ATTINY84V-10SSU [ATMEL]

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash; 8位微控制器与2/4 / 8K字节的系统内可编程闪存
ATTINY84V-10SSU
型号: ATTINY84V-10SSU
厂家: ATMEL    ATMEL
描述:

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash
8位微控制器与2/4 / 8K字节的系统内可编程闪存

闪存 微控制器
文件: 总25页 (文件大小:637K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High Performance, Low Power AVR® 8-Bit Microcontroller  
Advanced RISC Architecture  
– 120 Powerful Instructions – Most Single Clock Cycle Execution  
– 32 x 8 General Purpose Working Registers  
– Fully Static Operation  
Non-Volatile Program and Data Memories  
– 2/4/8K Bytes of In-System Programmable Program Memory Flash  
• Endurance: 10,000 Write/Erase Cycles  
– 128/256/512 Bytes of In-System Programmable EEPROM  
• Endurance: 100,000 Write/Erase Cycles  
– 128/256/512 Bytes of Internal SRAM  
– Data retention: 20 years at 1°C / 100 years at 25°C  
– Programming Lock for Self-Programming Flash & EEPROM Data Security  
Peripheral Features  
8-bit  
Microcontroller  
with 2/4/8K  
Bytes In-System  
Programmable  
Flash  
– One 8-Bit and One 16-Bit Timer/Counter with Two PWM Channels, Each  
– 10-bit ADC  
• 8 Single-Ended Channels  
• 12 Differential ADC Channel Pairs with Programmable Gain (1x / 20x)  
– Programmable Watchdog Timer with Separate On-chip Oscillator  
– On-chip Analog Comparator  
– Universal Serial Interface  
ATtiny24  
ATtiny44  
ATtiny84  
Special Microcontroller Features  
– debugWIRE On-chip Debug System  
– In-System Programmable via SPI Port  
– Internal and External Interrupt Sources: Pin Change Interrupt on 12 Pins  
– Low Power Idle, ADC Noise Reduction, Standby and Power-Down Modes  
– Enhanced Power-on Reset Circuit  
– Programmable Brown-out Detection Circuit  
– Internal Calibrated Oscillator  
Summary  
– On-chip Temperature Sensor  
I/O and Packages  
– Available in 20-Pin QFN/MLF & 14-Pin SOIC and PDIP  
– Twelve Programmable I/O Lines  
Operating Voltage:  
– 1.8 – 5.5V for ATtiny24V/44V/84V  
– 2.7 – 5.5V for ATtiny24/44/84  
Speed Grade  
– ATtiny24V/44V/84V  
• 0 – 4 MHz @ 1.8 – 5.5V  
• 0 – 10 MHz @ 2.7 – 5.5V  
– ATtiny24/44/84  
• 0 – 10 MHz @ 2.7 – 5.5V  
• 0 – 20 MHz @ 4.5 – 5.5V  
Industrial Temperature Range: -40°C to +85°C  
Low Power Consumption  
– Active Mode (1 MHz System Clock): 300 µA @ 1.8V  
– Power-Down Mode: 0.1 µA @ 1.8V  
Rev. 8006JS–AVR–07/10  
1. Pin Configurations  
Figure 1-1. Pinout ATtiny24/44/84  
PDIP/SOIC  
VCC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
GND  
(PCINT8/XTAL1/CLKI) PB0  
(PCINT9/XTAL2) PB1  
PA0 (ADC0/AREF/PCINT0)  
PA1 (ADC1/AIN0/PCINT1)  
PA2 (ADC2/AIN1/PCINT2)  
PA3 (ADC3/T0/PCINT3)  
PA4 (ADC4/USCK/SCL/T1/PCINT4)  
PA5 (ADC5/DO/MISO/OC1B/PCINT5)  
(PCINT11/RESET/dW) PB3  
(PCINT10/INT0/OC0A/CKOUT) PB2  
(PCINT7/ICP/OC0B/ADC7) PA7  
(PCINT6/OC1A/SDA/MOSI/DI/ADC6) PA6  
8
QFN/MLF  
Pin 16: PA6 (PCINT6/OC1A/SDA/MOSI/DI/ADC6)  
Pin 20: PA5 (ADC5/DO/MISO/OC1B/PCINT5)  
(ADC4/USCK/SCL/T1/PCINT4) PA4  
(ADC3/T0/PCINT3) PA3  
1
15 PA7 (PCINT7/ICP/OC0B/ADC7)  
14 PB2 (PCINT10/INT0/OC0A/CKOUT)  
13 PB3 (PCINT11/RESET/dW)  
12 PB1 (PCINT9/XTAL2)  
2
3
4
5
(ADC2/AIN1/PCINT2) PA2  
(ADC1/AIN0/PCINT1) PA1  
(ADC0/AREF/PCINT0) PA0  
11 PB0 (PCINT8/XTAL1/CLKI)  
NOTE  
Bottom pad should be  
soldered to ground.  
DNC: Do Not Connect  
1.1  
Pin Descriptions  
1.1.1  
VCC  
Supply voltage.  
1.1.2  
1.1.3  
GND  
Ground.  
Port B (PB3:PB0)  
Port B is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port B output buffers have symmetrical drive characteristics with both high sink and source  
capability except PB3 which has the RESET capability. To use pin PB3 as an I/O pin, instead of  
RESET pin, program (‘0’) RSTDISBL fuse. As inputs, Port B pins that are externally pulled low  
will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a  
reset condition becomes active, even if the clock is not running.  
2
ATtiny24/44/84  
8006JS–AVR–07/10  
ATtiny24/44/84  
Port B also serves the functions of various special features of the ATtiny24/44/84 as listed in  
Section 10.2 “Alternate Port Functions” on page 58.  
1.1.4  
1.1.5  
RESET  
Reset input. A low level on this pin for longer than the minimum pulse length will generate a  
reset, even if the clock is not running and provided the reset pin has not been disabled. The min-  
imum pulse length is given in Table 20-4 on page 177. Shorter pulses are not guaranteed to  
generate a reset.  
The reset pin can also be used as a (weak) I/O pin.  
Port A (PA7:PA0)  
Port A is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port A output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port A has alternate functions as analog inputs for the ADC, analog comparator, timer/counter,  
SPI and pin change interrupt as described in “Alternate Port Functions” on page 58.  
3
8006JS–AVR–07/10  
2. Overview  
ATtiny24/44/84 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC  
architecture. By executing powerful instructions in a single clock cycle, the ATtiny24/44/84  
achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize  
power consumption versus processing speed.  
Figure 2-1. Block Diagram  
VCC  
8-BIT DATABUS  
INTERNAL  
INTERNAL  
OSCILLATOR  
CALIBRATED  
OSCILLATOR  
GND  
PROGRAM  
COUNTER  
STACK  
POINTER  
WATCHDOG  
TIMER  
TIMING AND  
CONTROL  
MCU CONTROL  
REGISTER  
PROGRAM  
FLASH  
SRAM  
MCU STATUS  
REGISTER  
INSTRUCTION  
REGISTER  
GENERAL  
PURPOSE  
REGISTERS  
TIMER/  
COUNTER0  
X
Y
Z
INSTRUCTION  
DECODER  
TIMER/  
COUNTER1  
CONTROL  
LINES  
ALU  
STATUS  
REGISTER  
INTERRUPT  
UNIT  
PROGRAMMING  
LOGIC  
EEPROM  
OSCILLATORS  
ISP INTERFACE  
DATA REGISTER  
PORT A  
DATA DIR.  
REG.PORT A  
ADC  
DATA REGISTER  
PORT B  
DATA DIR.  
REG.PORT B  
PORT A DRIVERS  
PORT B DRIVERS  
PA7-PA0  
PB3-PB0  
The AVR core combines a rich instruction set with 32 general purpose working registers. All 32  
registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent  
registers to be accessed in one single instruction executed in one clock cycle. The resulting  
architecture is more code efficient while achieving throughputs up to ten times faster than con-  
ventional CISC microcontrollers.  
4
ATtiny24/44/84  
8006JS–AVR–07/10  
ATtiny24/44/84  
The ATtiny24/44/84 provides the following features: 2/4/8K byte of In-System Programmable  
Flash, 128/256/512 bytes EEPROM, 128/256/512 bytes SRAM, 12 general purpose I/O lines, 32  
general purpose working registers, an 8-bit Timer/Counter with two PWM channels, a 16-bit  
timer/counter with two PWM channels, Internal and External Interrupts, a 8-channel 10-bit ADC,  
programmable gain stage (1x, 20x) for 12 differential ADC channel pairs, a programmable  
Watchdog Timer with internal oscillator, internal calibrated oscillator, and four software select-  
able power saving modes. Idle mode stops the CPU while allowing the SRAM, Timer/Counter,  
ADC, Analog Comparator, and Interrupt system to continue functioning. ADC Noise Reduction  
mode minimizes switching noise during ADC conversions by stopping the CPU and all I/O mod-  
ules except the ADC. In Power-down mode registers keep their contents and all chip functions  
are disbaled until the next interrupt or hardware reset. In Standby mode, the crystal/resonator  
oscillator is running while the rest of the device is sleeping, allowing very fast start-up combined  
with low power consumption.  
The device is manufactured using Atmel’s high density non-volatile memory technology. The on-  
chip ISP Flash allows the Program memory to be re-programmed in-system through an SPI  
serial interface, by a conventional non-volatile memory programmer or by an on-chip boot code  
running on the AVR core.  
The ATtiny24/44/84 AVR is supported with a full suite of program and system development tools  
including: C Compilers, Macro Assemblers, Program Debugger/Simulators and Evaluation kits.  
5
8006JS–AVR–07/10  
3. About  
3.1  
Resources  
A comprehensive set of drivers, application notes, data sheets and descriptions on development  
tools are available for download at http://www.atmel.com/avr.  
3.2  
Code Examples  
This documentation contains simple code examples that briefly show how to use various parts of  
the device. These code examples assume that the part specific header file is included before  
compilation. Be aware that not all C compiler vendors include bit definitions in the header files  
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-  
tation for more details.  
For I/O Registers located in the extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”  
instructions must be replaced with instructions that allow access to extended I/O. Typically, this  
means “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”. Note that not all  
AVR devices include an extended I/O map.  
3.3  
3.4  
Data Retention  
Reliability Qualification results show that the projected data retention failure rate is much less  
than 1 PPM over 20 years at 85°C or 100 years at 25°C.  
Disclaimer  
Typical values contained in this datasheet are based on simulations and characterization of  
other AVR microcontrollers manufactured on the same process technology.  
6
ATtiny24/44/84  
8006JS–AVR–07/10  
ATtiny24/44/84  
4. Register Summary  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
0x3F (0x5F)  
0x3E (0x5E)  
0x3D (0x5D)  
0x3C (0x5C)  
0x3B (0x5B)  
0x3A (0x5A  
0x39 (0x59)  
0x38 (0x58)  
0x37 (0x57)  
0x36 (0x56)  
0x35 (0x55)  
0x34 (0x54)  
0x33 (0x53)  
0x32 (0x52)  
0x31 (0x51)  
0x30 (0x50)  
0x2F (0x4F)  
0x2E (0x4E)  
0x2D (0x4D)  
0x2C (0x4C)  
0x2B (0x4B)  
0x2A (0x4A)  
0x29 (0x49)  
0x28 (0x48)  
0x27 (0x47)  
0x26 (0x46)  
0x25 (0x45)  
0x24 (0x44)  
0x23 (0x43)  
0x22 (0x42)  
0x21 (0x41)  
0x20 (0x40)  
0x1F (0x3F)  
0x1E (0x3E)  
0x1D (0x3D)  
0x1C (0x3C)  
0x1B (0x3B)  
0x1A (0x3A)  
0x19 (0x39)  
0x18 (0x38)  
0x17 (0x37)  
0x16 (0x36)  
0x15 (0x35)  
0x14 (0x34)  
0x13 (0x33)  
