0 Baud Rate Register Low  
ACD  
REFS1  
ADEN  
ACBG  
REFS0  
ADSC  
ACO  
ADLAR  
ADFR  
ACI  
MUX4  
ADIF  
ACIE  
MUX3  
ADIE  
ACIC  
MUX2  
ADPS2  
ACIS1  
MUX1  
ADPS1  
ACIS0  
MUX0  
ADPS0  
ADMUX  
ADCSRA  
ADCH  
ADC Data Register High Byte  
ADC Data Register Low byte  
ADCL  
PORTE  
DDRE  
PORTE7  
DDE7  
PORTE6  
DDE6  
PORTE5  
DDE5  
PORTE4  
DDE4  
PORTE3  
DDE3  
PORTE2  
DDE2  
PORTE1  
DDE1  
PORTE0  
DDE0  
87  
9
2467OS–AVR–10/06  
Register Summary (Continued)  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
$01 ($21)  
$00 ($20)  
PINE  
PINF  
PINE7  
PINF7  
PINE6  
PINF6  
PINE5  
PINF5  
PINE4  
PINF4  
PINE3  
PINF3  
PINE2  
PINF2  
PINE1  
PINF1  
PINE0  
PINF0  
87  
88  
Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses  
should never be written.  
2. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on  
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions  
work with registers $00 to $1F only.  
10  
ATmega128  
2467OS–AVR–10/06  
ATmega128  
Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
ARITHMETIC AND LOGIC INSTRUCTIONS  
ADD  
Rd, Rr  
Rd, Rr  
Rdl,K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rdl,K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add two Registers  
Rd Rd + Rr  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,S  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,S  
Z,N,V  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
ADC  
Add with Carry two Registers  
Add Immediate to Word  
Subtract two Registers  
Subtract Constant from Register  
Subtract with Carry two Registers  
Subtract with Carry Constant from Reg.  
Subtract Immediate from Word  
Logical AND Registers  
Logical AND Register and Constant  
Logical OR Registers  
Rd Rd + Rr + C  
Rdh:Rdl Rdh:Rdl + K  
Rd Rd - Rr  
ADIW  
SUB  
SUBI  
SBC  
Rd Rd - K  
Rd Rd - Rr - C  
Rd Rd - K - C  
Rdh:Rdl Rdh:Rdl - K  
Rd Rd Rr  
SBCI  
SBIW  
AND  
ANDI  
OR  
Rd Rd K  
Z,N,V  
Rd Rd v Rr  
Z,N,V  
ORI  
Logical OR Register and Constant  
Exclusive OR Registers  
One’s Complement  
Rd Rd v K  
Z,N,V  
EOR  
COM  
NEG  
SBR  
Rd Rd Rr  
Z,N,V  
Rd $FF Rd  
Rd $00 Rd  
Rd Rd v K  
Z,C,N,V  
Z,C,N,V,H  
Z,N,V  
Rd  
Two’s Complement  
Rd,K  
Rd,K  
Rd  
Set Bit(s) in Register  
CBR  
Clear Bit(s) in Register  
Increment  
Rd Rd ($FF - K)  
Rd Rd + 1  
Z,N,V  
INC  
Z,N,V  
DEC  
Rd  
Decrement  
Rd Rd 1  
Z,N,V  
TST  
Rd  
Test for Zero or Minus  
Clear Register  
Rd Rd Rd  
Z,N,V  
CLR  
Rd  
Rd Rd Rd  
Rd $FF  
Z,N,V  
SER  
Rd  
Set Register  
None  
MUL  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Multiply Unsigned  
R1:R0 Rd x Rr  
R1:R0 Rd x Rr  
R1:R0 Rd x Rr  
R1:R0 (Rd x Rr) << 1  
R1:R0 (Rd x Rr) << 1  
R1:R0 (Rd x Rr) << 1  
Z,C  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
Multiply Signed  
Z,C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Z,C  
Z,C  
Z,C  
Z,C  
BRANCH INSTRUCTIONS  
RJMP  
IJMP  
k
Relative Jump  
PC PC + k + 1  
None  
None  
None  
None  
None  
None  
None  
I
2
2
Indirect Jump to (Z)  
PC Z  
JMP  
k
k
Direct Jump  
PC k  
3
RCALL  
ICALL  
CALL  
RET  
Relative Subroutine Call  
Indirect Call to (Z)  
PC PC + k + 1  
3
PC Z  
3
k
Direct Subroutine Call  
Subroutine Return  
PC k  
4
PC STACK  
4
RETI  
Interrupt Return  
PC STACK  
4
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC PC + 2 or 3  
Rd Rr  
None  
Z, N,V,C,H  
Z, N,V,C,H  
Z, N,V,C,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1 / 2 / 3  
1
Rd,Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd Rr C  
1
CPI  
Rd,K  
Compare Register with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register is Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register is Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd K  
1
SBRC  
SBRS  
SBIC  
SBIS  
Rr, b  
if (Rr(b)=0) PC PC + 2 or 3  
if (Rr(b)=1) PC PC + 2 or 3  
if (P(b)=0) PC PC + 2 or 3  
if (P(b)=1) PC PC + 2 or 3  
if (SREG(s) = 1) then PCPC+k + 1  
if (SREG(s) = 0) then PCPC+k + 1  
if (Z = 1) then PC PC + k + 1  
if (Z = 0) then PC PC + k + 1  
if (C = 1) then PC PC + k + 1  
if (C = 0) then PC PC + k + 1  
if (C = 0) then PC PC + k + 1  
if (C = 1) then PC PC + k + 1  
if (N = 1) then PC PC + k + 1  
if (N = 0) then PC PC + k + 1  
if (N V= 0) then PC PC + k + 1  
if (N V= 1) then PC PC + k + 1  
if (H = 1) then PC PC + k + 1  
if (H = 0) then PC PC + k + 1  
if (T = 1) then PC PC + k + 1  
if (T = 0) then PC PC + k + 1  
if (V = 1) then PC PC + k + 1  
if (V = 0) then PC PC + k + 1  
1 / 2 / 3  
1 / 2 / 3  
1 / 2 / 3  
1 / 2 / 3  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
Rr, b  
P, b  
P, b  
s, k  
s, k  
k
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
k
Branch if Not Equal  
k
Branch if Carry Set  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
k
k
k
Branch if Minus  
k
Branch if Plus  
k
Branch if Greater or Equal, Signed  
Branch if Less Than Zero, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
k
k
k
k
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
k
k
11  
2467OS–AVR–10/06  
Instruction Set Summary (Continued)  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
BRIE  
BRID  
k
k
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
if ( I = 1) then PC PC + k + 1  
if ( I = 0) then PC PC + k + 1  
None  
None  
1 / 2  
1 / 2  
DATA TRANSFER INSTRUCTIONS  
MOV  
MOVW  
LDI  
Rd, Rr  
Rd, Rr  
Rd, K  
Move Between Registers  
Copy Register Word  
Rd Rr  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
-
Rd+1:Rd Rr+1:Rr  
Load Immediate  
Rd K  
LD  
Rd, X  
Load Indirect  
Rd (X)  
LD  
Rd, X+  
Rd, - X  
Rd, Y  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect  
