ATXMEGA64B1 [ATMEL]

8/16-bit Atmel XMEGA B1 Microcontroller; 8位/ 16位爱特梅尔XMEGA微控制器B1
ATXMEGA64B1
型号: ATXMEGA64B1
厂家: ATMEL    ATMEL
描述:

8/16-bit Atmel XMEGA B1 Microcontroller
8位/ 16位爱特梅尔XMEGA微控制器B1

微控制器
文件: 总138页 (文件大小:6465K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8/16-bit Atmel XMEGA B1 Microcontroller  
ATxmega128B1; ATxmega64B1  
Features  
High-performance, low-power Atmel® AVR® XMEGA® 8/16-bit Microcontroller  
Nonvolatile program and data memories  
64K - 128KBytes of in-system self-programmable flash  
4K - 8KBytes boot section  
2KBytes EEPROM  
4K - 8KBytes internal SRAM  
Peripheral Features  
Two-channel DMA controller  
Four-channel event system  
Three 16-bit timer/counters  
Two timer/counters with 4 output compare or input capture channels  
One timer/counter with 2 output compare or input capture channels  
High resolution extensions one timer/counter  
Advanced waveform extension (AWeX) on one timer/counter  
Split mode on two timer/counters  
One USB device interface  
USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant  
32 Endpoints with full configuration flexibility  
Two USARTs with IrDA support for one USART  
AES and DES crypto engine  
CRC-16 (CRC-CCITT) and CRC-32 (IEEE® 802.3) generator  
One two-wire interface with dual address match (I2C and SMBus compatible)  
One serial peripheral interface (SPI)  
16-bit Real Time Counter (RTC) with separate oscillator  
Liquid Crystal Display  
Up to 4x40 segment driver  
Built in contrast control  
ASCII character mapping  
Flexible SWAP of segment and common terminals buses  
Two eight-channel, 12-bit, 300 thousand SPS Analog to Digital Converters  
Four Analog Comparators with window compare function, and current source  
feature  
External interrupts on all General Purpose I/O pins  
Programmable watchdog timer with separate on-chip ultra low power oscillator  
QTouch® library support  
Capacitive touch buttons, sliders and wheels  
Special microcontroller features  
Power-on reset and programmable brown-out detection  
Internal and external clock options with PLL  
Programmable multilevel interrupt controller  
Five sleep modes  
Programming and debug interfaces  
JTAG (IEEE 1149.1 Compliant) interface, including boundary scan  
PDI (Program and Debug Interface)  
I/O and Packages  
53 Programmable I/O pins  
100-lead TQFP  
Operating Voltage  
1.6 – 3.6V  
Operating frequency  
0 – 12MHz from 1.6V  
0 – 32MHz from 2.7V  
8330C–AVR–07/2012  
1.  
Ordering Information  
Flash  
EEPROM  
(Bytes)  
SRAM  
(Bytes)  
Power  
Supply  
Ordering Code  
ATxmega128B1-AU  
ATxmega64B1-AU  
(Bytes)  
128K + 8K  
64K + 4K  
Speed (MHz)  
Package(1)(2)(3)  
Temp  
2K  
2K  
8K  
4K  
32  
1.6 - 3.6V  
100A  
-40C - 85C  
Notes:  
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information.  
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.  
3. For packaging information, see “Errata” on page 131.  
Package Type  
100-lead, 14 x 14mm body size, 1.0mm body thickness, 0.5mm lead pitch, thin profile plastic quad flat package (TQFP)  
100A  
Typical Applications  
Industrial control  
Factory automation  
Building control  
Board control  
Climate control  
RF and ZigBee®  
USB connectivity  
Sensor control  
Optical  
Low power battery applications  
Power tools  
HVAC  
Utility metering  
White goods  
Medical applications  
XMEGA B1 [DATASHEET]  
2
8330C–AVR–07/2012  
2.  
Pinout/Block Diagram  
Figure 2-1. Block diagram and pinout  
Power  
LCD  
Ground  
Programming, debug, test  
External clock / Crystal pins  
General Purpose I/O  
Digital function  
Analog function / Oscillators  
VCC  
PC0  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
CAPH  
CAPL  
VLCD  
BIAS2  
BIAS1  
VCC  
2
PC1  
3
Port B  
Port A  
Port R  
PC2  
4
PC3  
5
PC4  
6
PC5  
7
GND  
EVENT ROUTING NETWORK  
DATA BUS  
PC6  
8
SEG0  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
PC7  
9
OSC/CLK  
Control  
Watchdog  
Oscillator  
Power  
TC0:1  
USART0  
SPI  
TEMPREF  
VREF  
Supervision  
GND  
VCC  
PD0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
Real Time  
Counter  
Sleep  
Controller  
Reset  
Controller  
TWI  
Event System  
Controller  
Interrupt  
Controller  
Prog/Debug  
Interface  
OCD  
PD1  
USB  
PD2  
Watchdog  
Timer  
DMA  
Controller  
PDI / RESET  
PDI  
TC0  
BUS  
Controller  
CPU  
Crypto / CRC  
EEPROM  
GND  
VCC  
PE0  
USART0  
IRCOM  
FLASH  
SRAM  
DATA BUS  
PE1  
SEG  
LCD Controller  
PE2  
Port G  
Port M  
PE3  
PE4  
PE5  
PE6  
Note:  
1. For full details on pinout and alternate pin functions refer to “Pinout and Pin Functions” on page 52.  
XMEGA B1 [DATASHEET]  
3
8330C–AVR–07/2012  
3.  
Overview  
The Atmel® AVR® XMEGA® is a family of low power, high performance, and peripheral rich 8/16-bit microcontrollers  
based on the AVR enhanced RISC architecture. By executing instructions in a single clock cycle, the Atmel AVR XMEGA  
devices achieve CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the  
system designer to optimize power consumption versus processing speed.  
The AVR CPU combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly  
connected to the arithmetic logic unit (ALU), allowing two independent registers to be accessed in a single instruction,  
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs many times  
faster than conventional single-accumulator or CISC based microcontrollers.  
The Atmel AVR XMEGA B1 devices provide the following features: in-system programmable flash with read-while-write  
capabilities; internal EEPROM and SRAM; two-channel DMA controller, four-channel event system and programmable  
multilevel interrupt controller, 53 general purpose I/O lines, real-time counter (RTC); Liquid Crystal Display supporting up  
to 4x40 segment driver, ASCII character mapping and built-in contrast control (LCD); three flexible, 16-bit timer/counters  
with compare and PWM channels; two USARTs; one two-wire serial interface (TWI); one full speed USB 2.0 interface;  
one serial peripheral interface (SPI); AES and DES cryptographic engine; two 8-channel, 12-bit ADCs with  
programmable gain; four analog comparators (ACs) with window mode; programmable watchdog timer with separate  
internal oscillator; accurate internal oscillators with PLL and prescaler; and programmable brown-out detection.  
The program and debug interface (PDI), a fast, two-pin interface for programming and debugging, is available. The  
devices also have an IEEE std. 1149.1 compliant JTAG interface, and this can also be used for on-chip debug and  
programming.  
The ATx devices have five software selectable power saving modes. The idle mode stops the CPU while allowing the  
SRAM, DMA controller, event system, interrupt controller, and all peripherals to continue functioning. The power-down  
mode saves the SRAM and register contents, but stops the oscillators, disabling all other functions until the next TWI,  
USB resume, or pin-change interrupt, or reset. In power-save mode, the asynchronous real-time counter continues to  
run, allowing the application to maintain a timer base while the rest of the device is sleeping. In power-save mode, the  
LCD controller is allowed to refresh data to the panel. In standby mode, the external crystal oscillator keeps running while  
the rest of the device is sleeping. This allows very fast startup from the external crystal, combined with low power  
consumption. In extended standby mode, both the main oscillator and the asynchronous timer continue to run, and the  
LCD controller is allowed to refresh data to the panel. To further reduce power consumption, the peripheral clock to each  
individual peripheral can optionally be stopped in active mode and idle sleep mode.  
Atmel offers a free QTouch® library for embedding capacitive touch buttons, sliders and wheels functionality into AVR  
microcontrollers.  
The devices are manufactured using Atmel high-density, nonvolatile memory technology. The program flash memory can  
be reprogrammed in-system through the PDI or JTAG interfaces. A boot loader running in the device can use any  
interface to download the application program to the flash memory. The boot loader software in the boot flash section will  
continue to run while the application flash section is updated, providing true read-while-write operation. By combining an  
8/16-bit RISC CPU with in-system, self-programmable flash, the Atmel XMEGA B1 is a powerful microcontroller family  
that provides a highly flexible and cost effective solution for many embedded applications.  
The atmel AVR ATx devices are supported with a full suite of program and system development tools, including C  
compilers, macro assemblers, program debugger/simulators, programmers, and evaluation kits.  
XMEGA B1 [DATASHEET]  
4
8330C–AVR–07/2012  
3.1  
Block Diagram  
Figure 3-1. XMEGA B1 Block Diagram  
Power  
LCD  
PR[0..1]  
Ground  
Programming, debug, test  
External clock / Crystal pins  
General Purpose I/O  
Digital function  
Analog function / Oscillators  
XTAL1 /  
TOSC1  
XTAL2 /  
TOSC2  
Oscillator  
Circuits/  
Clock  
PORT R (2)  
Generation  
Real Time  
Counter  
Watchdog  
Oscillator  
EVENT ROUTING NETWORK  
DATA BUS  
SRAM  
Watchdog  
Timer  
Event System  
Controller  
Oscillator  
Control  
PA[0..7]  
PORT A (8)  
VCC  
GND  
Power  
Supervision  
POR/BOD &  
RESET  
DMA  
Controller  
Sleep  
Controller  
ACA  
ADCA  
RESET /  
PDI_CLK  
PDI  
Prog/Debug  
Controller  
BUS Matrix  
PDI_DATA  
AREFA  
VCC/10  
Int. Refs.  
Tempref  
AREFB  
JTAG  
PORT B  
AES  
DES  
CRC  
OCD  
LCD POWER[0..4]  
COM[0..3]  
SEG[0..23]  
Interrupt  
Controller  
CPU  
LCD  
ADCB  
ACB  
SEG[31..24] /  
PM[0..7]  
NVM Controller  
PORT M (8)  
PORT G (8)  
PB[0..7]/  
JTAG  
PORT B (8)  
SEG[39..32] /  
PG[0..7]  
Flash  
EEPROM  
DATA BUS  
EVENT ROUTING NETWORK  
To Clock  
Generator  
PORT C (8)  
PORT D (3)  
PORT E (8)  
TOSC1  
(Alternate)  
TOSC2  
PE[0..7]  
PC[0..7]  
PD[0..2]  
XMEGA B1 [DATASHEET]  
5
8330C–AVR–07/2012  
4.  
Resources  
A comprehensive set of development tools, application notes and datasheets are available for download on  
http://www.atmel.com/avr.  
4.1  
Recommended reading  
XMEGA B Manual  
XMEGA Application Notes  
This device data sheet only contains part specific information with a short description of each peripheral and module. The  
XMEGA B Manual describes the modules and peripherals in depth. The XMEGA application notes contain example code  
and show applied use of the modules and peripherals.  
All documentations are available from www.atmel.com/avr.  
5.  
Capacitive touch sensing  
The Atmel QTouch® library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR  
microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced  
reporting of touch keys and includes Adjacent key suppression® (AKS®) technology for unambiguous detection of key  
events. The QTouch library includes support for the QTouch and QMatrix acquisition methods.  
Touch sensing can be added to any application by linking the appropriate Atmel QTouch library for the AVR  
Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the  
touch sensing API’s to retrieve the channel information and determine the touch sensor states.  
The QTouch library is FREE and downloadable from the Atmel website at the following location:  
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch library user  
guide - also available for download from the Atmel website.  
XMEGA B1 [DATASHEET]  
6
8330C–AVR–07/2012  
6.  
AVR CPU  
6.1  
Features  
8/16-bit, high-performance Atmel AVR RISC CPU  
– 142 instructions  
– Hardware multiplier  
32x8-bit registers directly connected to the ALU  
Stack in RAM  
Stack pointer accessible in I/O memory space  
Direct addressing of up to 16MB of program memory and 16MB of data memory  
True 16/24-bit access to 16/24-bit I/O registers  
Efficient support for 8-, 16-, and 32-bit arithmetic  
Configuration change protection of system-critical features  
6.2  
6.3  
Overview  
All AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to execute the code and perform all  
calculations. The CPU is able to access memories, perform calculations, control peripherals, and execute the program in  
the flash memory. Interrupt handling is described in a separate section, refer to “Interrupts and Programmable Multilevel  
Interrupt Controller” on page 26.  
Architectural Overview  
In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture with separate memories  
and buses for program and data. Instructions in the program memory are executed with single-level pipelining. While one  
instruction is being executed, the next instruction is pre-fetched from the program memory. This enables instructions to  
be executed on every clock cycle. For details of all AVR instructions, refer to http://www.atmel.com/avr.  
Figure 6-1. Block Diagram of the AVR CPU architecture.  
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a  
register. Single-register operations can also be executed in the ALU. After an arithmetic operation, the status register is  
updated to reflect information about the result of the operation.  
