ATTINY13APRE [ATMEL]

8-bit Microcontroller with 8K Bytes In-System Programmable Flash; 8位微控制器具有8K字节的系统内可编程闪存
ATTINY13APRE
型号: ATTINY13APRE
厂家: ATMEL    ATMEL
描述:

8-bit Microcontroller with 8K Bytes In-System Programmable Flash
8位微控制器具有8K字节的系统内可编程闪存

闪存 微控制器
文件: 总38页 (文件大小:2201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Appendix A – ATtiny13A Specification at 105°C  
This document contains information specific to devices operating at temperatures up  
to 105°C. Only deviations are covered in this appendix, all other information can be  
found in the complete datasheet. The complete datasheet can be found at  
www.atmel.com.  
8-bit  
Microcontroller  
with 1K Bytes  
In-System  
Programmable  
Flash  
ATtiny13A  
Appendix A  
Preliminary  
Rev. 8126A–Appendix A–AVR–07/10  
1. Electrical Characteristics  
1.1  
Absolute Maximum Ratings*  
*NOTICE:  
Stresses beyond those listed under “Absolute  
Maximum Ratings” may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or  
other conditions beyond those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions for extended periods may affect  
device reliability.  
Operating Temperature.................................. -55°C to +125°C  
Storage Temperature..................................... -65°C to +150°C  
Voltage on any Pin except RESET  
with respect to Ground ................................-0.5V to VCC+0.5V  
Voltage on RESET with respect to Ground......-0.5V to +13.0V  
Maximum Operating Voltage ............................................ 6.0V  
DC Current per I/O Pin ............................................... 40.0 mA  
DC Current VCC and GND Pins................................ 200.0 mA  
1.2  
DC Characteristics  
Table 1-1.  
DC Characteristics, TA = -40°C to +105°C  
Symbol  
Parameter  
Condition  
Min  
-0.5  
-0.5  
Typ  
Max  
0.2VCC  
0.3VCC  
Units  
(1)  
(1)  
VCC = 1.8 - 2.4V  
VCC = 2.4 - 5.5V  
V
V
Input Low Voltage,  
Any Pin as I/O  
VIL  
Input Low Voltage,  
(1)  
VCC = 1.8 - 5.5V  
VCC = 1.8 - 2.4V  
-0.5  
0.2VCC  
V
RESET Pin as Reset (2)  
(3)  
(3)  
0.7VCC  
0.6VCC  
VCC + 0.5  
VCC + 0.5  
V
V
Input High Voltage,  
Any Pin as I/O  
VCC = 2.4 - 5.5V  
VIH  
Input High Voltage,  
(3)  
VCC = 1.8 - 5.5V  
0.9VCC  
VCC + 0.5  
V
RESET Pin as Reset (2)  
IOL = 20 mA, VCC = 5V  
IOL = 10 mA, VCC = 3V  
IOL = 10 mA, VCC = 5V  
0.8  
0.6  
0.8  
0.6  
V
V
V
V
V
V
V
V
Output Low Voltage,  
Pins PB0 and PB1 (4)  
VOL  
Output Low Voltage,  
Pins PB2, PB3 and PB4 (4)  
I
OL = 5 mA, VCC = 3V  
IOH = -20 mA, VCC = 5V  
IOH = -10 mA, VCC = 3V  
IOH = -10 mA, VCC = 5V  
IOH = -5 mA, VCC = 3V  
4.0  
2.3  
4.2  
2.5  
Output High Voltage,  
Pins PB0 and PB1 (5)  
VOH  
Output High Voltage,  
Pins PB2, PB3 and PB4 (5)  
Input Leakage  
Current I/O Pin  
ILIL  
ILIH  
VCC = 5.5V, pin low  
-1  
-1  
1
1
µA  
µA  
Input Leakage  
Current I/O Pin  
VCC = 5.5V, pin high  
Pull-Up Resistor, I/O Pin  
VCC = 5.5V, input low  
20  
30  
50  
80  
kΩ  
kΩ  
RPU  
Pull-Up Resistor, Reset Pin VCC = 5.5V, input low  
2
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Table 1-1.  
Symbol  
DC Characteristics, TA = -40°C to +105°C (Continued)  
Parameter  
Condition  
Min  
Typ  
0.2  
Max  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
f = 1MHz, VCC = 2V  
f = 4MHz, VCC = 3V  
f = 8MHz, VCC = 5V  
f = 1MHz, VCC = 2V  
f = 4MHz, VCC = 3V  
f = 8MHz, VCC = 5V  
WDT enabled, VCC = 3V  
WDT disabled, VCC = 3V  
0.35  
1.8  
6
Supply Current,  
Active Mode (6)  
1.2  
3.6  
0.03  
0.2  
0.2  
1
ICC  
Supply Current,  
Idle Mode  
0.7  
3
3.9  
10  
2
Supply Current,  
Power-Down Mode  
0.15  
µA  
Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low.  
2. Not tested in production.  
3. “Min” means the lowest value where the pin is guaranteed to be read as high.  
4. Although each I/O port can under non-transient, steady state conditions sink more than the test conditions, the sum of all IOL  
(for all ports) should not exceed 60 mA. If IOL exceeds the test condition, VOL may exceed the related specification. Pins are  
