ATSAM3X4CA-CU [ATMEL]

AT91SAM ARM-based Flash MCU; AT91SAM基于ARM的闪存微控制器
ATSAM3X4CA-CU
型号: ATSAM3X4CA-CU
厂家: ATMEL    ATMEL
描述:

AT91SAM ARM-based Flash MCU
AT91SAM基于ARM的闪存微控制器

闪存 微控制器
文件: 总71页 (文件大小:851K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Core  
– ARM® Cortex®-M3 revision 2.0 running at up to 84 MHz  
– Memory Protection Unit (MPU)  
– Thumb®-2 instruction set  
– 24-bit SysTick Counter  
– Nested Vector Interrupt Controller  
Memories  
From 256 to 512 Kbytes embedded Flash, 128-bit wide access, memory accelerator, dual bank  
– From 32 to 100 Kbytes embedded SRAM with dual banks  
– 16 Kbytes ROM with embedded bootloader routines (UART, USB) and IAP routines  
– Static Memory Controller (SMC): SRAM, NOR, NAND support. NAND Flash  
controller with 4-kbyte RAM buffer and ECC  
AT91SAM  
ARM-based  
Flash MCU  
System  
– Embedded voltage regulator for single supply operation  
– POR, BOD and Watchdog for safe reset  
– Quartz or ceramic resonator oscillators: 3 to 20 MHz main and optional low power  
32.768 kHz for RTC or device clock.  
– High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz Default  
Frequency for fast device startup  
– Slow Clock Internal RC oscillator as permanent clock for device clock in low power  
mode  
– One PLL for device clock and one dedicated PLL for USB 2.0 High Speed Mini  
Host/Device  
– Temperature Sensor  
SAM3X  
SAM3A  
Series  
– Up to 17 peripheral DMA (PDC) channels and 6-channel central DMA plus  
dedicated DMA for High-Speed USB Mini Host/Device and Ethernet MAC  
Low Power Modes  
– Sleep and Backup modes, down to 2.5 µA in Backup mode.  
– Backup domain: VDDBU pin, RTC, eight 32-bit backup registers  
– Ultra Low-power RTC  
Summary  
Peripherals  
– USB 2.0 Device/Mini Host: 480 Mbps, 4-kbyte FIFO, up to 10 bidirectional  
Endpoints, dedicated DMA  
– Up to 4 USARTs (ISO7816, IrDA®, Flow Control, SPI, Manchester and LIN support)  
and one UART  
– 2 TWI (I2C compatible), up to 6 SPIs, 1 SSC (I2S), 1 HSMCI (SDIO/SD/MMC) with up  
to 2 slots  
– 9-Channel 32-bit Timer/Counter (TC) for capture, compare and PWM mode,  
Quadrature Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor  
– Up to 8-channel 16-bit PWM (PWMC) with Complementary Output, Fault Input, 12-  
bit Dead Time Generator Counter for Motor Control  
– 32-bit Real Time Timer (RTT) and RTC with calendar and alarm features  
– 16-channel 12-bit 1Msps ADC with differential input mode and programmable gain  
stage  
– One 2-channel 12-bit 1 Msps DAC  
– One Ethernet MAC 10/100 (EMAC) with dedicated DMA  
– Two CAN Controller with eight Mailboxes  
– One True Random Number Generator (TRNG)  
– Write Protected Registers  
I/O  
– Up to 103 I/O lines with external interrupt capability (edge or level sensitivity),  
debouncing, glitch filtering and on-die Series Resistor Termination  
– Up to Six 32-bit Parallel Input/Outputs (PIO)  
Packages  
– 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm  
– 100-ball LFBGA, 9 x 9 mm, pitch 0.8 mm  
– 144-lead LQFP, 20 x 20 mm, pitch 0.5 mm  
– 144-ball LFBGA, 10 x 10 mm, pitch 0.8 mm  
11057BS–ATARM–13-Jul-12  
1. SAM3X/A Description  
Atmel’s SAM3X/A series is a member of a family of Flash microcontrollers based on the high  
performance 32-bit ARM Cortex-M3 RISC processor. It operates at a maximum speed of  
84 MHz and features up to 512 Kbytes of Flash and up to 100 Kbytes of SRAM. The peripheral  
set includes a High Speed USB Host and Device port with embedded transceiver, an Ethernet  
MAC, 2x CANs, a High Speed MCI for SDIO/SD/MMC, an External Bus Interface with NAND  
Flash controller, 5x UARTs, 2x TWIs, 4x SPIs, as well as 1 PWM timer, 9x general-purpose 32-  
bit timers, an RTC, a 12-bit ADC and a 12-bit DAC.  
The SAM3X/A series is ready for capacitive touch thanks to the QTouch library, offering an easy  
way to implement buttons, wheels and sliders.  
The SAM3X/A architecture is specifically designed to sustain high speed data transfers. It  
includes a multi-layer bus matrix as well as multiple SRAM banks, PDC and DMA channels that  
enable it to run tasks in parallel and maximize data throughput.  
It operates from 1.62V to 3.6V and is available in 100- and 144-pin QFP and LFBGA packages.  
The SAM3X/A devices are particularly well suited for networking applications: industrial and  
home/building automation, gateways.  
4
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
1.1  
Configuration Summary  
The SAM3X/A series devices differ in memory sizes, package and features list. Table 1-1 below  
summarizes the configurations.  
Table 1-1.  
Feature  
Configuration Summary  
SAM3X8E  
SAM3X8C  
SAM3X4E  
SAM3X4C  
SAM3A8C  
SAM3A4C  
Flash  
2 x 256 Kbytes 2 x 256 Kbytes 2 x 128 Kbytes 2 x 128 Kbytes 2 x 256 Kbytes 2 x 128 Kbytes  
32 + 32  
64 + 32 Kbytes 64 + 32 Kbytes 32 + 32 Kbytes 32 + 32 Kbytes 64 + 32 Kbytes  
Kbytes  
SRAM  
Nand Flash  
Controller  
(NFC)  
Yes  
-
-
Yes  
-
-
-
-
-
-
NFC SRAM(1)  
4K bytes  
4K bytes  
LQFP144  
LFBGA144  
LQFP100  
LFBGA100  
LQFP144  
LFBGA144  
LQFP100  
LFBGA100  
LQFP100  
LFBGA100  
LQFP100  
LFBGA100  
Package  
Number of  
PIOs  
103  
63  
103  
63  
63  
63  
SHDN  
Pin  
Yes  
No  
Yes  
No  
No  
-
No  
-
EMAC  
MII/RMII  
RMII  
MII/RMII  
RMII  
External  
Bus  
Interface  
16-bit data,  
8 chip selects,  
23-bit address  
16-bit data,  
8 chip selects,  
23-bit address  
-
-
-
-
Central DMA  
12-bit ADC  
12-bit DAC  
32-bit Timer  
6
4
6
4
4
4
16 ch.(2)  
2 ch.  
9(5)  
16 ch.(2)  
2 ch.  
9(6)  
16 ch.(2)  
2 ch.  
9(5)  
16 ch.(2)  
2 ch.  
9(6)  
16 ch.(2)  
2 ch.  
9(5)  
16 ch.(2)  
2 ch.  
9(5)  
PDC  
Channels  
17  
15  
17  
15  
15  
15  
USART/  
UART  
3/2(7)  
3/1  
3/2(7)  
3/1  
3/1  
3/1  
SPI (3)  
1/4 + 3  
1/4 + 3  
1/4 + 3  
1/4 + 3  
1/4 + 3  
1/4 + 3  
1 slot  
8 bits  
1 slot  
4 bits  
1 slot  
8 bits  
1 slot  
4 bits  
1 slot  
4 bits  
1 slot  
4 bits  
HSMCI  
Notes: 1. 4 Kbytes RAM buffer of the NAND Flash Controller (NFC) which can be used by the core if not  
used by the NFC  
2. One channel is reserved for internal temperature sensor  
3. 2 / 8 + 4 = Number of SPI Controllers / Number of Chip Selects + Number of USART with SPI  
Mode  
4. 9 TC channels are accessible through PIO  
5. 6 TC channels are accessible through PIO  
6. 3 TC channels are accessible through PIO  
7. USART3 in UART mode (RXD3 and TXD3 available)  
5
11057BS–ATARM–13-Jul-12  
2. SAM3X/A Block Diagram  
Figure 2-1. SAM3A4/8C (100 pins) Block Diagram  
Voltage  
Regulator  
System Controller  
TST  
PCK0-PCK2  
JTAG & Serial Wire  
PLLA  
PMC  
UPLL  
XIN  
XOUT  
In-Circuit Emulator  
OSC  
24-Bit  
SysTic Counter  
N
V
I
WDT  
Cortex-M3 Processor  
Fmax 84 MHz  
SM  
Flash  
SRAM0  
SRAM1  
RC  
12/8/4 M  
ROM  
16 KBytes  
2x256 KBytes 64 KBytes 32 KBytes  
2x128 KBytes 32 KBytes 32 KBytes  
2x64 KBytes 16 KBytes 16 KBytes  
C
MPU  
I/D  
SUPC  
FWUP  
XIN32  
XOUT32  
S
OSC 32K  
RC 32K  
ERASE  
6-layer AHB Bus Matrix Fmax 84MHz  
8
GPBREG  
VBUS  
DFSDM  
DFSDP  
DHSDM  
DHSDP  
UOTGVBOF  
UOTGID  
RTT  
RTC  
POR  
USBOTG  
DMA FIFO Device  
Low Power  
Peripheral  
Bridge  
Peripheral  
DMA  
Controller  
HS  
VDDBU  
VDDCORE  
VDDUTMI  
NRST  
RSTC  
PIOA  
PIOC  
PIOB  
4-Channel  
TRNG  
DMA  
DMA  
PDC  
TWCK0  
TWD0  
TWI0  
TWI1  
TWCK1  
TWD1  
PDC  
URXD  
UTXD  
UART  
PDC  
DMA  
TXD0  
SCK0  
RTS0  
CTS0  
USART0  
PDC  
DMA  
RXD1  
TXD1  
SCK1  
RTS1  
CTS1  
RXD2  
TXD2  
SCK2  
RTS2  
CTS2  
USART1  
USART2  
PDC  
PDC  
CANRX0  
CANTX0  
CAN0  
CAN1  
CANRX1  
CANTX1  
TCLK[0:2]  
Timer Counter A  
High Performance  
Peripheral  
TIOA[0:2]  
TIOB[0:2]  
TC[0..2]  
Bridge  
SPI0_NPCS0  
SPI0_NPCS1  
SPI0_NPCS2  
SPI0_NPCS3  
MISO0  
DMA DMA  
Timer Counter B  
TC[3..5]  
TCLK[3:5]  
SPI0  
TIOA[3:5]  
TIOB[3:5]  
MOSI0  
SPCK0  
Timer Counter C  
TC[6..8]  
DMA DMA  
TF  
TK  
TD  
RD  
RK  
RF  
PWMH[0:3]  
PWML[0:7]  
PWMFI[0:1]  
DMA  
PWM  
SSC  
DMA DMA  
HSMCI  
PDC  
Temp.  
Sensor  
ADTRG  
AD[0..14]  
ADC  
PDC  
PDC  
ADVREF  
DAC0  
DAC1  
MCCK  
MCCDA  
MCDA[0..3]  
DAC  
DATRG  
6
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
Figure 2-2. SAM3X4/8C (100 pins) Block Diagram  
Voltage  
Regulator  
System Controller  
TST  
PCK0-PCK2  
JTAG & Serial Wire  
PLLA  
UPLL  
PMC  
XIN  
OSC  
12M  
In-circuit Emulator  
XOUT  
24-Bit  
SysTick Counter  
N
V
I
WDT  
Cortex-M3 Processor  
Fmax 84MHz  
FLASH  
2x256 KBytes  
2x128 KBytes 32 KBytes 32 KBytes  
2x64 KBytes 16 KBytes  
SRAM1  
32 KBytes  
SRAM0  
64 KBytes  
SM  
RC  
12/8/4 M  
ROM  
16 KBytes  
C
16 KBytes  
MPU  
I/D  
SUPC  
FWUP  
XIN32  
XOUT32  
S
OSC 32K  
RC 32k  
ERASE  
6-layer AHB Bus Matrix Fmax 84MHz  
8
VBUS  
GPBREG  
DFSDM  
DFSDP  
USBOTG  
FIFO Device  
RTT  
Peripheral  
DMA  
Controller  
DHSDM  
DHSDP  
UOTGVBOF  
UOTGID  
Low Power  
Peripheral  
Bridge  
DMA  
RTC  
HS  
VDDBU  
POR  
VDDCORE  
VDDUTMI  
NRST  
EREFCK  
ETXEN  
ECRSDV  
ERXER  
ERX0-ERX1  
ETX0-ETX1  
EMDC  
EMDIO  
RSTC  
FIFO  
Ethernet  
MAC  
RMII  
DMA  
128-Byte TX  
PIOA  
PIOC  
128-Byte RX  
PIOB  
4-Channel  
TRNG  
DMA  
DMA  
PDC  
TWCK0  
TWD0  
TWI0  
TWI1  
UART  
TWCK1  
TWD1  
PDC  
URXD  
UTXD  
PDC  
DMA  
RXD0  
TXD0  
SCK0  
RTS0  
CTS0  
USART0  
USART1  
PDC  
DMA  
RXD1  
TXD1  
SCK1  
RTS1  
CTS1  
RXD2  
TXD2  
SCK2  
RTS2  
CTS2  
PDC  
PDC  
USART2  
CANRX0  
CANTX0  
CAN0  
CAN1  
CANRX1  
CANTX1  
TCLK[0:2]  
TimerCounter A  
High Performance  
Peripherals  
Bridge  
TIOA[0:2]  
TIOB[0:2]  
TC[0..2]  
SPI0_NPCS0  
SPI0_NPCS1  
SPI0_NPCS2  
SPI0_NPCS3  
MISO0  
DMA  
SPI0  
TimerCounter B  
TC[3..5]  
MOSI0  
SPCK0  
TimerCounter C  
TC[6..8]  
DMA  
DMA  
TF  
TK  
TD  
RD  
RK  
RF  
DMA  
PWMH[0:3]  
PWML[0:3]  
PWMFI[0:1]  
PWM  
SSC  
PDC  
Te mp .  
Sensor  
ADTRG  
AD[0..14]  
ADC  
PDC  
PDC  
ADVREF  
DAC0  
DAC1  
MCCK  
MCCDA  
MCDA[0..3]  
HSMCI  
DAC  
DATRG  
7
11057BS–ATARM–13-Jul-12  
Figure 2-3. SAM3X4/8E (144 pins) Block Diagram  
Voltage  
Regulator  
System Controller  
TST  
PCK0-PCK2  
JTAG & Serial Wire  
PLLA  
UPLL  
OSC  
PMC  
XIN  
XOUT  
In-circuit Emulator  
24-Bit  
N
V
I
WDT  
SysTick Counter  
Cortex-M3 Processor  
Fmax 84MHz  
SM  
FLASH  
2x256 KBytes  
2x128 KBytes  
SRAM1  
SRAM0  
RC  
12/8/4 M  
ROM  
16 KBytes  
32 KBytes  
32 KBytes  
16 KBytes  
64 KBytes  
32 KBytes  
16 KBytes  
C
SHDN  
FWUP  
XIN32  
MPU  
I/D  
2x64 KBytes  
SUPC  
S
OSC 32K  
XOUT32  
RC 32K  
ERASE  
6-layer AHB Bus Matrix Fmax 84MHz  
8
GPBREG  
VBUS  
DFSDM  
DFSDP  
RTT  
USBOTG  
FIFO Device  
Low Power  
Peripheral  
Bridge  
Peripheral  
DMA  
Controller  
NRSTB  
DHSDM  
DHSDP  
UOTGVBOF  
UOTGID  
DMA  
DMA  
RTC  
POR  
HS  
VDDBU  
VDDCORE  
VDDUTMI  
NRST  
ETXCK-ERXCK-EREFCK  
ETXER-ETXDV  
ECRS-ECOL, ECRSDV  
ERXER-ERXDV  
ERX0-ERX3  
ETX0-ETX3  
EMDC  
RSTC  
FIFO  
Ethernet  
MAC  
MII/RMII  
128-Byte TX  
128-Byte RX  
PIOA  
PIOB  
PIOD  
EMDIO  
EF100  
PIOC  
PIOE  
6-Channel  
TRNG  
DMA  
DMA  
PDC  
TWCK0  
TWD0  
TWI0  
TWI1  
UART  
EBI  
TWCK1  
TWD1  
D[15:0]  
A0/NBS0  
A[0:23]  
PDC  
8-bit/16-bit  
URXD  
UTXD  
RXD0  
TXD0  
SCK0  
RTS0  
CTS0  
A21/NANDALE  
A22/NANDCLE  
A16  
PDC  
DMA  
NAND Flash  
A17  
NCS0  
NCS1  
NCS2  
NCS3  
NRD  
USART0  
USART1  
PDC  
DMA  
RXD1  
TXD1  
SCK1  
RTS1  
CTS1  
RXD2  
TXD2  
SCK2  
RTS2  
CTS2  
NWR0/NWE  
NWR1  
Static Memory  
PDC  
Controller  
USART2  
USART3  
ECC  
Controller  
PDC  
PDC  
RXD3  
TXD3  
NANDRDY  
NANDOE  
NANDWE  
NWAIT  
CANRX0  
CANTX0  
CAN0  
CAN1  
4Ko FIFO  
CANRX1  
CANTX1  
TCLK[0:2]  
Timer Counter A  
High Performance  
Peripherals  
TIOA[0:2]  
TIOB[0:2]  
TC[0..2]  
Bridge  
SPI0_NPCS0  
SPI0_NPCS1  
SPI0_NPCS2  
SPI0_NPCS3  
MISO0  
DMA  
Timer Counter B  
TC[3..5]  
SPI0  
MOSI0  
SPCK0  
TCLK[6:8]  
Timer Counter C  
TC[6..8]  
TIOA[6:8]  
TIOB[6:8]  
DMA  
DMA  
TF  
TK  
TD  
RD  
RK  
RF  
PWMH[0:6]  
PWML[0:7]  
PWMFI[0:2]  
DMA  
PWM  
SSC  
PDC  
Temp..  
Sensor  
ADTRG  
AD[0..14]  
ADC  
PDC  
PDC  
ADVREF  
DAC0  
DAC1  
HSMCI  
MCCK  
MCCDA  
MCDA[0..7]  
DAC  
DATRG  
8
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
3. Signal Description  
Table 3-1 gives details on the signal names classified by peripheral.  
Signal Description List  
Function  
Table 3-1.  
Active  
Level  
Voltage  
Reference Comments  
Signal Name  
Type  
Power Supplies  
VDDIO  
Peripherals I/O Lines Power Supply  
USB UTMI+ Interface Power Supply  
Voltage Regulator Output  
Power  
Power  