XMEGA B1 [DATASHEET]  
7
8330C–AVR–07/2012  
The ALU is directly connected to the fast-access register file. The 32 x 8-bit general purpose working registers all have  
single clock cycle access time allowing single-cycle arithmetic logic unit (ALU) operation between registers or between a  
register and an immediate. Six of the 32 registers can be used as three 16-bit address pointers for program and data  
space addressing, enabling efficient address calculations.  
The memory spaces are linear. The data memory space and the program memory space are two different memory  
spaces.  
The data memory space is divided into I/O registers and SRAM. In addition, the EEPROM can be memory mapped in the  
data memory.  
All I/O status and control registers reside in the lowest 4KB addresses of the data memory. This is referred to as the I/O  
memory space. The lowest 64 addresses can be accessed directly, or as the data space locations from 0x00 to 0x3F.  
The rest is the extended I/O memory space, ranging from 0x0040 to 0x0FFF. I/O registers here must be accessed as  
data space locations using load (LD/LDS/LDD) and store (ST/STS/STD) instructions.  
The SRAM holds data. Code execution from SRAM is not supported. It can easily be accessed through the five different  
addressing modes supported in the AVR architecture. The first SRAM address is 0x2000.  
Data addresses 0x1000 to 0x1FFF are reserved for memory mapping of EEPROM.  
The program memory is divided in two sections, the application program section and the boot program section. Both  
sections have dedicated lock bits for write and read/write protection. The SPM instruction that is used for self-  
programming of the application flash memory must reside in the boot program section. The application section contains  
an application table section with separate lock bits for write and read/write protection. The application table section can  
be used for save storing of nonvolatile data in the program memory.  
6.4  
ALU - Arithmetic Logic Unit  
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a  
register. Single-register operations can also be executed. The ALU operates in direct connection with all 32 general  
purpose registers. In a single clock cycle, arithmetic operations between general purpose registers or between a register  
and an immediate are executed and the result is stored in the register file. After an arithmetic or logic operation, the  
status register is updated to reflect information about the result of the operation.  
ALU operations are divided into three main categories – arithmetic, logical, and bit functions. Both 8- and 16-bit  
arithmetic is supported, and the instruction set allows for efficient implementation of 32-bit aritmetic. The hardware  
multiplier supports signed and unsigned multiplication and fractional format.  
6.4.1 Hardware Multiplier  
The multiplier is capable of multiplying two 8-bit numbers into a 16-bit result. The hardware multiplier supports different  
variations of signed and unsigned integer and fractional numbers:  
Multiplication of unsigned integers  
Multiplication of signed integers  
Multiplication of a signed integer with an unsigned integer  
Multiplication of unsigned fractional numbers  
Multiplication of signed fractional numbers  
Multiplication of a signed fractional number with an unsigned one  
A multiplication takes two CPU clock cycles.  
6.5  
Program Flow  
After reset, the CPU starts to execute instructions from the lowest address in the flash programmemory ‘0.’ The program  
counter (PC) addresses the next instruction to be fetched.  
Program flow is provided by conditional and unconditional jump and call instructions capable of addressing the whole  
address space directly. Most AVR instructions use a 16-bit word format, while a limited number use a 32-bit format.  
XMEGA B1 [DATASHEET]  
8
8330C–AVR–07/2012  
During interrupts and subroutine calls, the return address PC is stored on the stack. The stack is allocated in the general  
data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. After  
reset, the stack pointer (SP) points to the highest address in the internal SRAM. The SP is read/write accessible in the  
I/O memory space, enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be  
accessed through the five different addressing modes supported in the AVR CPU.  
6.6  
Status Register  
The status register (SREG) contains information about the result of the most recently executed arithmetic or logic  
instruction. This information can be used for altering program flow in order to perform conditional operations. Note that  
the status register is updated after all ALU operations, as specified in the instruction set reference. This will in many  
cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.  
The status register is not automatically stored when entering an interrupt routine nor restored when returning from an  
interrupt. This must be handled by software.  
The status register is accessible in the I/O memory space.  
6.7  
Stack and Stack Pointer  
The stack is used for storing return addresses after interrupts and subroutine calls. It can also be used for storing  
temporary data. The stack pointer (SP) register always points to the top of the stack. It is implemented as two 8-bit  
registers that are accessible in the I/O memory space. Data are pushed and popped from the stack using the PUSH and  
POP instructions. The stack grows from a higher memory location to a lower memory location. This implies that pushing  
data onto the stack decreases the SP, and popping data off the stack increases the SP. The SP is automatically loaded  
after reset, and the initial value is the highest address of the internal SRAM. If the SP is changed, it must be set to point  
above address 0x2000, and it must be defined before any subroutine calls are executed or before interrupts are enabled.  
During interrupts or subroutine calls, the return address is automatically pushed on the stack. The return address can be  
two or three bytes, depending on program memory size of the device. For devices with 128KB or less of program  
memory, the return address is two bytes, and hence the stack pointer is decremented/incremented by two. For devices  
with more than 128KB of program memory, the return address is three bytes, and hence the SP is  
decremented/incremented by three. The return address is popped off the stack when returning from interrupts using the  
RETI instruction, and from subroutine calls using the RET instruction.  
The SP is decremented by one when data are pushed on the stack with the PUSH instruction, and incremented by one  
when data is popped off the stack using the POP instruction.  
To prevent corruption when updating the stack pointer from software, a write to SPL will automatically disable interrupts  
for up to four instructions or until the next I/O memory write.  
6.8  
Register File  
The register file consists of 32 x 8-bit general purpose working registers with single clock cycle access time. The register  
file supports the following input/output schemes:  
One 8-bit output operand and one 8-bit result input  
Two 8-bit output operands and one 8-bit result input  
Two 8-bit output operands and one 16-bit result input  
One 16-bit output operand and one 16-bit result input  
Six of the 32 registers can be used as three 16-bit address register pointers for data space addressing, enabling efficient  
address calculations. One of these address pointers can also be used as an address pointer for lookup tables in flash  
program memory.  
XMEGA B1 [DATASHEET]  
9
8330C–AVR–07/2012  
7.  
Memories  
7.1  
Features  
Flash program memory  
– One linear address space  
– In-system programmable  
– Self-programming and boot loader support  
– Application section for application code  
– Application table section for application code or data storage  
– Boot section for application code or bootloader code  
– Separate read/write protection lock bits for all sections  
– Built in fast CRC check of a selectable flash program memory section  
Data memory  
– One linear address space  
– Single-cycle access from CPU  
– SRAM  
– EEPROM  
Byte and page accessible  
Optional memory mapping for direct load and store  
– I/O memory  
Configuration and status registers for all peripherals and modules  
4 bit-accessible general purpose registers for global variables or flags  
– Bus arbitration  
Safe and deterministic handling of priority between CPU, DMA controller, and other bus masters  
– Separate buses for SRAM, EEPROM and I/O memory  
Simultaneous bus access for CPU and DMA controller  
Production signature row memory for factory programmed data  
– ID for each microcontroller device type  
– Serial number for each device  
– Calibration bytes for factory calibrated peripherals  
User signature row  
– One flash page in size  
– Can be read and written from software  
– Content is kept after chip erase  
7.2  
Overview  
The Atmel AVR architecture has two main memory spaces, the program memory and the data memory. Executable code  
can reside only in the program memory, while data can be stored in the program memory and the data memory. The data  
memory includes the internal SRAM, and EEPROM for nonvolatile data storage. All memory spaces are linear and  
require no memory bank switching. Nonvolatile memory (NVM) spaces can be locked for further write and read/write  
operations. This prevents unrestricted access to the application software.  
A separate memory section contains the fuse bytes. These are used for configuring important system functions, and can  
only be written by an external programmer.  
The available memory size configurations are shown in “Ordering Information” on page 2. In addition, each device has a  
Flash memory signature row for calibration data, device identification, serial number etc.  
XMEGA B1 [DATASHEET]  
10  
8330C–AVR–07/2012  
7.3  
Flash Program Memory  
The Atmel AVR XMEGA devices contain on-chip, in-system reprogrammable flash memory for program storage. The  
flash memory can be accessed for read and write from an external programmer through the PDI or from application  
software running in the device.  
All AVR CPU instructions are 16 or 32 bits wide, and each flash location is 16 bits wide. The flash memory is organized  
in two main sections, the application section and the boot loader section. The sizes of the different sections are fixed, but  
device-dependent. These two sections have separate lock bits, and can have different levels of protection. The store  
program memory (SPM) instruction, which is used to write to the flash from the application software, will only operate  
when executed from the boot loader section.  
The application section contains an application table section with separate lock settings. This enables safe storage of  
nonvolatile data in the program memory.  
Figure 7-1. Flash program memory (Hexadecimal address).  
Word Address  
ATxmega128B1  
ATxmega64B1  
0
0
Application section (bytes)  
(128K/64K)  
...  
EFFF  
F000  
/
/
/
/
/
77FF  
7800  
7FFF  
8000  
87FF  
Application table section (bytes)  
(8K/4K)  
FFFF  
10000  
10FFF  
Boot section (bytes)  
(8K/4K)  
7.3.1 Application Section  
The Application section is the section of the flash that is used for storing the executable application code. The protection  
level for the application section can be selected by the boot lock bits for this section. The application section can not store  
any boot loader code since the SPM instruction cannot be executed from the application section.  
7.3.2 Application Table Section  
The application table section is a part of the application section of the flash memory that can be used for storing data.  
The size is identical to the boot loader section. The protection level for the application table section can be selected by  
the boot lock bits for this section. The possibilities for different protection levels on the application section and the  
application table section enable safe parameter storage in the program memory. If this section is not used for data,  
application code can reside here.  
7.3.3 Boot Loader Section  
While the application section is used for storing the application code, the boot loader software must be located in the boot  
loader section because the SPM instruction can only initiate programming when executing from this section. The SPM  
instruction can access the entire flash, including the boot loader section itself. The protection level for the boot loader  
section can be selected by the boot loader lock bits. If this section is not used for boot loader software, application code  
can be stored here.  
XMEGA B1 [DATASHEET]  
11  
8330C–AVR–07/2012  
7.3.4 Production Signature Row  
The production signature row is a separate memory section for factory programmed data. It contains calibration data for  
functions such as oscillators and analog modules. Some of the calibration values will be automatically loaded to the  
corresponding module or peripheral unit during reset. Other values must be loaded from the signature row and written to  
the corresponding peripheral registers from software. For details on calibration conditions, refer to “Electrical  
Characteristics” on page 67.  
The production signature row also contains an ID that identifies each microcontroller device type and a serial number for  
each manufactured device. The serial number consists of the production lot number, wafer number, and wafer  
coordinates for the device. The device ID for the available devices is shown in Table 7-1 on page 12.  
The production signature row cannot be written or erased, but it can be read from application software and external  
programmers.  
Table 7-1. Device ID bytes for XMEGA B1 devices.  
Device  
Device ID bytes  
Byte 2  
52  
Byte 1  
96  
Byte 0  
1E  
ATxmega64B1  
ATxmega128B1  
4D  
97  
1E  
7.3.5 User Signature Row  
The user signature row is a separate memory section that is fully accessible (read and write) from application software  
and external programmers. It is one flash page in size, and is meant for static user parameter storage, such as calibration  
data, custom serial number, identification numbers, random number seeds, etc. This section is not erased by chip erase  
commands that erase the flash, and requires a dedicated erase command. This ensures parameter storage during  
multiple program/erase operations and on-chip debug sessions.  
7.4  
Fuses and Lock bits  
The fuses are used to configure important system functions, and can only be written from an external programmer. The  
application software can read the fuses. The fuses are used to configure reset sources such as brownout detector and  
watchdog, startup configuration, JTAG enable, and JTAG user ID.  
The lock bits are used to set protection levels for the different flash sections (i.e., if read and/or write access should be  
blocked). Lock bits can be written by external programmers and application software, but only to stricter protection levels.  
Chip erase is the only way to erase the lock bits. To ensure that flash contents are protected even during chip erase, the  
lock bits are erased after the rest of the flash memory has been erased.  
An unprogrammed fuse or lock bit will have the value one, while a programmed fuse or lock bit will have the value zero.  
Both fuses and lock bits are reprogrammable like the flash program memory.  
7.5  
Data Memory  
The data memory contains the I/O memory, internal SRAM and optionally memory mapped EEPROM. The data memory  
is organized as one continuous memory section, see Figure 7-2 on page 13. To simplify development, I/O Memory,  
EEPROM and SRAM will always have the same start addresses for all XMEGA devices.  
XMEGA B1 [DATASHEET]  
12  
8330C–AVR–07/2012  
Figure 7-2. Data memory map (hexadecimal address).  
Byte Address  
ATxmega128B1  
Byte Address  
ATxmega64B1  
0
0
I/O Registers (4K)  
I/O Registers (4KB)  
FFF  
1000  
17FF  
FFF  
1000  
17FF  
EEPROM (2K)  
RESERVED  
EEPROM (2K)  
RESERVED  
2000  
3FFF  
2000  
2FFF  
Internal SRAM (8K)  
Internal SRAM (4K)  
7.6  
7.7  
EEPROM  
XMEGA B1 devices have EEPROM for nonvolatile data storage. It is either addressable in a separate data space  
(default) or memory mapped and accessed in normal data space. The EEPROM supports both byte and page access.  