Rd (X), X X + 1  
X X - 1, Rd (X)  
Rd (Y)  
LD  
LD  
LD  
Rd, Y+  
Rd, - Y  
Rd,Y+q  
Rd, Z  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect with Displacement  
Load Indirect  
Rd (Y), Y Y + 1  
Y Y - 1, Rd (Y)  
Rd (Y + q)  
LD  
LDD  
LD  
Rd (Z)  
LD  
Rd, Z+  
Rd, -Z  
Rd, Z+q  
Rd, k  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect with Displacement  
Load Direct from SRAM  
Store Indirect  
Rd (Z), Z Z+1  
Z Z - 1, Rd (Z)  
Rd (Z + q)  
LD  
LDD  
LDS  
ST  
Rd (k)  
X, Rr  
(X) Rr  
ST  
X+, Rr  
- X, Rr  
Y, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect  
(X) Rr, X X + 1  
X X - 1, (X) Rr  
(Y) Rr  
ST  
ST  
ST  
Y+, Rr  
- Y, Rr  
Y+q,Rr  
Z, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect with Displacement  
Store Indirect  
(Y) Rr, Y Y + 1  
Y Y - 1, (Y) Rr  
(Y + q) Rr  
ST  
STD  
ST  
(Z) Rr  
ST  
Z+, Rr  
-Z, Rr  
Z+q,Rr  
k, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect with Displacement  
Store Direct to SRAM  
(Z) Rr, Z Z + 1  
Z Z - 1, (Z) Rr  
(Z + q) Rr  
ST  
STD  
STS  
LPM  
LPM  
LPM  
ELPM  
ELPM  
ELPM  
SPM  
IN  
(k) Rr  
Load Program Memory  
Load Program Memory  
Load Program Memory and Post-Inc  
Extended Load Program Memory  
Extended Load Program Memory  
Extended Load Program Memory and Post-Inc  
Store Program Memory  
In Port  
R0 (Z)  
Rd, Z  
Rd (Z)  
Rd, Z+  
Rd (Z), Z Z+1  
R0 (RAMPZ:Z)  
Rd (RAMPZ:Z)  
Rd (RAMPZ:Z), RAMPZ:Z RAMPZ:Z+1  
(Z) R1:R0  
Rd, Z  
Rd, Z+  
Rd, P  
P, Rr  
Rr  
Rd P  
1
1
2
2
OUT  
PUSH  
POP  
Out Port  
P Rr  
Push Register on Stack  
Pop Register from Stack  
STACK Rr  
Rd  
Rd STACK  
BIT AND BIT-TEST INSTRUCTIONS  
SBI  
P,b  
P,b  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
s
Set Bit in I/O Register  
Clear Bit in I/O Register  
Logical Shift Left  
I/O(P,b) 1  
None  
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CBI  
I/O(P,b) 0  
None  
LSL  
Rd(n+1) Rd(n), Rd(0) 0  
Z,C,N,V  
LSR  
ROL  
ROR  
ASR  
SWAP  
BSET  
BCLR  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
Logical Shift Right  
Rotate Left Through Carry  
Rotate Right Through Carry  
Arithmetic Shift Right  
Swap Nibbles  
Rd(n) Rd(n+1), Rd(7) 0  
Z,C,N,V  
Rd(0)C,Rd(n+1)Rd(n),CRd(7)  
Z,C,N,V  
Rd(7)C,Rd(n)Rd(n+1),CRd(0)  
Z,C,N,V  
Rd(n) Rd(n+1), n=0..6  
Z,C,N,V  
Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0)  
None  
Flag Set  
SREG(s) 1  
SREG(s) 0  
T Rr(b)  
Rd(b) T  
C 1  
SREG(s)  
s
Flag Clear  
SREG(s)  
Rr, b  
Rd, b  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
T
None  
C
C
N
N
Z
Z
I
Clear Carry  
C 0  
Set Negative Flag  
Clear Negative Flag  
Set Zero Flag  
N 1  
N 0  
Z 1  
Clear Zero Flag  
Z 0  
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
I 1  
CLI  
I 0  
I
SES  
CLS  
S 1  
S
S
S 0  
12  
ATmega128  
2467OS–AVR–10/06  
ATmega128  
Instruction Set Summary (Continued)  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
SEV  
CLV  
SET  
CLT  
SEH  
CLH  
Set Twos Complement Overflow.  
Clear Twos Complement Overflow  
Set T in SREG  
V 1  
V 0  
T 1  
T 0  
H 1  
H 0  
V
V
T
T
H
H
1
1
1
1
1
1
Clear T in SREG  
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
MCU CONTROL INSTRUCTIONS  
NOP  
No Operation  
Sleep  
None  
None  
None  
None  
1
1
SLEEP  
WDR  
(see specific descr. for Sleep function)  
(see specific descr. for WDR/timer)  
For On-chip Debug Only  
Watchdog Reset  
Break  
1
BREAK  
N/A  
13  
2467OS–AVR–10/06  
Ordering Information  
Speed (MHz)  
Power Supply  
Ordering Code  
Package(1)  
Operation Range  
ATmega128L-8AC  
ATmega128L-8MC  
64A  
Commercial  
(0oC to 70oC)  
64M1  
ATmega128L-8AI  
ATmega128L-8AU(2)  
ATmega128L-8MI  
ATmega128L-8MU(2)  
64A  
8
2.7 - 5.5V  
64A  
Industrial  
(-40oC to 85oC)  
64M1  
64M1  
ATmega128-16AC  
ATmega128-16MC  
64A  
Commercial  
(0oC to 70oC)  
64M1  
ATmega128-16AI  
ATmega128-16AU(2)  
ATmega128-16MI  
ATmega128-16MU(2)  
64A  
16  
4.5 - 5.5V  
64A  
Industrial  
(-40oC to 85oC)  
64M1  
64M1  
Notes: 1. The device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information  
and minimum quantities.  
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-  
tive). Also Halide free and fully Green.  
Package Type  
64A  
64-lead, 14 x 14 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)  
64M1  
64-pad, 9 x 9 x 1.0 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)  
14  
ATmega128  
2467OS–AVR–10/06  
ATmega128  
Packaging Information  
64A  
PIN 1  
B
PIN 1 IDENTIFIER  
E1  
E
e
D1  
D
C
0˚~7˚  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
15.75  
13.90  
15.75  
13.90  
0.30  
0.09  
0.45  
0.15  
1.00  
16.00  
14.00  
16.00  
14.00  
1.05  
16.25  
D1  
E
14.10 Note 2  
16.25  
Notes:  
1. This package conforms to JEDEC reference MS-026, Variation AEB.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
E1  
B
14.10 Note 2  
0.45  
C
0.20  
3. Lead coplanarity is 0.10 mm maximum.  
L
0.75  
e
0.80 TYP  
10/5/2001  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,  
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
64A  
B
R
15  
2467OS–AVR–10/06  
64M1  
D
Marked Pin# 1 ID  
E
SEATING PLANE  
C
A1  
TOP VIEW  
A
K
0.08  
C
L
Pin #1 Corner  
SIDE VIEW  
D2  
Pin #1  
Triangle  
Option A  
1
2
3
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
0.80  
MAX  
1.00  
0.05  
0.30  
9.10  
NOM  
0.90  
0.02  
0.25  
9.00  
NOTE  
SYMBOL  
E2  
Option B  
Option C  
A
Pin #1  
Chamfer  
(C 0.30)  
A1  
b
0.18  
8.90  
D
D2  
E
5.20  
5.40  
9.00  
5.60  
9.10  
K
Pin #1  
Notch  
(0.20 R)  
8.90  
e
b
E2  
e
5.20  
5.40  
0.50 BSC  
0.40  
5.60  
BOTTOM VIEW  
L
0.35  
1.25  
0.45  
1.55  