Power  
1.62V to 3.6V  
3.0V to 3.6V  
VDDUTMI  
VDDOUT  
Voltage Regulator, ADC and DAC Power  
Supply  
VDDIN  
Power  
GNDUTMI  
VDDBU  
USB UTMI+ Interface Ground  
Backup I/O Lines Power Supply  
Backup Ground  
Ground  
Power  
1.62V to 3.6V  
1.62 V to 1.95V  
2.0V to 3.6V  
GNDBU  
VDDPLL  
GNDPLL  
VDDANA  
GNDANA  
VDDCORE  
GND  
Ground  
Power  
PLL A, UPLL and Oscillator Power Supply  
PLL A, UPLL and Oscillator Ground  
ADC and DAC Analog Power Supply  
ADC and DAC Analog Ground  
Core Chip Power Supply  
Ground  
Power  
Ground  
Power  
1.62V to 1.95V  
Ground  
Ground  
Clocks, Oscillators and PLLs  
XIN  
Main Oscillator Input  
Input  
Output  
Input  
VDDPLL  
VDDBU  
XOUT  
Main Oscillator Output  
Slow Clock Oscillator Input  
XIN32  
XOUT32  
VBG  
Slow Clock Oscillator Output  
Bias Voltage Reference  
Output  
Analog  
PCK0 - PCK2  
Programmable Clock Output  
Output  
Shutdown, Wakeup Logic  
0: The device is in  
backup mode  
SHDN  
FWUP  
Shut-Down Control  
Force Wake-up Input  
Output  
Input  
VDDBU  
VDDBU  
1: The device is  
running (not in  
backup mode)  
Needs external Pull-  
up  
9
11057BS–ATARM–13-Jul-12  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Voltage  
Reference Comments  
Signal Name  
Function  
Type  
ICE and JTAG  
TCK/SWCLK  
TDI  
Test Clock/Serial Wire Clock  
Test Data In  
Input  
Input  
Reset State:  
- SWJ-DP Mode  
VDDIO  
Test Data Out / Trace Asynchronous Data  
Out  
TDO/TRACESWO  
TMS/SWDIO  
JTAGSEL  
Output  
Input / I/O  
Input  
- Internal pull-up  
disabled(1)  
Test Mode Select /Serial Wire  
Input/Output  
Permanent Internal  
pull-down  
JTAG Selection  
High  
High  
VDDBU  
Flash Memory  
Flash and NVM Configuration Bits  
Erase Command  
Input  
VDDIO  
Pull-down resistor  
ERASE  
Reset/Test  
NRST  
NRSTB  
TST  
Microcontroller Reset  
I/O  
Low  
Low  
VDDIO  
VDDBU  
VDDBU  
Pull-up resistor  
Pull-up resistor  
Pull-down resistor  
Asynchronous Microcontroller Reset  
Test Mode Select  
Input  
Input  
Universal Asynchronous Receiver Transceiver - UART  
URXD  
UTXD  
UART Receive Data  
UART Transmit Data  
Input  
Output  
10  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Voltage  
Reference Comments  
Signal Name  
Function  
Type  
PIO Controller - PIOA - PIOB - PIOC - PIOD - PIOE  
•Schmitt Trigger(3)  
Reset State:  
•PIO Input  
PA0 - PA31  
PB0 - PB31  
PC0 - PC30  
PD0 - PD30  
PE0 - PE31  
PF0 - PF6  
Parallel IO Controller A  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
•Internal pull-up  
enabled  
•Schmitt Trigger(4)  
Reset State:  
•PIO Input  
Parallel IO Controller B  
Parallel IO Controller C  
Parallel IO Controller D  
Parallel IO Controller E  
Parallel IO Controller F  
•Internal pull-up  
enabled  
•Schmitt Trigger(5)  
Reset State:  
•PIO Input  
•Internal pull-up  
enabled  
VDDIO  
•Schmitt Trigger(6)  
Reset State:  
•PIO Input  
•Internal pull-up  
enabled  
•Schmitt Trigger(7)  
Reset State:  
•PIO Input  
•Internal pull-up  
enabled  
•Schmitt Trigger(7)  
Reset State:  
•PIO Input  
•Internal pull-up  
enabled  
External Memory Bus  
Pulled-up input at  
reset  
D0 - D15  
A0 - A23  
Data Bus  
I/O  
Address Bus  
Output  
0 at reset  
Static Memory Controller - SMC  
NCS0 - NCS7  
NWR0 - NWR1  
NRD  
Chip Select Lines  
Write Signal  
Output  
Output  
Output  
Output  
Output  
Input  
Low  
Low  
Low  
Low  
Low  
Low  
Read Signal  
NWE  
Write Enable  
NBS0 - NBS1  
NWAIT  
Byte Mask Signal  
External Wait Signal  
11  
11057BS–ATARM–13-Jul-12  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Voltage  
Reference Comments  
Signal Name  
Function  
Type  
NAND Flash Controller-NFC  
NANDOE  
NANDWE  
NANDRDY  
NANDCLE  
NANDALE  
NAND Flash Output Enable  
NAND Flash Write Enable  
NAND Ready  
Output  
Output  
Input  
Low  
Low  
NAND Flash Command Line Enable  
NAND Flash Address Line Enable  
Output  
Output  
Low  
Low  
High Speed Multimedia Card Interface HSMCI  
MCCK  
Multimedia Card Clock  
I/O  
I/O  
I/O  
I/O  
I/O  
MCCDA  
Multimedia Card Slot A Command  
Multimedia Card Slot A Data  
Multimedia Card Slot B Command  
Multimedia Card Slot A Data  
MCDA0 - MCDA7  
MCCDB  
MCDB0 - MCDB3  
Universal Synchronous Asynchronous Receiver Transmitter USARTx  
SCKx  
TXDx  
RXDx  
RTSx  
CTSx  
USARTx Serial Clock  
I/O  
USARTx Transmit Data  
USARTx Receive Data  
USARTx Request To Send  
USARTx Clear To Send  
I/O  
Input  
Output  
Input  
Ethernet MAC 10/100 - EMAC  
EREFCK  
ETXCK  
ERXCK  
ETXEN  
Reference Clock  
Transmit Clock  
Receive Clock  
Transmit Enable  
Input  
Input  
RMII only  
MII only  
MII only  
Input  
Output  
ETX0 -  
ETX0 - ETX3  
Transmit Data  
Output  
ETX1 only  
in RMII  
ETXER  
ERXDV  
ECRSDV  
Transmit Coding Error  
Receive Data Valid  
Output  
Input  
MII only  
MII only  
RMII only  
Carrier Sense and Data Valid  
Input  
ERX0 -  
ERX0 - ERX3  
Receive Data  
Input  
ERX1 only  
in RMII  
ERXER  
ECRS  
ECOL  
Receive Error  
Input  
Input  
Input  
Output  
I/O  
Carrier Sense  
MII only  
MII only  
Collision Detected  
EMDC  
EMDIO  
Management Data Clock  
Management Data Input/Output  
CAN Controller - CANx  
12  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Voltage  
Reference Comments  
Signal Name  
CANRXx  
Function  
Type  
Input  
CAN Input  
CAN Output  
CANTXx  
Output  
Synchronous Serial Controller - SSC  
TD  
RD  
TK  
RK  
TF  
RF  
SSC Transmit Data  
SSC Receive Data  
SSC Transmit Clock  
SSC Receive Clock  
Output  
Input  
I/O  
I/O  
SSC Transmit Frame Sync  
SSC Receive Frame Sync  
I/O  
I/O  
Timer/Counter - TC  
TCLKx  
TIOAx  
TIOBx  
TC Channel x External Clock Input  
TC Channel x I/O Line A  
Input  
I/O  
TC Channel x I/O Line B  
I/O  
Pulse Width Modulation Controller- PWMC  
PWMHx  
PWMLx  
PWMFIx  
PWM Waveform Output High for channel x  
Output  
Output  
Input  
only output in  
complementary  
mode when dead  
time insertion is  
enabled  
PWM Waveform Output Low for  
channel x,  
PWM Fault Input for channel x  
Serial Peripheral Interface - SPIx  
MISOx  
Master In Slave Out  
Master Out Slave In  
SPI Serial Clock  
I/O  
I/O  
I/O  
MOSIx  
SPCKx  
SPIx_NPCS0  
SPI Peripheral Chip Select 0  
SPI Peripheral Chip Select  
I/O  
Low  
Low  
SPIx_NPCS1 -  
SPIx_NPCS3  
Output  
Two-Wire Interface- TWIx  
TWDx  
TWIx Two-wire Serial Data  
TWIx Two-wire Serial Clock  
I/O  
I/O  
TWCKx  
Analog-to-Digital Converter - ADC  
AD0 - AD14  
ADTRG  
Analog Inputs  
ADC Trigger  
Analog  
Input  
ADVREF  
ADC and DAC Reference  
Analog  
Digital-to-Analog Converter - DACC  
DAC0  
DAC1  
DATRG  
DAC channel 0 analog output  
Analog  
Analog  
DAC channel 1 analog output  
DAC Trigger  
13  
11057BS–ATARM–13-Jul-12  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Voltage  
Reference Comments  
Signal Name  
Function  
Type  
Fast Flash Programming Interface  
PGMEN0-PGMEN2  
PGMM0-PGMM3  
PGMD0-PGMD15  
PGMRDY  
Programming Enabling  
Programming Mode  
Programming Data  
Programming Ready  
Data Direction  
Input  
Input  
I/O  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
Output  
Output  
Input  
Input  
Input  
High  
Low  
Low  
PGMNVALID  
PGMNOE  
Programming Read  
Programming Clock  
Programming Command  
PGMCK  
PGMNCMD  
Low  
USB Mini Host/Device High Speed Device  
VBUS  
USB Bus Power Measurement Port  
Analog  
Analog  
Analog  
Analog  
Analog  
DFSDM  
DFSDP  
DHSDM  
DHSDP  
USB Full Speed Data -  
USB Full Speed Data +  
USB High Speed Data -  
USB High Speed Data +  
VDDUTMI  
VDDUTMI  
VDDUTMI  
VDDUTMI  
USB VBus On/Off: Bus Power Control  
Port  
UOTGVBOF  
UOTGID  
VDDIO  
VDDIO  
USB Identification: Mini Connector  
Identification Port  
Notes: 1. TDO pin is set in input mode when the Cortex-M3 Core is not in debug mode. Thus the internal pull-up corresponding to this  
PIO line must be enabled to avoid current consumption due to floating input.  
2. PIOA: Schmitt Trigger on all, except PA0, PA9, PA26, PA29, PA30, PA31  
3. PIOB: Schmitt Trigger on all, except PB14 and PB22  
4. PIOC: Schmitt Trigger on all, except PC2 to PC9, PC15 to PC24  
5. PIOD: Schmitt Trigger on all, except PD10 to PD30  
6. PIOE: Schmitt Trigger on all, except PE0 to PE4, PE15, PE17, PE19, PE21, PE23, PE25, PE29  
7. PIOF: Schmitt Trigger on all PIOs  
3.1  
Design Considerations  
In order to facilitate schematic capture when using a SAM3X/A design, Atmel provides a “Sche-  
matics Checklist” Application Note. See http://www.atmel.com/products/AT91/  
4. Package and Pinout  
4.1  
SAM3A4/8C and SAM3X4/8C Package and Pinout  
The SAM3A4/8C and SAM3X4/8C are available in 100-lead LQFP and 100-ball LFBGA  
packages.  
14  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
4.1.1  
100-lead LQFP Package Outline  
Figure 4-1. Orientation of the 100-lead LQFP Package  
51  
75  
76  
50  
26  
100  
25  
1
4.1.2  
100-ball LFBGA Package Outline  
Figure 4-2. Orientation of the 100-ball LFBGA Package  
TOP VIEW  
10  
9
8
7
6
5
4
3
2
1
A B C D E F G H J K  
BALL A1  
15  
11057BS–ATARM–13-Jul-12  
4.1.3  
100-lead LQFP Pinout  
Table 4-1.  
100-lead LQFP SAM3A4/8C and SAM3X4/8C Pinout  
1
2
P B 2 6  
PA9  
2 6  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
D H S D P  
DHSDM  
VBUS  
5 1  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
V D DA N A  
GNDANA  
ADVREF  
PB15  
PB16  
PA16  
7 6  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
PA 2 6  
PA27  
PA28  
PA29  
PB0  
3
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA17  
VDDCORE  
VDDIO  
GND  
4
VBG  
5
VDDUTMI  
DFSDP  
DFSDM  
GNDUTMI  
VDDCORE  
JTAGSEL  
XIN32  
6
PB1  
7
PA24  
PB2  
8
PA23  
PB3  
9
PA22  
PB4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PA6  
PB5  
PA4  
PB6  
XOUT32  
TST  
PA3  
PB7  
PA0  
PA2  
PB8  
PA1  
VDDBU  
FWUP  
PB12  
PB13  
PB17  
PB18  
PB19  
PB20  
PB21  
VDDCORE  
VDDIO  
GND  
VDDCORE  
VDDIO  
GND  
PB9  
PA5  
PA7  
GND  
PA8  
VDDOUT  
VDDIN  
GND  
PB28  
PB29  
PB30  
PB31  
GNDPLL  
VDDPLL  
XOUT  
XIN  
PB10  
PB11  
PC0  
VDDCORE  
PB27  
PB14  
PB22  
PB23  
PB24  
PB25  
NRST  
PA18  
PA19  
PA21  
PA20  
PA25  
16  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
4.1.4  
100-ball LFBGA Pinout  
Table 4-2.  
A1  
100-ball LFBGA SAM3X4/8E Package and Pinout  
PB26  
PB24  
PB22  
PB14  
PC0  
C6  
C7  
C8  
C9  
C10  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
E10  
PB11  
PB8  
F1  
F2  
VDDPLL  
GNDPLL  
PB30  
H6  
H7  
H8  
H9  
H10  
J1  
NRST  
PA19  
A2  
A3  
PB4  
F3  
PA4  
A4  
PB0  
F4  
PB29  
PA6  
A5  
PA25  
F5  
GND  
PA22  
A6  
PB9  
PA5  
F6  
GND  
VBUS  
A7  
PB6  
PA0  
F7  
VDDIO  
PB13  
J2  
DHSDP  
DHSDM  
JTAGSEL  
XIN32  
A8  
PB2  
PA1  
F8  
J3  
A9  
PA28  
PA26  
PA11  
PB25  
PB23  
PA10  
PA9  
VDDCORE  
VDDIO  
VDDCORE  
VDDCORE  
PB5  
F9  
PB17  
J4  
A10  
B1  
F10  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
H1  
H2  
H3  
H4  
H5  
PB18  
J5  
XOUT  
VDDUTMI  
PB31  
J6  
VDDIN  
PA23  
B2  
J7  
B3  
J8  
PA24  
B4  
PB1  
GNDBU  
PB27  
J9  
PB16  
B5  
PA21  
J10  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
PA16  
B6  
PB10  
PB7  
PB28  
PA18  
VBG  
B7  
PA7  
PA20  
DFSDP  
DFSDM  
VDDCORE  
XOUT32  
VDDOUT  
VDDANA  
GNDANA  
ADVREF  
PB15  
B8  
PB3  
PA8  
PA3  
B9  
PA29  
PA27  
PA12  
PA14  
PA13  
PA17  
PA15  
VDDCORE  
GND  
PA2  
B10  
C1  
PB12  
GND  
XIN  
C2  
VDDIO  
PB19  
GNDUTMI  
TST  
C3  
C4  
PB20  
VDDBU  
WAKEUP  
C5  
PB21  
17  
11057BS–ATARM–13-Jul-12  
4.2  
SAM3X4/8E Package and Pinout  
The SAM3X4/8E is available in 144-lead LQFP and 144-ball LFBGA packages.  
4.2.1  
144-lead LQFP Package Outline  
Figure 4-3. Orientation of the 144-lead LQFP Package  
73  
108  
109  
72  
144  
1
37  
36  
4.2.2  
144-ball LFBGA Package Outline  
The 144-Ball LFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its dimen-  
sions are 10 x 10 x 1.4 mm.  
Figure 4-4. Orientation of the 144-ball LFBGA Package  
TOP VIEW  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A B C D E F G H J K L  
M
BALL A1  
18  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
4.2.3  
144-lead LQFP Pinout  
Table 4-3.  
1
144-lead LQFP SAM3X4/8E Pinout  
PB26  
PA9  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
DHSDP  
DHSDM  
VBUS  
73  
74  
VDDANA  
GNDANA  
ADVREF  
PB15  
PB16  
PA16  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
PA26  
PA27  
PA28  
PA29  
PB0  
2
3