Memory mapped EEPROM allows highly efficient EEPROM reading and EEPROM buffer loading. When doing this,  
EEPROM is accessible using load and store instructions. Memory mapped EEPROM will always start at hexadecimal  
address 0x1000.  
I/O Memory  
The status and configuration registers for peripherals and modules, including the CPU, are addressable through I/O  
memory locations. All I/O locations can be accessed by the load (LD/LDS/LDD) and store (ST/STS/STD) instructions,  
which are used to transfer data between the 32 registers in the register file and the I/O memory. The IN and OUT  
instructions can address I/O memory locations in the range of 0x00 to 0x3F directly. In the address range 0x00 - 0x1F,  
single-cycle instructions for manipulation and checking of individual bits are available.  
The I/O memory address for all peripherals and modules in XMEGA B1 is shown in the “Peripheral Module Address Map”  
on page 59.  
7.7.1 General Purpose I/O Registers  
The lowest 4 I/O memory addresses are reserved as general purpose I/O registers. These registers can be used for  
storing global variables and flags, as they are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.  
7.8  
7.9  
Data Memory and Bus Arbitration  
Since the data memory is organized as four separate sets of memories, the different bus masters (CPU, DMA controller  
read and DMA controller write, etc.) can access different memory sections at the same time.  
Memory Timing  
Read and write access to the I/O memory takes one CPU clock cycle. A write to SRAM takes one cycle, and a read from  
SRAM takes two cycles. For burst read (DMA), new data are available every cycle. EEPROM page load (write) takes one  
cycle, and three cycles are required for read. For burst read, new data are available every second cycle. Refer to the  
instruction summary for more details on instructions and instruction timing.  
7.10 Device ID and Revision  
Each device has a three-byte device ID. This ID identifies Atmel as the manufacturer of the device and the device type. A  
separate register contains the revision number of the device.  
XMEGA B1 [DATASHEET]  
13  
8330C–AVR–07/2012  
7.11 JTAG Disable  
It is possible to disable the JTAG interface from the application software. This will prevent all external JTAG access to the  
device until the next device reset or until JTAG is enabled again from the application software. As long as JTAG is  
disabled, the I/O pins required for JTAG can be used as normal I/O pins.  
7.12 I/O Memory Protection  
Some features in the device are regarded as critical for safety in some applications. Due to this, it is possible to lock the  
I/O register related to the clock system, the event system, and the advanced waveform extensions. As long as the lock is  
enabled, all related I/O registers are locked and they can not be written from the application software. The lock registers  
themselves are protected by the configuration change protection mechanism.  
7.13 Flash and EEPROM Page Size  
The flash program memory and EEPROM data memory are organized in pages. The pages are word accessible for the  
flash and byte accessible for the EEPROM.  
Table 7-2 on page 14 shows the Flash Program Memory organization. Flash write and erase operations are performed  
on one page at a time, while reading the Flash is done one byte at a time. For Flash access the Z-pointer (Z[m:n]) is used  
for addressing. The most significant bits in the address (FPAGE) give the page number and the least significant address  
bits (FWORD) give the word in the page.  
Table 7-2. Number of words and Pages in the Flash.  
Devices  
PC size  
Flash  
Page Size  
words  
FWORD  
FPAGE  
Application  
Boot  
No of  
pages  
No of  
pages  
bits  
bytes  
Size  
Size  
ATxmega64B1  
ATxmega128B1  
16  
17  
64K + 4K  
128  
128  
Z[7:1]  
Z[8:1]  
Z[16:8]  
Z[17:9]  
64K  
128K  
256  
4K  
8K  
16  
128K + 8K  
512  
32  
Table 7-3 on page 14 shows EEPROM memory organization for the XMEGA B1 devices. EEEPROM write and erase  
operations can be performed one page or one byte at a time, while reading the EEPROM is done one byte at a time. For  
EEPROM access the NVM address register (ADDR[m:n]) is used for addressing. The most significant bits in the address  
(E2PAGE) give the page number and the least significant address bits (E2BYTE) give the byte in the page.  
Table 7-3. Number of Bytes and Pages in the EEPROM.  
Devices  
EEPROM  
Size  
2K  
Page Size  
bytes  
32  
E2BYTE  
E2PAGE  
No of Pages  
ATxmega64B1  
ATxmega128B1  
ADDR[4:0]  
ADDR[4:0]  
ADDR[10:5]  
ADDR[10:5]  
64  
64  
2K  
32  
XMEGA B1 [DATASHEET]  
14  
8330C–AVR–07/2012  
8.  
DMAC – Direct Memory Access Controller  
8.1  
Features  
Allows high speed data transfers with minimal CPU intervention  
– from data memory to data memory  
– from data memory to peripheral  
– from peripheral to data memory  
– from peripheral to peripheral  
Two DMA channels with separate  
– transfer triggers  
– interrupt vectors  
– addressing modes  
Programmable channel priority  
From 1 byte to 16MB of data in a single transaction  
– Up to 64KB block transfers with repeat  
– 1, 2, 4, or 8 byte burst transfers  
Multiple addressing modes  
– Static  
– Incremental  
– Decremental  
Optional reload of source and destination addresses at the end of each  
– Burst  
– Block  
– Transaction  
Optional interrupt on end of transaction  
Optional connection to CRC generator for CRC on DMA data  
8.2  
Overview  
The two-channel direct memory access (DMA) controller can transfer data between memories and peripherals, and thus  
offload these tasks from the CPU. It enables high data transfer rates with minimum CPU intervention, and frees up CPU  
time. The four DMA channels enable up to four independent and parallel transfers.  
The DMA controller can move data between SRAM and peripherals, between SRAM locations and directly between  
peripheral registers. With access to all peripherals, the DMA controller can handle automatic transfer of data to/from  
communication modules. The DMA controller can also read from memory mapped EEPROM.  
Data transfers are done in continuous bursts of 1, 2, 4, or 8 bytes. They build block transfers of configurable size from 1  
byte to 64KB. A repeat counter can be used to repeat each block transfer for single transactions up to 16MB. Source and  
destination addressing can be static, incremental or decremental. Automatic reload of source and/or destination  
addresses can be done after each burst or block transfer, or when a transaction is complete. Application software,  
peripherals, and events can trigger DMA transfers.  
The two DMA channels have individual configuration and control settings. This include source, destination, transfer  
triggers, and transaction sizes. They have individual interrupt settings. Interrupt requests can be generated when a  
transaction is complete or when the DMA controller detects an error on a DMA channel.  
To allow for continuous transfers, the channels can be interlinked so that the second takes over the transfer when the  
first is finished, and vice versa.  
XMEGA B1 [DATASHEET]  
15  
8330C–AVR–07/2012  
9.  
Event System  
9.1  
Features  
System for direct peripheral-to-peripheral communication and signaling  
Peripherals can directly send, receive, and react to peripheral events  
– CPU and DMA controller independent operation  
– 100% predictable signal timing  
– Short and guaranteed response time  
Four event channels for up to four different and parallel signal routings and configurations  
Events can be sent and/or used by most peripherals, clock system, and software  
Additional functions include  
– Quadrature decoders  
– Digital filtering of I/O pin state  
Works in active mode and idle sleep mode  
9.2  
Overview  
The event system enables direct peripheral-to-peripheral communication and signaling. It allows a change in one  
peripheral’s state to automatically trigger actions in other peripherals. It is designed to provide a predictable system for  
short and predictable response times between peripherals. It allows for autonomous peripheral control and interaction  
without the use of interrupts, CPU, or DMA controller resources, and is thus a powerful tool for reducing the complexity,  
size and execution time of application code. It also allows for synchronized timing of actions in several peripheral  
modules.  
A change in a peripheral’s state is referred to as an event, and usually corresponds to the peripheral’s interrupt  
conditions. Events can be directly passed to other peripherals using a dedicated routing network called the event routing  
network. How events are routed and used by the peripherals is configured in software.  
Figure 9-1 on page 17 shows a basic diagram of all connected peripherals. The event system can directly connect  
together analog and digital converters, analog comparators, I/O port pins, the real-time counter, timer/counters, IR  
communication module (IRCOM), and USB interface. It can also be used to trigger DMA transactions (DMA controller).  
Events can also be generated from software and the peripheral clock.  
XMEGA B1 [DATASHEET]  
16  
8330C–AVR–07/2012  
Figure 9-1. Event system overview and connected peripherals.  
CPU /  
Software  
DMA  
Controller  
Event Routing Network  
clkPER  
Prescaler  
Real Time  
Counter  
ADC  
AC  
Event  
System  
Controller  
Timer /  
Counters  
USB  
Port pins  
IRCOM  
The event routing network consists of four software-configurable multiplexers that control how events are routed and  
used. These are called event channels, and allow for up to four parallel event configurations and routings. The maximum  
routing latency is two peripheral clock cycles. The event system works in both active mode and idle sleep mode.  
XMEGA B1 [DATASHEET]  
17  
8330C–AVR–07/2012  
10. System Clock and Clock options  
10.1 Features  
Fast start-up time  
Safe run-time clock switching  
Internal oscillators:  
– 32MHz run-time calibrated oscillator  
– 2MHz run-time calibrated oscillator  
– 32.768kHz calibrated oscillator  
– 32kHz ultra low power (ULP) oscillator with 1kHz output  
External clock options  
– 0.4MHz - 16MHz crystal oscillator  
– 32.768kHz crystal oscillator  
– External clock  
PLL with 20MHz - 128MHz output frequency  
– Internal and external clock options and 1x to 31x multiplication  
– Lock detector  
Clock prescalers with 1x to 2048x division  
Fast peripheral clocks running at 2 and 4 times the CPU clock  
Automatic run-time calibration of internal oscillators  
External oscillator and PLL lock failure detection with optional non-maskable interrupt  
10.2 Overview  
Atmel AVR XMEGA devices have a flexible clock system supporting a large number of clock sources. It incorporates  
both accurate internal oscillators and external crystal oscillator and resonator support. A high-frequency phase locked  
loop (PLL) and clock prescalers can be used to generate a wide range of clock frequencies. A calibration feature (DFLL)  
is available, and can be used for automatic run-time calibration of the internal oscillators to remove frequency drift over  
voltage and temperature. An oscillator failure monitor can be enabled to issue a non-maskable interrupt and switch to the  
internal oscillator if the external oscillator or PLL fails.  
When a reset occurs, all clock sources except the 32kHz ultra low power oscillator are disabled. After reset, the device  
will always start up running from the 2MHz internal oscillator. During normal operation, the system clock source and  
prescalers can be changed from software at any time.  
Figure 10-1 on page 19 presents the principal clock system in the XMEGA B1 family of divices. Not all of the clocks need  
to be active at a given time. The clocks for the CPU and peripherals can be stopped using sleep modes and power  
reduction registers, as described in “Power Management and Sleep Modes” on page 21.  
XMEGA B1 [DATASHEET]  
18  
8330C–AVR–07/2012  
Figure 10-1. The Clock system, clock sources and clock distribution.  
Real Time  
Counter  
Non-Volatile  
Memory  
LCD  
Peripherals  
RAM  
AVR CPU  
clkPER  
clkCPU  
clkPER2  
clkPER4  
clkRTC  
clkLCD  
USB  
clkUSB  
Prescaler  
System Clock Prescalers  
clkSYS  
Watchdog  
Timer  
Brown-out  
Detector  
System Clock Multiplexer  
(SCLKSEL)  
RTCSRC  
USBSRC  
PLL  
PLLSRC  
XOSCSEL  
32 kHz  
Int. ULP  
32.768 kHz  
Int. OSC  
32.768 kHz  
TOSC  
0.4 16 MHz  
XTAL  
32 MHz  
Int. Osc  
2 MHz  
Int. Osc  
10.3 Clock Sources  
The clock sources are divided in two main groups: internal oscillators and external clock sources. Most of the clock  
sources can be directly enabled and disabled from software, while others are automatically enabled or disabled,  
depending on peripheral settings. After reset, the device starts up running from the 2MHz internal oscillator. The other  
clock sources, DFLLs and PLL, are turned off by default.  
The internal oscillators do not require any external components to run. For details on characteristics and accuracy of the  
internal oscillators, refer to the device datasheet.  
10.3.1 32kHz Ultra Low Power Internal Oscillator  
This oscillator provides an approximate 32kHz clock. The 32kHz ultra low power (ULP) internal oscillator is a very low  
power clock source, and it is not designed for high accuracy.The oscillator employs a built-in prescaler that provides a  
XMEGA B1 [DATASHEET]  
19  
8330C–AVR–07/2012  
1kHz output. The oscillator is automatically enabled/disabled when it is used as clock source for any part of the device.  
This oscillator can be selected as the clock source for the RTC and for LCD.  
10.3.2 32.768kHz Calibrated Internal Oscillator  
This oscillator provides an approximate 32.768kHz clock. It is calibrated during production to provide a default frequency  
close to its nominal frequency. The calibration register can also be written from software for run-time calibration of the  
oscillator frequency. The oscillator employs a built-in prescaler, which provides both a 32.768kHz output and a 1.024kHz  
output. This oscillator can be used as a clock source for the system clock, RTC and LCD, and as the DFLL reference  
clock.  