K
1.40  
1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.  
2. Dimension and tolerance conform to ASMEY14.5M-1994.  
Note:  
5/25/06  
DRAWING NO. REV.  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm,  
5.40 mm Exposed Pad, Micro Lead Frame Package (MLF)  
64M1  
G
R
16  
ATmega128  
2467OS–AVR–10/06  
ATmega128  
Errata  
The revision letter in this section refers to the revision of the ATmega128 device.  
ATmega128 Rev. M  
First Analog Comparator conversion may be delayed  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
Stabilizing time needed when changing XDIV Register  
Stabilizing time needed when changing OSCCAL Register  
IDCODE masks data from TDI input  
1. First Analog Comparator conversion may be delayed  
If the device is powered by a slow rising VCC, the first Analog Comparator conver-  
sion will take longer than expected on some devices.  
Problem Fix/Workaround  
When the device has been powered or reset, disable then enable theAnalog Com-  
parator before the first conversion.  
2. Interrupts may be lost when writing the timer registers in the asynchronous  
timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock  
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the  
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare  
Register, OCR2  
3. Stabilizing time needed when changing XDIV Register  
After increasing the source clock frequency more than 2% with settings in the XDIV  
register, the device may execute some of the subsequent instructions incorrectly.  
Problem Fix / Workaround  
The NOP instruction will always be executed correctly also right after a frequency  
change. Thus, the next 8 instructions after the change should be NOP instructions.  
To ensure this, follow this procedure:  
1.Clear the I bit in the SREG Register.  
2.Set the new pre-scaling factor in XDIV register.  
3.Execute 8 NOP instructions  
4.Set the I bit in SREG  
This will ensure that all subsequent instructions will execute correctly.  
Assembly Code Example:  
CLI  
; clear global interrupt enable  
; set new prescale value  
; no operation  
OUT XDIV, temp  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
SEI  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; set global interrupt enable  
17  
2467OS–AVR–10/06  
4. Stabilizing time needed when changing OSCCAL Register  
After increasing the source clock frequency more than 2% with settings in the OSC-  
CAL register, the device may execute some of the subsequent instructions  
incorrectly.  
Problem Fix / Workaround  
The behavior follows errata number 1., and the same Fix / Workaround is applicable  
on this errata.  
5. IDCODE masks data from TDI input  
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices  
are replaced by all-ones during Update-DR.  
Problem Fix / Workaround  
If ATmega128 is the only device in the scan chain, the problem is not visible.  
Select the Device ID Register of the ATmega128 by issuing the IDCODE  
instruction or by entering the Test-Logic-Reset state of the TAP controller to  
read out the contents of its Device ID Register and possibly data from  
succeeding devices of the scan chain. Issue the BYPASS instruction to the  
ATmega128 while reading the Device ID Registers of preceding devices of  
the boundary scan chain.  
If the Device IDs of all devices in the boundary scan chain must be captured  
simultaneously, the ATmega128 must be the fist device in the chain.  
ATmega128 Rev. L  
First Analog Comparator conversion may be delayed  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
Stabilizing time needed when changing XDIV Register  
Stabilizing time needed when changing OSCCAL Register  
IDCODE masks data from TDI input  
1. First Analog Comparator conversion may be delayed  
If the device is powered by a slow rising VCC, the first Analog Comparator conver-  
sion will take longer than expected on some devices.  
Problem Fix/Workaround  
When the device has been powered or reset, disable then enable theAnalog Com-  
parator before the first conversion.  
2. Interrupts may be lost when writing the timer registers in the asynchronous  
timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock  
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the  
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare  
Register, OCR2  
3. Stabilizing time needed when changing XDIV Register  
After increasing the source clock frequency more than 2% with settings in the XDIV  
register, the device may execute some of the subsequent instructions incorrectly.  
18  
ATmega128  
2467OS–AVR–10/06  
ATmega128  
Problem Fix / Workaround  
The NOP instruction will always be executed correctly also right after a frequency  
change. Thus, the next 8 instructions after the change should be NOP instructions.  
To ensure this, follow this procedure:  
1.Clear the I bit in the SREG Register.  
2.Set the new pre-scaling factor in XDIV register.  
3.Execute 8 NOP instructions  
4.Set the I bit in SREG  
This will ensure that all subsequent instructions will execute correctly.  
Assembly Code Example:  
CLI  
; clear global interrupt enable  
; set new prescale value  
; no operation  
OUT XDIV, temp  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
SEI  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; set global interrupt enable  
4. Stabilizing time needed when changing OSCCAL Register  
After increasing the source clock frequency more than 2% with settings in the OSC-  
CAL register, the device may execute some of the subsequent instructions  
incorrectly.  
Problem Fix / Workaround  