0x12 (0x32)  
0x11 (0x31))  
0x10 (0x30)  
0x0F (0x2F)  
0x0E (0x2E)  
0x0D (0x2D)  
0x0C (0x2C)  
0x0B (0x2B)  
0x0A (0x2A)  
0x09 (0x29)  
0x08 (0x28)  
0x07 (0x27)  
0x06 (0x26)  
0x05 (0x25)  
0x04 (0x24)  
0x03 (0x23)  
0x02 (0x22)  
0x01 (0x21)  
0x00 (0x20)  
SREG  
SPH  
I
T
H
S
V
N
Z
C
Page 8  
Page 11  
Page 11  
Page 85  
Page 51  
Page 52  
Page 85  
Page 85  
Page 157  
Page 84  
Pages 36, 51, and 67  
Page 45  
Page 83  
Page 84  
Page 30  
Page 80  
Page 108  
Page 110  
Page 112  
Page 112  
Page 112  
Page 112  
Page 112  
Page 112  
Page 152  
Page 31  
Page 113  
Page 113  
Page 116  
Page 111  
Page 45  
Page 52  
Page 20  
Page 21  
Page 21  
Page 21  
Page 67  
Page 67  
Page 68  
Page 68  
Page 68  
Page 68  
Page 23  
Page 23  
Page 23  
Page 53  
SP9  
SP1  
SP8  
SP0  
SPL  
SP7  
SP6  
SP5  
SP4  
SP3  
SP2  
Timer/Counter0 – Output Compare Register B  
OCR0B  
GIMSK  
GIFR  
PCIE0  
PCIF0  
INT0  
PCIE1  
PCIF1  
INTF0  
TIMSK0  
TIFR0  
OCIE0B  
OCF0B  
PGWRT  
OCIE0A  
OCF0A  
PGERS  
TOIE0  
TOV0  
SPMEN  
SPMCSR  
OCR0A  
MCUCR  
MCUSR  
TCCR0B  
TCNT0  
OSCCAL  
TCCR0A  
TCCR1A  
TCCR1B  
TCNT1H  
TCNT1L  
OCR1AH  
OCR1AL  
OCR1BH  
OCR1BL  
DWDR  
RSIG  
CTPB  
RFLB  
Timer/Counter0 – Output Compare Register A  
BODS  
PUD  
SE  
SM1  
SM0  
BODSE  
BORF  
CS02  
ISC01  
EXTRF  
CS01  
ISC00  
PORF  
CS00  
WDRF  
WGM02  
FOC0A  
FOC0B  
Timer/Counter0  
CAL7  
COM0A1  
COM1A1  
ICNC1  
CAL6  
COM0A0  
COM1A0  
ICES1  
CAL5  
COM0B1  
COM1B1  
CAL4  
CAL3  
CAL2  
CAL1  
WGM01  
WGM11  
CS11  
CAL0  
WGM00  
WGM10  
CS10  
COM0B0  
COM1B0  
WGM13  
WGM12  
CS12  
Timer/Counter1 – Counter Register High Byte  
Timer/Counter1 – Counter Register Low Byte  
Timer/Counter1 – Compare Register A High Byte  
Timer/Counter1 – Compare Register A Low Byte  
Timer/Counter1 – Compare Register B High Byte  
Timer/Counter1 – Compare Register B Low Byte  
DWDR[7:0]  
CLKPR  
ICR1H  
CLKPCE  
CLKPS3  
CLKPS2  
CLKPS1  
CLKPS0  
Timer/Counter1 - Input Capture Register High Byte  
Timer/Counter1 - Input Capture Register Low Byte  
ICR1L  
GTCCR  
TCCR1C  
WDTCSR  
PCMSK1  
EEARH  
EEARL  
EEDR  
TSM  
FOC1A  
WDIF  
FOC1B  
WDIE  
PSR10  
WDP3  
WDCE  
WDE  
PCINT11  
WDP2  
PCINT10  
WDP1  
PCINT9  
WDP0  
PCINT8  
EEAR8  
EEAR0  
EEAR7  
EEAR6  
EEAR5  
EEAR4  
EEAR3  
EEAR2  
EEAR1  
EEPROM Data Register  
EECR  
EEPM1  
EEPM0  
EERIE  
PORTA3  
DDA3  
EEMPE  
PORTA2  
DDA2  
EEPE  
PORTA1  
DDA1  
EERE  
PORTA0  
DDA0  
PORTA  
DDRA  
PORTA7  
PORTA6  
PORTA5  
PORTA4  
DDA7  
DDA6  
DDA5  
DDA4  
PINA  
PINA7  
PINA6  
PINA5  
PINA4  
PINA3  
PINA2  
PINA1  
PINA0  
PORTB  
DDRB  
PORTB3  
DDB3  
PORTB2  
DDB2  
PORTB1  
DDB1  
PORTB0  
DDB0  
PINB  
PINB3  
PINB2  
PINB1  
PINB0  
GPIOR2  
GPIOR1  
GPIOR0  
PCMSK0  
Reserved  
USIBR  
General Purpose I/O Register 2  
General Purpose I/O Register 1  
General Purpose I/O Register 0  
PCINT7  
PCINT6  
PCINT5  
PCINT4  
PCINT3  
PCINT2  
PCINT1  
PCINT0  
USI Buffer Register  
USI Data Register  
Page 125  
Page 124  
Page 125  
Page 126  
Page 113  
Page 114  
USIDR  
USISR  
USISIF  
USIOIF  
USIPF  
USIWM1  
ICIE1  
USIDC  
USICNT3  
USICNT2  
USICS0  
OCIE1B  
OCF1B  
USICNT1  
USICLK  
OCIE1A  
OCF1A  
USICNT0  
USITC  
TOIE1  
USICR  
USISIE  
USIOIE  
USIWM0  
USICS1  
TIMSK1  
TIFR1  
ICF1  
TOV1  
Reserved  
Reserved  
ACSR  
ACD  
REFS1  
ADEN  
ACBG  
REFS0  
ADSC  
ACO  
MUX5  
ADATE  
ACI  
MUX4  
ADIF  
ACIE  
MUX3  
ADIE  
ACIC  
MUX2  
ADPS2  
ACIS1  
MUX1  
ADPS1  
ACIS0  
MUX0  
ADPS0  
Page 130  
Page 145  
ADMUX  
ADCSRA  
ADCH  
Page 147  
ADC Data Register High Byte  
ADC Data Register Low Byte  
Page 149  
ADCL  
Page 149  
ADCSRB  
Reserved  
DIDR0  
BIN  
ACME  
ADLAR  
ADTS2  
ADTS1  
ADTS0  
Page 131, Page 149  
ADC7D  
ADC6D  
ADC5D  
ADC4D  
ADC3D  
PRTIM1  
ADC2D  
PRTIM0  
ADC1D  
PRUSI  
ADC0D  
PRADC  
Page 131, Page 150  
Page 37  
PRR  
7
8006JS–AVR–07/10  
Note:  
1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses  
should never be written.  
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these  
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.  
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI  
instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The  
CBI and SBI instructions work with registers 0x00 to 0x1F only.  
8
ATtiny24/44/84  
8006JS–AVR–07/10  
ATtiny24/44/84  
5. Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
ARITHMETIC AND LOGIC INSTRUCTIONS  
ADD  
ADC  
ADIW  
SUB  
SUBI  
SBC  
SBCI  
SBIW  
AND  
ANDI  
OR  
Rd, Rr  
Rd, Rr  
Rdl,K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rdl,K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add two Registers  
Rd Rd + Rr  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,S  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,S  
Z,N,V  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Add with Carry two Registers  
Add Immediate to Word  
Subtract two Registers  