10.3.3 32.768kHz Crystal Oscillator  
A 32.768kHz crystal oscillator can be connected between the TOSC1 and TOSC2 pins and enables a dedicated low  
frequency oscillator input circuit. A low power mode with reduced voltage swing on TOSC2 is available. This oscillator  
can be used as a clock source for the system clock, RTC and LCD, and as the DFLL reference clock.  
10.3.4 0.4 - 16MHz Crystal Oscillator  
This oscillator can operate in four different modes optimized for different frequency ranges, all within 0.4MHz - 16MHz.  
10.3.5 2MHz Run-time Calibrated Internal Oscillator  
The 2MHz run-time calibrated internal oscillator is the default system clock source after reset. It is calibrated during  
production to provide a default frequency close to its nominal frequency. A DFLL can be enabled for automatic run-time  
calibration of the oscillator to compensate for temperature and voltage drift and optimize the oscillator accuracy.  
10.3.6 32MHz Run-time Calibrated Internal Oscillator  
The 32MHz run-time calibrated internal oscillator is a high-requency oscillator. It is calibrated during production to  
provide a default frequency close to its nominal frequency. A digital frequency looked loop (DFLL) can be enabled for  
automatic run-time calibration of the oscillator to compensate for temperature and voltage drift and optimize the oscillator  
accuracy. This oscillator can also be adjusted and calibrated to any frequency between 30MHz and 55MHz. The  
production signature row contains 48 MHz calibration values intended used when the oscillator is used a full-speed USB  
clock source.  
10.3.7 External Clock Sources  
The XTAL1 and XTAL2 pins can be used to drive an external oscillator, either a quartz crystal or a ceramic resonator.  
XTAL1 or each pin of port C can be used as input for an external clock signal. The TOSC1 and TOSC2 pins is dedicated  
to driving a 32.768kHz crystal oscillator.  
10.3.8 PLL with 1x-31x Multiplication Factor  
The built-in phase locked loop (PLL) can be used to generate a high-frequency system clock. The PLL has a user-  
selectable multiplication factor of from 1 to 31. In combination with the prescalers, this gives a wide range of output  
frequencies from all clock sources.  
XMEGA B1 [DATASHEET]  
20  
8330C–AVR–07/2012  
11. Power Management and Sleep Modes  
11.1 Features  
Power management for adjusting power consumption and functions  
Five sleep modes  
– Idle  
– Power down  
– Power save  
– Standby  
– Extended standby  
Power reduction register to disable clock and turn off unused peripherals in active and idle modes  
11.2 Overview  
Various sleep modes and clock gating are provided in order to tailor power consumption to application requirements.  
This enables the XMEGA microcontroller to stop unused modules to save power.  
All sleep modes are available and can be entered from active mode. In active mode, the CPU is executing application  
code. When the device enters sleep mode, program execution is stopped and interrupts or a reset is used to wake the  
device again. The application code decides which sleep mode to enter and when. Interrupts from enabled peripherals  
and all enabled reset sources can restore the microcontroller from sleep to active mode.  
In addition, power reduction registers provide a method to stop the clock to individual peripherals from software. When  
this is done, the current state of the peripheral is frozen, and there is no power consumption from that peripheral. This  
reduces the power consumption in active mode and idle sleep modes and enables much more fine-tuned power  
management than sleep modes alone.  
11.3 Sleep Modes  
Sleep modes are used to shut down modules and clock domains in the microcontroller in order to save power. XMEGA  
microcontrollers have five different sleep modes tuned to match the typical functional stages during application  
execution. A dedicated sleep instruction (SLEEP) is available to enter sleep mode. Interrupts are used to wake the  
device from sleep, and the available interrupt wake-up sources are dependent on the configured sleep mode. When an  
enabled interrupt occurs, the device will wake up and execute the interrupt service routine before continuing normal  
program execution from the first instruction after the SLEEP instruction. If other, higher priority interrupts are pending  
when the wake-up occurs, their interrupt service routines will be executed according to their priority before the interrupt  
service routine for the wake-up interrupt is executed. After wake-up, the CPU is halted for four cycles before execution  
starts.  
The content of the register file, SRAM and registers are kept during sleep. If a reset occurs during sleep, the device will  
reset, start up, and execute from the reset vector.  
11.3.1 Idle Mode  
In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming will be completed), but  
all peripherals, including the interrupt controller, event system and DMA controller are kept running. Any enabled  
interrupt will wake the device.  
11.3.2 Power-down Mode  
In power-down mode, all clocks, including the real-time counter clock source, are stopped. This allows operation only of  
asynchronous modules that do not require a running clock. The only interrupts that can wake up the MCU are the two-  
wire interface address match interrupt, asynchronous port interrupts, and the USB resume interrupt.  
XMEGA B1 [DATASHEET]  
21  
8330C–AVR–07/2012  
11.3.3 Power-save Mode  
Power-save mode is identical to power down, with two exceptions:  
1. If the real-time counter (RTC) is enabled, it will keep running during sleep, and the device can also wake up from  
either an RTC overflow or compare match interrupt.  
2. If the liquid crystal display controller (LCD) is enabled, it will keep running during sleep, and the device can wake  
up from LCD frame completed interrupt.  
11.3.4 Standby Mode  
Standby mode is identical to power down, with the exception that the enabled system clock sources are kept running  
while the CPU, peripheral, RTC and LCD clocks are stopped. This reduces the wake-up time.  
11.3.5 Extended Standby Mode  
Extended standby mode is identical to power-save mode, with the exception that the enabled system clock sources are  
kept running while the CPU and peripheral clocks are stopped. This reduces the wake-up time.  
XMEGA B1 [DATASHEET]  
22  
8330C–AVR–07/2012  
12. System Control and Reset  
12.1 Features  
Reset the microcontroller and set it to initial state when a reset source goes active  
Multiple reset sources that cover different situations  
– Power-on reset  
– External reset  
– Watchdog reset  
– Brownout reset  
– PDI reset  
– Software reset  
Asynchronous operation  
– No running system clock in the device is required for reset  
Reset status register for reading the reset source from the application code  
12.2 Overview  
The reset system issues a microcontroller reset and sets the device to its initial state. This is for situations where  
operation should not start or continue, such as when the microcontroller operates below its power supply rating. If a reset  
source goes active, the device enters and is kept in reset until all reset sources have released their reset. The I/O pins  
are immediately tri-stated. The program counter is set to the reset vector location, and all I/O registers are set to their  
initial values. The SRAM content is kept. However, if the device accesses the SRAM when a reset occurs, the content of  
the accessed location can not be guaranteed.  
After reset is released from all reset sources, the default oscillator is started and calibrated before the device starts  
running from the reset vector address. By default, this is the lowest program memory address, 0, but it is possible to  
move the reset vector to the lowest address in the boot section.  
The reset functionality is asynchronous, and so no running system clock is required to reset the device. The software  
reset feature makes it possible to issue a controlled system reset from the user software.  
The reset status register has individual status flags for each reset source. It is cleared at power-on reset, and shows  
which sources have issued a reset since the last power-on.  
12.3 Reset Sequence  
A reset request from any reset source will immediately reset the device and keep it in reset as long as the request is  
active. When all reset requests are released, the device will go through three stages before the device starts running  
again:  
Reset counter delay  
Oscillator startup  
Oscillator calibration  
If another reset requests occurs during this process, the reset sequence will start over again.  
12.4 Reset Sources  
12.4.1 Power-on Reset  
A power-on reset (POR) is generated by an on-chip detection circuit. The POR is activated when the VCC rises and  
reaches the POR threshold voltage (VPOT), and this will start the reset sequence.  
The POR is also activated to power down the device properly when the VCC falls and drops below the VPOT level.  
The VPOT level is higher for falling VCCthan for rising VCC. Consult the datasheet for POR characteristics data.  
XMEGA B1 [DATASHEET]  
23  
8330C–AVR–07/2012  
12.4.2 Brownout Detection  
The on-chip brownout detection (BOD) circuit monitors the VCC level during operation by comparing it to a fixed,  
programmable level that is selected by the BODLEVEL fuses. If disabled, BOD is forced on at the lowest level during chip  
erase and when the PDI is enabled.  
12.4.3 External Reset  
The external reset circuit is connected to the external RESET pin. The external reset will trigger when the RESET pin is  
driven below the RESET pin threshold voltage, VRST, for longer than the minimum pulse period, tEXT. The reset will be  
held as long as the pin is kept low. The RESET pin includes an internal pull-up resistor.  
12.4.4 Watchdog Reset  
The watchdog timer (WDT) is a system function for monitoring correct program operation. If the WDT is not reset from  
the software within a programmable timout period, a watchdog reset will be given. The watchdog reset is active for one to  
two clock cycles of the 2MHz internal oscillator. For more details see “WDT – Watchdog Timer” on page 25.  
12.4.5 Software Reset  
The software reset makes it possible to issue a system reset from software by writing to the software reset bit in the reset  
control register.The reset will be issued within two CPU clock cycles after writing the bit. It is not possible to execute any  
instruction from when a software reset is requested until it is issued.  
12.4.6 Program and Debug Interface Reset  
The program and debug interface reset contains a separate reset source that is used to reset the device during external  
programming and debugging. This reset source is accessible only from external debuggers and programmers.  
XMEGA B1 [DATASHEET]  
24  
8330C–AVR–07/2012  
13. WDT – Watchdog Timer  
13.1 Features  
Issues a device reset if the timer is not reset before its timeout period  
Asynchronous operation from dedicated oscillator  
1kHz output of the 32kHz ultra low power oscillator  
11 selectable timeout periods, from 8ms to 8s  
Two operation modes:  
– Normal mode  
– Window mode  
Configuration lock to prevent unwanted changes  
13.2 Overview  
The watchdog timer (WDT) is a system function for monitoring correct program operation. It makes it possible to recover  
from error situations such as runaway or deadlocked code. The WDT is a timer, configured to a predefined timeout  
period, and is constantly running when enabled. If the WDT is not reset within the timeout period, it will issue a  
microcontroller reset. The WDT is reset by executing the WDR (watchdog timer reset) instruction from the application  
code.  
The window mode makes it possible to define a time slot or window inside the total timeout period during which WDT  
must be reset. If the WDT is reset outside this window, either too early or too late, a system reset will be issued.  
Compared to the normal mode, this can also catch situations where a code error causes constant WDR execution.  
The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, runs from a CPU-independent clock  
source, and will continue to operate to issue a system reset even if the main clocks fail.  
The configuration change protection mechanism ensures that the WDT settings cannot be changed by accident. For  
increased safety, a fuse for locking the WDT settings is also available.  
XMEGA B1 [DATASHEET]  
25  
8330C–AVR–07/2012  
14. Interrupts and Programmable Multilevel Interrupt Controller  
14.1 Features  
Short and predictable interrupt response time  
Separate interrupt configuration and vector address for each interrupt  
Programmable multilevel interrupt controller  
– Interrupt prioritizing according to level and vector address  
– Three selectable interrupt levels for all interrupts: low, medium and high  
– Selectable, round-robin priority scheme within low-level interrupts  
– Non-maskable interrupts for critical functions  
Interrupt vectors optionally placed in the application section or the boot loader section  
14.2 Overview  
Interrupts signal a change of state in peripherals, and this can be used to alter program execution. Peripherals can have  
one or more interrupts, and all are individually enabled and configured. When an interrupt is enabled and configured, it  
will generate an interrupt request when the interrupt condition is present. The programmable multilevel interrupt  
controller (PMIC) controls the handling and prioritizing of interrupt requests. When an interrupt request is acknowledged  
by the PMIC, the program counter is set to point to the interrupt vector, and the interrupt handler can be executed.  
All peripherals can select between three different priority levels for their interrupts: low, medium, and high. Interrupts are  
prioritized according to their level and their interrupt vector address. Medium-level interrupts will interrupt low-level  
interrupt handlers. High-level interrupts will interrupt both medium- and low-level interrupt handlers. Within each level, the  
interrupt priority is decided from the interrupt vector address, where the lowest interrupt vector address has the highest  
interrupt priority. Low-level interrupts have an optional round-robin scheduling scheme to ensure that all interrupts are  
serviced within a certain amount of time.  
Non-maskable interrupts (NMI) are also supported, and can be used for system critical functions.  
14.3 Interrupt vectors  
The interrupt vector is the sum of the peripheral’s base interrupt address and the offset address for specific interrupts in  
each peripheral. The base addresses for the XMEGA B1 devices are shown in Table 14-1. Offset addresses for each  
interrupt available in the peripheral are described for each peripheral in the XMEGA B manual. For peripherals or  
modules that have only one interrupt, the interrupt vector is shown in Table 14-1. The program address is the word  
address.  
Table 14-1. Reset and Interrupt Vectors.  