not guaranteed to sink current greater than the listed test condition.  
5. Although each I/O port can under non-transient, steady state conditions source more than the test conditions, the sum of all  
IOH (for all ports) should not exceed 60 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins  
are not guaranteed to source current greater than the listed test condition.  
6. Measured with all I/O modules turned off (PRR = 0xFF).  
1.3  
Clock Characteristics  
1.3.1  
Accuracy of Calibrated Internal Oscillator  
It is possible to manually calibrate the internal oscillator to be more accurate than default factory calibration. Note that the  
oscillator frequency depends on temperature and voltage. Voltage and temperature characteristics can be found in Figure  
2-53 on page 32, Figure 2-54 on page 33, Figure 2-55 on page 33, and in Figure 2-56 on page 34.  
Table 1-2.  
Calibration Accuracy of Internal Oscillator  
Calibration  
Method  
Accuracy at given Voltage  
& Temperature(1)  
Target Frequency  
VCC  
Temperature  
Factory  
Calibration  
4.8 / 9.6 MHz  
3V  
25°C  
±10%  
±2%  
Fixed temperature  
within:  
-40°C to +105°C  
Fixed frequency within:  
4 – 5 MHz / 8 – 10 MHz  
Fixed voltage within:  
1.8V – 5.5V  
User  
Calibration  
Notes: 1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).  
3
8126A–Appendix A–AVR–07/10  
1.4  
System and Reset Characteristics  
1.4.1  
Enhanced Power-On Reset  
Table 1-3.  
Symbol  
VPOR  
Characteristics of Enhanced Power-On Reset. TA = -40 to +105°C  
Parameter  
Min(1)  
Typ(1)  
Max(1)  
Units  
V
Release threshold of power-on reset (2)  
Activation threshold of power-on reset (3)  
Power-On Slope Rate  
1.1  
1.4  
1.6  
VPOA  
0.6  
1.3  
1.6  
V
SRON  
0.01  
V/ms  
Note:  
1. Values are guidelines only.  
2. Threshold where device is released from reset when voltage is rising.  
3. The Power-on Reset will not work unless the supply voltage has been below VPOA  
.
1.5  
ADC Characteristics  
Table 1-4.  
Symbol  
ADC Characteristics, Single Ended Channels. TA = -40°C to +105°C  
Parameter Condition  
Min  
Typ  
Max  
Units  
Resolution  
10  
Bits  
VREF = 4V, VCC = 4V,  
ADC clock = 200 kHz  
3
4
LSB  
LSB  
VREF = 4V, VCC = 4V,  
ADC clock = 1 MHz  
Absolute accuracy  
(Including INL, DNL, and  
Quantization, Gain and Offset  
Errors)  
VREF = 4V, VCC = 4V,  
ADC clock = 200 kHz,  
Noise Reduction Mode  
2.5  
3.5  
1
LSB  
LSB  
LSB  
VREF = 4V, VCC = 4V,  
ADC clock = 1 MHz,  
Noise Reduction Mode  
Integral Non-Linearity (INL)  
(Accuracy after Offset and  
Gain Calibration)  
VREF = 4V, VCC = 4V,  
ADC clock = 200 kHz  
Differential Non-linearity  
(DNL)  
VREF = 4V, VCC = 4V,  
ADC clock = 200 kHz  
0.5  
3.5  
2.5  
LSB  
LSB  
LSB  
VREF = 4V, VCC = 4V,  
Gain Error  
ADC clock = 200 kHz  
VREF = 4V, VCC = 4V,  
ADC clock = 200 kHz  
Offset Error  
Conversion Time  
Free Running Conversion  
13  
50  
260  
1000  
VREF  
µs  
kHz  
V
Clock Frequency  
VIN  
Input Voltage  
GND  
Input Bandwidth  
38.5  
1.1  
kHz  
V
VINT  
RAIN  
Internal Voltage Reference  
Analog Input Resistance  
1.0  
1.2  
100  
MΩ  
4
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
1.6  
Analog Comparator Characteristics  
Table 1-5.  
Symbol  
VAIO  
Analog Comparator Characteristics, TA = -40°C to +105°C  
Parameter  
Condition  
Min  
Typ  
Max  
40  
Units  
mV  
Input Offset Voltage  
VCC = 5V, VIN = VCC / 2  
VCC = 5V, VIN = VCC / 2  
VCC = 2.7V  
< 10  
ILAC  
Input Leakage Current  
-50  
50  
nA  
750  
500  
100  
75  
Analog Propagation Delay  
(from saturation to slight overdrive)  
V
CC = 4.0V  
VCC = 2.7V  
CC = 4.0V  
VCC = 1.8V - 5.5  
tAPD  
ns  
Analog Propagation Delay  
(large step change)  
V
tDPD  
Digital Propagation Delay  
1
2
CLK  
Note:  
All parameters are based on simulation results.  
1.7  
Serial Programming Characteristics  
Table 1-6.  
Symbol  
1/tCLCL  
tCLCL  
Serial Programming Characteristics, TA = -40°C to +105°C  