Subtract Constant from Register  
Subtract with Carry two Registers  
Subtract with Carry Constant from Reg.  
Subtract Immediate from Word  
Logical AND Registers  
Logical AND Register and Constant  
Logical OR Registers  
Rd Rd + Rr + C  
Rdh:Rdl Rdh:Rdl + K  
Rd Rd - Rr  
Rd Rd - K  
Rd Rd - Rr - C  
Rd Rd - K - C  
Rdh:Rdl Rdh:Rdl - K  
Rd Rd Rr  
Rd Rd K  
Z,N,V  
Rd Rd v Rr  
Z,N,V  
ORI  
Logical OR Register and Constant  
Exclusive OR Registers  
One’s Complement  
Rd Rd v K  
Z,N,V  
EOR  
COM  
NEG  
SBR  
CBR  
INC  
Rd Rd Rr  
Rd 0xFF Rd  
Rd 0x00 Rd  
Rd Rd v K  
Z,N,V  
Z,C,N,V  
Z,C,N,V,H  
Z,N,V  
Rd  
Two’s Complement  
Rd,K  
Rd,K  
Rd  
Set Bit(s) in Register  
Clear Bit(s) in Register  
Increment  
Rd Rd (0xFF - K)  
Rd Rd + 1  
Z,N,V  
Z,N,V  
DEC  
TST  
Rd  
Decrement  
Rd Rd 1  
Z,N,V  
Rd  
Test for Zero or Minus  
Clear Register  
Rd Rd Rd  
Rd Rd Rd  
Rd 0xFF  
Z,N,V  
CLR  
SER  
Rd  
Z,N,V  
Rd  
Set Register  
None  
BRANCH INSTRUCTIONS  
RJMP  
IJMP  
k
k
Relative Jump  
PC PC + k + 1  
None  
None  
None  
None  
None  
I
2
2
Indirect Jump to (Z)  
PC Z  
RCALL  
ICALL  
RET  
Relative Subroutine Call  
Indirect Call to (Z)  
PC PC + k + 1  
3
PC Z  
3
Subroutine Return  
PC STACK  
4
RETI  
Interrupt Return  
PC STACK  
4
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC PC + 2 or 3  
Rd Rr  
None  
Z, N,V,C,H  
Z, N,V,C,H  
Z, N,V,C,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1/2/3  
1
Rd,Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd Rr C  
1
CPI  
Rd,K  
Compare Register with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register is Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register is Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd K  
1
SBRC  
SBRS  
SBIC  
Rr, b  
if (Rr(b)=0) PC PC + 2 or 3  
if (Rr(b)=1) PC PC + 2 or 3  
if (P(b)=0) PC PC + 2 or 3  
if (P(b)=1) PC PC + 2 or 3  
if (SREG(s) = 1) then PCPC+k + 1  
if (SREG(s) = 0) then PCPC+k + 1  
if (Z = 1) then PC PC + k + 1  
if (Z = 0) then PC PC + k + 1  
if (C = 1) then PC PC + k + 1  
if (C = 0) then PC PC + k + 1  
if (C = 0) then PC PC + k + 1  
if (C = 1) then PC PC + k + 1  
if (N = 1) then PC PC + k + 1  
if (N = 0) then PC PC + k + 1  
if (N V= 0) then PC PC + k + 1  
if (N V= 1) then PC PC + k + 1  
if (H = 1) then PC PC + k + 1  
if (H = 0) then PC PC + k + 1  
if (T = 1) then PC PC + k + 1  
if (T = 0) then PC PC + k + 1  
if (V = 1) then PC PC + k + 1  
if (V = 0) then PC PC + k + 1  
if ( I = 1) then PC PC + k + 1  
if ( I = 0) then PC PC + k + 1  
1/2/3  
1/2/3  
1/2/3  
1/2/3  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
Rr, b  
P, b  
P, b  
s, k  
s, k  
k
SBIS  
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
BRIE  
BRID  
k
Branch if Not Equal  
k
Branch if Carry Set  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
k
k
k
Branch if Minus  
k
Branch if Plus  
k
Branch if Greater or Equal, Signed  
Branch if Less Than Zero, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
k
k
k
k
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
k
k
k
k
BIT AND BIT-TEST INSTRUCTIONS  
SBI  
P,b  
P,b  
Rd  
Rd  
Rd  
Set Bit in I/O Register  
Clear Bit in I/O Register  
Logical Shift Left  
I/O(P,b) 1  
None  
2
2
1
1
1
CBI  
LSL  
LSR  
ROL  
I/O(P,b) 0  
None  
Rd(n+1) Rd(n), Rd(0) 0  
Rd(n) Rd(n+1), Rd(7) 0  
Rd(0)C,Rd(n+1)Rd(n),CRd(7)  
Z,C,N,V  
Z,C,N,V  
Z,C,N,V  
Logical Shift Right  
Rotate Left Through Carry  
9
8006JS–AVR–07/10  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
ROR  
Rd  
Rotate Right Through Carry  
Rd(7)C,Rd(n)Rd(n+1),CRd(0)  
Z,C,N,V  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ASR  
SWAP  
BSET  
BCLR  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
Rd  
Rd  
s
Arithmetic Shift Right  
Swap Nibbles  
Rd(n) Rd(n+1), n=0..6  
Z,C,N,V  
Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0)  
None  
Flag Set  
SREG(s) 1  
SREG(s) 0  
T Rr(b)  
Rd(b) T  
C 1  
SREG(s)  
s
Flag Clear  
SREG(s)  
Rr, b  
Rd, b  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
T
None  
C
C
N
N
Z
Clear Carry  
C 0  
Set Negative Flag  
N 1  
Clear Negative Flag  
Set Zero Flag  
N 0  
Z 1  
Clear Zero Flag  
Z 0  
Z
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
Set Twos Complement Overflow.  
Clear Twos Complement Overflow  
Set T in SREG  
I 1  
I
CLI  
I 0  
I
SES  
CLS  
SEV  
CLV  
SET  
CLT  
SEH  
CLH  
S 1  
S
S
V
V
T
S 0  
V 1  
V 0  
T 1  
Clear T in SREG  
T 0  
T
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
H 1  
H
H
H 0  
DATA TRANSFER INSTRUCTIONS  
MOV  
MOVW  
LDI  
LD  
Rd, Rr  
Rd, Rr  
Rd, K  
Move Between Registers  
Copy Register Word  
Rd Rr  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
Rd+1:Rd Rr+1:Rr  
Load Immediate  
Rd K  
Rd, X  
Load Indirect  
Rd (X)  
LD  
Rd, X+  
Rd, - X  
Rd, Y  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect  
Rd (X), X X + 1  
X X - 1, Rd (X)  
Rd (Y)  
LD  
LD  
LD  
Rd, Y+  
Rd, - Y  
Rd,Y+q  