Program Address  
(Base Address)  
0x000  
Source  
Interrupt Description  
RESET  
0x002  
OSCF_INT_vect  
PORTC_INT_base  
PORTR_INT_base  
DMA_INT_base  
RTC_INT_base  
TWIC_INT_base  
TCC0_INT_base  
Crystal Oscillator Failure Interrupt vector (NMI)  
Port C Interrupt base  
0x004  
0x008  
Port R Interrupt base  
0x00C  
DMA Controller Interrupt base  
0x014  
Real Time Counter Interrupt base  
Two-Wire Interface on Port C Interrupt base  
Timer/Counter 0 on port C Interrupt base  
0x018  
0x01C  
XMEGA B1 [DATASHEET]  
26  
8330C–AVR–07/2012  
Program Address  
(Base Address)  
Source  
Interrupt Description  
0x028  
0x030  
0x032  
0x03E  
0x046  
0x048  
0x04A  
0x04E  
0x052  
0x058  
0x060  
0x064  
0x068  
0x06C  
0x074  
0x08A  
0x096  
0x09A  
0x0A0  
TCC1_INT_base  
SPIC_INT_vect  
USARTC0_INT_base  
USB_INT_base  
LCD_INT_base  
AES_INT_vect  
Timer/Counter 1 on port C Interrupt base  
SPI on port C Interrupt vector  
USART 0 on port C Interrupt base  
USB on port D Interrupt base  
LCD Interrupt base  
AES Interrupt vector  
NVM_INT_base  
PORTB_INT_base  
ACB_INT_base  
ADCB_INT_base  
PORTD_INT_base  
PORTG_INT_base  
PORTM_INT_base  
PORTE_INT_base  
TCE0_INT_base  
USARTE0_INT_base  
PORTA_INT_base  
ACA_INT_base  
ADCA_INT_base  
Non-Volatile Memory Interrupt base  
Port B Interrupt base  
Analog Comparator on Port B Interrupt base  
Analog to Digital Converter on Port B Interrupt base  
Port D Interrupt base  
Port G Interrupt base  
Port M Interrupt base  
Port E Interrupt base  
Timer/Counter 0 on port E Interrupt base  
USART 0 on port E Interrupt base  
Port A Interrupt base  
Analog Comparator on Port A Interrupt base  
Analog to Digital Converter on Port A Interrupt base  
XMEGA B1 [DATASHEET]  
27  
8330C–AVR–07/2012  
15. I/O Ports  
15.1 Features  
53 General purpose input and output pins with individual configuration  
Output driver with configurable driver and pull settings:  
– Totem-pole  
– Wired-AND  
– Wired-OR  
– Bus-keeper  
– Inverted I/O  
Input with synchronous and/or asynchronous sensing with interrupts and events  
– Sense both edges  
– Sense rising edges  
– Sense falling edges  
– Sense low level  
Optional pull-up and pull-down resistor on input and Wired-OR/AND configurations  
Optional slew rate control  
Asynchronous pin change sensing that can wake the device from all sleep modes  
Two port interrupts with pin masking per I/O port  
Efficient and safe access to port pins  
– Hardware read-modify-write through dedicated toggle/clear/set registers  
– Configuration of multiple pins in a single operation  
– Mapping of port registers into bit-accessible I/O memory space  
Peripheral clocks output on port pin  
Real-time counter clock output to port pin  
Event channels can be output on port pin  
Remapping of digital peripheral pin functions  
– Selectable USART, SPI, and timer/counter input/output pin locations  
15.2 Overview  
One port consists of up to eight port pins: pin 0 to 7. Each port pin can be configured as input or output with configurable  
driver and pull settings. They also implement synchronous and asynchronous input sensing with interrupts and events for  
selectable pin change conditions. Asynchronous pin-change sensing means that a pin change can wake the device from  
all sleep modes, included the modes where no clocks are running.  
All functions are individual and configurable per pin, but several pins can be configured in a single operation. The pins  
have hardware read-modify-write (RMW) functionality for safe and correct change of drive value and/or pull resistor  
configuration. The direction of one port pin can be changed without unintentionally changing the direction of any other  
pin.  
The port pin configuration also controls input and output selection of other device functions. It is possible to have both the  
peripheral clock and the real-time clock output to a port pin, and available for external use. The same applies to events  
from the event system that can be used to synchronize and control external functions. Other digital peripherals, such as  
USART, SPI, and timer/counters, can be remapped to selectable pin locations in order to optimize pin-out versus  
application needs.  
The notation of the ports are PORTA, PORTB, PORTC, PORTD, PORTE, PORTG, PORTM and PORTR.  
15.3 Output Driver  
All port pins (Pn) have programmable output configuration. The port pins also have configurable slew rate limitation to  
reduce electromagnetic emission.  
XMEGA B1 [DATASHEET]  
28  
8330C–AVR–07/2012  
15.3.1 Push-pull  
Figure 15-1. I/O configuration - Totem-pole  
DIRn  
OUTn  
INn  
Pn  
15.3.2 Pull-down  
Figure 15-2. I/O configuration - Totem-pole with pull-down (on input)  
DIRn  
OUTn  
INn  
Pn  
15.3.3 Pull-up  
Figure 15-3. I/O configuration - Totem-pole with pull-up (on input)  
DIRn  
OUTn  
INn  
Pn  
15.3.4 Bus-keeper  
The bus-keeper’s weak output produces the same logical level as the last output level. It acts as a pull-up if the last level  
was ‘1’, and pull-down if the last level was ‘0’.  
XMEGA B1 [DATASHEET]  
29  
8330C–AVR–07/2012  
Figure 15-4. I/O configuration - Totem-pole with bus-keeper  
DIRn  
OUTn  
INn  
Pn  
15.3.5 Others  
Figure 15-5. Output configuration - Wired-OR with optional pull-down  
OUTn  
Pn  
INn  
Figure 15-6. I/O configuration - Wired-AND with optional pull-up  
INn  
Pn  
OUTn  
XMEGA B1 [DATASHEET]  
30  
8330C–AVR–07/2012  
15.4 Input sensing  
Input sensing is synchronous or asynchronous depending on the enabled clock for the ports, and the configuration is  
shown in Figure 15-7 on page 31.  
Figure 15-7. Input sensing system overview  
Asynchronous sensing  
EDGE  
DETECT  
Interrupt  
Control  
IREQ  
Event  
Synchronous sensing  
Pn  
Synchronizer  
INn  
EDGE  
DETECT  
Q
Q
D
D
INVERTEDI/O  
R
R
When a pin is configured with inverted I/O, the pin value is inverted before the input sensing.  
15.5 Alternate Port Functions  
Most port pins have alternate pin functions in addition to being a general purpose I/O pin. When an alternate function is  
enabled, it might override the normal port pin function or pin value. This happens when other peripherals that require pins  
are enabled or configured to use pins. If and how a peripheral will override and use pins is described in the section for  
that peripheral. “Pinout and Pin Functions” on page 52 shows which modules on peripherals that enable alternate  
functions on a pin, and which alternate functions that are available on a pin.  
XMEGA B1 [DATASHEET]  
31  
8330C–AVR–07/2012  
16. T/C – 16-bit Timer/Counter Type 0 and 1  
16.1 Features  
Three 16-bit timer/counters  
– Two timer/counters of type 0  
– One timer/counters of type 1  
32-bit Timer/Counter support by cascading two timer/counters  
Up to four compare or capture (CC) channels  
– Four CC channels for timer/counters of type 0  
– Two CC channels for timer/counters of type 1  
Double buffered timer period setting  
Double buffered capture or compare channels  
Waveform generation:  
– Frequency generation  
– Single-slope pulse width modulation  
– Dual-slope pulse width modulation  
Input capture:  
– Input capture with noise cancelling  
– Frequency capture  
– Pulse width capture  
– 32-bit input capture  
Timer overflow and error interrupts/events  
One compare match or input capture interrupt/event per CC channel  
Can be used with event system for:  
– Quadrature decoding  
– Count and direction control  
– Capture  
Can be used with DMA and to trigger DMA transactions  
High-resolution extension  
– Increases frequency and waveform resolution by 4x (2-bit) or 8x (3-bit)  
Advanced waveform extension:  
– Low- and high-side output with programmable dead-time insertion (DTI)  
Event controlled fault protection for safe disabling of drivers  
16.2 Overview  
Atmel AVR XMEGA devices have a set of three flexible 16-bit Timer/Counters (TC). Their capabilities include accurate  
program execution timing, frequency and waveform generation, and input capture with time and frequency measurement  
of digital signals. Two timer/counters can be cascaded to create a 32-bit timer/counter with optional 32-bit capture.  
A timer/counter consists of a base counter and a set of compare or capture (CC) channels. The base counter can be  
used to count clock cycles or events. It has direction control and period setting that can be used for timing. The CC  
channels can be used together with the base counter to do compare match control, frequency generation, and pulse  
width waveform modulation, as well as various input capture operations. A timer/counter can be configured for either  
capture or compare functions, but cannot perform both at the same time.  
A timer/counter can be clocked and timed from the peripheral clock with optional prescaling or from the event system.  
The event system can also be used for direction control and capture trigger or to synchronize operations.  
There are two differences between timer/counter type 0 and type 1. Timer/counter 0 has four CC channels, and  
timer/counter 1 has two CC channels. All information related to CC channels 3 and 4 is valid only for timer/counter 0.  
Only Timer/Counter 0 has the split mode feature that split it into 2 8-bit Timer/Counters with four compare channels each.  
XMEGA B1 [DATASHEET]  
32  
8330C–AVR–07/2012  
Some timer/counters have extensions to enable more specialized waveform and frequency generation. The advanced  
waveform extension (AWeX) is intended for motor control and other power control applications. It enables low- and high-  
side output with dead-time insertion, as well as fault protection for disabling and shutting down external drivers. It can  
also generate a synchronized bit pattern across the port pins.  
The Advanced Waveform Extension can be enabled to provide extra and more advanced features for the Timer/Counter.  
This are only available for Timer/Counter 0. See “TC2 –16-bit Timer/Counter Type 2” on page 34 for more details.  
The high-resolution (hi-res) extension can be used to increase the waveform output resolution by four or eight times by  
using an internal clock source running up to four times faster than the peripheral clock. See “Hi-Res – High Resolution  
Extension” on page 36 for more details.  
Figure 16-1. Overview of a Timer/Counter and closely related peripherals  
Timer/Counter  
Base Counter  
Prescaler  
clkPER  
Timer Period  
Counter  
Control Logic  
Event  
System  
clkPER4  
Compare/Capture Channel D  
Compare/Capture Channel C  
Compare/Capture Channel B  
Compare/Capture Channel A  
AWeX  
Pattern  
Generation  
Fault  
Dead-Time  
Insertion  
Capture  
Comparator  
Control  
Protection  
Waveform  
Buffer  
Generation  
PORTC has one Timer/Counter 0 and one Timer/Counter1. PORTE has one Timer/Counter 0. Notation of these are  
TCC0 (Time/Counter C0), TCC1, and TCE0, respectively.  
XMEGA B1 [DATASHEET]  
33  
8330C–AVR–07/2012  
17. TC2 –16-bit Timer/Counter Type 2  
17.1 Features  
A system of two eight-bit timer/counters  
– Low-byte timer/counter  
– High-byte timer/counter  
Eight compare channels  
– Four compare channels for the low-byte timer/counter  
– Four compare channels for the high-byte timer/counter  
Waveform generation  
– Single slope pulse width modulation  
Timer underflow interrupts/events  
One compare match interrupt/event per compare channel for the low-byte timer/counter  
Can be used with the event system for count control  
Can be used to trigger DMA transactions  
High-resolution extension increases frequency and waveform resolution by 4x or 8x  
17.2 Overview  
A timer/counter 2 is realized when a timer/counter 0 is set in split mode. It is a system of two eight-bit timer/counters,  
each with four compare channels. This results in eight configurable pulse width modulation (PWM) channels with  
individually controlled duty cycles, and is intended for applications that require a high number of PWM channels.  
The two eight-bit timer/counters in this system are referred to as the low-byte timer/counter and high-byte timer/counter,  
respectively. The difference between them is that only the low-byte timer/counter can be used to generate compare  
match interrupts, events and DMA triggers.  
The two eight-bit timer/counters have a shared clock source and separate period and compare settings. They can be  
clocked and timed from the peripheral clock, with optional prescaling, or from the event system. The counters are always  
counting down.  
The timer/counter 2 is set back to timer/counter 0 by setting it in normal mode; hence, one timer/counter can exist only as  
either type 0 or type 2.  
PORTC and PORTE each has one Timer/Counter 2. Notation of these are TCC2 (Time/Counter C2) and TCE2  
respectively.  
XMEGA B1 [DATASHEET]  
34  
8330C–AVR–07/2012  
18. AWeX – Advanced Waveform Extension  
18.1 Features  
Waveform output with complementary output from each compare channel  
Four dead-time insertion (DTI) units  
– 8-bit resolution  
– Separate high and low side dead-time setting  
– Double buffered dead time  
– Optionally halts timer during dead-time insertion  
Pattern generation unit creating synchronised bit pattern across the port pins  
– Double buffered pattern generation  
– Optional distribution of one compare channel output across the port pins  
Event controlled fault protection for instant and predictable fault triggering  
18.2 Overview  
The advanced waveform extension (AWeX) provides extra functions to the timer/counter in waveform generation (WG)  
modes. It is primarily intended for use with different types of motor control and other power control applications. It  
enables low- and high side output with dead-time insertion and fault protection for disabling and shutting down external  
drivers. It can also generate a synchronized bit pattern across the port pins.  