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA17  
VDDCORE  
VDDIO  
GND  
PD0  
75  
4
VBG  
76  
5
VDDUTMI  
DFSDP  
DFSDM  
GNDUTMI  
VDDCORE  
JTAGSEL  
NRSTB  
XIN32  
XOUT32  
SHDN  
TST  
77  
6
78  
PB1  
7
79  
PA24  
PB2  
8
80  
PA23  
PC4  
9
81  
PA22  
PC10  
PB3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
82  
PA6  
83  
PA4  
PB4  
84  
PA3  
PB5  
85  
PA2  
PB6  
PD1  
86  
PB12  
PB13  
PB17  
PB18  
PB19  
PB20  
PB21  
PC11  
PC12  
PC13  
PC14  
PC15  
PC16  
PC17  
PC18  
PC19  
PC29  
PC30  
VDDCORE  
VDDIO  
GND  
PB7  
PD2  
87  
PB8  
PD3  
VDDBU  
FWUP  
GNDBU  
PC1  
88  
VDDCORE  
VDDIO  
GND  
PB9  
PD4  
89  
PD5  
90  
PD6  
91  
PD7  
VDDOUT  
VDDIN  
GND  
92  
PB10  
PB11  
PC0  
PD8  
93  
PD9  
94  
PA0  
PC2  
95  
PC20  
PC21  
PC22  
PC23  
PC24  
PC25  
PC26  
PC27  
PC28  
PB14  
PB22  
PB23  
PB24  
PB25  
PA1  
PC3  
96  
PA5  
VDDCORE  
VDDIO  
PC5  
97  
PA7  
98  
PA8  
99  
PB28  
PB29  
PB30  
PB31  
PD10  
GNDPLL  
VDDPLL  
XOUT  
XIN  
PC6  
100  
101  
102  
103  
104  
105  
106  
107  
108  
PC7  
PC8  
PC9  
PB27  
NRST  
PA18  
PA19  
PA21  
PA20  
PA25  
19  
11057BS–ATARM–13-Jul-12  
4.2.4  
144-ball LFBGA Pinout  
Table 4-4.  
A1  
144-ball LFBGA SAM3X4/8E Pinout  
PA9  
PB23  
PB14  
PC26  
PC24  
PC20  
PB10  
PB6  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
PA17  
PD0  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
PA5  
PA7  
K1  
K2  
VDDCORE  
GNDUTMI  
VDDPLL  
NRSTB  
SHDN  
PC3  
A2  
A3  
PA11  
PA15  
PA14  
PC27  
PC25  
VDDIO  
PB5  
PA8  
K3  
A4  
PA1  
K4  
A5  
GND  
K5  
A6  
GND  
K6  
A7  
GND  
K7  
PC6  
A8  
PC16  
PC15  
PC13  
PB13  
PB18  
XOUT  
PB30  
PB28  
PB29  
VDDBU  
VDDCORE  
VDDIO  
PC12  
PC11  
PA3  
K8  
PC7  
A9  
PB4  
K9  
PA18  
A10  
A11  
A12  
B1  
PC4  
PB0  
K10  
K11  
K12  
L1  
PA23  
PA28  
PA27  
PA10  
PB26  
PB24  
PC28  
PC23  
PC0  
PC30  
PC19  
PD1  
PA16  
PA24  
DHSDP  
DHSDM  
VDDUTMI  
JTAGSEL  
GNDBU  
PC1  
B2  
E2  
PD2  
L2  
B3  
E3  
PD3  
L3  
B4  
E4  
PD4  
L4  
B5  
E5  
PD5  
L5  
B6  
E6  
VDDCORE  
VDDCORE  
VDDCORE  
PB1  
L6  
B7  
PB9  
E7  
L7  
PC2  
B8  
PB8  
E8  
L8  
PC5  
B9  
PB3  
E9  
L9  
PC9  
B10  
B11  
B12  
C1  
PB2  
E10  
E11  
E12  
F1  
PC18  
PB19  
PB21  
PD8  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
PA20  
PA26  
PA25  
PA13  
PA12  
PB25  
PB22  
PC22  
PC21  
PB11  
PB7  
PB12  
PA2  
VDDANA  
PB16  
XIN  
DFSDP  
DFSDM  
VBG  
C2  
F2  
PD6  
J2  
GNDPLL  
PD10  
PB31  
TST  
C3  
F3  
PD9  
J3  
C4  
F4  
PA0  
J4  
VBUS  
C5  
F5  
PD7  
J5  
XIN32  
XOUT32  
VDDOUT  
VDDIN  
PC8  
C6  
F6  
GND  
J6  
FWUP  
PB27  
NRST  
PA19  
PA22  
PA4  
C7  
F7  
GND  
J7  
C8  
F8  
VDDIO  
PC17  
PC14  
PB20  
PB17  
J8  
C9  
PC10  
PA29  
PA21  
PC29  
F9  
J9  
C10  
C11  
C12  
F10  
F11  
F12  
J10  
J11  
J12  
GNDANA  
ADVREF  
PB15  
PA6  
20  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
5. Power Considerations  
5.1  
Power Supplies  
The SAM3X/A series product has several types of power supply pins:  
• VDDCORE pins: Power the core, the embedded memories and the peripherals; voltage  
ranges from 1.62V to 1.95V.  
• VDDIO pins: Power the Peripherals I/O lines; voltage ranges from 1.62V to 3.6V.  
• VDDIN pin: Powers the Voltage regulator  
• VDDOUT pin: It is the output of the voltage regulator.  
• VDDBU pin: Powers the Slow Clock oscillator and a part of the System Controller; voltage  
ranges from 1.62V to 3.6V. VDDBU must be supplied before or at the same time than VDDIO  
and VDDCORE.  
• VDDPLL pin: Powers the PLL A, UPLL and 3-20 MHz Oscillator; voltage ranges from 1.62V  
to 1.95V.  
• VDDUTMI pin: Powers the UTMI+ interface; voltage ranges from 3.0V to 3.6V, 3.3V nominal.  
• VDDANA pin: Powers the ADC and DAC cells; voltage ranges from 2.0V to 3.6V.  
Ground pins GND are common to VDDCORE and VDDIO pins power supplies.  
Separated ground pins are provided for VDDBU, VDDPLL, VDDUTMI and VDDANA. These  
ground pins are respectively GNDBU, GNDPLL, GNDUTMI and GNDANA.  
5.2  
Voltage Regulator  
The SAM3X/A series embeds a voltage regulator that is managed by the Supply Controller.  
This internal regulator is intended to supply the internal core of SAM3X/A series but can be used  
to supply other parts in the application. It features two different operating modes:  
• In Normal mode, the voltage regulator consumes less than 700 µA static current and draws  
150 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current  
depending on the required load current. In Wait Mode or when the output current is low,  
quiescent current is only 7µA.  
• In Shutdown mode, the voltage regulator consumes less than 1 µA while its output is driven  
internally to GND. The default output voltage is 1.80V and the start-up time to reach Normal  
mode is inferior to 400 µs.  
For adequate input and output power supply decoupling/bypassing, refer to “Voltage Regulator”  
in the “Electrical Characteristics” section of the product datasheet.  
21  
11057BS–ATARM–13-Jul-12  
5.3  
Typical Powering Schematics  
The SAM3X/A series supports a 1.62V-3.6V single supply mode. The internal regulator input  
connected to the source and its output feeds VDDCORE. Figure 5-1 shows the power  
schematics.  
Figure 5-1. Single Supply  
VDDBU  
VDDUTMI  
VDDANA  
VDDIO  
Main Supply (1.8V-3.6V)  
VDDIN  
Voltage  
Regulator  
VDDOUT  
VDDCORE  
VDDPLL  
Note:  
Restrictions  
For USB, VDDUTMI needs to be greater than 3.0V.  
For ADC, VDDANA needs to be greater than 2.0V.  
For DAC, VDDANA needs to be greater than 2.4V.  
22  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
Figure 5-2. Core Externally Supplied  
VDDBU  
VDDUTMI  
VDDANA  
VDDIO  
Main Supply (1.62V-3.6V)  
VDDIN  
Voltage  
Regulator  
VDDOUT  
VDDCORE Supply (1.62V-1.95V)  
VDDCORE  
VDDPLL  
Note:  
Restrictions  
For USB, VDDUTMI needs to be greater than 3.0V.  
For ADC, VDDANA needs to be greater than 2.0V.  
For DAC, VDDANA needs to be greater than 2.4V.  
23  
11057BS–ATARM–13-Jul-12  
Note:  
Backup Batteries Used  
FWUP  
SHDN  
VDDBU  
VDDUTMI  
Backup Batteries  
VDDANA  
VDDIO  
VDDIN  
Main Supply (1.8V-3.6V)  
Voltage  
Regulator  
VDDOUT  
VDDCORE  
VDDPLL  
Note:  
1. Restrictions  
For USB, VDDUTMI needs to be greater than 3.0V.  
For ADC, VDDANA needs to be greater than 2.0V.  
For DAC, VDDANA needs to be greater than 2.4V.  
2. VDDUTMI and VDDANA cannot be left unpowered.  
5.4  
Active Mode  
Active mode is the normal running mode with the core clock running from the fast RC oscillator,  
the main crystal oscillator or the PLLA. The power management controller can be used to adapt  
the frequency and to disable the peripheral clocks.  
5.5  
Low Power Modes  
The various low power modes of the SAM3X/A series are described below:  
5.5.1  
Backup Mode  
The purpose of backup mode is to achieve the lowest power consumption possible in a system  
which is performing periodic wake-ups to perform tasks but not requiring fast startup time  
(< 0.5ms).  
24  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz  
Oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running.  
The regulator and the core supply are off.  
Backup Mode is based on the Cortex-M3 deep-sleep mode with the voltage regulator disabled.  
The SAM3X/A series can be awakened from this mode through the Force Wake-up pin (FWUP),  
and Wake-up input pins WKUP0 to WKUP15, Supply Monitor, RTT or RTC wake-up event. Cur-  
rent Consumption is 2.5 µA typical on VDDBU.  
Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the System Con-  
trol Register of the Cortex-M3 set to 1. (See the Power management description in the “ARM  
Cortex M3 Processor” section of the product datasheet).  
Exit from Backup mode happens if one of the following enable wake up events occurs:  
• FWUP pin (low level, configurable debouncing)  
• WKUPEN0-15 pins (level transition, configurable debouncing)  
• SM alarm  
• RTC alarm  
• RTT alarm  
5.5.2  
Wait Mode  
The purpose of the wait mode is to achieve very low power consumption while maintaining the  
whole device in a powered state for a startup time of less than 10 µs.  
In this mode, the clocks of the core, peripherals and memories are stopped. However, the core,  
peripherals and memories power supplies are still powered. From this mode, a fast start up is  
available.  
This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in  
PMC_FSMR). The Cortex-M3 is able to handle external events or internal events in order to  
wake-up the core (WFE). This is done by configuring the external lines WKUP0-15 as fast  
startup wake-up pins (refer to Section 5.7 “Fast Start-Up”). RTC or RTT Alarm and USB wake-up  
events can be used to wake up the CPU (exit from WFE).  
Current Consumption in Wait mode is typically 23 µA for total current consumption if the internal  
voltage regulator is used or 15 µA if an external regulator is used.  
Entering Wait Mode:  
• Select the 4/8/12 MHz Fast RC Oscillator as Main Clock  
• Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)  
• Execute the Wait-For-Event (WFE) instruction of the processor  
Note:  
Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN  
bit and the effective entry in Wait mode. Depending on the user application, Waiting for  
MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired  
instructions.  
5.5.3  
Sleep Mode  
The purpose of sleep mode is to optimize power consumption of the device versus response  
time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. This  
mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM = 0 in  
PMC_FSMR.  
25  
11057BS–ATARM–13-Jul-12  
The processor can be awakened from an interrupt if WFI instruction of the Cortex M3 is used, or  
from an event if the WFE instruction is used to enter this mode.  
5.5.4  
Low Power Mode Summary Table  
The modes detailed above are the main low power modes. Each part can be set to on or off sep-  
arately and wake-up sources can be individually configured. Table 5-1 below shows a summary  
of the configurations of the low power modes.  
Table 5-1.  
Low Power Mode Configuration Summary  
Core  
PIO State  
Memory  
VDDBU  
Potential Wake-up Core at while in Low PIO State  
Consumption  
Wake-up  
Time(4)  
Mode Region(1) Regulator Peripherals Mode Entry  
Sources  
Wake-up Power Mode at Wake-up  
(2) (3)  
PIOA &  
PIOB &  
PIOC &  
FWUP pin  
OFF  
WFE  
WKUP0-15 pins  
BOD alarm  
RTC alarm  
OFF  
PIOD &  
PIOE &  
Backup  
Mode  
Previous  
state saved  
ON  
ON  
Reset  
2.5 µA typ(5)  
< 0.5 ms  
(Not  
powered)  
+SLEEPDEEP  
bit = 1  
SHDN =0  
PIOF  
RTT alarm  
Inputs with  
pull-ups  
Any Event from: Fast  
startup through  
+SLEEPDEEP WKUP0-15 pins  
WFE  
Powered  
ON  
Wait  
Mode  
Clocked Previous  
back state saved  
Unchanged 18.4 µA/26.6 µA (6) < 10 µs  
(Not  
clocked)  
bit = 0  
RTC alarm  
RTT alarm  
USB wake-up  
SHDN =1  
+LPM bit = 1  
Entry mode = WFI  
Interrupt Only;  
Entry mode = WFE  
Any Enabled Interrupt  
and/or Any Event from  
Fast start-up through  
WKUP0-15 pins  
RTC alarm  
WFE or WFI  
Powered(7)  
ON  
Sleep  
Mode  
+SLEEPDEEP  
bit = 0  
Clocked Previous  
back state saved  
(7)  
(7)  
ON  
Unchanged  
(Not  
clocked)  
SHDN =1  
+LPM bit = 0  
RTT alarm  
USB wake-up  
Notes: 1. SUPC, 32 kHz Oscillator, RTC, RTT, Backup Registers, POR  
2. The external loads on PIOs are not taken into account in the calculation.  
3. BOD current consumption is not included.  
4. When considering the wake-up time, the time required to start the PLL is not taken into account. Once started, the device  
works with the 4/8/12 MHz Fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The  
wake-up time is defined as the time taken for wake-up until the first instruction is fetched  
5. Current consumption on VDDBU.  
6. 18.4 µA on VDDCORE, 26.6 µA for total current consumption (using internal voltage regulator).  
7. Depends on MCK frequency. In this mode, the core is supplied and not clocked but some peripherals can be clocked.  
26  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
5.6  
Wake-up Sources  
The wake-up events allow the device to exit the backup mode. When a wake-up event is  
detected, the Supply Controller performs a sequence which automatically reenables the core  
power supply.  
Figure 5-3. Wake-up Source  
SMEN  
sm_int  
RTCEN  
RTTEN  
rtc_alarm  
rtt_alarm  
Core  
Supply  
Rest ar t  
FWUPDBC  
Debouncer  
SLCK  
FWUPEN  
FWUP  