The behavior follows errata number 1., and the same Fix / Workaround is applicable  
on this errata.  
5. IDCODE masks data from TDI input  
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices  
are replaced by all-ones during Update-DR.  
Problem Fix / Workaround  
If ATmega128 is the only device in the scan chain, the problem is not visible.  
Select the Device ID Register of the ATmega128 by issuing the IDCODE  
instruction or by entering the Test-Logic-Reset state of the TAP controller to  
read out the contents of its Device ID Register and possibly data from  
succeeding devices of the scan chain. Issue the BYPASS instruction to the  
ATmega128 while reading the Device ID Registers of preceding devices of  
the boundary scan chain.  
If the Device IDs of all devices in the boundary scan chain must be captured  
simultaneously, the ATmega128 must be the fist device in the chain.  
19  
2467OS–AVR–10/06  
ATmega128 Rev. I  
First Analog Comparator conversion may be delayed  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
Stabilizing time needed when changing XDIV Register  
Stabilizing time needed when changing OSCCAL Register  
IDCODE masks data from TDI input  
1. First Analog Comparator conversion may be delayed  
If the device is powered by a slow rising VCC, the first Analog Comparator conver-  
sion will take longer than expected on some devices.  
Problem Fix/Workaround  
When the device has been powered or reset, disable then enable theAnalog Com-  
parator before the first conversion.  
2. Interrupts may be lost when writing the timer registers in the asynchronous  
timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock  
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the  
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare  
Register, OCR2  
3. Stabilizing time needed when changing XDIV Register  
After increasing the source clock frequency more than 2% with settings in the XDIV  
register, the device may execute some of the subsequent instructions incorrectly.  
Problem Fix / Workaround  
The NOP instruction will always be executed correctly also right after a frequency  
change. Thus, the next 8 instructions after the change should be NOP instructions.  
To ensure this, follow this procedure:  
1.Clear the I bit in the SREG Register.  
2.Set the new pre-scaling factor in XDIV register.  
3.Execute 8 NOP instructions  
4.Set the I bit in SREG  
This will ensure that all subsequent instructions will execute correctly.  
Assembly Code Example:  
CLI  
; clear global interrupt enable  
; set new prescale value  
; no operation  
OUT XDIV, temp  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
SEI  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; clear global interrupt enable  
20  
ATmega128  
2467OS–AVR–10/06  
ATmega128  
4. Stabilizing time needed when changing OSCCAL Register  
After increasing the source clock frequency more than 2% with settings in the OSC-  
CAL register, the device may execute some of the subsequent instructions  
incorrectly.  
Problem Fix / Workaround  
The behavior follows errata number 1., and the same Fix / Workaround is applicable  
on this errata.  
5. IDCODE masks data from TDI input  
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices  
are replaced by all-ones during Update-DR.  
Problem Fix / Workaround  
If ATmega128 is the only device in the scan chain, the problem is not visible.  
Select the Device ID Register of the ATmega128 by issuing the IDCODE  
instruction or by entering the Test-Logic-Reset state of the TAP controller to  
read out the contents of its Device ID Register and possibly data from  
succeeding devices of the scan chain. Issue the BYPASS instruction to the  
ATmega128 while reading the Device ID Registers of preceding devices of  
the boundary scan chain.  
If the Device IDs of all devices in the boundary scan chain must be captured  
simultaneously, the ATmega128 must be the fist device in the chain.  
ATmega128 Rev. H  
First Analog Comparator conversion may be delayed  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
Stabilizing time needed when changing XDIV Register  
Stabilizing time needed when changing OSCCAL Register  
IDCODE masks data from TDI input  
1. First Analog Comparator conversion may be delayed  
If the device is powered by a slow rising VCC, the first Analog Comparator conver-  
sion will take longer than expected on some devices.  
Problem Fix/Workaround  
When the device has been powered or reset, disable then enable theAnalog Com-  
parator before the first conversion.  
2. Interrupts may be lost when writing the timer registers in the asynchronous  
timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock  
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the  
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare  
Register, OCR2  
3. Stabilizing time needed when changing XDIV Register  
After increasing the source clock frequency more than 2% with settings in the XDIV  
register, the device may execute some of the subsequent instructions incorrectly.  
21  
2467OS–AVR–10/06  
Problem Fix / Workaround  
The NOP instruction will always be executed correctly also right after a frequency  
change. Thus, the next 8 instructions after the change should be NOP instructions.  
To ensure this, follow this procedure:  
1.Clear the I bit in the SREG Register.  
2.Set the new pre-scaling factor in XDIV register.  
3.Execute 8 NOP instructions  
4.Set the I bit in SREG  
This will ensure that all subsequent instructions will execute correctly.  
Assembly Code Example:  
CLI  
; clear global interrupt enable  
; set new prescale value  
; no operation  