Rd, Z  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect with Displacement  
Load Indirect  
Rd (Y), Y Y + 1  
Y Y - 1, Rd (Y)  
Rd (Y + q)  
Rd (Z)  
LD  
LDD  
LD  
LD  
Rd, Z+  
Rd, -Z  
Rd, Z+q  
Rd, k  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect with Displacement  
Load Direct from SRAM  
Store Indirect  
Rd (Z), Z Z+1  
Z Z - 1, Rd (Z)  
Rd (Z + q)  
Rd (k)  
LD  
LDD  
LDS  
ST  
X, Rr  
(X) Rr  
ST  
X+, Rr  
- X, Rr  
Y, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect  
(X) Rr, X X + 1  
X X - 1, (X) Rr  
(Y) Rr  
ST  
ST  
ST  
Y+, Rr  
- Y, Rr  
Y+q,Rr  
Z, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect with Displacement  
Store Indirect  
(Y) Rr, Y Y + 1  
Y Y - 1, (Y) Rr  
(Y + q) Rr  
ST  
STD  
ST  
(Z) Rr  
ST  
Z+, Rr  
-Z, Rr  
Z+q,Rr  
k, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect with Displacement  
Store Direct to SRAM  
Load Program Memory  
Load Program Memory  
Load Program Memory and Post-Inc  
Store Program Memory  
In Port  
(Z) Rr, Z Z + 1  
Z Z - 1, (Z) Rr  
(Z + q) Rr  
ST  
STD  
STS  
LPM  
LPM  
LPM  
SPM  
IN  
(k) Rr  
R0 (Z)  
Rd, Z  
Rd (Z)  
Rd, Z+  
Rd (Z), Z Z+1  
(z) R1:R0  
Rd, P  
P, Rr  
Rr  
Rd P  
1
1
2
2
OUT  
PUSH  
POP  
Out Port  
P Rr  
Push Register on Stack  
Pop Register from Stack  
STACK Rr  
Rd STACK  
Rd  
MCU CONTROL INSTRUCTIONS  
NOP  
No Operation  
Sleep  
None  
None  
None  
None  
1
1
SLEEP  
WDR  
(see specific descr. for Sleep function)  
(see specific descr. for WDR/Timer)  
For On-chip Debug Only  
Watchdog Reset  
Break  
1
BREAK  
N/A  
10  
ATtiny24/44/84  
8006JS–AVR–07/10  
ATtiny24/44/84  
6. Ordering Information  
6.1  
ATtiny24  
Speed (MHz)  
Power Supply  
Ordering Code(1)  
Package(2)  
Operational Range  
ATtiny24V-10SSU  
ATtiny24V-10PU  
ATtiny24V-10MU  
14S1  
14P3  
20M1  
Industrial  
(-40°C to +85°C)  
10  
20  
1.8 - 5.5V  
ATtiny24-20SSU  
ATtiny24-20PU  
ATtiny24-20MU  
14S1  
14P3  
20M1  
Industrial  
(-40°C to +85°C)  
2.7 - 5.5V  
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information  
and minimum quantities.  
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
Package Type  
14S1  
14P3  
20M1  
14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)  
14-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)  
20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)  
11  
8006JS–AVR–07/10  
6.2  
ATtiny44  
Speed (MHz)  
Power Supply  
Ordering Code(1)  
Package(2)  
Operational Range  
ATtiny44V-10SSU  
ATtiny44V-10PU  
ATtiny44V-10MU  
14S1  
14P3  
20M1  
Industrial  
(-40°C to +85°C)  
10  
20  
1.8 - 5.5V  
ATtiny44-20SSU  
ATtiny44-20PU  
ATtiny44-20MU  
14S1  
14P3  
20M1  
Industrial  
(-40°C to +85°C)  
2.7 - 5.5V  
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information  
and minimum quantities.  
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
Package Type  
14S1  
14P3  
20M1  
14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)  
14-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)  
20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)  
12  
ATtiny24/44/84  
8006JS–AVR–07/10  
ATtiny24/44/84  
6.3  
ATtiny84  
Speed (MHz)  
Power Supply  
Ordering Code(1)  
Package(2)  
Operational Range  
ATtiny84V-10SSU  
ATtiny84V-10PU  
ATtiny84V-10MU  
14S1  
14P3  
20M1  
Industrial  
(-40°C to +85°C)  
10  
20  
1.8 - 5.5V  
ATtiny84-20SSU  
ATtiny84-20PU  
ATtiny84-20MU  
14S1  
14P3  
20M1  
Industrial  
(-40°C to +85°C)  
2.7 - 5.5V  
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information  
and minimum quantities.  
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
Package Type  
14S1  
14P3  
20M1  
14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)  
14-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)  
20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)  
13  
8006JS–AVR–07/10  
7. Packaging Information  
7.1  
20M1  
D
1
2
Pin 1 ID  
SIDE VIEW  
E
3
TOP VIEW  
A2  
A1  
D2  
A
0.08  
C
1
2
3
Pin #1  
Notch  
(0.20 R)  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
E2  
MIN  
0.70  
MAX  
0.80  
0.05  
b
NOM  
0.75  
NOTE  
SYMBOL  
A
A1  
A2  
b
0.01  
L
0.20 REF  
0.23  
0.18  
2.45  
2.45  
0.35  
0.30  
2.75  
2.75  
0.55  
e
D
4.00 BSC  
2.60  
D2  
E
BOTTOM VIEW  
4.00 BSC  
2.60  
E2  
e
0.50 BSC  
0.40  
Reference JEDEC Standard MO-220, Fig. 1 (SAW Singulation) WGGD-5.  
Note:  
L
10/27/04  
DRAWING NO. REV.  
20M1  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
20M1, 20-pad, 4 x 4 x 0.8 mm Body, Lead Pitch 0.50 mm,  
A
R
2.6 mm Exposed Pad, Micro Lead Frame Package (MLF)  
14  
ATtiny24/44/84  
8006JS–AVR–07/10  
ATtiny24/44/84  
7.2  
14P3  
D
PIN  
1
E1  
A
SEATING PLANE  
A1  
L
B
B1  
e
E
COMMON DIMENSIONS  
(Unit of Measure = mm)  
C
MIN  
MAX  
5.334  
NOM  
NOTE  
SYMBOL  
eC  
A
eB  
A1  
D
0.381  
18.669  
7.620  
6.096  
0.356  
1.143  
2.921  
0.203  
19.685 Note 2  
8.255  
E
E1  
B
7.112 Note 2  
0.559  
B1  
L
1.778  