Falling  
Ed g e  
Detector  
FWUP  
WKUPT0  
WKUPEN0  
WKUPEN1  
WKUPIS0  
WKUPIS1  
Falling/Rising  
Ed g e  
Detector  
WKUP0  
WKUP1  
WKUPDBC  
Debouncer  
SLCK  
WKUPS  
WKUPT1  
Falling/Rising  
Ed g e  
Detector  
WKUPT15  
WKUPEN15  
WKUPIS15  
Falling/Rising  
Ed g e  
WKUP15  
Detector  
27  
11057BS–ATARM–13-Jul-12  
5.7  
Fast Start-Up  
The SAM3X/A series allows the processor to restart in a few microseconds while the processor  
is in wait mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up  
inputs.  
The fast restart circuitry, as shown in Figure 5-4, is fully asynchronous and provides a fast start-  
up signal to the Power Management Controller. As soon as the fast start-up signal is asserted,  
the PMC automatically restarts the embedded 4/8/12 MHz fast RC oscillator, switches the mas-  
ter clock on this 4/8/12 MHz clock and reenables the processor clock.  
Figure 5-4. Fast Start-Up Sources  
USBEN  
RTCEN  
usb_wakeup  
rtc_alarm  
RTTEN  
rtt_alarm  
FSTT0  
High/Low  
Level  
Detector  
WKUP0  
WKUP1  
fast_restart  
FSTT1  
High/Low  
Level  
Detector  
FSTT15  
High/Low  
Level  
WKUP15  
Detector  
28  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
6. Input/Output Lines  
The SAM3X/A has different kinds of input/output (I/O) lines, such as general purpose I/Os  
(GPIO) and system I/Os. GPIOs can have alternate functions thanks to multiplexing capabilities  
of the PIO controllers. The same PIO line can be used whether in IO mode or by the multiplexed  
peripheral. System I/Os include pins such as test pins, oscillators, erase or analog inputs.  
With a few exceptions, the I/Os have input schmitt triggers. Refer to the footnotes associated  
with PIOA to PIOF on page 14, at the end of Table 3-1, “Signal Description List”.  
6.1  
General Purpose I/O Lines (GPIO)  
GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such  
as pull-up, input schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input  
change interrupt. Programming of these modes is performed independently for each I/O line  
through the PIO controller user interface. For more details, refer to the “PIO Controller” section  
of the product datasheet.  
The input output buffers of the PIO lines are supplied through VDDIO power supply rail.  
The SAM3X/A embeds high speed pads able to handle up to 65 MHz for HSMCI and SPI clock  
lines and 45 MHz on other lines. See product AC Characteristics for more details. Typical pull-up  
value is 100 kΩ for all I/Os.  
Each I/O line also embeds an ODT (On-Die Termination), (see Figure 6-1 below). ODT consists  
of an internal series resistor termination scheme for impedance matching between the driver  
output (SAM3) and the PCB track impedance preventing signal reflection. The series resistor  
helps to reduce IOs switching current (di/dt) thereby reducing in turn, EMI. It also decreases  
overshoot and undershoot (ringing) due to inductance of interconnect between devices or  
between boards. In conclusion, ODT helps reducing signal integrity issues.  
Figure 6-1. On-Die Termination  
Z0 ~ Zout + Rodt  
ODT  
36 Ohms Typ.  
Rodt  
Receiver  
SAM3 Driver with  
PCB Trace  
Zout ~ 10 Ohms  
Z0 ~ 50 Ohms  
6.2  
System I/O Lines  
System I/O lines are pins used by oscillators, test mode, reset, flash erase and JTAG to name  
but a few. Described below are the SAM3X/A system I/O lines shared with PIO lines.  
These pins are software configurable as general purpose I/O or system pins. At startup, the  
default function of these pins is always used.  
29  
11057BS–ATARM–13-Jul-12  
Table 6-1.  
System I/O Configuration Pin List  
SYSTEM_IO  
Bit Number  
Default Function  
Constraints for  
Normal Start  
Peripheral  
After Reset  
Other Function  
Configuration  
In Matrix User Interface Registers  
Low Level at  
startup()  
(Refer to “System IO Configuration  
Register“ in the “Bus Matrix“ section  
of the product datasheet.)  
12  
-
ERASE  
PC0  
A
A
A
A
TCK/SWCLK  
TDI  
PB28  
PB29  
PB30  
PB31  
-
-
-
-
In PIO Controller  
TDO/TRACESWO  
TMS/SWDIO  
Note:  
1. If PC0 is used as PIO input in user applications, a low level must be ensured at startup to pre-  
vent Flash erase before the user application sets PC0 into PIO mode.  
6.2.1  
Serial Wire JTAG Debug Port (SWJ-DP) Pins  
The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on  
a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference  
and reset state, refer to Table 3-1.  
At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging  
probe. Please refer to the “Debug and Test” section of the product datasheet.  
SWJ-DP pins can be used as standard I/Os to provide users with more general input/output pins  
when the debug port is not needed in the end application. Mode selection between SWJ-DP  
mode (System IO mode) and general IO mode is performed through the AHB Matrix Special  
Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing  
and glitch filters is possible regardless of the mode.  
The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It  
integrates a permanent pull-down resistor of about 15 kΩ to GND, so that it can be left uncon-  
nected for normal operations.  
By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial  
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and  
TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire  
Debug Port is active, TDO/TRACESWO can be used for trace.  
The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous  
trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and  
JTAG-DP switching, please refer to the “Debug and Test” section of the product datasheet.  
All JTAG signals are supplied with VDDIO except JTAGSEL, supplied by VDDBU.  
6.3  
Test Pin  
The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming  
mode of the SAM3X/A series. The TST pin integrates a permanent pull-down resistor of about  
15 kΩ to GND, so that it can be left unconnected for normal operations. To enter fast program-  
ming mode, see the “Fast Flash Programming Interface” section. For more information on the  
manufacturing and test mode, refer to the “Debug and Test” section of the product datasheet.  
30  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
6.4  
6.5  
NRST Pin  
The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low  
to provide a reset signal to the external components, or asserted low externally to reset the  
microcontroller. It will reset the Core and the peripherals except the Backup region (RTC, RTT  
and Supply Controller). There is no constraint on the length of the reset pulse, and the reset con-  
troller can guarantee a minimum pulse length.  
The NRST pin integrates a permanent pull-up resistor to VDDIO of about 100 kΩ.  
NRSTB Pin  
The NRSTB pin is input only and enables asynchronous reset of the SAM3X/A series when  
asserted low. The NRSTB pin integrates a permanent pull-up resistor of about 15 kΩ. This allows  
connection of a simple push button on the NRSTB pin as a system-user reset. In all modes, this  
pin will reset the chip including the Backup region (RTC, RTT and Supply Controller). It reacts as  
the Power-on reset. It can be used as an external system reset source. In harsh environments, it  
is recommended to add an external capacitor (10 nF) between NRSTB and VDDBU. (For filter-  
ing values, refer to “I/O characteristics” in the “Electrical Characteristics” section of the product  
datasheet)  
It embeds an anti-glitch filter.  
6.6  
ERASE Pin  
The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased  
state (all bits read as logic level 1). It integrates a pull-down resistor of about 100 kΩ to GND, so  
that it can be left unconnected for normal operations.  
This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high  
during less than 100 ms, it is not taken into account. The pin must be tied high during more than  
220 ms to perform a Flash erase operation.  
The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE  
pin is not configured as a PIO pin. If the ERASE pin is used as a standard I/O, the startup level  
of this pin must be low to prevent unwanted erasing. Please refer to Section 11.2 “Peripheral  
Signal Multiplexing on I/O Lines”. Also, if the ERASE pin is used as a standard I/O output,  
asserting the pin to low does not erase the Flash.  
31  
11057BS–ATARM–13-Jul-12  
7. Processor and Architecture  
7.1  
ARM Cortex-M3 Processor  
• Version 2.0  
• Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit.  
• Harvard processor architecture enabling simultaneous instruction fetch with data load/store.  
• Three-stage pipeline.  
• Single cycle 32-bit multiply.  
• Hardware divide.  
• Thumb and Debug states.  
• Handler and Thread modes.  
• Low latency ISR entry and exit.  
7.2  
APB/AHB Bridge  
The SAM3X/A series product embeds two separate APB/AHB bridges:  
• a low speed bridge  
• a high speed bridge  
This architecture enables a concurrent access on both bridges.  
SPI, SSC and HSMCI peripherals are on the high-speed bridge connected to DMAC with the  
internal FIFO for Channel buffering.  
UART, ADC, TWI0-1, USART0-3, PWM, DAC and CAN peripherals are on the low-speed bridge  
and have dedicated channels for the Peripheral DMA Channels (PDC). Please not that  
USART0-1 can be used with the DMA as well.  
The peripherals on the high speed bridge are clocked by MCK. On the low-speed bridge, CAN  
controllers can be clocked at MCK divided by 2 or 4. Refer to the Power Management Controller  
(PMC) section of the Full datasheet for further details.  
7.3  
Matrix Masters  
The Bus Matrix of the SAM3X/A series product manages 5 (SAM3A) or 6 (SAM3X) masters,  
which means that each master can perform an access, concurrently with others, to an available  
slave.  
Each master has its own decoder, which is defined specifically for each master. In order to sim-  
plify the addressing, all masters have the same decodings.  
Table 7-1.  
List of Bus Matrix Masters  
Cortex-M3 Instruction/Data  
Master 0  
Master 1  
Master 2  
Master 3  
Master 4  
Master 5  
Cortex-M3 System  
Peripheral DMA Controller (PDC)  
USB OTG High Speed DMA  
DMA Controller  
Ethernet MAC (SAM3X)  
32  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
7.4  
Matrix Slaves  
The Bus Matrix of the SAM3X/A series product manages 9 slaves. Each slave has its own arbi-  
ter, allowing a different arbitration per slave.  
Table 7-2.  
Slave 0  
Slave 1  
Slave 2  
Slave 3  
Slave 4  
Slave 5  
Slave 6  
Slave 7  
Slave 8  
List of Bus Matrix Slaves  
Internal SRAM0  
Internal SRAM1  
Internal ROM  
Internal Flash  
USB High Speed Dual Port RAM (DPR)  
NAND Flash Controller RAM  
External Bus Interface  
Low Speed Peripheral Bridge  
High Speed Peripheral Bridge  
7.5  
Master to Slave Access  
All the Masters can normally access all the Slaves. However, some paths do not make sense,  
for example allowing access from the USB High Speed DMA to the Internal Peripherals. Thus,  
these paths are forbidden or simply not wired, and shown as “-” in the following table.  
Table 7-3.  
Slaves  
SAM3X/A Series Master to Slave Access  
Masters  
0
1
2
3
4
5
Cortex-M3  
I/D Bus  
Cortex-M3 S  
Bus  
USB High  
Speed DMA Controller  
DMA  
EMAC  
DMA  
PDC  
0
1
2
3
4
5
6
7
8
Internal SRAM0  
-
-
X
X
-
X
X
X
-
X
X
X
-
X
X
X
-
X
X
X
-
Internal SRAM1  
Internal ROM  
X
X
-
Internal Flash  
-
USB High Speed Dual Port RAM  
Nand Flash Controller RAM  
External Bus Interface  
Low Speed Peripheral Bridge  
High Speed Peripheral Bridge  
X
X
X
X
X
-
-
X
X
X
X
X
-
-
X
X
X
-
X
X
-
X
X
-
-
-
-
-
-
33  
11057BS–ATARM–13-Jul-12  
7.6  
DMA Controller  
• Acting as one Matrix Master  
• Embeds 4 (SAM3A and 100-pin SAM3X) or 6 (144-pin SAM3X) channels  
Table 7-4.  
DMA Channels  
SAM3A  
DMA Channel Size  
100-pin SAM3X  
144-pin SAM3X  
3
4
8 bytes FIFO for Channel Buffering  
(Channels 0, 1 and 2)  
(Channels 0, 1, 2 and 4)  
1
2
32 bytes FIFO for Channel Buffering  
(Channel 3)  
(Channels 3 and 5)  
• Linked List support with Status Write Back operation at End of Transfer  
• Word, HalfWord, Byte transfer support.  
• Handles high speed transfer of SPI0-1, USART0-1, SSC and HSMCI (peripheral to memory,  
memory to peripheral)  
• Memory to memory transfer  
• Can be triggered by PWM and T/C which enables to generates waveform though the  
External Bus Interface  
The DMA controller can handle the transfer between peripherals and memory and so receives  