Parameter  
Condition  
Min  
0
Typ  
Max  
Units  
MHz  
ns  
Oscillator Frequency  
Oscillator Period  
1
V
CC = 1.8 – 5.5V  
1000  
0
1/tCLCL  
tCLCL  
1/tCLCL  
tCLCL  
Oscillator Frequency  
Oscillator Period  
9.6  
20  
MHz  
ns  
VCC = 2.7 – 5.5V  
VCC = 4.5 – 5.5V  
104  
0
Oscillator Frequency  
Oscillator Period  
MHz  
ns  
50  
(1)  
(1)  
tSHSL  
SCK Pulse Width High  
SCK Pulse Width Low  
MOSI Setup to SCK High  
MOSI Hold after SCK High  
2 tCLCL  
2 tCLCL  
tCLCL  
ns  
tSLSH  
ns  
VCC = 1.8 – 5.5V  
tOVSH  
ns  
tSHOX  
2 tCLCL  
ns  
Note:  
1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz  
5
8126A–Appendix A–AVR–07/10  
2. Typical Characteristics  
The data contained in this section is largely based on simulations and characterization of similar  
devices in the same process and design methods. Thus, the data should be treated as indica-  
tions of how the part will behave.  
The following charts show typical behavior. These figures are not tested during manufacturing.  
During characterisation devices are operated at frequencies higher than test limits but they are  
not guaranteed to function properly at frequencies higher than the ordering code indicates.  
All current consumption measurements are performed with all I/O pins configured as inputs and  
with internal pull-ups enabled. Current consumption is a function of several factors such as oper-  
ating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed  
and ambient temperature. The dominating factors are operating voltage and frequency.  
A sine wave generator with rail-to-rail output is used as clock source but current consumption in  
Power-Down mode is independent of clock selection. The difference between current consump-  
tion in Power-Down mode with Watchdog Timer enabled and Power-Down mode with Watchdog  
Timer disabled represents the differential current drawn by the Watchdog Timer.  
The current drawn from pins with a capacitive load may be estimated (for one pin) as follows:  
ICP VCC × CL × fSW  
where VCC = operating voltage, CL = load capacitance and fSW = average switching frequency of  
I/O pin.  
2.1  
Current Consumption in Active Mode  
Figure 2-1. Active Supply Current vs. VCC (Internal Calibrated Oscillator, 9.6 MHz)  
ACTIVE SUPPLY CURRENT vs. VCC  
INTERNAL OSCILLATOR, 9.6 MHz  
6
5
4
3
2
1
0
105 °C  
85 °C  
25 °C  
-40 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
6
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-2. Active Supply Current vs. VCC (Internal Calibrated Oscillator, 4.8 MHz)  
ACTIVE SUPPLY CURRENT vs. VCC  
INTERNAL OSCILLATOR, 4.8 MHz  
3.5  
3
105 °C  
85 °C  
25 °C  
-40 °C  
2.5  
2
1.5  
1
0.5  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
Figure 2-3. Active Supply Current vs. VCC (Internal WDT Oscillator, 128 kHz)  
ACTIVE SUPPLY CURRENT vs. VCC  
INTERNAL OSCILLATOR, 128 kHz  
0.12  
0.1  
25 °C  
-40 °C  
85 °C  
105 °C  
0.08  
0.06  
0.04  
0.02  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
7
8126A–Appendix A–AVR–07/10  
Figure 2-4. Active Supply Current vs. VCC (32 kHz External Clock)  
ACTIVE SUPPLY CURRENT vs. VCC  
32 KHz EXTERNAL CLOCK, PRR = 0xFF  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
105 °C  
85 °C  
25 °C  
-40 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
V
CC (V)  
2.2  
Current Consumption in Idle Mode  
Figure 2-5. Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 9.6 MHz)  
IDLE SUPPLY CURRENT vs. VCC  
INTERNAL OSCILLATOR, 9.6 MHz  
1.6  
1.4  
1.2  
1
105 °C  
85 °C  
25 °C  
-40 °C  
0.8  
0.6  
0.4  
0.2  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
8
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-6. Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 4.8 MHz)  
IDLE SUPPLY CURRENT vs. VCC  
INTERNAL OSCILLATOR, 4.8 MHz  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
105 °C  
85 °C  
25 °C  
-40 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
Figure 2-7. Idle Supply Current vs. VCC (Internal Oscillator, 128 kHz)  