Notes: 1. This package conforms to JEDEC reference MS-001, Variation AA.  
2. Dimensions D and E1 do not include mold Flash or Protrusion.  
Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").  
3.810  
C
0.356  
eB  
eC  
e
10.922  
0.000  
1.524  
2.540 TYP  
11/02/05  
DRAWING NO. REV.  
14P3  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
14P3, 14-lead (0.300"/7.62 mm Wide) Plastic Dual  
Inline Package (PDIP)  
A
R
15  
8006JS–AVR–07/10  
7.3  
14S1  
1
E
H
E
N
L
Top View  
End View  
COMMON DIMENSIONS  
(Unit of Measure = mm/inches)  
e
b
MIN  
MAX  
NOM  
NOTE  
SYMBOL  
A
A1  
b
1.35/0.0532  
0.1/.0040  
1.75/0.0688  
0.25/0.0098  
0.5/0.02005  
8.74/0.3444  
3.99/0.1574  
6.19/0.2440  
1.27/0.0500  
A1  
A
0.33/0.0130  
8.55/0.3367  
3.8/0.1497  
5.8/0.2284  
0.41/0.0160  
D
E
H
L
2
D
3
Side View  
4
e
1.27/0.050 BSC  
Notes:  
1. This drawing is for general information only; refer to JEDEC Drawing MS-012, Variation AB for additional information.  
2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusion and gate burrs shall not  
exceed 0.15 mm (0.006") per side.  
3. Dimension E does not include inter-lead Flash or protrusion. Inter-lead flash and protrusions shall not exceed 0.25 mm  
(0.010") per side.  
4. L is the length of the terminal for soldering to a substrate.  
5. The lead width B, as measured 0.36 mm (0.014") or greater above the seating plane, shall not exceed a maximum value  
of 0.61 mm (0.024") per side.  
2/5/02  
TITLE  
DRAWING NO.  
REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
14S1, 14-lead, 0.150" Wide Body, Plastic Gull  
Wing Small Outline Package (SOIC)  
14S1  
A
R
16  
ATtiny24/44/84  
8006JS–AVR–07/10  
ATtiny24/44/84  
8. Errata  
The revision letters in this section refer to the revision of the corresponding ATtiny24/44/84  
device.  
8.1  
ATtiny24  
8.1.1  
Rev. D – E  
No known errata.  
8.1.2  
Rev. C  
Reading EEPROM when system clock frequency is below 900 kHz may not work  
1. Reading EEPROM when system clock frequency is below 900 kHz may not work  
Reading data from the EEPROM at system clock frequency below 900 kHz may result in  
wrong data read.  
Problem Fix/Work around  
Avoid using the EEPROM at clock frequency below 900 kHz.  
8.1.3  
Rev. B  
EEPROM read from application code does not work in Lock Bit Mode 3  
Reading EEPROM when system clock frequency is below 900 kHz may not work  
1. EEPROM read from application code does not work in Lock Bit Mode 3  
When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does  
not work from the application code.  
Problem Fix/Work around  
Do not set Lock Bit Protection Mode 3 when the application code needs to read from  
EEPROM.  
2. Reading EEPROM when system clock frequency is below 900 kHz may not work  
Reading data from the EEPROM at system clock frequency below 900 kHz may result in  
wrong data read.  
Problem Fix/Work around  
Avoid using the EEPROM at clock frequency below 900 kHz.  
8.1.4  
Rev. A  
Not sampled.  
17  
8006JS–AVR–07/10  
8.2  
ATtiny44  
8.2.1  
Rev. B – D  
No known errata.  
8.2.2  
Rev. A  
Reading EEPROM when system clock frequency is below 900 kHz may not work  
1. Reading EEPROM when system clock frequency is below 900 kHz may not work  
Reading data from the EEPROM at system clock frequency below 900 kHz may result in  
wrong data read.  
Problem Fix/Work around  
Avoid using the EEPROM at clock frequency below 900 kHz.  
18  
ATtiny24/44/84  
8006JS–AVR–07/10  
ATtiny24/44/84  
8.3  
ATtiny84  
8.3.1  
Rev. A – B  
No known errata.  
19  
8006JS–AVR–07/10  
9. Datasheet Revision History  
9.1  
Rev I. - 06/10  
1. Removed “Preliminary” from cover page.  
2. Updated notes in Table 19-16, “High-voltage Serial Programming Instruction Set for  
ATtiny24/44/84,” on page 171.  
3. Added clarification before Table 6-8, “Capacitance for the Low-Frequency Crystal  
Oscillator,” on page 28.  
4. Updated some table notes in Section 20. “Electrical Characteristics” on page 174.  
9.2  
Rev H. 10/09  
1. Updated document template. Re-arranged some sections.  
2. Updated “Low-Frequency Crystal Oscillator” with the Table 6-8 on page 28  
3. Updated Tables:  
“Active Clock Domains and Wake-up Sources in Different Sleep Modes” on page 33  
“DC Characteristics” on page 174  
“Register Summary” on page 7  
4. Updated Register Description:  
“ADMUX – ADC Multiplexer Selection Register” on page 145  
5. Signature Imprint Reading Instructions updated in “Reading Device Signature Imprint  
Table from Firmware” on page 156.  
6. Updated Section:  
Step 1. on page 164  
7. Added Table:  
“Analog Comparator Characteristics” on page 179  
8. Updated Figure:  
“Active Supply Current vs. frequency (1 - 20 MHz)” on page 187  
9. Updated Figure 21-30 on page 201 and Figure 21-33 on page 202 under “Pin Thresh-  
old and Hysteresis”.  
10. Changed ATtiny24/44 device status to “Not Recommended for New Designs. Use:  
ATtiny24A/44A”.  
9.3  
Rev G. 01/08  
1. Updated sections:  
“Features” on page 1  