the triggers from the peripherals below. The hardware interface numbers are also given in Table  
7-5.  
Table 7-5.  
DMA Controller  
DMA Channel HW  
Interface Number  
Instance Name  
HSMCI  
SPI0  
Channel T/R  
Transmit/Receive  
Transmit  
Receive  
Transmit  
Receive  
Transmit  
Receive  
Transmit  
Receive  
-
0
1
SPI0  
2
SSC  
3
SSC  
4
SPI1  
5
SPI1  
6
TWI0  
7
TWI0  
8
-
-
-
-
-
USART0  
USART0  
USART1  
USART1  
PWM  
Transmit  
Receive  
Transmit  
Receive  
Transmit  
11  
12  
13  
14  
15  
34  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
7.7  
Peripheral DMA Controller  
• Handles data transfer between peripherals and memories  
• Low bus arbitration overhead  
– One Master Clock cycle needed for a transfer from memory to peripheral  
Two Master Clock cycles needed for a transfer from peripheral to memory  
• Next Pointer management for reducing interrupt latency requirement  
The Peripheral DMA Controller handles transfer requests from the channel according to the fol-  
lowing priorities (Low to High priorities):  
Table 7-6.  
Peripheral DMA Controller  
Instance Name  
DAC  
Channel T/R  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
144 Pins  
100 Pins  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
PWM  
TWI1  
X
TWI0  
X
USART3  
USART2  
USART1  
USART0  
UART  
X
X
X
X
X
ADC  
X
TWI1  
X
TWI0  
X
USART3  
USART2  
USART1  
USART0  
UART  
N/A  
X
X
X
X
35  
11057BS–ATARM–13-Jul-12  
7.8  
Debug and Test Features  
• Debug access to all memory and registers in the system, including Cortex-M3 register bank  
when the core is running, halted, or held in reset  
• Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access  
• Flash Patch and Breakpoint (FPB) unit for implementing break points and code patches  
• Data Watchpoint and Trace (DWT) unit for implementing watch points, data tracing, and  
system profiling  
• Instrumentation Trace Macrocell (ITM) for support of printf style debugging  
• IEEE® 1149.1 JTAG Boundary-scan on all digital pins  
36  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
8. Product Mapping  
Figure 8-1. SAM3X/A Product Mapping  
Code  
Address memory space  
Peripherals  
HSMCI  
0x00000000  
0x00000000  
0x20000000  
0x40000000  
0x60000000  
0xA0000000  
0xE0000000  
0xFFFFFFFF  
0x40000000  
0x40004000  
0x40008000  
0x4000C000  
0x40080000  
+0x40  
Boot Memory  
0x00080000  
Internal Flash 0  
HALF_FLASHSIZE  
Internal Flash 1  
0x00100000  
Internal ROM  
0x00200000  
Reserved  
9
Code  
SSC  
SPI0  
SPI1  
TC0  
TC1  
TC2  
TC3  
TC4  
TC5  
TC6  
TC7  
TC8  
TWI0  
TWI1  
PWM  
14  
SRAM  
Peripherals  
External SRAM  
Reserved  
TC0  
TC0  
TC0  
TC1  
TC1  
TC1  
TC2  
TC2  
TC2  
17  
18  
19  
0x1FFFFFFF  
HALF_FLASHSIZE address:  
+0x80  
-
-
-
512ko products: 0x000C0000  
256k products: 0x000A0000  
128k products: 0x00090000  
0x40084000  
+0x40  
SRAM  
0x20000000  
+0x80  
SRAM0  
SRAM1  
0x20080000  
0x20100000  
0x20180000  
0x20200000  
0x40000000  
0x60000000  
0x61000000  
0x62000000  
0x63000000  
0x64000000  
0x65000000  
0x66000000  
0x67000000  
0x68000000  
0x69000000  
0x70000000  
0x80000000  
0x9FFFFFFF  
0x40088000  
+0x40  
System  
NFC (SRAM)  
UOTGHS (DMA)  
Undefined (Abort)  
+0x80  
System controller  
SMC  
0x400E0000  
0x400E0200  
0x400E0400  
0x400E0600  
0x400E0800  
0x400E0940  
0x400E0A00  
0x400E0C00  
0x400E0E00  
0x400E1000  
0x400E1200  
0x400E1400  
0x400E1600  
0x400E1800  
0x400E1A00  
0x400E1A10  
0x400E1A30  
0x400E1A50  
0x400E1A60  
0x400E1A90  
0x400E1AB0  
0x4007FFFF  
0x4008C000  
0x40090000  
0x40094000  
0x40098000  
0x4009C000  
0x400A0000  
0x400A4000  
0x400A8000  
0x400AC000  
0x400B0000  
0x400B4000  
0x400B8000  
0x400BC000  
0x400C0000  
0x400C4000  
0x400C8000  
0x400D0000  
0x400E0000  
0x400E2600  
0x60000000  
11  
12  
Reserved  
External SRAM  
CS0  
MATRIX  
CS1  
CS2  
CS3  
CS4  
CS5  
CS6  
PMC  
USART0  
USART1  
USART2  
USART3  
Reserved  
UOTGHS  
+1  
6
7
UART  
CHIPID  
EEFC0  
EEFC1  
8
20  
PIOA  
2
CS7  
NFC  
PIOB  
EMAC  
CAN0  
3
PIOC  
4
Reserved  
PIOD  
PIOE  
CAN1  
Reserved  
Reserved  
TRNG  
ADC  
PIOF  
RSTC  
SUPC  
RTT  
DMAC  
DACC  
Reserved  
WDT  
System controller  
Reserved  
RTC  
GPBR  
reserved  
37  
11057BS–ATARM–13-Jul-12  
9. Memories  
9.1  
Embedded Memories  
9.1.1  
Internal SRAM  
• The 100-pin SAM3A/X8 product embeds a total of 96 Kbytes high-speed SRAM (64 Kbytes  
SRAM0 and 32 Kbytes SRAM1).  
• The 100-pin SAM3A/X4 product embeds a total of 64 Kbytes high-speed SRAM (32 Kbytes  
SRAM0, 32 Kbytes SRAM1).  
• The 100-pin SAM3A/4 product embeds a total of 36 Kbytes high-speed SRAM (16 Kbytes  
SRAM0 and 16 Kbytes SRAM1).  
The SRAM0 is accessible over System Cortex-M3 bus at address 0x2000 0000 and SRAM1 at  
address 0x2008 0000. The user can see the SRAM as contiguous thanks to mirror effect, giving  
0x2007 0000 - 0x2008 7FFF for SAM3X/A8, 0x2007 8000 - 0x2008 7FFF for SAM3X/A4 and  
0x2007 C000 - 0x2008 3FFF for SAM3X/A2.  
The SRAM0 and SRAM1 are in the bit band region. The bit band alias region is mapped from  
0x2200 0000 to 0x23FF FFFF.  
The NAND Flash Controller embeds 4224 bytes of internal SRAM. If the NAND Flash controller  
is not used, these 4224 Kbytes of SRAM can be used as general purpose. It can be seen at  
address 0x2010 0000.  
9.1.2  
Internal ROM  
The SAM3X/A series product embeds an Internal ROM, which contains the SAM-BA and FFPI  
program.  
At any time, the ROM is mapped at address 0x0018 0000.  
9.1.3  
Embedded Flash  
9.1.3.1  
Flash Overview  
• The Flash of the ATSAM3A/X8 is organized in two banks of 1024 pages (dual plane) of  
256 bytes.  
• The Flash of the ATSAM3A/X4 is organized in two banks of 512 pages (dual plane) of  
256 bytes.  
The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.  
9.1.3.2  
9.1.3.3  
Flash Power Supply  
The Flash is supplied by VDDCORE.  
Enhanced Embedded Flash Controller  
The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the mas-  
ters of the system. It enables reading the Flash and writing the write buffer. It also contains a  
User Interface, mapped within the Memory Controller on the APB.  
The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32-  
bit internal bus. Its 128-bit wide memory interface increases performance.  
38  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
The user can choose between high performance or lower current consumption by selecting  
either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking  
sequences of the Flash using a full set of commands.  
One of the commands returns the embedded Flash descriptor definition that informs the system  
about the Flash organization, thus making the software generic.  
9.1.3.4  
Lock Regions  
Several lock bits used to protect write and erase operations on lock regions. A lock region is  
composed of several consecutive pages, and each lock region has its associated lock bit.  
Table 9-1.  
Number of Lock Bits  
Product  
Number of Lock Bits  
Lock Region Size  
16 kbytes (64 pages)  
16 kbytes (64 pages)  
ATSAM3X/A8  
ATSAM3X/A4  
32  
16  
If a locked-region’s erase or program command occurs, the command is aborted and the EEFC  
triggers an interrupt.  
The lock bits are software programmable through the EEFC User Interface. The “Set Lock Bit”  
command enables the protection. The “Clear Lock Bit” command unlocks the lock region.  
Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.  
9.1.3.5  
Security Bit Feature  
The SAM3X/A series features a security bit, based on a specific General Purpose NVM bit  
(GPNVM bit 0). When the security is enabled, any access to the Flash, either through the ICE  
interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confi-  
dentiality of the code programmed in the Flash.  
This security bit can only be enabled through the “Set General Purpose NVM Bit 0” command of  
the EEFC0 User Interface. Disabling the security bit can only be achieved by asserting the  
ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated,  
all accesses to the Flash are permitted.  
It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.  
As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal  
operation. However, it is safer to connect it directly to GND for the final application.  
9.1.3.6  
Calibration Bits  
NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are  
factory configured and cannot be changed by the user. The ERASE pin has no effect on the cal-  
ibration bits.  
9.1.3.7  
9.1.3.8  
Unique Identifier  
Each device integrates its own 128-bit unique identifier. These bits are factory configured and  
cannot be changed by the user. The ERASE pin has no effect on the unique identifier.  
Fast Flash Programming Interface  
The Fast Flash Programming Interface allows device programming through multiplexed fully-  
handshaked parallel port. It allows gang programming with market-standard industrial  
programmers.  
39  
11057BS–ATARM–13-Jul-12  
The FFPI supports read, page program, page erase, full erase, lock, unlock and protect  
commands.  
The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered  
when TST, PA0, PA1 are set to high, PA2 and PA3 are set to low and NRST is toggled from 0  
to 1.  
The table below shows the signal assignment of the PIO lines in FFPI mode  
Table 9-2.  
FFPI Signal  
PGMNCMD  
FFPI PIO Assignment  
PIO Used  
PA0  
PGMRDY  
PGMNOE  
PGMNVALID  
PGMM[0]  
PGMM[1]  
PGMM[2]  
PGMM[3]  
PGMD[0]  
PGMD[1]  
PGMD[2]  
PGMD[3]  
PGMD[4]  
PGMD[5]  
PGMD[6]  
PGMD[7]  
PGMD[8]  
PGMD[9]  
PGMD[10]  
PGMD[11]  
PGMD[12]  
PGMD[13]  
PGMD[14]  
PGMD[15]  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PA8  
PA9  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
PA17  
PA18  
PA19  
PA20  
PA21  
PA22  
PA23  
9.1.3.9  
SAM-BA® Boot  
The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the  
on-chip Flash memory.  
The SAM-BA Boot Assistant supports serial communication via the UART and USB.  
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).  
40  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set  
to 0.  
9.1.3.10  
GPNVM Bits  
The SAM3X/A series features three GPNVM bits that can be cleared or set respectively through  
the “Clear GPNVM Bit” and “Set GPNVM Bit” commands of the EEFC0 User Interface.  
Table 9-3.  
General Purpose Non-volatile Memory Bits  
GPNVMBit[#]  
Function  
0
1
2
Security bit  
Boot mode selection  
Flash selection (Flash 0 or Flash 1)  
9.1.4  
Boot Strategies  
The system always boots at address 0x0. To ensure maximum boot possibilities, the memory  
layout can be changed via GPNVM.  
A general-purpose NVM (GPNVM1) bit is used to boot either on the ROM (default) or from the  
Flash.  
The GPNVM bit can be cleared or set respectively through the "Clear General-purpose NVM Bit"  
and "Set General-purpose NVM Bit" commands of the EEFC User Interface.  
Setting GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM.  
Asserting ERASE clears GPNVM Bit 1 and thus selects the boot from the ROM by default.  
GPNVM2 enables to select if Flash 0 or Flash 1 is used for the boot.  
Setting GPNVM bit 2 selects the boot from Flash 1, clearing it selects the boot from Flash 0.  
41  
11057BS–ATARM–13-Jul-12  
9.2  
External Memories  
The 144-pin SAM3X features one External Memory Bus to offer interface to a wide range of  
external memories and to any parallel peripheral.  
9.2.1  
External Memory Bus  
• Integrates Four External Memory Controllers:  
– Static Memory Controller  
– NAND Flash Controller  
– SLC NAND Flash ECC Controller  
• Up to 24-bit Address Bus (up to 16 MBytes linear per chip select)  
• Up to 8 chip selects, Configurable Assignment  
9.2.2  
Static Memory Controller  
• 8- or 16-bit Data Bus  
• Multiple Access Modes supported  
– Byte Write or Byte Select Lines  
– Asynchronous read in Page Mode supported (4- up to 32-byte page size)  
• Multiple device adaptability  
– Control signals programmable setup, pulse and hold time for each Memory Bank  
• Multiple Wait State Management  
– Programmable Wait State Generation  
– External Wait Request  
– Programmable Data Float Time  
• Slow Clock mode supported  
9.2.3  
NAND Flash Controller  
• Handles automatic Read/write transfer through 4224 bytes SRAM buffer  
• DMA support  
• Supports SLC NAND Flash technology  
• Programmable timing on a per chip select basis  
• Programmable Flash Data width 8-bit or 16-bit  
9.2.4  
NAND Flash Error Corrected Code Controller  