OUT XDIV, temp  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
SEI  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; clear global interrupt enable  
4. Stabilizing time needed when changing OSCCAL Register  
After increasing the source clock frequency more than 2% with settings in the OSC-  
CAL register, the device may execute some of the subsequent instructions  
incorrectly.  
Problem Fix / Workaround  
The behavior follows errata number 1., and the same Fix / Workaround is applicable  
on this errata.  
5. IDCODE masks data from TDI input  
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices  
are replaced by all-ones during Update-DR.  
Problem Fix / Workaround  
If ATmega128 is the only device in the scan chain, the problem is not visible.  
Select the Device ID Register of the ATmega128 by issuing the IDCODE  
instruction or by entering the Test-Logic-Reset state of the TAP controller to  
read out the contents of its Device ID Register and possibly data from  
succeeding devices of the scan chain. Issue the BYPASS instruction to the  
ATmega128 while reading the Device ID Registers of preceding devices of  
the boundary scan chain.  
If the Device IDs of all devices in the boundary scan chain must be captured  
simultaneously, the ATmega128 must be the fist device in the chain.  
22  
ATmega128  
2467OS–AVR–10/06  
ATmega128  
ATmega128 Rev. G  
First Analog Comparator conversion may be delayed  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
Stabilizing time needed when changing XDIV Register  
Stabilizing time needed when changing OSCCAL Register  
IDCODE masks data from TDI input  
1. First Analog Comparator conversion may be delayed  
If the device is powered by a slow rising VCC, the first Analog Comparator conver-  
sion will take longer than expected on some devices.  
Problem Fix/Workaround  
When the device has been powered or reset, disable then enable theAnalog Com-  
parator before the first conversion.  
2. Interrupts may be lost when writing the timer registers in the asynchronous  
timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock  
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the  
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare  
Register, OCR2  
3. Stabilizing time needed when changing XDIV Register  
After increasing the source clock frequency more than 2% with settings in the XDIV  
register, the device may execute some of the subsequent instructions incorrectly.  
Problem Fix / Workaround  
The NOP instruction will always be executed correctly also right after a frequency  
change. Thus, the next 8 instructions after the change should be NOP instructions.  
To ensure this, follow this procedure:  
1.Clear the I bit in the SREG Register.  
2.Set the new pre-scaling factor in XDIV register.  
3.Execute 8 NOP instructions  
4.Set the I bit in SREG  
This will ensure that all subsequent instructions will execute correctly.  
Assembly Code Example:  
CLI  
; clear global interrupt enable  
; set new prescale value  
; no operation  
OUT XDIV, temp  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
SEI  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; set global interrupt enable  
23  
2467OS–AVR–10/06  
4. Stabilizing time needed when changing OSCCAL Register  
After increasing the source clock frequency more than 2% with settings in the OSC-  
CAL register, the device may execute some of the subsequent instructions  
incorrectly.  
Problem Fix / Workaround  
The behavior follows errata number 1., and the same Fix / Workaround is applicable  
on this errata.  
5. IDCODE masks data from TDI input  
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices  
are replaced by all-ones during Update-DR.  
Problem Fix / Workaround  
If ATmega128 is the only device in the scan chain, the problem is not visible.  
Select the Device ID Register of the ATmega128 by issuing the IDCODE  
instruction or by entering the Test-Logic-Reset state of the TAP controller to  
read out the contents of its Device ID Register and possibly data from  
succeeding devices of the scan chain. Issue the BYPASS instruction to the  
ATmega128 while reading the Device ID Registers of preceding devices of  
the boundary scan chain.  
If the Device IDs of all devices in the boundary scan chain must be captured  
simultaneously, the ATmega128 must be the fist device in the chain.  
ATmega128 Rev. F  
First Analog Comparator conversion may be delayed  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
Stabilizing time needed when changing XDIV Register  
Stabilizing time needed when changing OSCCAL Register  
IDCODE masks data from TDI input  
1. First Analog Comparator conversion may be delayed  
If the device is powered by a slow rising VCC, the first Analog Comparator conver-  
sion will take longer than expected on some devices.  
Problem Fix/Workaround  
When the device has been powered or reset, disable then enable theAnalog Com-  
parator before the first conversion.  
2. Interrupts may be lost when writing the timer registers in the asynchronous  
timer  
If one of the timer registers which is synchronized to the asynchronous timer2 clock  
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.  
Problem Fix/Workaround  
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the  
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare  
Register, OCR2  
3. Stabilizing time needed when changing XDIV Register  
After increasing the source clock frequency more than 2% with settings in the XDIV  
register, the device may execute some of the subsequent instructions incorrectly.  
24  
ATmega128  