“RESET” on page 3  
“Overview” on page 4  
“About” on page 6  
“SPH and SPL — Stack Pointer Register” on page 11  
“Atomic Byte Programming” on page 17  
“Write” on page 17  
“Clock Sources” on page 25  
“Default Clock Source” on page 30  
20  
ATtiny24/44/84  
8006JS–AVR–07/10  
ATtiny24/44/84  
“Sleep Modes” on page 33  
“Software BOD Disable” on page 34  
“External Interrupts” on page 49  
“USIBR – USI Data Buffer” on page 125  
“USIDR – USI Data Register” on page 124  
“DIDR0 – Digital Input Disable Register 0” on page 131  
“Features” on page 132  
“Prescaling and Conversion Timing” on page 135  
“Temperature Measurement” on page 144  
“ADMUX – ADC Multiplexer Selection Register” on page 145  
“Limitations of debugWIRE” on page 152  
“Reading Lock, Fuse and Signature Data from Software” on page 155  
“Device Signature Imprint Table” on page 161  
“Enter High-voltage Serial Programming Mode” on page 168  
“Absolute Maximum Ratings*” on page 174  
“DC Characteristics” on page 174  
“Speed” on page 175  
“Clock Characteristics” on page 176  
“Accuracy of Calibrated Internal RC Oscillator” on page 176  
“System and Reset Characteristics” on page 177  
“Supply Current of I/O Modules” on page 185  
“ATtiny24” on page 17  
“ATtiny44” on page 18  
“ATtiny84” on page 19  
2. Updated bit definitions in sections:  
“MCUCR – MCU Control Register” on page 36  
“MCUCR – MCU Control Register” on page 51  
“MCUCR – MCU Control Register” on page 67  
“PINA – Port A Input Pins” on page 68  
“SPMCSR – Store Program Memory Control and Status Register” on page 157  
“Register Summary” on page 7  
3. Updated Figures:  
“Reset Logic” on page 39  
“Watchdog Reset During Operation” on page 42  
“Compare Match Output Unit, Schematic (non-PWM Mode)” on page 95  
“Analog to Digital Converter Block Schematic” on page 133  
“ADC Timing Diagram, Free Running Conversion” on page 137  
“Analog Input Circuitry” on page 140  
“High-voltage Serial Programming” on page 167  
“Serial Programming Timing” on page 183  
“High-voltage Serial Programming Timing” on page 184  
21  
8006JS–AVR–07/10  
“Active Supply Current vs. Low Frequency (0.1 - 1.0 MHz)” on page 186  
“Active Supply Current vs. frequency (1 - 20 MHz)” on page 187  
“Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)” on page 187  
“Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)” on page 188  
“Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)” on page 188  
“Idle Supply Current vs. Low Frequency (0.1 - 1.0 MHz)” on page 189  
“Idle Supply Current vs. Frequency (1 - 20 MHz)” on page 189  
“Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)” on page 190  
“Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)” on page 190  
“Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)” on page 191  
“Power-down Supply Current vs. VCC (Watchdog Timer Disabled)” on page 191  
“Power-down Supply Current vs. VCC (Watchdog Timer Enabled)” on page 192  
“Reset Pin Input Hysteresis vs. VCC” on page 202  
“Reset Pin Input Hysteresis vs. VCC (Reset Pin Used as I/O)” on page 203  
“Watchdog Oscillator Frequency vs. VCC” on page 205  
“Watchdog Oscillator Frequency vs. Temperature” on page 205  
“Calibrated 8 MHz RC Oscillator Frequency vs. VCC” on page 206  
“Calibrated 8 MHz RC oscillator Frequency vs. Temperature” on page 206  
“ADC Current vs. VCC” on page 207  
“Programming Current vs. VCC (ATtiny24)” on page 209  
“Programming Current vs. VCC (ATtiny44)” on page 209  
“Programming Current vs. VCC (ATtiny84)” on page 210  
4. Added Figures:  
“Reset Pin Output Voltage vs. Sink Current (VCC = 3V)” on page 198  
“Reset Pin Output Voltage vs. Sink Current (VCC = 5V)” on page 198  
“Reset Pin Output Voltage vs. Source Current (VCC = 3V)” on page 199  
“Reset Pin Output Voltage vs. Source Current (VCC = 5V)” on page 199  
5. Updated Tables:  
“Device Clocking Options Select” on page 25  
“Start-up Times for the Crystal Oscillator Clock Selection” on page 29  
“Start-up Times for the Internal Calibrated RC Oscillator Clock Selection” on page 27  
“Start-up Times for the External Clock Selection” on page 26  
“Start-up Times for the 128 kHz Internal Oscillator” on page 27  
“Active Clock Domains and Wake-up Sources in Different Sleep Modes” on page 33  
“Watchdog Timer Prescale Select” on page 47  
“Reset and Interrupt Vectors” on page 48  
“Overriding Signals for Alternate Functions in PA7:PA5” on page 63  
“Overriding Signals for Alternate Functions in PA4:PA2” on page 64  
“Overriding Signals for Alternate Functions in PA1:PA0” on page 64  
“Port B Pins Alternate Functions” on page 65  
“Overriding Signals for Alternate Functions in PB3:PB2” on page 66  
22  
ATtiny24/44/84  
8006JS–AVR–07/10  
ATtiny24/44/84  
“Overriding Signals for Alternate Functions in PB1:PB0” on page 67  
“Waveform Generation Modes” on page 110  
“ADC Conversion Time” on page 138  
“Temperature vs. Sensor Output Voltage (Typical Case)” on page 144  
“DC Characteristics. TA = -40°C to +85°C” on page 174  