• Integrated in the NAND Flash Controller  
• Single bit error correction and 2-bit Random detection.  
• Automatic Hamming Code Calculation while writing  
– ECC value available in a register  
• Automatic Hamming Code Calculation while reading  
– Error Report, including error flag, correctable error flag and word address being  
detected erroneous  
– Support 8- or 16-bit NAND Flash devices with 512-, 1024-, 2048- or 4096-byte  
pages  
42  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
10. System Controller  
The System Controller is a set of peripherals, which allow handling of key elements of the sys-  
tem such as power, resets, clocks, time, interrupts, watchdog, etc...  
The System Controller User Interface also embeds the registers allowing to configure the Matrix.  
43  
11057BS–ATARM–13-Jul-12  
Figure 10-1. System Controller Block Diagram  
VDDBU  
VDDIN  
vr_standby  
VDDOUT  
Software Controlled  
Voltage Regulator  
FWUP  
SHDN  
WKUP0 - WKUP15  
NRSTB  
Supply  
Controller  
VDDIO  
PIOx  
PIOA/B/C/D/E/F  
Input / Output Buffers  
Zero-Power  
Power-on Reset  
VDDANA  
ADVREF  
ADx  
General Purpose  
Backup Registers  
ADC & DAC  
DACx  
rtc_alarm  
SLCK  
RTC  
RTT  
bodbup_in  
bodbup_on  
VDDUTMI  
Supply  
Monitor  
rtt_alarm  
SLCK  
USBx  
USB  
osc32k_xtal_en  
XTALSEL  
VDDCORE  
vddcore_nreset  
XIN32  
Xtal 32 kHz  
Slow Clock  
SLCK  
Oscillator  
XOUT32  
bodcore_on  
bodcore_in  
Brownout  
Detector  
Embedded  
32 kHz RC  
Oscillator  
supc_interrupt  
osc32k_rc_en  
SRAM  
Backup Power Supply  
Peripherals  
proc_nreset  
vddcore_nreset  
Reset  
Controller  
Matrix  
Cortex-M3  
periph_nreset  
ice_nreset  
NRST  
Peripheral  
Bridge  
FSTT0 - FSTT15(1)  
Flash  
SLCK  
Embedded  
12 / 8 / 4 MHz  
RC  
Oscillator  
Main Clock  
MAINCK  
Master Clock  
Power  
Management  
Controller  
MCK  
XIN  
3- 20 MHz  
XTAL Oscillator  
XOUT  
MAINCK  
PLLACK  
UPLLCK  
Watchdog  
Timer  
SLCK  
PLLA  
UPLL  
MAINCK  
Core Power Supply  
FSTT0 - FSTT15 are possible Fast Startup Sources, generated by WKUP0-WKUP15 Pins,  
but are not physical pins.  
44  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
10.1 System Controller and Peripherals Mapping  
Please refer to Figure 8-1 on page 37.  
All the peripherals are in the bit band region and are mapped in the bit band alias region.  
10.2 Power-on-Reset, Brownout and Supply Monitor  
The SAM3X/A embeds three features to monitor, warn and/or reset the chip:  
• Power-on-Reset on VDDBU  
• Brownout Detector on VDDCORE  
• Supply Monitor on VDDUTMI  
10.2.1  
10.2.2  
Power-on-Reset on VDDBU  
The Power-on-Reset monitors VDDBU. It is always activated and monitors voltage at start up  
but also during power down. If VDDBU goes below the threshold voltage, the entire chip is reset.  
For more information, refer to the “Electrical Characteristics” section of the product datasheet.  
Brownout Detector on VDDCORE  
The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by soft-  
ware through the Supply Controller (SUPC_MR). It is especially recommended to disable it  
during low-power modes such as wait or sleep modes.  
If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more infor-  
mation, refer to the “Supply Controller” and “Electrical Characteristics” sections of the product  
datasheet.  
10.2.3  
Supply Monitor on VDDUTMI  
The Supply Monitor monitors VDDUTMI. It is not active by default. It can be activated by soft-  
ware and is fully programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is  
controlled by the Supply Controller (SUPC). A sample mode is possible. It allows to divide the  
supply monitor power consumption by a factor of up to 2048. For more information, refer to the  
“SUPC” and “Electrical Characteristics” sections of the product datasheet.  
10.3 Reset Controller  
The Reset Controller is capable to return to the software the source of the last reset, either a  
general reset, a wake-up reset, a software reset, a user reset or a watchdog reset.  
The Reset Controller controls the internal resets of the system and the NRST pin output. It is  
capable to shape a reset signal for the external devices, simplifying to a minimum connection of  
a push-button on the NRST pin to implement a manual reset.  
10.4 Supply Controller  
The Supply Controller controls the power supplies of each section of the processor and periph-  
erals (via Voltage regulator control).  
The Supply Controller has its own reset circuitry and is clocked by the 32 kHz Slow clock  
generator.  
The reset circuitry is based on a zero-power power-on reset cell. The zero-power power-on reset  
allows the Supply Controller to start properly.  
45  
11057BS–ATARM–13-Jul-12  
The Slow Clock generator is based on a 32 kHz crystal oscillator and an embedded 32 kHz RC  
oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the crystal  
oscillator and select it as the Slow Clock source.  
The Supply Controller starts up the device by enabling the Voltage Regulator, then it generates  
the proper reset signals to the core power supply.  
It also enables to set the system in different low power modes and to wake it up from a wide  
range of events.  
10.5 Clock Generator  
The Clock Generator is made up of:  
• One Low Power 32,768 Hz Slow Clock Oscillator with bypass mode  
• One Low Power RC Oscillator  
• One 3 to 20 MHz Crystal or Ceramic-based Oscillator, which can be bypassed  
• One factory-programmed Fast RC Oscillator; 3 output frequencies can be selected: 4, 8 or 12  
MHz. By default, 4 MHz is selected. 8 MHz and 12 MHz output are factory-calibrated.  
• One 480 MHz UPLL providing a clock for the USB OTG High Speed Controller. Input  
frequency is 12 MHz (only).  
• One 96 to 192 MHz programmable PLL (PLLA), capable to provide the clock MCK to the  
processor and to the peripherals. The input frequency of the PLL A is between 8 and 16 MHz.  
46  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
Figure 10-2. Clock Generator Block Diagram  
Clock Generator  
XTALSEL  
On Chip  
32k RC OSC  
Slow Clock  
SLCK  
XIN32  
Slow Clock  
Oscillator  
XOUT32  
XIN  
3-20 MHz  
Main  
Oscillator  
Main Clock  
MAINCK  
XOUT  
On Chip  
12/8/4 MHz  
RC OSC  
MAINSEL  
HSCK  
UPLL  
UPLL Clock  
UPLLCK  
Divider  
/6 /8  
PLL and  
Divider A  
PLLA Clock  
PLLACK  
Status  
Power  
Control  
Management  
Controller  
10.6 Power Management Controller  
The Power Management Controller provides all the clock signals to the system. It provides:  
• the Processor Clock HCLK  
• the Free running processor clock FCLK  
• the Cortex SysTick external clock  
• the Master Clock MCK, in particular to the Matrix and the memory interfaces  
• the USB OTG HS Clock UOTGCK  
• independent peripheral clocks, typically at the frequency of MCK  
• three programmable clock outputs: PCK0, PCK1 and PCK2  
The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The  
unused oscillator is disabled automatically so that power consumption is optimized.  
By default, at startup the chip runs out of the Master Clock using the Fast RC Oscillator running  
at 4 MHz.  
47  
11057BS–ATARM–13-Jul-12  
Figure 10-3. Power Management Controller Block Diagram  
Processor  
Clock  
Controller  
HCK  
int  
Sleep Mode  
Divider  
/8  
SystTick  
FCLK  
Master Clock Controller  
SLCK  
Prescaler  
/1,/2,/4,...,/64  
MAINCK  
PLLACK  
UPLL  
MCK  
Peripherals  
Clock Controller  
periph_clk[..]  
ON/OFF  
Programmable Clock Controller  
MCK  
ON/OFF  
SLCK  
MAINCK  
PLLACK  
UPLL  
Prescaler  
/1,/2,/4,...,/64  
pck[..]  
USB Clock Controller  
ON/OFF  
HSCK  
UOTGCK  
The SysTick calibration value is fixed at 10500, which allows the generation of a time base of  
1 ms with SystTick clock to 10.5 MHz (max HCLK/8).  
10.7 Watchdog Timer  
• 16-bit key-protected once-only Programmable Counter  
• Windowed, prevents the processor to be in a dead-lock on the watchdog access  
10.8 SysTick Timer  
• 24-bit down counter  
• Self-reload capability  
• Flexible system timer  
10.9 Real Time Timer  
• Real Time Timer, allowing backup of time with different accuracies  
– 32-bit Free-running back-up Counter  
– Integrates a 16-bit programmable prescaler running on slow clock  
– Alarm Register capable to generate a wake-up of the system  
48  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
10.10 Real Time Clock  
• Low power consumption  
• Full asynchronous design  
Two hundred year calendar  
• Programmable Periodic Interrupt  
• Alarm and update parallel load  
• Control of alarm and update Time/Calendar Data In  
10.11 General-Purpose Backup Registers  
• Eight 32-bit general-purpose backup registers  
10.12 Nested Vectored Interrupt Controller  
• Thirty maskable interrupts  
• Sixteen priority levels  
• Dynamic reprioritization of interrupts  
• Priority grouping  
– selection of preempting interrupt levels and non preempting interrupt levels.  
• Support for tail-chaining and late arrival of interrupts.  
– back-to-back interrupt processing without the overhead of state saving and  
restoration between interrupts.  
• Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no  
instruction overhead.  
10.13 Chip Identification  
• Chip Identifier (CHIPID) registers permit recognition of the device and its revision.  
• .JTAG ID: 0x05B2B03F  
Table 10-1. ATSAM3A/X Chip IDs Register  
Chip Name  
CHIPID_CIDR  
0x286E0A60  
0x285E0A60  
0x285B0960  
0x284E0A60  
0x284B0960  
0x283E0A60  
0x283B0960  
CHIPID_EXID  
ATSAM3X8H (Rev A)  
ATSAM3X8E (Rev A)  
ATSAM3X4E (Rev A)  
ATSAM3X8C (Rev A)  
ATSAM3X4C (Rev A)  
ATSAM3A8C (Rev A)  
ATSAM3A4C (Rev A)  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
49  
11057BS–ATARM–13-Jul-12  
10.14 UART  
Two-pin UART  
– Implemented features are 100% compatible with the standard Atmel USART  
– Independent receiver and transmitter with a common programmable Baud Rate  
Generator  
– Even, Odd, Mark or Space Parity Generation  
– Parity, Framing and Overrun Error Detection  
– Automatic Echo, Local Loopback and Remote Loopback Channel Modes  
– Support for two PDC channels with connection to receiver and transmitter  
10.15 PIO Controllers  
• Up to 6 PIO Controllers, PIOA, PIOB, PIOC, PIOD, PIOE and PIOF controlling a maximum of  
167 I/O Lines  
• Each PIO Controller controls up to 32 programmable I/O Lines  
Table 10-2. PIO Lines per PIO according to Version  
Version  
PIOA  
PIOB  
PIOC  
PIOD  
PIOE  
PIOF  
Total  
100 pin SAM3X/A  
144 pin SAM3X  
30  
32  
1
-
31  
10  
-
-
-
-
63  
103  
• Fully programmable through Set/Clear Registers  
• Multiplexing of four peripheral functions per I/O Line  
• For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)  
– Input change, rising edge, falling edge, low level and level interrupt  
– Debouncing and Glitch filter  
– Multi-drive option enables driving in open drain  
– Programmable pull-up on each I/O line  
– Pin data status register, supplies visibility of the level on the pin at any time  
• Synchronous output, provides Set and Clear of several I/O lines in a single write  
50  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
11. Peripherals  
11.1 Peripheral Identifiers  
Table 11-1 defines the Peripheral Identifiers of the SAM3X/A series. A peripheral identifier is  
required for the control of the peripheral interrupt with the Nested Vectored Interrupt Controller  
and for the control of the peripheral clock with the Power Management Controller.  
Note that some Peripherals are always clocked. Please refer to the table below.  
Table 11-1. Peripheral Identifiers  
Instance ID  
Instance Name  
SUPC  
RSTC  
RTC  
NVIC Interrupt  
PMC Clock Control  
Instance Description  
Supply Controller  
0
X
X
X
X
X
X
X
X
X
X
1
Reset Controller  
2
Real Time Clock  
3
RTT  
Real Time Timer  
4
WDG  
Watchdog Timer  
5
PMC  
Power Management Controller  
Enhanced Flash Controller 0  
Enhanced Flash Controller 1  
Universal Asynchronous Receiver Transceiver  
Static Memory Controller  
Reserved  
6
EEFC0  
EEFC1  
UART  
SMC  
7
8
9
X
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
PIOA  
PIOB  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Parallel I/O Controller A,  
Parallel I/O Controller B  
Parallel I/O Controller C  
Parallel I/O Controller D  
Parallel I/O Controller E  
Parallel I/O Controller F  
USART 0  
PIOC  
PIOD  
PIOE  
PIOF  
USART0  
USART1  
USART2  
USART3  
HSMCI  
TWI0  
USART 1  
USART 2  
USART 3  