IDLE SUPPLY CURRENT vs. VCC  
INTERNAL OSCILLATOR, 128 kHz  
0.025  
0.02  
0.015  
0.01  
0.005  
0
-40 °C  
25 °C  
105 °C  
85 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
V
CC (V)  
9
8126A–Appendix A–AVR–07/10  
Figure 2-8. Idle Supply Current vs. VCC (32 kHz External Clock)  
IDLE SUPPLY CURRENT vs. VCC  
32 KHz EXTERNAL OSCILLATOR, PRR=0xFF  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
105 °C  
85 °C  
25 °C  
-40 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
2.3  
Current Consumption in Power-Down Mode  
Figure 2-9. Power-Down Supply Current vs. VCC (Watchdog Timer Disabled)  
POWER-DOWN SUPPLY CURRENT vs. VCC  
WATCHDOG TIMER DISABLED  
1.6  
1.4  
1.2  
1
105 °C  
0.8  
0.6  
0.4  
0.2  
0
85 °C  
-40 °C  
25 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
10  
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-10. Power-Down Supply Current vs. VCC (Watchdog Timer Enabled)  
POWER-DOWN SUPPLY CURRENT vs. VCC  
WATCHDOG TIMER ENABLED  
10  
8
-40 °C  
105 °C  
25 °C  
85 °C  
6
4
2
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
V
CC (V)  
2.4  
Current Consumption of Peripheral Units  
Figure 2-11. Brownout Detector Current vs. VCC  
BROWNOUT DETECTOR CURRENT vs. VCC  
40  
35  
30  
25  
20  
15  
10  
5
105 °C  
85 °C  
25 °C  
-40 °C  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
11  
8126A–Appendix A–AVR–07/10  
Figure 2-12. ADC Current vs. VCC  
ADC CURRENT vs. VCC  
f = 1.0 MHz  
400  
350  
300  
250  
200  
150  
100  
50  
105 °C  
85 °C  
25 °C  
-40 °C  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
V
CC (V)  
Figure 2-13. Analog Comparator Current vs. VCC  
ANALOG COMPARATOR CURRENT vs. VCC  
f = 1.0 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
85 °C  
105 °C  
-40 °C  
25 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
V
CC (V)  
12  
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-14. Programming Current vs. VCC  
PROGRAMMING CURRENT vs. VCC  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
-40 °C  
25 °C  
85 °C  
105 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
2.5  
Pull-up Resistors  
Figure 2-15. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 1.8V)  
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE  
60  
50  
40  
30  
20  
10  
0
25 °C  
85 °C  
105 °C  
-40 °C  
0
0.5  
1
1.5  
2
VOP (V)  
13  
8126A–Appendix A–AVR–07/10  
Figure 2-16. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 3V)  
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE  
V
CC = 3V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
25 °C  
85 °C  
-40 °C  
105 °C  
0
0,5  
1
1,5  
2
2,5  
3
3,5  
VOP (V)  
Figure 2-17. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 5V)  
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE  
160  
140  
120  
100  
80  
60  
40  
25 °C  
20  
85 °C  
105 °C  
-40 °C  
0
0
1
2
3
4
5
6
VOP (V)  
14  
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)  
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE  
40  
30  
20  
10  
0
25 °C  
-40 °C  
85 °C  
105 °C  
0
0.5  
1
1.5  
2
VRESET (V)  
Figure 2-19. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 3V)  
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE  
VCC = 3V  
80  
70  
60  
50  
40  
30  
20  
10  
0
25 °C  
-40 °C  
85 °C  
105 °C  
0
0,5  
1
1,5  
2
2,5  
3
3,5  
VRESET (V)  
15  
8126A–Appendix A–AVR–07/10  
Figure 2-20. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)  
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE  
140  
120  
100  
80  
60  
40  
25 °C  
-40 °C  
85 °C  
20  
105 °C  
0
0
1
2
3
4
5
6
VRESET (V)  
2.6  
Output Driver Strength (Low Power Pins)  
Figure 2-21. VOH: I/O Pin Output Voltage vs. Source Current (Low Power Pins, VCC = 1.8V)  
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT  
LOW POWER PINS, VCC = 1.8V  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
-40 °C  
1.2  
1.1  
1
0.9  
0.8  
25 °C  
85 °C  
105 °C  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
IOH (mA)  