2467OS–AVR–10/06  
ATmega128  
Problem Fix / Workaround  
The NOP instruction will always be executed correctly also right after a frequency  
change. Thus, the next 8 instructions after the change should be NOP instructions.  
To ensure this, follow this procedure:  
1.Clear the I bit in the SREG Register.  
2.Set the new pre-scaling factor in XDIV register.  
3.Execute 8 NOP instructions  
4.Set the I bit in SREG  
This will ensure that all subsequent instructions will execute correctly.  
Assembly Code Example:  
CLI  
; clear global interrupt enable  
; set new prescale value  
; no operation  
OUT XDIV, temp  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
SEI  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
; set global interrupt enable  
4. Stabilizing time needed when changing OSCCAL Register  
After increasing the source clock frequency more than 2% with settings in the OSC-  
CAL register, the device may execute some of the subsequent instructions  
incorrectly.  
Problem Fix / Workaround  
The behavior follows errata number 1., and the same Fix / Workaround is applicable  
on this errata.  
5. IDCODE masks data from TDI input  
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices  
are replaced by all-ones during Update-DR.  
Problem Fix / Workaround  
If ATmega128 is the only device in the scan chain, the problem is not visible.  
Select the Device ID Register of the ATmega128 by issuing the IDCODE  
instruction or by entering the Test-Logic-Reset state of the TAP controller to  
read out the contents of its Device ID Register and possibly data from  
succeeding devices of the scan chain. Issue the BYPASS instruction to the  
ATmega128 while reading the Device ID Registers of preceding devices of  
the boundary scan chain.  
If the Device IDs of all devices in the boundary scan chain must be captured  
simultaneously, the ATmega128 must be the fist device in the chain.  
25  
2467OS–AVR–10/06  
Datasheet Revision  
History  
Please note that the referring page numbers in this section are referred to this docu-  
ment. The referring revision in this section are referring to the document revision.  
Changes from Rev.  
2467N-03/06 to Rev.  
2467O-10/06  
1. Added note to “Timer/Counter Oscillator” on page 43.  
2. Updated “Fast PWM Mode” on page 124.  
3. Updated Table 52 on page 104, Table 54 on page 104, Table 59 on page 134,  
Table 61 on page 135, Table 64 on page 158, and Table 66 on page 159.  
4. Updated “Errata” on page 17.  
Changes from Rev.  
2467M-11/04 to Rev.  
2467N-03/06  
1. Updated note for Figure 1 on page 2.  
2. Updated “Alternate Functions of Port D” on page 77.  
3. Updated “Alternate Functions of Port G” on page 84.  
4. Updated “Phase Correct PWM Mode” on page 100.  
5. Updated Table 59 on page 134, Table 60 on page 134.  
6. Updated “Bit 2 – TOV3: Timer/Counter3, Overflow Flag” on page 142.  
7. Updated “Serial Peripheral Interface – SPI” on page 164.  
8. Updated Features in “Analog to Digital Converter” on page 232  
9. Added note in “Input Channel and Gain Selections” on page 245.  
10. Updated “Errata” on page 17.  
Changes from Rev.  
2467L-05/04 to Rev.  
2467M-11/04  
1. Removed “analog ground”, replaced by “ground”.  
2. Updated Table 11 on page 40, Table 114 on page 288, Table 128 on page 307,  
and Table 132 on page 324. Updated Figure 114 on page 240.  
3. Added note to “Port C (PC7..PC0)” on page 6.  
4. Updated “Ordering Information” on page 14.  
Changes from Rev.  
2467K-03/04 to Rev.  
2467L-05/04  
1. Removed “Preliminary” and “TBD” from the datasheet, replaced occurrences  
of ICx with ICPx.  
2. Updated Table 8 on page 38, Table 19 on page 50, Table 22 on page 56, Table  
96 on page 244, Table 126 on page 303, Table 128 on page 307, Table 132 on  
page 324, and Table 134 on page 326.  
3. Updated “External Memory Interface” on page 26.  
4. Updated “Device Identification Register” on page 256.  
26  
ATmega128  
2467OS–AVR–10/06  
ATmega128  
5. Updated “Electrical Characteristics” on page 322.  
6. Updated “ADC Characteristics” on page 328.  
7. Updated “ATmega128 Typical Characteristics” on page 336.  
8. Updated “Ordering Information” on page 14.  
Changes from Rev.  
2467J-12/03 to Rev.  
2467K-03/04  
1. Updated “Errata” on page 17.  
Changes from Rev.  
2467I-09/03 to Rev.  
2467J-12/03  
1. Updated “Calibrated Internal RC Oscillator” on page 41.  
Changes from Rev.  
2467H-02/03 to Rev.  
2467I-09/03  
1. Updated note in “XTAL Divide Control Register – XDIV” on page 43.  
2. Updated “JTAG Interface and On-chip Debug System” on page 48.  
3. Updated values for VBOT (BODLEVEL = 1) in Table 19 on page 50.  
4. Updated “Test Access Port – TAP” on page 249 regarding JTAGEN.  
5. Updated description for the JTD bit on page 258.  
6. Added a note regarding JTAGEN fuse to Table 118 on page 291.  
7. Updated RPU values in “DC Characteristics” on page 322.  
8. Added a proposal for solving problems regarding the JTAG instruction  
IDCODE in “Errata” on page 17.  
Changes from Rev.  
2467G-09/02 to Rev.  
2467H-02/03  
1. Corrected the names of the two Prescaler bits in the SFIOR Register.  
2. Added Chip Erase as a first step under “Programming the Flash” on page 319  
and “Programming the EEPROM” on page 320.  
3. Removed reference to the “Multipurpose Oscillator” application note and the  
“32 kHz Crystal Oscillator” application note, which do not exist.  
4. Corrected OCn waveforms in Figure 52 on page 125.  
5. Various minor Timer1 corrections.  
6. Added information about PWM symmetry for Timer0 and Timer2.  
7. Various minor TWI corrections.  
8. Added reference to Table 124 on page 294 from both SPI Serial Programming  