Multimedia Card Interface  
Two-Wire Interface 0  
Two-Wire Interface 1  
Serial Peripheral Interface  
Serial Peripheral Interface  
Synchronous Serial Controller  
Timer Counter 0  
TWI1  
SPI0  
SPI1  
SSC  
TC0  
TC1  
Timer Counter 1  
TC2  
Timer Counter 2  
51  
11057BS–ATARM–13-Jul-12  
Table 11-1. Peripheral Identifiers (Continued)  
Instance ID  
Instance Name  
TC3  
NVIC Interrupt  
PMC Clock Control  
Instance Description  
Timer Counter 3  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
TC4  
Timer Counter 4  
TC5  
Timer Counter 5  
TC6  
Timer Counter 6  
TC7  
Timer Counter 7  
TC8  
Timer Counter 8  
PWM  
Pulse Width Modulation Controller  
ADC Controller  
ADC  
DACC  
DMAC  
UOTGHS  
TRNG  
EMAC  
CAN0  
CAN1  
DAC Controller  
DMA Controller  
USB OTG High Speed  
True Random Number Generator  
Ethernet MAC  
CAN Controller 0  
CAN Controller 1  
11.2 Peripheral Signal Multiplexing on I/O Lines  
The SAM3X/A series product features 3 PIO (SAM3A and 100-pin SAM3X) or 4 PIO (144-pin  
SAM3X) controllers, PIOA, PIOB, PIOC, PIOD, PIOE and PIOF, which multiplexes the I/O lines  
of the peripheral set.  
Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral  
functions, A or B. The multiplexing tables in the following paragraphs define how the I/O lines of  
the peripherals A and B are multiplexed on the PIO Controllers. The column “Comments” has  
been inserted in this table for the user’s own comments; it may be used to track how pins are  
defined in an application.  
Note that some peripheral function, which are output only, might be duplicated within both  
tables.  
52  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
11.2.1  
PIO Controller A Multiplexing  
Table 11-2. Multiplexing on PIO Controller A (PIOA)  
I/O Line  
PA0  
Peripheral A  
CANTX0  
CANRX0  
TIOA1  
Peripheral B  
PWML3  
PCK0  
Extra Function  
Comments  
PA1  
WKUP0  
AD0  
PA2  
NANDRDY  
PWMFI1  
NWAIT  
PWMFI0  
NCS0  
PA3  
TIOB1  
AD1/WKUP1  
AD2  
PA4  
TCLK1  
PA5  
TIOA2  
WKUP2  
AD3  
PA6  
TIOB2  
PA7  
TCLK2  
NCS1  
WKUP3  
WKUP4  
PA8  
URXD  
PWMH0  
PWMH3  
DATRG  
ADTRG  
PWML1  
PWMH2  
TK  
PA9  
UTXD  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
PA17  
PA18  
PA19  
PA20  
PA21  
PA22  
PA23  
PA24  
PA25  
PA26  
PA27  
PA28  
PA29  
PA30  
PA31  
RXD0  
WKUP5  
WKUP6  
WKUP7  
TXD0  
RXD1  
TXD1  
RTS1  
CTS1  
TF  
WKUP8  
AD7  
SCK1  
TD  
TWD0  
SCK0  
TWCK0  
MCCK  
A20  
WKUP9  
PWMH1  
PWML2  
PWML0  
TCLK3  
TCLK4  
PCK1  
MCCDA  
MCDA0  
MCDA1  
MCDA2  
MCDA3  
SPI0_MISO  
SPI0_MOSI  
SPI0_SPCK  
SPI0_NPCS0  
SPI0_NPCS1  
SPI0_NPCS2  
SPI0_NPCS3  
AD4  
AD5  
AD6  
A18  
A19  
A20  
WKUP10  
WKUP11  
PCK2  
NRD  
PCK1  
PCK2  
53  
11057BS–ATARM–13-Jul-12  
11.2.2  
PIO Controller B Multiplexing  
Table 11-3. Multiplexing on PIO Controller B (PIOB)  
I/O Line  
PB0  
Peripheral A  
ETXCK/EREFCK (1)  
ETXEN (1)  
ETX0 (1)  
ETX1 (1)  
ECRSDV/ERXDV (1)  
ERX0 (1)  
ERX1 (1)  
ERXER (1)  
EMDC (1)  
EMDIO (1)  
UOTGVBOF  
UOTGID  
TWD1  
Peripheral B  
TIOA3 (2)  
TIOB3 (2)  
TIOA4 (2)  
TIOB4 (2)  
TIOA5 (2)  
TIOB5 (2)  
PWML4 (2)  
PWML5 (2)  
PWML6 (2)  
PWML7 (2)  
A18  
Extra Function  
Comments  
See the Notes  
See the Notes  
See the Notes  
See the Notes  
See the Notes  
See the Notes  
See the Notes  
See the Notes  
See the Notes  
See the Notes  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PB8  
PB9  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
PB16  
PB17  
PB18  
PB19  
PB20  
PB21  
PB22  
PB23  
PB24  
PB25  
PB26  
PB27  
PB28  
PB29  
PB30  
PB31  
A19  
PWMH0  
PWMH1  
PWMH2  
PWMH3  
PWML0  
AD8  
AD9  
TWCK1  
CANTX1  
CANRX1  
TCLK5  
DAC0/WKUP12  
DAC1  
RF  
PWML1  
AD10  
RD  
PWML2  
AD11  
RK  
PWML3  
AD12  
TXD2  
SPI0_NPCS1  
SPI0_NPCS2  
PCK0  
AD13  
RXD2  
AD14/WKUP13  
RTS2  
CTS2  
SPI0_NPCS3  
NCS2  
WKUP14  
WKUP15  
SCK2  
RTS0  
TIOA0  
CTS0  
TCLK0  
NCS3  
TIOB0  
TCK/SWCLK  
TDI  
TCK after reset  
TDI after reset  
TDO after reset  
TMS after reset  
TDO/TRACESWO  
TMS/SWDIO  
Notes: 1. SAM3X only  
2. SAM3A only  
54  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
11.2.3  
PIO Controller C Multiplexing  
Table 11-4. Multiplexing on PIO Controller C (PIOC)  
I/O Line  
PC0  
Peripheral A  
Peripheral B  
Extra Function  
Comments  
ERASE  
PC1  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
PC2  
D0  
D1  
PWML0  
PWMH0  
PWML1  
PWMH1  
PWML2  
PWMH2  
PWML3  
PWMH3  
ECRS  
PC3  
PC4  
D2  
PC5  
D3  
PC6  
D4  
PC7  
D5  
PC8  
D6  
PC9  
D7  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
PC16  
PC17  
PC18  
PC19  
PC20  
PC21  
PC22  
PC23  
PC24  
PC25  
PC26  
PC27  
PC28  
PC29  
PC30  
D8  
D9  
ERX2  
D10  
D11  
D12  
D13  
D14  
D15  
NWR0/NWE  
NANDOE  
NANDWE  
A0/NBS0  
A1  
ERX3  
ECOL  
ERXCK  
ETX2  
ETX3  
ETXER  
PWMH6  
PWMH5  
PWMH4  
PWML4  
PWML5  
PWML6  
PWML7  
TIOA6  
A2  
A3  
A4  
A5  
TIOB6  
A6  
TCLK6  
TIOA7  
A7  
A8  
TIOB7  
A9  
TCLK7  
55  
11057BS–ATARM–13-Jul-12  
11.2.4  
PIO Controller D Multiplexing  
Table 11-5. Multiplexing on PIO Controller D (PIOD)  
I/O Line  
PD0  
Peripheral A  
Peripheral B  
MCDA4  
MCDA5  
MCDA6  
MCDA7  
TXD3  
Extra Function  
Comments  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
144 pins  
A10  
A11  
PD1  
PD2  
A12  
PD3  
A13  
PD4  
A14  
PD5  
A15  
RXD3  
PD6  
A16  
PWMFI2  
TIOA8  
PD7  
A17  
PD8  
A21/NANDALE  
A22/NANDCLE  
NWR1/NBS1  
TIOB8  
PD9  
TCLK8  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PD16  
PD17  
PD18  
PD19  
PD20  
PD21  
PD22  
PD23  
PD24  
PD25  
PD26  
PD27  
PD28  
PD29  
PD30  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
56  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
11.2.5  
PIO Controller E Multiplexing  
Table 11-6. Multiplexing on PIO Controller E (PIOE)  
I/O Line  
PE0  
Peripheral A  
A19  
Peripheral B  
Extra Function  
Comments  
PE1  
A20  
PE2  
A21/NANDALE  
A22/NANDCLE  
A23  
PE3  
PE4  
PE5  
NCS4  
PE6  
NCS5  
PE7  
PE8  
PE9  
TIOA3  
TIOB3  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PE16  
PE17  
PE18  
PE19  
PE20  
PE21  
PE22  
PE23  
PE24  
PE25  
PE26  
PE27  
PE28  
PE29  
PE30  
PE31  
TIOA4  
TIOB4  
TIOA5  
TIOB5  
PWMH0  
PWMH1  
PWML2  
PWML0  
PWML4  
PWMH4  
PWML5  
PWMH5  
PWML6  
PWMH6  
PWML7  
PWMH7  
NCS7  
SCK3  
NCS6  
MCCDB  
MCDB0  
MCDB1  
MCDB2  
MCDB3  
SPI1_MISO  
SPI1_MOSI  
SPI1_SPCK  
SPI1_NPCS0  
57  
11057BS–ATARM–13-Jul-12  
11.2.6  
PIO Controller F Multiplexing  
Table 11-7. Multiplexing on PIO Controller F (PIOF)  
I/O Line  
PF0  
Peripheral A  
SPI1_NPCS1  
SPI1_NPCS2  
SPI1_NPCS3  
PWMH3  
Peripheral B  
Extra Function  
Comments  
PF1  
PF2  
PF3  
PF4  
CTS3  
PF5  
RTS3  
58  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
12. Embedded Peripherals Overview  
12.1 Serial Peripheral Interface (SPI)  
• Supports communication with serial external devices  
– Four chip selects with external decoder support allow communication with up to 15  
peripherals  
– Serial memories, such as DataFlash and 3-wire EEPROMs  
– Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and  
Sensors  
– External co-processors  
• Master or slave serial peripheral bus interface  
– 8- to 16-bit programmable data length per chip select  
– Programmable phase and polarity per chip select  
– Programmable transfer delays between consecutive transfers and between clock  
and data per chip select  
– Programmable delay between consecutive transfers  
– Selectable mode fault detection  
• Very fast transfers supported  
Transfers with baud rates up to MCK  
– The chip select line may be left active to speed up transfers on the same device  
– Four Character FIFO in Reception  
• Connection to DMA Channel Capabilities Optimizes Data Transfers  
– One channel for the Receiver, One Channel for the Transmitter  
12.2 Two Wire Interface (TWI)  
• Master, Multi-Master and Slave Mode Operation  
• Compatibility with Atmel two-wire interface, serial memory and I2C compatible devices  
• One, two or three bytes for slave address  
• Sequential read/write operations  
• Bit Rate: up to 400 kbit/s  
• General Call Supported in Slave Mode  
• SMBUS Quick Command Supported in Master Mode  
• Connection to Peripheral DMA Controller (PDC) for TWI0 and TWI1 and DMA Controller  
(DMAC) for TWI0 Channel Capabilities Optimizes Data Transfers in Master Mode Only  
12.3 Universal Asynchronous Receiver Transceiver (UART)  
Two-pin UART  
– Independent receiver and transmitter with a common programmable Baud Rate  
Generator  
– Even, Odd, Mark or Space Parity Generation  
– Parity, Framing and Overrun Error Detection  
– Automatic Echo, Local Loopback and Remote Loopback Channel Modes  
59  
11057BS–ATARM–13-Jul-12  
– Support for two PDC channels with connection to receiver and transmitter  
– Connection to Peripheral DMA Controller or DMA Controller (TWI0) Channel  
Capabilities Optimizes Data Transfers  
12.4 USART  
• Programmable Baud Rate Generator  
• 5- to 9-bit full-duplex synchronous or asynchronous serial communications  
– 1, 1.5 or 2 stop bits in Asynchronous Mode, or 1 or 2 stop bits in Synchronous Mode  
– Parity generation and error detection  
– Framing error detection, overrun error detection  
– MSB- or LSB-first  
– Optional break generation and detection  
– By 8 or by-16 over-sampling receiver frequency  
– Hardware handshaking RTS-CTS  
– Receiver time-out and transmitter timeguard  
– Optional Multi-drop Mode with address generation and detection  
– Optional Manchester Encoding  
• RS485 with driver control signal  
• ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards  
– NACK handling, error counter with repetition and iteration limit  
• SPI Mode  
– Master or Slave  
– Serial Clock programmable Phase and Polarity  
– SPI Serial Clock (SCK) Frequency up to MCK/6  
• IrDA modulation and demodulation  
– Communication at up to 115.2 Kbps  
• LIN Mode (USART0 only)  
– Compliant with LIN 1.3 and LIN 2.0 specifications  
– Master or Slave  
– Processing of frames with up to 256 data bytes  
– Response Data length can be configurable or defined automatically by the Identifier  
– Self synchronization in Slave node configuration  
– Automatic processing and verification of the “Synch Break” and the “Synch Field”  
– The “Synch Break” is detected even if it is partially superimposed with a data byte  
– Automatic Identifier parity calculation/sending and verification  
– Parity sending and verification can be disabled  
– Automatic Checksum calculation/sending and verification  
– Checksum sending and verification can be disabled  
– Support both “Classic” and “Enhanced” checksum types  
– Full LIN error checking and reporting  
– Frame Slot Mode: the Master allocates slots to the scheduled frames automatically  
60  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
– Generation of the Wakeup signal  
Test Modes  
– Remote Loopback, Local Loopback, Automatic Echo  
• Interfaced with Peripheral DMA (PDC) Channels to Reduce Processor Overhead (All  
USARTs) and with the DMA Controller (DMAC) (USART0 and 1)  
12.5 Serial Synchronous Controller (SSC)  
• Provides serial synchronous communication links used in audio and telecom applications  
(with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader,...)  
• Contains an independent receiver and transmitter and a common clock divider  
• Offers a configurable frame sync and data length  
• Receiver and transmitter can be programmed to start automatically or on detection of  
different event on the frame sync signal  
• Receiver and transmitter include a data signal, a clock signal and a frame synchronization  
signal  
• Interfaced with the DMA Controller (DMAC) to Reduce Processor Overhead  
12.6 Timer Counter (TC)  
• Three 32-bit Timer Counter Channels  
• Wide range of functions including:  
– Frequency Measurement  
– Event Counting  
– Interval Measurement  
– Pulse Generation  
– Delay Timing  
– Pulse Width Modulation  
– Up/down Capabilities  
• Each channel is user-configurable and can contain:  
– Three external clock inputs  
– Five internal clock inputs  
Two multi-purpose input/output signals  
Two global registers that act on all three TC Channels  
• Quadrature decoder  
– Advanced line filtering  
– Position / revolution / speed  
• 2-bit Gray Up/Down Counter for Stepper Motor  
61  
11057BS–ATARM–13-Jul-12  
12.7 Pulse Width Modulation Controller (PWM)  