16  
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-22. VOH: I/O Pin Output Voltage vs. Source Current (Low Power Pins, VCC = 3V)  
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT  
LOW POWER PINS, VCC = 3V  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
-40 °C  
25 °C  
85 °C  
105 °C  
0
1
2
3
4
5
6
7
8
9
10  
I
OH (mA)  
Figure 2-23. VOH: I/O Pin Output Voltage vs. Source Current (Low Power Pins, VCC = 5V)  
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT  
LOW POWER PINS, VCC = 5V  
5
4.8  
4.6  
-40 °C  
4.4  
25 °C  
85 °C  
105 °C  
4.2  
4
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IOH (mA)  
17  
8126A–Appendix A–AVR–07/10  
Figure 2-24. VOL: I/O Pin Output Voltage vs. Sink Current (Low Power Pins, VCC = 1.8V)  
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT  
LOW POWER PINS, VCC = 1.8V  
2.5  
105 °C  
85 °C  
25 °C  
2
1.5  
1
-40 °C  
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
I
OL (mA)  
Figure 2-25. VOL: I/O Pin Output Voltage vs. Sink Current (Low Power Pins, VCC = 3V)  
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT  
LOW POWER PINS, VCC = 3V  
1
105 °C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
85 °C  
25 °C  
-40 °C  
0
1
2
3
4
5
6
7
8
9
10  
IOL (mA)  
18  
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-26. VOL: I/O Pin Output Voltage vs. Sink Current (Low Power Pins, VCC = 5V)  
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT  
LOW POWER PINS, VCC = 5V  
1.4  
1.2  
1
105 °C  
85 °C  
25 °C  
0.8  
0.6  
0.4  
0.2  
0
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
I
OL (mA)  
2.7  
Output Driver Strength (Regular Pins)  
Figure 2-27. VOH: I/O Pin Output Voltage vs. Source Current (VCC = 1.8V)  
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT  
VCC = 1.8V  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
-40 °C  
25 °C  
85 °C  
105 °C  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
IOH (mA)  
19  
8126A–Appendix A–AVR–07/10  
Figure 2-28. VOH: I/O Pin Output Voltage vs. Source Current (VCC = 3V)  
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT  
V
CC = 3V  
3
2.9  
2.8  
2.7  
2.6  
2.5  
-40 °C  
25 °C  
85 °C  
105 °C  
0
1
2
3
4
5
6
7
8
9
10  
I
OH (mA)  
Figure 2-29. VOH: I/O Pin Output Voltage vs. Source Current (VCC = 5V)  
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT  
VCC = 5V  
5
4.8  
4.6  
4.4  
4.2  
-40 °C  
25 °C  
85 °C  
105 °C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IOH (mA)  
20  
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-30. VOL: I/O Pin Output Voltage vs. Sink Current (VCC = 1.8V)  
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT  
VCC = 1.8V  
0.4  
0.3  
0.2  
0.1  
0
105 °C  
85 °C  
25 °C  
-40 °C  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
IOL (mA)  
Figure 2-31. VOL: I/O Pin Output Voltage vs. Sink Current (VCC = 3V)  
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT  
VCC = 3V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
105 °C  
85 °C  
25 °C  
-40 °C  
0
1
2
3
4
5
6
7
8
9
10  
I
OL (mA)  
21  
8126A–Appendix A–AVR–07/10  
Figure 2-32. VOL: I/O Pin Output Voltage vs. Sink Current (VCC = 5V)  
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT  
VCC = 5V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
105 °C  
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IOL (mA)  
Figure 2-33. VOH: Reset Pin as I/O, Output Voltage vs. Source Current (VCC = 1.8V)  
RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT  
VCC = 1.8V  
1,6  
1,4  
1,2  
1
0,8  
0,6  
0,4  
0,2  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
0,7  
0,8  
0,9  
1
IOH (mA)  
22  
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-34. VOH: Reset Pin as I/O, Output Voltage vs. Source Current (VCC = 3V)  
RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT  
V
CC = 3V  
4,5  
4
3,5  
3
2,5  
2
1,5  
1
105 °C  
85 °C  
25 °C  
-40 °C  
0,5  
0
0
0,1  
0,2  
0,3  
0,4  
0,5  
IOH (mA)  
0,6  
0,7  
0,8  
0,9  
1