Each of the waveform generator outputs from the timer/counter 0 are split into a complimentary pair of outputs when any  
AWeX features are enabled. These output pairs go through a dead-time insertion (DTI) unit that generates the non-  
inverted low side (LS) and inverted high side (HS) of the WG output with dead-time insertion between LS and HS  
switching. The DTI output will override the normal port value according to the port override setting.  
The pattern generation unit can be used to generate a synchronized bit pattern on the port it is connected to. In addition,  
the WG output from compare channel A can be distributed to and override all the port pins. When the pattern generator  
unit is enabled, the DTI unit is bypassed.  
The fault protection unit is connected to the event system, enabling any event to trigger a fault condition that will disable  
the AWeX output. The event system ensures predictable and instant fault reaction, and gives flexibility in the selection of  
fault triggers.  
The AWEX is available for TCC0. The notation of this is AWEXC.  
XMEGA B1 [DATASHEET]  
35  
8330C–AVR–07/2012  
19. Hi-Res – High Resolution Extension  
19.1 Features  
Increases waveform generator resolution up to 8x (3 bits)  
Supports frequency, single-slope PWM, and dual-slope PWM generation  
Supports the AWeX when this is used for the same timer/counter  
19.2 Overview  
The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output  
from a timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or  
dual-slope PWM generation. It can also be used with the AWeX if this is used for the same timer/counter.  
The hi-res extension uses the peripheral 4x clock (ClkPER4). The system clock prescalers must be configured so the  
peripheral 4x clock frequency is four times higher than the peripheral and CPU clock frequency when the hi-res extension  
is enabled.  
Atmel AVR XMEGA B1 devices have one Hi-Res Extension that can be enabled for the timer/counters pair on PORTC.  
The notation of this is HIRESC.  
XMEGA B1 [DATASHEET]  
36  
8330C–AVR–07/2012  
20. RTC – 16-bit Real-Time Counter  
20.1 Features  
16-bit resolution  
Selectable clock source  
– 32.768kHz external crystal  
– External clock  
– 32.768kHz internal oscillator  
– 32kHz internal ULP oscillator  
Programmable 10-bit clock prescaling  
One compare register  
One period register  
Clear counter on period overflow  
Optional interrupt/event on overflow and compare match  
20.2 Overview  
The 16-bit real-time counter (RTC) is a counter that typically runs continuously, including in low-power sleep modes, to  
keep track of time. It can wake up the device from sleep modes and/or interrupt the device at regular intervals.  
The reference clock is typically the 1.024kHz output from a high-accuracy crystal of 32.768kHz, and this is the  
configuration most optimized for low power consumption. The faster 32.768kHz output can be selected if the RTC needs  
a resolution higher than 1ms. The RTC can also be clocked from an external clock signal, the 32.768kHz internal  
oscillator or the 32kHz internal ULP oscillator.  
The RTC includes a 10-bit programmable prescaler that can scale down the reference clock before it reaches the  
counter. A wide range of resolutions and time-out periods can be configured. With a 32.768kHz clock source, the  
maximum resolution is 30.5µs, and time-out periods can range up to 2000 seconds. With a resolution of 1s, the  
maximum timeout period is more than18 hours (65536 seconds). The RTC can give a compare interrupt and/or event  
when the counter equals the compare register value, and an overflow interrupt and/or event when it equals the period  
register value.  
Figure 20-1. Real-time Counter overview  
External Clock  
TOSC1  
32.768kHz Crystal Osc  
TOSC2  
32.768kHz Int. Osc  
32kHz int ULP (DIV32)  
PER  
RTCSRC  
TOP/  
clkRTC  
10-bit  
=
=
Overflow  
CNT  
prescaler  
”match”/  
Compare  
COMP  
XMEGA B1 [DATASHEET]  
37  
8330C–AVR–07/2012  
21. USB – Universal Serial Bus Interface  
21.1 Features  
One USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant interface  
Integrated on-chip USB transceiver, no external components needed  
16 endpoint addresses with full endpoint flexibility for up to 31 endpoints  
– One input endpoint per endpoint address  
– One output endpoint per endpoint address  
Endpoint address transfer type selectable to  
– Control transfers  
– Interrupt transfers  
– Bulk transfers  
– Isochronous transfers  
Configurable data payload size per endpoint, up to 1023 bytes  
Endpoint configuration and data buffers located in internal SRAM  
– Configurable location for endpoint configuration data  
– Configurable location for each endpoint's data buffer  
Built-in direct memory access (DMA) to internal SRAM for:  
– Endpoint configurations  
– Reading and writing endpoint data  
Ping-pong operation for higher throughput and double buffered operation  
– Input and output endpoint data buffers used in a single direction  
– CPU/DMA controller can update data buffer during transfer  
Multipacket transfer for reduced interrupt load and software intervention  
– Data payload exceeding maximum packet size is transferred in one continuous transfer  
– No interrupts or software interaction on packet transaction level  
Transaction complete FIFO for workflow management when using multiple endpoints  
– Tracks all completed transactions in a first-come, first-served work queue  
Clock selection independent of system clock source and selection  
Minimum 1.5MHz CPU clock required for low speed USB operation  
Minimum 12MHz CPU clock required for full speed operation  
Connection to event system  
On chip debug possibilities during USB transactions  
21.2 Overview  
The USB module is a USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant interface.  
The USB supports 16 endpoint addresses. All endpoint addresses have one input and one output endpoint, for a total of  
31 configurable endpoints and one control endpoint. Each endpoint address is fully configurable and can be configured  
for any of the four transfer types: control, interrupt, bulk, or isochronous. The data payload size is also selectable, and it  
supports data payloads up to 1023 bytes.  
No dedicated memory is allocated for or included in the USB module. Internal SRAM is used to keep the configuration for  
each endpoint address and the data buffer for each endpoint. The memory locations used for endpoint configurations  
and data buffers are fully configurable. The amount of memory allocated is fully dynamic, according to the number of  
endpoints in use and the configuration of these. The USB module has built-in direct memory access (DMA), and will  
read/write data from/to the SRAM when a USB transaction takes place.  
To maximize throughput, an endpoint address can be configured for ping-pong operation. When done, the input and  
output endpoints are both used in the same direction. The CPU or DMA controller can then read/write one data buffer  
while the USB module writes/reads the others, and vice versa. This gives double buffered communication.  
XMEGA B1 [DATASHEET]  
38  
8330C–AVR–07/2012  
Multipacket transfer enables a data payload exceeding the maximum packet size of an endpoint to be transferred as  
multiple packets without software intervention. This reduces the CPU intervention and the interrupts needed for USB  
transfers.  
For low-power operation, the USB module can put the microcontroller into any sleep mode when the USB bus is idle and  
a suspend condition is given. Upon bus resumes, the USB module can wake up the microcontroller from any sleep  
mode.  
PORTD has one USB. Notation of this is USB.  
XMEGA B1 [DATASHEET]  
39  
8330C–AVR–07/2012  
22. TWI – Two Wire Interface  
22.1 Features  
One two-wire interface peripheral  
Bidirectional, two-wire communication interface  
– Phillips I2C compatible  
– System Management Bus (SMBus) compatible  
Bus master and slave operation supported  
– Slave operation  
– Single bus master operation  
– Bus master in multi-master bus environment  
– Multi-master arbitration  
Flexible slave address match functions  
– 7-bit and general call address recognition in hardware  
– 10-bit addressing supported  
– Address mask register for dual address match or address range masking  
– Optional software address recognition for unlimited number of addresses  
Slave can operate in all sleep modes, including power-down  
Slave address match can wake device from all sleep modes  
100kHz and 400kHz bus frequency support  
Slew-rate limited output drivers  
Input filter for bus noise and spike suppression  
Support arbitration between start/repeated start and data bit (SMBus)  
Slave arbitration allows support for address resolve protocol (ARP) (SMBus)  
22.2 Overview  
The two-wire interface (TWI) is a bidirectional, two-wire communication interface. It is I2C and System Management Bus  
(SMBus) compatible. The only external hardware needed to implement the bus is one pull-up resistor on each bus line.  
A device connected to the bus must act as a master or a slave. The master initiates a data transaction by addressing a  
slave on the bus and telling whether it wants to transmit or receive data. One bus can have many slaves and one or  
several masters that can take control of the bus. An arbitration process handles priority if more than one master tries to  
transmit data at the same time. Mechanisms for resolving bus contention are inherent in the protocol.  
The TWI module supports master and slave functionality. The master and slave functionality are separated from each  
other, and can be enabled and configured separately. The master module supports multi-master bus operation and  
arbitration. It contains the baud rate generator. Both 100kHz and 400kHz bus frequency is supported. Quick command  
and smart mode can be enabled to auto-trigger operations and reduce software complexity.  
The slave module implements 7-bit address match and general address call recognition in hardware. 10-bit addressing is  
also supported. A dedicated address mask register can act as a second address match register or as a register for  
address range masking. The slave continues to operate in all sleep modes, including power-down mode. This enables  
the slave to wake up the device from all sleep modes on TWI address match. It is possible to disable the address  
matching to let this be handled in software instead.  
The TWI module will detect START and STOP conditions, bus collisions, and bus errors. Arbitration lost, errors, collision,  
and clock hold on the bus are also detected and indicated in separate status flags available in both master and slave  
modes.  
It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for connecting to an external  
TWI bus driver. This can be used for applications where the device operates from a different VCC voltage than used by  
the TWI bus.  
PORTC has one TWI. Notation of this peripheral is TWIC.  
XMEGA B1 [DATASHEET]  
40  
8330C–AVR–07/2012  
23. SPI – Serial Peripheral Interface  
23.1 Features  
One SPI peripheral  
Full-duplex, three-wire synchronous data transfer  
Master or slave operation  
Lsb first or msb first data transfer  
Eight programmable bit rates  
Interrupt flag at the end of transmission  
Write collision flag to indicate data collision  
Wake up from idle sleep mode  
Double speed master mode  
23.2 Overview  
The Serial Peripheral Interface (SPI) is a high-speed synchronous data transfer interface using three or four pins. It  
allows fast communication between an XMEGA device and peripheral devices or between several microcontrollers. The  
SPI supports full-duplex communication.  
A device connected to the bus must act as a master or slave.The master initiates and controls all data transactions.  
PORTC has one SPI. Notation of this peripheral is SPIC.  
XMEGA B1 [DATASHEET]  
41  
8330C–AVR–07/2012  
24. USART  
24.1 Features  
Two Identical USART peripherals  
Full-duplex operation  
Asynchronous or synchronous operation  
– Synchronous clock rates up to 1/2 of the device clock frequency  
– Asynchronous clock rates up to 1/8 of the device clock frequency  
Supports serial frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits  
Fractional baud rate generator  
– Can generate desired baud rate from any system clock frequency  
– No need for external oscillator with certain frequencies  
Built-in error detection and correction schemes  
– Odd or even parity generation and parity check  
– Data overrun and framing error detection  
– Noise filtering includes false start bit detection and digital low-pass filter  
Separate interrupts for  
– Transmit complete  
– Transmit data register empty  
– Receive complete  
Multiprocessor communication mode  
– Addressing scheme to address a specific devices on a multidevice bus  
– Enable unaddressed devices to automatically ignore all frames  
Master SPI mode  
– Double buffered operation  
– Configurable data order  
– Operation up to 1/2 of the peripheral clock frequency  
IRCOM module for IrDA compliant pulse modulation/demodulation  
24.2 Overview  
The universal synchronous and asynchronous serial receiver and transmitter (USART) is a fast and flexible serial  
communication module. The USART supports full-duplex communication and asynchronous and synchronous operation.  
The USART can be configured to operate in SPI master mode and used for SPI communication.  
Communication is frame based, and the frame format can be customized to support a wide range of standards. The  
USART is buffered in both directions, enabling continued data transmission without any delay between frames. Separate  
interrupts for receive and transmit complete enable fully interrupt driven communication. Frame error and buffer overflow  
are detected in hardware and indicated with separate status flags. Even or odd parity generation and parity check can  
also be enabled.  
The clock generator includes a fractional baud rate generator that is able to generate a wide range of USART baud rates  
from any system clock frequencies. This removes the need to use an external crystal oscillator with a specific frequency  
to achieve a required baud rate. It also supports external clock input in synchronous slave operation.  
When the USART is set in master SPI mode, all USART-specific logic is disabled, leaving the transmit and receive  
buffers, shift registers, and baud rate generator enabled. Pin control and interrupt generation are identical in both modes.  
The registers are used in both modes, but their functionality differs for some control settings.  
An IRCOM module can be enabled for one USART to support IrDA 1.4 physical compliant pulse modulation and  
demodulation for baud rates up to 115.2kbps.  
PORTC and PORTE each has one USART. Notation of these peripherals are USARTC0 and USARTE0 respectively.  
XMEGA B1 [DATASHEET]  
42  
8330C–AVR–07/2012  
25. IRCOM – IR Communication Module  
25.1 Features  
Pulse modulation/demodulation for infrared communication  
IrDA compatible for baud rates up to 115.2kbps  
Selectable pulse modulation scheme  
– 3/16 of the baud rate period  
– Fixed pulse period, 8-bit programmable  
– Pulse modulation disabled  
Built-in filtering  
Can be connected to and used by any USART  
25.2 Overview  
XMEGA devices contain an infrared communication module (IRCOM) that is IrDA compatible for baud rates up to  
115.2kbps. It can be connected to any USART to enable infrared pulse encoding/decoding for that USART.  