• One Eight-channel (SAM3A and 144-pin SAM3X) or One Four-channel (100-pin SAM3X) 16-  
bit PWM Controller, 16-bit counter per channel  
• Common clock generator, providing Thirteen Different Clocks  
– A Modulo n counter providing eleven clocks  
Two independent Linear Dividers working on modulo n counter outputs  
– High Frequency Asynchronous clocking mode  
• Independent channel programming  
– Independent Enable Disable Commands  
– Independent Clock Selection  
– Independent Period and Duty Cycle, with Double Bufferization  
– Programmable selection of the output waveform polarity  
– Programmable center or left aligned output waveform  
– Independent Output Override for each channel  
– Independent complementary Outputs with 12-bit dead time generator for each  
channel  
– Independent Enable Disable Commands  
– Independent Clock Selection  
– Independent Period and Duty Cycle, with Double Bufferization  
• Synchronous Channel mode  
– Synchronous Channels share the same counter  
– Mode to update the synchronous channels registers after a programmable number  
of periods  
• Interfaced with Peripheral DMA (PDC) or with the DMA Controller (DMAC) Channels to  
Reduce Processor Overhead  
Two independent event lines which can send up to 4 triggers on ADC within a period  
• Three programmable external (PWMFIx pins) and three internal (from ADC, PMC controller  
and Timer 0) Fault Inputs providing an asynchronous protection of outputs without MCU  
intervention  
• Stepper motor control (2 Channels)  
12.8 High Speed Multimedia Card Interface (HSMCI)  
• Compatibility with MultiMedia Card Specification Version 4.3  
• Compatibility with SD Memory Card Specification Version 2.0  
• Compatibility with SDIO Specification Version V2.0  
• Compatibility with CE-ATA Specification 1.1  
• Cards clock rate up to Master Clock divided by 2  
• Boot Operation Mode support  
• High Speed mode support  
• Embedded power management to slow down clock rate when not used  
• Supports 2 Multiplexed Slot(s)  
62  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
– Each Slot for either a High Speed MultiMediaCard Bus (Up to 30 Cards) or an SD  
Memory Card  
• Support for Stream, Block and Multi-block Data Read and Write  
• Supports Connection to DMA Controller (DMAC)  
– Minimizes Processor Intervention for Large Buffer Transfers  
• Built in FIFO (from 16 to 256 bytes) with Large Memory Aperture Supporting Incremental  
Access  
• Support for CE-ATA Completion Signal Disable Command  
• Protection Against Unexpected Modification On-the-Fly of the Configuration Registers  
12.9 USB On-The-Go High Speed Port (UOTGHS)  
• USB2.0 Compliant, Low/Full/High-Speed (LS/FS/HS) and On-The-Go, 1.5Mb/s, 12Mb/s,  
480Mb/s  
• 10 Pipes/Endpoints  
• 4K bytes of Embedded Dual-Port RAM (DPRAM) for Pipes/Endpoints  
• Up to 2 Memory Banks per Pipe/Endpoint (Not for Control Pipe/Endpoint)  
• Flexible Pipe/Endpoint Configuration and Management with 6 Dedicated DMA Channels  
• On-Chip UTMI transceiver including Pull-ups/Pull-downs  
• On-Chip OTG pad including VBUS analog comparator  
12.10 Analog-to-Digital Converter (ADC)  
• 12-bit Resolution  
• 1 MHz Conversion Rate  
• 2.4 V to 3.6 V Wide Range Power Supply Operation  
• Selectable Single Ended or Differential Input Voltage  
• Programmable Gain and Offset per channel For Maximum Full Scale Input Range 0 - VDD  
• Integrated Multiplexer Offering Up to 16 Independent Analog Inputs  
• Individual Enable and Disable of Each Channel  
• Hardware or Software Trigger  
– External Trigger Pin  
– Timer Counter Outputs (Corresponding TIOA Trigger)  
– Internal Trigger Counter  
– PWM Event Line  
• Drive of PWM Fault Input  
• PDC Support  
• Possibility of ADC Timings Configuration  
Two Sleep Modes and Conversion Sequencer  
– Automatic Wakeup on Trigger and Back to Sleep Mode after Conversions of all  
Enabled Channels  
– Possibility of Customized Channel Sequence  
• Standby Mode for Fast Wakeup Time Response  
– Power Down Capability  
63  
11057BS–ATARM–13-Jul-12  
• Automatic Window Comparison of Converted Values  
• Write Protect Registers  
12.11 Digital-to-Analog Converter (DAC)  
• 2 channels, 12-bit DAC  
• Up to 1 mega-sample conversion rate in single channel mode  
• Flexible conversion range  
• Multiple trigger sources for each channel  
• Built-in offset and gain calibration  
• Possibility to drive output to ground  
• Possibility to use as input to analog comparator or ADC (as an internal wire and without S/H  
stage)  
Two PDCA channels  
• Power reduction mode  
12.12 CAN Controller (CAN)  
• Fully Compliant with CAN 2.0 Part A and 2.0 Part B  
• Bit Rates up to 1Mbit/s  
• 8 Object Oriented Mailboxes with the Following Properties:  
– CAN Specification 2.0 Part A or 2.0 Part B Programmable for Each Message  
– Object Configurable in Receive (with Overwrite or Not) or Transmit Modes  
– Independent 29-bit Identifier and Mask Defined for Each Mailbox  
– 32-bit Access to Data Registers for Each Mailbox Data Object  
– Uses a CAN_SIZE_COUNTER-bit Timestamp on Receive and Transmit Messages  
– Hardware Concatenation of ID Masked Bitfields To Speed Up Family ID Processing  
• 16-bit Internal Timer for Timestamping and Network Synchronization  
• Programmable Reception Buffer Length up to 8 Mailbox Objects  
• Priority Management between Transmission Mailboxes  
• Autobaud and Listening Mode  
• Low Power Mode and Programmable Wake-up on Bus Activity or by the Application  
• Data, Remote, Error and Overload Frame Handling  
12.13 Ethernet MAC (EMAC)  
• DMA Master on Receive and Transmit Channels  
• Compatible with IEEE Standard 802.3  
• 10 and 100 Mbit/s operation  
• Full- and half-duplex operation  
• Statistics Counter Registers  
• MII (144-pin SAM3X)/RMII (all SAM3X) interface to the physical layer  
• Interrupt generation to signal receive and transmit completion  
64  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
• 128-byte transmit FIFO and 128-byte receive FIFO  
• Automatic pad and CRC generation on transmitted frames  
• Automatic discard of frames received with errors  
• Address checking logic supports up to four specific 48-bit addresses  
• Support Promiscuous Mode where all valid received frames are copied to memory  
• Hash matching of unicast and multicast destination addresses  
• Physical layer management through MDIO interface  
• Half-duplex flow control by forcing collisions on incoming frames  
• Full-duplex flow control with recognition of incoming pause frames  
• Support for 802.1Q VLAN tagging with recognition of incoming VLAN and priority tagged  
• Frames  
• Multiple buffers per receive and transmit frame  
• Jumbo frames up to 10,240 bytes supported  
12.14 True Random Number Generator (TRNG)  
• Passed NIST Special Publication 800-22 Tests Suite  
• Passed Diehard Random Tests Suite  
• Provides a 32-bit Random Number Every 84 Clock Cycles  
12.15 External Bus Interface (EBI)  
• Only present on 144-pin version of SAM3X  
• Managing SMC, Nand Flash accesses offering:  
– Up to 8 Configurable chip select  
– Programmable timing on a per chip select basis  
– 16-Mbyte Address Space per Chip Select  
– 8- or 16-bit Data Bus  
– Word, Halfword, Byte Transfers  
– Byte Write or Byte Select Lines  
– Programmable Setup, Pulse and Hold Time for Read Signals per Chip Select  
– Programmable Setup, Pulse and Hold Time for Write Signals per Chip Select  
– Programmable Data Float Time per Chip Select  
– External Wait Request  
– Automatic Switch to Slow Clock Mode  
– Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to  
32 Bytes  
– NAND Flash Controller supporting NAND Flash with Multiplexed Data/Address  
buses  
– Supports SLC NAND Flash technology  
– Supports Hardware Error Correcting Code (ECC), 1-bit error correction, 2-bit error  
detection  
– Detection and Correction by Software  
65  
11057BS–ATARM–13-Jul-12  
13. Package Drawings  
The SAM3X/A series devices are available in QFP (LQFP or PQFP) and LFBGA packages.  
Figure 13-1. 100-lead LQFP Package Drawing  
Note : 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026 for additional information.  
66  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
Figure 13-2. 100-ball LFBGA Package Drawing  
67  
11057BS–ATARM–13-Jul-12  
Figure 13-3. 144-lead LQFP Package Drawing  
68  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
Figure 13-4. 144-ball LFBGA Package Drawing  
All dimensions are in mm  
69  
11057BS–ATARM–13-Jul-12  
13.1 Marking  
All devices are marked with the Atmel logo and the ordering code.  
Additional marking may be in one of the following formats:  
YYWW  
V
ARM  
XXXXXXXXX  
where  
• “YY”: manufactory year  
• “WW”: manufactory week  
• “V”: revision  
“XXXXXXXXX”: lot number  
70  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
SAM3X/A  
14. Ordering Information  
Table 14-1. SAM3X/A Ordering Information  
Flash  
Temperature  
Ordering Code  
MRL  
(Kbytes)  
Package  
Package Type  
Operating Range  
Industrial  
-40°C to 85°C  
ATSAM3A4CA-AU  
A
256  
LQFP100  
Green  
Industrial  
-40°C to 85°C  
ATSAM3A8CA-AU  
ATSAM3A4CA-CU  
ATSAM3A8CA-CU  
ATSAM3X4CA-AU  
ATSAM3X8CA-AU  
ATSAM3X4CA-CU  
ATSAM3X8CA-CU  
ATSAM3X4EA-AU  
ATSAM3X8EA-AU  
ATSAM3X4EA-CU  
ATSAM3X8EA-CU  
A
A
A
A
A
A
A
A
A
A
A
512  
256  
512  
256  
512  
256  
512  
256  
512  
256  
512  
LQFP100  
LFBGA100  
LFBGA100  
LQFP100  
LQFP100  
LFBGA100  
LFBGA100  
LQFP144  
LQFP144  
LFBGA144  
LFBGA144  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
71  
11057BS–ATARM–13-Jul-12  
Revision History  
In the tables that follow, the most recent version of the document appears first.  
“rfo” indicates changes requested during the review and approval loop.  
Change  
Request  
Ref.  
Doc. Rev  
11057BS  
Comments  
SDRAM Controller info removed: Section “Features”; Table 1-1, “Configuration Summary”; Table 3-1,  
“Signal Description List”; Section 9.2.1 “External Memory Bus”; Section 10. “System Controller”;  
Table 11.1, “Peripheral Identifiers”; Section 12.15 “External Bus Interface (EBI)”, and Figure 8-1  
”SAM3X/A Product Mapping”.  
8316  
I/O info modified in Section “Features”.  
Section 1. “SAM3X/A Description” updated.  
Figure 2-3 ”SAM3X4/8E (144 pins) Block Diagram” updated.  
Table 11-5, “Multiplexing on PIO Controller D (PIOD)” updated.  
“Write protected Registers” added to Section “Features”.  
8213  
Change  
Request  
Ref.  
Doc. Rev  
11057AS  
Comments  
First issue  
72  
SAM3X/A  
11057BS–ATARM–13-Jul-12  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: (+1) (408) 441-0311  
Fax: (+1) (408) 487-2600  
Atmel Asia Limited  
Unit 01-5 & 16, 19F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
HONG KONG  
Atmel Munich GmbH  
Business Campus  
Parkring 4  
D-85748 Garching b. Munich  
GERMANY  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
JAPAN  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Tel: (+49) 89-31970-0  
Fax: (+49) 89-3194621  
Tel: (+852) 2245-6100  
Fax: (+852) 2722-1369  
Product Contact  
Web Site  
www.atmel.com  
www.atmel.com/AT91SAM  
Technical Support  
AT91SAM Support  
Atmel technical support  
Sales Contacts  
www.atmel.com/contacts/  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifica-  
tions and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically pro-  
vided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted  
for use as components in applications intended to support or sustain life.  
© 2012 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, SAM-BA® and others are registered trademarks or  
trademarks of Atmel Corporation or its subsidiaries. ARM®, ARM®Powered logo, Cortex®, Thumb®-2 and others are registered trademarks or  
trademarks of ARM Ltd. Other terms and product names may be trademarks of others.  
11057BS–ATARM–13-Jul-12  

相关型号:

ATSAM3X4EA-AU

AT91SAM ARM-based Flash MCU
ATMEL

ATSAM3X4EA-CU

AT91SAM ARM-based Flash MCU
ATMEL

ATSAM3X8CA-AU

AT91SAM ARM-based Flash MCU
ATMEL

ATSAM3X8CA-CU

AT91SAM ARM-based Flash MCU
ATMEL

ATSAM3X8EA-AU

AT91SAM ARM-based Flash MCU
ATMEL

ATSAM3X8EA-CU

AT91SAM ARM-based Flash MCU
ATMEL

ATSAM4E-EK

EVAL KIT FOR SAM4E CORTEX
MICROCHIP

ATSAM4E-XPRO

SAM4E XPLAINED PRO EVAL KIT
MICROCHIP

ATSAM4E16CA-ANR

IC MCU 32BIT 1MB FLASH 100LQFP
MICROCHIP

ATSAM4E16CB-AN

IC MCU 32BIT 1MB FLASH 100LQFP
MICROCHIP

ATSAM4E16CB-CNR

IC MCU 32BIT 1MB FLASH 100TFBGA
MICROCHIP

ATSAM4E16EA-ANR

IC MCU 32BIT 1MB FLASH 144LQFP
MICROCHIP