and Self Programming to inform about the Flash Page size.  
27  
2467OS–AVR–10/06  
9. Added note under “Filling the Temporary Buffer (Page Loading)” on page 283  
about writing to the EEPROM during an SPM Page load.  
10. Removed ADHSM completely.  
11. Added section “EEPROM Write During Power-down Sleep Mode” on page 25.  
12. Updated drawings in “Packaging Information” on page 15.  
Changes from Rev.  
2467F-09/02 to Rev.  
2467G-09/02  
1. Changed the Endurance on the Flash to 10,000 Write/Erase Cycles.  
Changes from Rev.  
2467E-04/02 to Rev.  
2467F-09/02  
1. Added 64-pad QFN/MLF Package and updated “Ordering Information” on  
page 14.  
2. Added the section “Using all Locations of External Memory Smaller than 64  
KB” on page 33.  
3. Added the section “Default Clock Source” on page 37.  
4. Renamed SPMCR to SPMCSR in entire document.  
5. When using external clock there are some limitations regards to change of  
frequency. This is descried in “External Clock” on page 42 and Table 131,  
“External Clock Drive,” on page 324.  
6. Added a sub section regarding OCD-system and power consumption in the  
section “Minimizing Power Consumption” on page 47.  
7. Corrected typo (WGM-bit setting) for:  
“Fast PWM Mode” on page 98 (Timer/Counter0).  
“Phase Correct PWM Mode” on page 100 (Timer/Counter0).  
“Fast PWM Mode” on page 152 (Timer/Counter2).  
“Phase Correct PWM Mode” on page 154 (Timer/Counter2).  
8. Corrected Table 81 on page 193 (USART).  
9. Corrected Table 102 on page 262 (Boundary-Scan)  
10. Updated Vil parameter in “DC Characteristics” on page 322.  
Changes from Rev.  
2467D-03/02 to Rev.  
2467E-04/02  
1. Updated the Characterization Data in Section “ATmega128 Typical Character-  
istics” on page 336.  
2. Updated the following tables:  
Table 19 on page 50, Table 20 on page 54, Table 68 on page 159, Table 102 on  
page 262, and Table 136 on page 328.  
3. Updated Description of OSCCAL Calibration Byte.  
28  
ATmega128  
2467OS–AVR–10/06  
ATmega128  
In the data sheet, it was not explained how to take advantage of the calibration  
bytes for 2, 4, and 8 MHz Oscillator selections. This is now added in the following  
sections:  
Improved description of “Oscillator Calibration Register – OSCCAL” on page 41 and  
“Calibration Byte” on page 292.  
Changes from Rev.  
2467C-02/02 to Rev.  
2467D-03/02  
1. Added more information about “ATmega103 Compatibility Mode” on page 5.  
2. Updated Table 2, “EEPROM Programming Time,” on page 23.  
3. Updated typical Start-up Time in Table 7 on page 37, Table 9 and Table 10 on  
page 39, Table 12 on page 40, Table 14 on page 41, and Table 16 on page 42.  
4. Updated Table 22 on page 56 with typical WDT Time-out.  
5. Corrected description of ADSC bit in “ADC Control and Status Register A –  
ADCSRA” on page 246.  
6. Improved description on how to do a polarity check of the ADC differential  
results in “ADC Conversion Result” on page 243.  
7. Corrected JTAG version numbers in “JTAG Version Numbers” on page 256.  
8. Improved description of addressing during SPM (usage of RAMPZ) on  
“Addressing the Flash During Self-Programming” on page 281, “Performing  
Page Erase by SPM” on page 283, and “Performing a Page Write” on page  
283.  
9. Added not regarding OCDEN Fuse below Table 118 on page 291.  
10. Updated Programming Figures:  
Figure 135 on page 293 and Figure 144 on page 305 are updated to also reflect that  
AVCC must be connected during Programming mode. Figure 139 on page 300  
added to illustrate how to program the fuses.  
11. Added  
a
note regarding usage of the PROG_PAGELOAD and  
PROG_PAGEREAD instructions on page 311.  
12. Added Calibrated RC Oscillator characterization curves in section  
“ATmega128 Typical Characteristics” on page 336.  
13. Updated “Two-wire Serial Interface” section.  
More details regarding use of the TWI Power-down operation and using the TWI as  
master with low TWBRR values are added into the data sheet. Added the note at  
the end of the “Bit Rate Generator Unit” on page 205. Added the description at the  
end of “Address Match Unit” on page 206.  
14. Added a note regarding usage of Timer/Counter0 combined with the clock.  
See “XTAL Divide Control Register – XDIV” on page 43.  
29  
2467OS–AVR–10/06  
Changes from Rev.  
2467B-09/01 to Rev.  
2467C-02/02  
1. Corrected Description of Alternate Functions of Port G  
Corrected description of TOSC1 and TOSC2 in “Alternate Functions of Port G” on  
page 84.  
2. Added JTAG Version Numbers for rev. F and rev. G  
Updated Table 100 on page 256.  
3
Added Some Preliminary Test Limits and Characterization Data  
Removed some of the TBD's in the following tables and pages:  
Table 19 on page 50, Table 20 on page 54, “DC Characteristics” on page 322,  
Table 131 on page 324, Table 134 on page 326, and Table 136 on page 328.  
4. Corrected “Ordering Information” on page 14.  
5. Added some Characterization Data in Section “ATmega128 Typical Character-  
istics” on page 336.  
6. Removed Alternative Algortihm for Leaving JTAG Programming Mode.  
See “Leaving Programming Mode” on page 319.  
7. Added Description on How to Access the Extended Fuse Byte Through JTAG  
Programming Mode.  
See “Programming the Fuses” on page 321 and “Reading the Fuses and Lock Bits”  
on page 321.  
30  
ATmega128  
2467OS–AVR–10/06  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2006 Atmel Corporation. All rights reserved. ATMEL®, logo and combinations thereof, Everywhere You Are®, AVR®, AVR Studio®, and oth-  
ers, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of oth-  
ers.  
2467OS–AVR–10/06  