XMEGA B1 [DATASHEET]  
43  
8330C–AVR–07/2012  
26. AES and DES Crypto Engine  
26.1 Features  
Data Encryption Standard (DES) CPU instruction  
Advanced Encryption Standard (AES) crypto module  
DES Instruction  
– Encryption and decryption  
– DES supported  
– Encryption/decryption in 16 CPU clock cycles per 8-byte block  
AES crypto module  
– Encryption and decryption  
– Supports 128-bit keys  
– Supports XOR data load mode to the state memory  
– Encryption/decryption in 375 clock cycles per 16-byte block  
26.2 Overview  
The Advanced Encryption Standard (AES) and Data Encryption Standard (DES) are two commonly used standards for  
cryptography. These are supported through an AES peripheral module and a DES CPU instruction, and the  
communication interfaces and the CPU can use these for fast, encrypted communication and secure data storage.  
DES is supported by an instruction in the AVR CPU. The 8-byte key and 8-byte data blocks must be loaded into the  
register file, and then the DES instruction must be executed 16 times to encrypt/decrypt the data block.  
The AES crypto module encrypts and decrypts 128-bit data blocks with the use of a 128-bit key. The key and data must  
be loaded into the key and state memory in the module before encryption/decryption is started. It takes 375 peripheral  
clock cycles before the encryption/decryption is done. The encrypted/encrypted data can then be read out, and an  
optional interrupt can be generated. The AES crypto module also has DMA support with transfer triggers when  
encryption/decryption is done and optional auto-start of encryption/decryption when the state memory is fully loaded.  
XMEGA B1 [DATASHEET]  
44  
8330C–AVR–07/2012  
27. CRC – Cyclic Redundancy Check Generator  
27.1 Features  
Cyclic redundancy check (CRC) generation and checking for  
– Communication data  
– Program or data in flash memory  
– Data in SRAM and I/O memory space  
Integrated with flash memory, DMA controller and CPU  
– Continuous CRC on data going through a DMA channel  
– Automatic CRC of the complete or a selectable range of the flash memory  
– CPU can load data to the CRC generator through the I/O interface  
CRC polynomial software selectable to  
– CRC-16 (CRC-CCITT)  
– CRC-32 (IEEE 802.3)  
Zero remainder detection  
27.2 Overview  
A cyclic redundancy check (CRC) is an error detection technique test algorithm used to find accidental errors in data, and  
it is commonly used to determine the correctness of a data transmission, and data present in the data and program  
memories. A CRC takes a data stream or a block of data as input and generates a 16- or 32-bit output that can be  
appended to the data and used as a checksum. When the same data are later received or read, the device or application  
repeats the calculation. If the new CRC result does not match the one calculated earlier, the block contains a data error.  
The application will then detect this and may take a corrective action, such as requesting the data to be sent again or  
simply not using the incorrect data.  
Typically, an n-bit CRC applied to a data block of arbitrary length will detect any single error burst not longer than n bits  
(any single alteration that spans no more than n bits of the data), and will detect the fraction 1-2-n of all longer error  
bursts. The CRC module in XMEGA devices supports two commonly used CRC polynomials; CRC-16 (CRC-CCITT) and  
CRC-32 (IEEE 802.3).  
CRC-16:  
Polynomial:  
Hex value:  
x16+x12+x5+1  
0x1021  
CRC-32:  
Polynomial:  
Hex value:  
x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1  
0x04C11DB7  
XMEGA B1 [DATASHEET]  
45  
8330C–AVR–07/2012  
28. LCD - Liquid Crystal Display Controller  
28.1 Features  
Display capacity up to 40 segment and up to 4 common terminals  
Supports up to 16 GPIO's  
Shadow display memory gives full freedom in segment update  
ASCII character mapping  
Swap capability option on segment and/or common terminal buses  
Supports from static up to 1/4 duty  
Supports static and 1/3 bias  
LCD driver active in power save mode for low power operation  
Software selectable low power waveform  
Flexible selection of frame frequency  
Programmable blink mode and frequency on two segment terminals  
Uses Only 32 kHz RTC clock source  
On-chip LCD power supply  
Software contrast adjustment control  
Equal source and sink capability to Increase glass life time  
Extended interrupt mode for display update or wake-up from sleep mode  
28.2 Overview  
The LCD controller is intended for monochrome passive liquid crystal display (LCD) with up to 4 Common terminals and  
up to 40 Segments terminals. If the application does not need all the LCD segments available on the XMEGA, up to 16 of  
the unused LCD pins can be used as general purpose I/O pins.  
The LCD controller can be clocked by an internal or an external asynchronous 32kHz clock source. This 32kHz oscillator  
source selection is the same as for the real time counter (RTC).  
Dedicated Low Power Waveform, Contrast Control, Extended Interrupt Mode, Selectable Frame Frequency and Blink  
functionality are supported to offload the CPU, reduce interrupts and reduce power consumption.  
To reduce hardware design complexity, the LCD includes integrated LCD buffers, an integrated power supply voltage  
and an innovative SWAP mode. Using SWAP mode, the hardware designers have more flexibility during board layout as  
they can rearrange the pin sequence on Segment and/or Common Terminal Buses.  
Figure 28-1. LCD overview  
Character  
Mapping  
Timing  
Control & Swap  
SEG[39:0]  
COM[3:0]  
Shadow  
Display  
Memory  
Analog  
Switch  
Array  
Display  
Memory  
VLCD  
BIAS1  
BIAS2  
LCD Power  
Supply  
CAPH  
CAPL  
XMEGA B1 [DATASHEET]  
46  
8330C–AVR–07/2012  
29. ADC – 12-bit Analog to Digital Converter  
29.1 Features  
Two Analog to Digital Converters (ADCs)  
12-bit resolution  
Up to 300 thousand samples per second  
– Down to 2.3µs conversion time with 8-bit resolution  
– Down to 3.35µs conversion time with 12-bit resolution  
Differential and single-ended input  
– Up to 16 single-ended inputs  
– 16x4 differential inputs without gain  
– 16x4 differential input with gain  
Built-in differential gain stage  
1/2x, 1x, 2x, 4x, 8x, 16x, 32x, and 64x gain options  
Single, continuous and scan conversion options  
Three internal inputs  
– Internal temperature sensor  
– VCC voltage divided by 10  
– 1.1V bandgap voltage  
Internal and external reference options  
Compare function for accurate monitoring of user defined thresholds  
Optional event triggered conversion for accurate timing  
Optional DMA transfer of conversion results  
Optional interrupt/event on compare result  
29.2 Overview  
The ADC converts analog signals to digital values. The ADC has 12-bit resolution and is capable of converting up to 300  
thousand samples per second (KSPS). The input selection is flexible, and both single-ended and differential  
measurements can be done. For differential measurements, an optional gain stage is available to increase the dynamic  
range. In addition, several internal signal inputs are available. The ADC can provide both signed and unsigned results.  
The ADC measurements can either be started by application software or an incoming event from another peripheral in  
the device. The ADC measurements can be started with predictable timing, and without software intervention. It is  
possible to use DMA to move ADC results directly to memory or peripherals when conversions are done.  
Both internal and external reference voltages can be used. An integrated temperature sensor is available for use with the  
ADC. The output from the VCC/10 and the bandgap voltage can also be measured by the ADC.  
The ADC has a compare function for accurate monitoring of user defined thresholds with minimum software intervention  
required.  
XMEGA B1 [DATASHEET]  
47  
8330C–AVR–07/2012  
Figure 29-1. ADC overview  
Compare  
Register  
ADC0  
VINP  
<
>
ADC15  
Threshold  
(Int Req)  
Internal  
signals  
CH0 Result  
ADC  
ADC0  
VINN  
ADC7  
Internal 1.00V  
Internal VCC/1.6V  
Internal VCC/2  
AREFA  
Reference  
Voltage  
AREFB  
The ADC may be configured for 8- or 12-bit result, reducing the minimum conversion time (propagation delay) from  
3.35µs for 12-bit to 2.3µs for 8-bit result.  
ADC conversion results are provided left- or right adjusted with optional ‘1’ or ‘0’ padding. This eases calculation when  
the result is represented as a signed integer (signed 16-bit number).  
PORTA and PORTB each has one ADC. Notation of these peripherals are ADCA and ADCB, respectively.  
XMEGA B1 [DATASHEET]  
48  
8330C–AVR–07/2012  
30. AC – Analog Comparator  
30.1 Features  
Four Analog Comparators (AC)  
Selectable hysteresis  
– No  
– Small  
– Large  
Analog comparator output available on pin  
Flexible input selection  
– All pins on the port  
– Bandgap reference voltage  
– A 64-level programmable voltage scaler of the internal VCC voltage  
Interrupt and event generation on:  
– Rising edge  
– Falling edge  
– Toggle  
Window function interrupt and event generation on:  
– Signal above window  
– Signal inside window  
– Signal below window  
Constant current source with configurable output pin selection  
30.2 Overview  
The analog comparator (AC) compares the voltage levels on two inputs and gives a digital output based on this  
comparison. The analog comparator may be configured to generate interrupt requests and/or events upon several  
different combinations of input change.  
One important property of the analog comparator’s dynamic behavior is the hysteresis. This parameter may be adjusted  
in order to achieve the optimal operation for each application.  
The input selection includes analog port pins, several internal signals, and a 64-level programmable voltage scaler. The  
analog comparator output state can also be output on a pin for use by external devices.  
A constant current source can be enabled and output on a selectable pin. This can be used to replace, for example,  
external resistors used to charge capacitors in capacitive touch sensing applications.  
The analog comparators are always grouped in pairs on each port. These are called analog comparator 0 (AC0) and  
analog comparator 1 (AC1). They have identical behavior, but separate control registers. Used as pair, they can be set in  
window mode to compare a signal to a voltage range instead of a voltage level.  
PORTA and PORTB each has one AC pair. Notations are ACA and ACB, respectively.  
XMEGA B1 [DATASHEET]  
49  
8330C–AVR–07/2012  
Figure 30-1. Analog comparator overview  
Pin Input  
+
AC0OUT  
AC0  
Pin Input  
-
Hysteresis  
Enable  
Interrupt  
Interrupts  
Events  
Sensititivity  
Control  
&
Interrupt  
Mode  
Voltage  
Scaler  
ACnMUXCTRL  
ACnCTRL  
WINCTRL  
Window  
Function  
Enable  
Bandgap  
Hysteresis  
+
-
Pin Input  
Pin Input  
AC1OUT  
AC1  
The window function is realized by connecting the external inputs of the two analog comparators in a pair as shown in  
Figure 30-2..  
Figure 30-2. Analog comparator window function  
+
AC0  
Upper limit of window  
-
Interrupts  
Interrupt  
Input signal  
sensitivity  
Events  
control  
+
AC1  
Lower limit of window  
-
XMEGA B1 [DATASHEET]  
50  
8330C–AVR–07/2012  
31. Programming and Debugging  
31.1 Features  
Programming  
– External programming through PDI or JTAG interfaces  
Minimal protocol overhead for fast operation  
Built-in error detection and handling for reliable operation  
– Boot loader support for programming through any communication interface  
Debugging  
– Nonintrusive, real-time, on-chip debug system  
– No software or hardware resources required from device except pin connection  
– Program flow control  
Go, Stop, Reset, Step Into, Step Over, Step Out, Run-to-Cursor  
– Unlimited number of user program breakpoints  
– Unlimited number of user data breakpoints, break on:  
Data location read, write, or both read and write  
Data location content equal or not equal to a value  
Data location content is greater or smaller than a value  
Data location content is within or outside a range  
– No limitation on device clock frequency  
Program and Debug Interface (PDI)  
– Two-pin interface for external programming and debugging  
– Uses the Reset pin and a dedicated pin  
– No I/O pins required during programming or debugging  
JTAG interface  
– Four-pin, IEEE Std. 1149.1 compliant interface for programming and debugging  
– Boundary scan capabilities according to IEEE Std. 1149.1 (JTAG)  
31.2 Overview  
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external programming and on-chip  
debugging of a device.  
The PDI supports fast programming of nonvolatile memory (NVM) spaces; flash, EEPOM, fuses, lock bits, and the user  
signature row.  
Debug is supported through an on-chip debug system that offers nonintrusive, real-time debug. It does not require any  
software or hardware resources except for the device pin connection. Using the Atmel tool chain, it offers complete  
program flow control and support for an unlimited number of program and complex data breakpoints. Application debug  
can be done from a C or other high-level language source code level, as well as from an assembler and disassembler  
level.  
Programming and debugging can be done through two physical interfaces. The primary one is the PDI physical layer,  
which is available on all devices. This is a two-pin interface that uses the Reset pin for the clock input (PDI_CLK) and one  
other dedicated pin for data input and output (PDI_DATA). A JTAG interface is also available on most devices, and this  
can be used for programming and debugging through the four-pin JTAG interface. The JTAG interface is IEEE Std.  
1149.1 compliant, and supports boundary scan. Any external programmer or on-chip debugger/emulator can be directly  
connected to either of these interfaces. Unless otherwise stated, all references to the PDI assume access through the  
PDI physical layer.  