Figure 2-35. VOH: Reset Pin as I/O, Output Voltage vs. Source Current (VCC = 5V)  
RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT  
VCC = 5V  
4,5  
4
3,5  
3
-40 °C  
25 °C  
85 °C  
105 °C  
2,5  
2
1,5  
1
0,5  
0
0
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
0,7  
0,8  
0,9  
1
IOH (mA)  
23  
8126A–Appendix A–AVR–07/10  
Figure 2-36. VOL: Reset Pin as I/O, Output Voltage vs. Sink Current (VCC = 1.8V)  
RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT  
VCC = 1.8V  
1
0,8  
0,6  
0,4  
0,2  
0
105 °C  
85 °C  
25 °C  
-40 °C  
0
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
IOL (mA)  
Figure 2-37. VOL: Reset Pin as I/O, Output Voltage vs. Sink Current (VCC = 3V)  
RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT  
V
CC = 3V  
1,6  
1,4  
1,2  
1
105 °C  
85 °C  
25 °C  
0,8  
0,6  
0,4  
0,2  
0
-40 °C  
0
0,5  
1
1,5  
IOL (mA)  
2
2,5  
3
24  
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-38. VOL: Reset Pin as I/O, Output Voltage vs. Sink Current (VCC = 5V)  
RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT  
V
CC = 5V  
1,6  
1,4  
1,2  
1
105 °C  
85 °C  
0,8  
0,6  
0,4  
0,2  
0
25 °C  
-40 °C  
0
0,5  
1
1,5  
2
2,5  
IOL (mA)  
3
3,5  
4
4,5  
5
2.8  
Input Thresholds and Hysteresis (for I/O Ports)  
Figure 2-39. VIH: Input Threshold Voltage vs. VCC (I/O Pin, Read as '1')  
I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC  
V
IH, I/O PIN READ AS '1'  
3
2.5  
2
105 °C  
85 °C  
25 °C  
-40 °C  
1.5  
1
0.5  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
25  
8126A–Appendix A–AVR–07/10  
Figure 2-40. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as '0')  
I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC  
V
IL, I/O PIN READ AS '0'  
2.5  
2
105 °C  
85 °C  
25 °C  
-40 °C  
1.5  
1
0.5  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
Figure 2-41. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin)  
I/O PIN INPUT HYSTERESIS vs. VCC  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40 °C  
25 °C  
85 °C  
105 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
26  
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-42. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as '1')  
RESET PIN AS I/O, THRESHOLD VOLTAGE vs. VCC  
VIH, RESET READ AS '1'  
3
2.5  
2
105 °C  
85 °C  
25 °C  
-40 °C  
1.5  
1
0.5  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
Figure 2-43. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as '0')  
RESET PIN AS I/O, THRESHOLD VOLTAGE vs. VCC  
VIL, RESET READ AS '0'  
2.5  
2
105 °C  
85 °C  
25 °C  
-40 °C  
1.5  
1
0.5  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
27  
8126A–Appendix A–AVR–07/10  
Figure 2-44. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O)  
RESET PIN AS IO, INPUT HYSTERESIS vs. VCC  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
105 °C  
85 °C  
25 °C  
-40 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
2.9  
BOD, Bandgap and Reset  
Figure 2-45. BOD Thresholds vs. Temperature (BODLEVEL is 4.3V)  
BOD THRESHOLDS vs. TEMPERATURE  
BODLEVEL = 4.3V  
4.4  
4.38  
4.36  
4.34  
4.32  
4.3  
RISING VCC  
FALLING VCC  
4.28  
4.26  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (C)  
28  
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-46. BOD Thresholds vs. Temperature (BODLEVEL is 2.7V)  
BOD THRESHOLDS vs. TEMPERATURE  
BODLEVEL = 2.7V  
2.8  
2.78  
2.76  
2.74  
2.72  
2.7  
RISING VCC  
FALLING VCC  
2.68  
2.66  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (C)  
Figure 2-47. BOD Thresholds vs. Temperature (BODLEVEL is 1.8V)  
BOD THRESHOLDS vs. TEMPERATURE  
BODLEVEL = 1.8V  
1.85  
1.84  
1.83  
1.82  
1.81  
1.8  
RISING VCC  
FALLING VCC  
1.79  
1.78  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (C)  
29  
8126A–Appendix A–AVR–07/10  
Figure 2-48. Bandgap Voltage vs. VCC  
BANDGAP VOLTAGE vs. VCC  
1.14  
1.13  
1.12  
1.11  
1.1  
25 °C  
85 °C  
105 °C  
-40 °C  
1.09  
1.08  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