相关型号:

ATMEGA128L-8MI

8-bit Microcontroller with 128K Bytes In-System Programmable Flash
ATMEL

ATMEGA128L-8MJ

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 8MHz, CMOS, 9 X 9 MM, 1 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, MO-220VMMD, MLF-64
ATMEL

ATMEGA128L-8ML

RISC Microcontroller, 8-Bit, FLASH, 8MHz, CMOS, 9 X 9 MM, 1 MM HEIGHT, 0.50 MM PITCH, MO-220VMMD, MLF-64
ATMEL

ATMEGA128L-8MN

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 8MHz, CMOS, 9 X 9 MM, 1 MM HEIGHT, 0.50 MM PITCH, GREEN, MO-220VMMD, MLF-64
ATMEL

ATMEGA128L-8MNR

IC MCU 8BIT 128KB FLASH 64QFN
MICROCHIP

ATMEGA128L-8MNR

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 8MHz, CMOS, 9 X 9 MM, 1 MM HEIGHT, 0.50 MM PITCH, GREEN, MO-220VMMD, MLF-64
ATMEL

ATMEGA128L-8MU

8-bit Microcontroller with 128K Bytes In-System Programmable Flash
ATMEL

ATMEGA128L-8MU

IC MCU 8BIT 128KB FLASH 64QFN
MICROCHIP

ATMEGA128L-8MUR

Microcontroller with 128KBytes In-System Programmable Flash
ATMEL

ATMEGA128L-8MUR

IC MCU 8BIT 128KB FLASH 64QFN
MICROCHIP

ATMEGA128RFA1

8-bit Microcontroller with Low Power 2.4GHz Transceiver for ZigBee and IEEE 02.15.4
ATMEL

ATMEGA128RFA1-ZU

IC RF TXRX+MCU 802.15.4 64-VFQFN
MICROCHIP