“Calibration Accuracy of Internal RC Oscillator” on page 176  
“Reset, Brown-out, and Internal Voltage Characteristics” on page 177  
“VBOT vs. BODLEVEL Fuse Coding” on page 179  
“ADC Characteristics, Single Ended Channels. T = -40°C to +85°C” on page 180  
“ADC Characteristics, Differential Channels (Bipolar Mode), TA = -40°C to +85°C” on  
page 182  
“Serial Programming Characteristics, TA = -40°C to +85°C, VCC = 1.8 - 5.5V (Unless  
Otherwise Noted)” on page 183  
“High-voltage Serial Programming Characteristics TA = 25°C, VCC = 5V (Unless  
otherwise noted)” on page 184  
6. Updated code examples in sections:  
“Write” on page 17  
“SPI Master Operation Example” on page 119  
7. Updated “Ordering Information” in:  
“ATtiny84” on page 13  
9.4  
Rev F. 02/07  
1.  
2.  
Updated Figure 1-1 on page 2, Figure 8-7 on page 43, Figure 20-6 on page 184.  
Updated Table 9-1 on page 48, Table 10-7 on page 65, Table 11-2 on page 80, Table  
11-3 on page 81, Table 11-5 on page 81, Table 11-6 on page 82, Table 11-7 on page  
82, Table 11-8 on page 83, Table 20-11 on page 182, Table 20-13 on page 184.  
Updated table references in “TCCR0A – Timer/Counter Control Register A” on page 80.  
Updated Port B, Bit 0 functions in “Alternate Functions of Port B” on page 65.  
Updated WDTCR bit name to WDTCSR in assembly code examples.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
Updated bit5 name in “TIFR1 – Timer/Counter Interrupt Flag Register 1” on page 114.  
Updated bit5 in “TIFR1 – Timer/Counter Interrupt Flag Register 1” on page 114.  
Updated “SPI Master Operation Example” on page 119.  
Updated step 5 in “Enter High-voltage Serial Programming Mode” on page 168.  
9.5  
Rev E. 09/06  
1.  
2.  
3.  
4.  
All characterization data moved to “Electrical Characteristics” on page 174.  
All Register Descriptions gathered up in separate sections at the end of each chapter.  
Updated “System Control and Reset” on page 39.  
Updated Table 11-3 on page 81, Table 11-6 on page 82, Table 11-8 on page 83, Table  
12-3 on page 109 and Table 12-5 on page 110.  
5.  
6.  
Updated “Fast PWM Mode” on page 97.  
Updated Figure 12-7 on page 98 and Figure 16-1 on page 133.  
23  
8006JS–AVR–07/10  
7.  
8.  
9.  
Updated “Analog Comparator Multiplexed Input” on page 129.  
Added note in Table 19-12 on page 165.  
Updated “Electrical Characteristics” on page 174.  
10. Updated “Typical Characteristics” on page 185.  
9.6  
Rev D. 08/06  
1.  
2.  
3.  
4.  
5.  
6.  
Updated “Calibrated Internal 8 MHz Oscillator” on page 26.  
Updated “OSCCAL – Oscillator Calibration Register” on page 30.  
Added Table 20-2 on page 176.  
Updated code examples in “SPI Master Operation Example” on page 119.  
Updated code examples in “SPI Slave Operation Example” on page 121.  
Updated “Signature Bytes” on page 162.  
9.7  
9.8  
Rev C. 07/06  
Rev B. 05/06  
1.  
2.  
3.  
4.  
Updated Features in “USI – Universal Serial Interface” on page 117.  
Added “Clock speed considerations” on page 123.  
Updated Bit description in “ADMUX – ADC Multiplexer Selection Register” on page 145.  
Added note to Table 18-1 on page 157.  
1.  
2.  
3.  
Updated “Default Clock Source” on page 30  
Updated “Power Reduction Register” on page 35.  
Updated Table 20-4 on page 177, Table 9-4 on page 42, Table 16-3 on page 145,  
Table 19-5 on page 161, Table 19-12 on page 165, Table 19-16 on page 171, Table 20-  
11 on page 182.  
4.  
5.  
6.  
7.  
8.  
9.  
Updated Features in “Analog to Digital Converter” on page 132.  
Updated Operation in “Analog to Digital Converter” on page 132.  
Updated “Temperature Measurement” on page 144.  
Updated DC Characteristics in “Electrical Characteristics” on page 174.  
Updated “Typical Characteristics” on page 185.  
Updated “Errata” on page 17.  
9.9  
Rev A. 12/05  
Initial revision.  
24  
ATtiny24/44/84  
8006JS–AVR–07/10  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
Technical Support  
Sales Contact  
www.atmel.com  
avr@atmel.com  
www.atmel.com/contacts  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
2010 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR® and others are registered trademarks, or  
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
8006JS–AVR–07/10  

相关型号:

ATTINY84V-15MT

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash
ATMEL

ATTINY84_14

Non-Volatile Program and Data Memories
ATMEL

ATTINY85

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash
ATMEL

ATTINY85-10MU

Microcontroller
ATMEL

ATTINY85-10PI

Microcontroller,
ATMEL

ATTINY85-10PU

Microcontroller,
ATMEL

ATTINY85-10SI

Microcontroller,
ATMEL

ATTINY85-10SU

Microcontroller,
ATMEL

ATTINY85-15MT

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash
ATMEL

ATTINY85-15MT1

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash
ATMEL

ATTINY85-15MT1

IC MCU 8BIT 8KB FLASH 20QFN
MICROCHIP

ATTINY85-15MZ

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash
ATMEL