Figure 2-49. VIH: Reset Input Threshold Voltage vs. VCC (Reset Pin Read as '1')  
RESET INPUT THRESHOLD VOLTAGE vs. VCC  
V
IH, PIN READ AS '1'  
2.5  
2
-40 °C  
25 °C  
85 °C  
105 °C  
1.5  
1
0.5  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
30  
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-50. VIH: Reset Input Threshold Voltage vs. VCC (Reset Pin Read as '0')  
RESET INPUT THRESHOLD VOLTAGE vs. VCC  
V
IL, PIN READ AS '0'  
2.5  
2
105 °C  
85 °C  
25 °C  
-40 °C  
1.5  
1
0.5  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
Figure 2-51. VIH-VIL: Reset Input Pin Hysteresis vs. VCC  
RESET PIN INPUT HYSTERESIS vs. VCC  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40 °C  
25 °C  
85 °C  
105 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
31  
8126A–Appendix A–AVR–07/10  
Figure 2-52. Minimum Reset Pulse Width vs. VCC  
MINIMUM RESET PULSE WIDTH vs. VCC  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
105 °C  
85 °C  
25 °C  
-40 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
2.10 Internal Oscillator Speed  
Figure 2-53. Calibrated 9.6 MHz Oscillator Frequency vs. Temperature  
CALIBRATED 9.6MHz OSCILLATOR FREQUENCY vs. TEMPERATURE  
10.2  
10  
5.5 V  
4.5 V  
2.7 V  
1.8 V  
9.8  
9.6  
9.4  
9.2  
9
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature  
32  
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-54. Calibrated 9.6 MHz Oscillator Frequency vs. VCC  
CALIBRATED 9.6MHz OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE  
10.2  
10  
105 °C  
85 °C  
9.8  
9.6  
9.4  
9.2  
9
25 °C  
-40 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
Figure 2-55. Calibrated 4.8 MHz Oscillator Frequency vs. Temperature  
CALIBRATED 4.8MHz OSCILLATOR FREQUENCY vs. TEMPERATURE  
5.2  
5.1  
5
5.5 V  
4.5 V  
2.7 V  
1.8 V  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature  
33  
8126A–Appendix A–AVR–07/10  
Figure 2-56. Calibrated 4.8 MHz Oscillator Frequency vs. VCC  
CALIBRATED 4.8MHz OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE  
5.2  
5.1  
5
105 °C  
85 °C  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
25 °C  
-40 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
Figure 2-57. 128 kHz Watchdog Oscillator Frequency vs. Temperature  
WATCHDOG OSCILLATOR FREQUENCY vs. TEMPERATURE  
116000  
114000  
112000  
110000  
108000  
106000  
104000  
102000  
1.8 V  
2.7 V  
4.5 V  
5.5 V  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature  
34  
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
Figure 2-58. 128 kHz Watchdog Oscillator Frequency vs. VCC  
WATCHDOG OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE  
116000  
114000  
112000  
110000  
108000  
106000  
104000  
102000  
-40 °C  
25 °C  
85 °C  
105 °C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCC (V)  
35  
8126A–Appendix A–AVR–07/10  
3. Ordering Information  
Speed (MHz)  
Power Supply (V)  
Ordering Code(1)  
Package(2)  
Operation Range  
ATtiny13A-SN  
ATtiny13A-SNR  
ATtiny13A-SS7  
ATtiny13A-SS7R  
8S2  
8S2  
8S1  
8S1  
Industrial  
(-40°C to +105°C)  
20  
1.8 - 5.5  
Notes: 1. Code indicators:  
– 7: NiPdAu lead finish  
– N: matte tin  
– R: tape & reel  
2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-  
ous Substances (RoHS).  
Package Type  
8S2  
8S1  
8-lead, 0.209" Wide, Plastic Small Outline Package (EIAJ SOIC)  
8-lead, 0.150" Wide, Plastic Gull-Wing Small Outline (JEDEC SOIC)  
36  
ATtiny13A  
8126A–Appendix A–AVR–07/10  
ATtiny13A  
4. Revision History  
Revision No.  
8126A–Appendix A–AVR–07/10  
History  
8126-Appendix A rev A, initial revision  
37  
8126A–Appendix A–AVR–07/10  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
Technical Support  
Sales Contact  
www.atmel.com  
avr@atmel.com  
www.atmel.com/contacts  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2010 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others are registered trademarks or trade-  
marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
8126A–Appendix A–AVR–07/10  

相关型号:

ATTINY13A_09

8-bit Microcontroller with 1K Bytes In-System Programmable Flash
ATMEL

ATTINY13A_1

8-bit Microcontroller with 1K Bytes In-System Programmable Flash
ATMEL

ATTINY13A_10

8-bit Microcontroller with 1K Bytes In-System Programmable Flash
ATMEL

ATTINY13V

8-bit Microcontroller with 1K Bytes In-System Programmable Flash
ATMEL

ATTINY13V-10MI

RISC Microcontroller, 8-Bit, FLASH, 10MHz, CMOS, 4 X 4 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, LEAD AND HALIDE FREE, MO-220WGGD5, MLF-20
ATMEL

ATTINY13V-10MMU

8-bit Microcontroller with 1K Bytes In-System Programmable Flash
ATMEL

ATTINY13V-10MMU-SL383

Microcontroller
ATMEL

ATTINY13V-10MMUR

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 10MHz, CMOS, PDSO10, 3 X 3 MM, 1 MM HEIGHT, 0.50 MM PITCH, GREEN, MO-229CVEED-5, MLF-10
ATMEL

ATTINY13V-10MU

8-bit Microcontroller with 1K Bytes In-System Programmable Flash
ATMEL

ATTINY13V-10MU-SL383

Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 10MHz, CMOS, PQCC20
ATMEL

ATTINY13V-10MUR

IC MCU 8BIT 1KB FLASH 20QFN
MICROCHIP

ATTINY13V-10PI

8-bit Microcontroller with 1K Bytes In-System Programmable Flash
ATMEL