XMEGA B1 [DATASHEET]  
51  
8330C–AVR–07/2012  
32. Pinout and Pin Functions  
The device pinout is shown in “Pinout/Block Diagram” on page 3. In addition to general purpose I/O functionality, each  
pin can have several alternate functions. This will depend on which peripheral is enabled and connected to the actual pin.  
Only one of the pin functions can be used at time.  
32.1 Alternate Pin Function Description  
The tables below show the notation for all pin functions available and describe its function.  
32.1.1 Operation/Power Supply  
VCC  
Digital supply voltage  
Analog supply voltage  
Ground  
AVCC  
GND  
AGND  
Analog Ground  
32.1.2 Port Interrupt functions  
SYNC  
Port pin with full synchronous and limited asynchronous interrupt function  
ASYNC  
Port pin with full synchronous and full asynchronous interrupt function  
32.1.3 Analog functions  
ACn  
Analog Comparator input pin n  
Analog Comparator n Output  
Analog to Digital Converter input pin n  
Analog Reference input pin  
ACnOUT  
ADCn  
AREF  
32.1.4 LCD functions  
SEGn  
COMn  
VLCD  
BIAS2  
BIAS1  
CAPH  
CAPL  
LCD Segment Drive Output n  
LCD Common Drive Output n  
LCD Voltage Multiplier Output  
LCD Intermediate Voltage 2 Output (VLCD * 2/3)  
LCD Intermediate Voltage 1 Output (VLCD * 1/3)  
LCD High End Of Flying Capacitor  
LCD Low End Of Flying Capacitor  
XMEGA B1 [DATASHEET]  
52  
8330C–AVR–07/2012  
32.1.5 Timer/Counter and AWEX functions  
OCnxLS  
OCnxHS  
Output Compare Channel x Low Side for Timer/Counter n  
Output Compare Channel x High Side for Timer/Counter n  
32.1.6 Communication functions  
SCL  
Serial Clock for TWI  
SDA  
Serial Data for TWI  
SCLIN  
SCLOUT  
SDAIN  
SDAOUT  
XCKn  
RXDn  
TXDn  
SS  
Serial Clock In for TWI when external driver interface is enabled  
Serial Clock Out for TWI when external driver interface is enabled  
Serial Data In for TWI when external driver interface is enabled  
Serial Data Out for TWI when external driver interface is enabled  
Transfer Clock for USART n  
Receiver Data for USART n  
Transmitter Data for USART n  
Slave Select for SPI  
MOSI  
MISO  
SCK  
Master Out Slave In for SPI  
Master In Slave Out for SPI  
Serial Clock for SPI  
D-  
Data- for USB  
D+  
Data+ for USB  
32.1.7 Oscillators, Clock and Event  
TOSCn  
XTALn  
Timer Oscillator pin n  
Input/Output for Oscillator pin n  
Peripheral Clock Output  
CLKOUT  
EVOUT  
RTCOUT  
Event Channel 0 Output  
RTC Clock Source Output  
XMEGA B1 [DATASHEET]  
53  
8330C–AVR–07/2012  
32.1.8 Debug/System functions  
RESET  
PDI_CLK  
PDI_DATA  
TCK  
Reset pin  
Program and Debug Interface Clock pin  
Program and Debug Interface Data pin  
JTAG Test Clock  
TDI  
JTAG Test Data In  
TDO  
JTAG Test Data Out  
TMS  
JTAG Test Mode Select  
XMEGA B1 [DATASHEET]  
54  
8330C–AVR–07/2012  
32.2 Alternate Pin Functions  
The tables below show the primary/default function for each pin on a port in the first column, the pin number in the  
second column, and then all alternate pin functions in the remaining columns. The head row shows what peripheral that  
enable and use the alternate pin functions.  
For better flexibility, some alternate functions also have selectable pin locations for their functions, this is noted under the  
the first table where this apply.  
Table 32-1. Port A - Alternate functions  
ADCA  
ADCB  
PORT A  
PIN #  
INTERRUPT  
ADCA  
NEG  
ADCA  
ACA  
POS  
ACA  
NEG  
ACA  
OUT  
REFA  
POS/GAIN  
POS  
POS/GAIN  
POS  
GAINNEG  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
82  
83  
84  
85  
86  
87  
88  
89  
SYNC  
SYNC  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
ADC0  
ADC1  
ADC2  
ADC3  
AC0  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC0  
AC1  
AREF  
SYNC/ASYNC  
SYNC  
ADC10  
ADC11  
ADC12  
ADC13  
ADC14  
ADC15  
AC3  
AC5  
AC7  
SYNC  
ADC4  
ADC5  
ADC6  
ADC7  
SYNC  
SYNC  
AC1OUT  
AC0OUT  
SYNC  
Table 32-2. Port B - Alternate functions  
ADCA  
ADCB  
PORT B  
PIN #  
INTERRUPT  
ADCB  
ADCB  
ACB  
POS  
ACB  
NEG  
ACB  
OUT  
REFB  
JTAG  
POS/GAIN  
POS  
POS/GAIN  
POS  
NEG  
GAINNEG  
AGND  
AVDD  
PB0  
90  
91  
92  
93  
SYNC  
SYNC  
ADC8  
ADC9  
ADC0  
ADC1  
ADC0  
ADC1  
AC0  
AC1  
AC0  
AC1  
AREF  
PB1  
SYNC/ASYN  
C
PB2  
94  
ADC10  
ADC2  
ADC2  
ADC3  
AC2  
PB3  
PB4  
PB5  
PB6  
PB7  
95  
96  
97  
98  
99  
SYNC  
SYNC  
SYNC  
SYNC  
SYNC  
ADC11  
ADC12  
ADC13  
ADC14  
ADC15  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
AC3  
AC4  
AC5  
AC6  
AC3  
AC5  
AC7  
ADC4  
ADC5  
ADC6  
ADC7  
TMS  
TDI  
AC1OUT  
AC0OUT  
TCK  
TDO  
XMEGA B1 [DATASHEET]  
55  
8330C–AVR–07/2012  
Table 32-3. Port C - Alternate functions.  
PIN  
CLOCKOUT  
EVENTOUT  
(4)  
(5)  
PORT C  
GND  
VCC  
PC0  
#
100  
1
INTERRUPT  
TCC0(1)  
AWEXC  
TCC1  
USARTC0(2)  
SPIC(3)  
TWIC  
EXTCLK  
2
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0D  
OC0ALS  
OC0AHS  
OC0BLS  
OC0BHS  
OC0CLS  
OC0CHS  
OC0DLS  
OC0DHS  
SDA  
SCL  
EXTCLKC0  
EXTCLKC1  
EXTCLKC2  
EXTCLKC3  
EXTCLKC4  
EXTCLKC5  
EXTCLKC6  
EXTCLKC7  
PC1  
3
XCK0  
RXD0  
TXD0  
PC2  
4
SYNC/ASYNC  
SYNC  
PC3  
5
PC4  
6
SYNC  
OC1A  
OC1B  
SS  
PC5  
7
SYNC  
MOSI  
MISO  
SCK  
PC6  
8
SYNC  
RTCOUT  
clkPER  
PC7  
9
SYNC  
EVOUT  
Notes:  
1. Pin mapping of all TC0 can optionally be moved to high nibble of port.  
2. Pin mapping of all USART0 can optionally be moved to high nibble of port.  
3. Pins MOSI and SCK for all SPI can optionally be swapped.  
4. CLKOUT can optionally be moved between port C and E and between pin 4 and 7.  
5. EVOUT can optionally be moved between port C and E and between pin 4 and 7.  
Table 32-4. Port D - Alternate functions.  
PORT D  
GND  
VCC  
PIN #  
10  
INTERRUPT  
USBD  
11  
PD0  
12  
SYNC  
SYNC  
D-  
PD1  
13  
D+  
PD2  
14  
SYNC/ASYNC  
Table 32-5. Program and Debug functions.  
PROG  
RESET  
PDI  
PIN #  
15  
INTERRUPT  
PROG  
PDI_DATA  
16  
PDI_CLOCK  
GND  
17  
VCC  
18  
XMEGA B1 [DATASHEET]  
56  
8330C–AVR–07/2012  
Table 32-6. Port E - Alternate functions.  
PORT E  
PE0  
PIN #  
19  
INTERRUPT  
SYNC  
TCE0(1)  
OC0A  
OC0B  
OC0C  
OC0D  
USARTE0(2)  
CLOCKOUT(4)  
EVENTOUT(5)  
Alternate TOSC  
PE1  
20  
SYNC  
XCK0  
RXD0  
TXD0  
PE2  
21  
SYNC/ASYNC  
SYNC  
PE3  
22  
PE4  
23  
SYNC  
PE5  
24  
SYNC  
PE6  
25  
SYNC  
TOSC2  
TOSC1  
PE7  
26  
SYNC  
clkPER  
EVOUT  
Table 32-7. LCD  
LCD(1)(2)  
GND  
PIN #  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
INTERRUPT(1)  
GPIO(1)  
BLINK(1)  
VCC  
SEG39  
SEG38  
SEG37  
SEG36  
SEG35  
SEG34  
SEG33  
SEG32  
SEG31  
SEG30  
SEG29  
SEG28  
SEG27  
SEG26  
SEG25  
SEG24  
SEG23  
SEG22  
SEG21  
SEG20  
SEG19  
SYNC  
SYNC  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PM0  
PM1  
PM2  
PM3  
PM4  
PM5  
PM6  
PM7  
SYNC/ASYNC  
SYNC  
SYNC  
SYNC  
SYNC  
SYNC  
SYNC  
SYNC  
SYNC/ASYNC  
SYNC  
SYNC  
SYNC  
SYNC  
SYNC  
XMEGA B1 [DATASHEET]  
57  
8330C–AVR–07/2012  
LCD(1)(2)  
SEG18  
SEG17  
SEG16  
SEG15  
SEG14  
SEG13  
SEG12  
SEG11  
SEG10  
SEG9  
PIN #  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
INTERRUPT(1)  
GPIO(1)  
BLINK(1)  
SEG8  
SEG7  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
SEG1  
BLINK  
BLINK  
SEG0  
GND  
VCC  
BIAS1  
BIAS2  
VLCD  
CAPL  
CAPH  
COM0  
COM1  
COM2  
COM3  
Notes:  
1. Pin mapping of all Segment terminals (SEGn) can be optionnaly swapped. Interrupt, GPIO and Blink functions will be automatically swapped.  
2. Pin mapping of all Common terminals (COMn) can be optionnaly swapped.  
XMEGA B1 [DATASHEET]  
58  
8330C–AVR–07/2012  
Table 32-8. Port R- Alternate functions.  
PORT R  
PRO  
PIN #  
80  
INTERRUPT  
SYNC  
XTAL  
XTAL2  
XTAL1  
TOSC  
TOSC2  
TOSC1  
PR1  
82  
SYNC  
33. Peripheral Module Address Map  
The address maps show the base address for each peripheral and module in XMEGA B1. For complete register  
description and summary for each peripheral module, refer to the XMEGA B Manual.  
Table 33-1. Peripheral module address map.  
Base address  
0x0000  
0x0010  
0x0014  
0x0018  
0x001C  
0x0030  
0x0040  
0x0048  
0x0050  
0x0060  
0x0068  
0x0070  
0x0078  
0x0080  
0x0090  
0x00A0  
0x00B0  
0x00C0  
0x00D0  
0x0100  
0x0180  
0x01C0  
0x0200  
0x0240  
0x0380  
0x0390  
0x0400  
0x0480  
0x04C0  
0x0600  
0x0620  
Name  
GPIO  
Description  
General Purpose IO Registers  
Virtual Port 0  
VPORT0  
VPORT1  
VPORT2  
VPORT3  
CPU  
Virtual Port 1  
Virtual Port 2  
Virtual Port 3  
CPU  
CLK  
Clock Control  
SLEEP  
OSC  
Sleep Controller  
Oscillator Control  
DFLLRC32M  
DFLLRC2M  
PR  
DFLL for the 32MHz Internal Oscillator  
DFLL for the 2MHz Internal Oscillator  
Power Reduction  
RST  
Reset Controller  
WDT  
Watch-Dog Timer  
MCU  
MCU Control  
PMIC  
Programmable Multilevel Interrupt Controller  
Port Configuration  
PORTCFG  
AES  
AES Module  
CRC  
CRC Module  
DMA  
DMA Controller  
EVSYS  
NVM  
Event System  
Non Volatile Memory (NVM) Controller  
Analog to Digital Converter on port A  
Analog to Digital Converter on port B  
Analog Comparator pair on port A  
Analog Comparator pair on port B  
Real Time Counter  
Two Wire Interface on port C  
USB Device  
ADCA  
ADCB  
ACA  
ACB  
RTC  
TWIC  
USB  
PORTA  
PORTB  
Port A  
Port B  
XMEGA B1 [DATASHEET]  
59  
8330C–AVR–07/2012  
Base address  
0x0640  
0x0660  
0x0680  
0x06C0  
0x0760  
0x07E0  
0x0800  
0x0840  
0x0880  
0x0890  
0x08A0  
0x08C0  
0x08F8  
0x0A00  
0x0AA0  
0x0D00  
Name  
PORTC  
PORTD  
PORTE  
PORTG  
PORTM  
PORTR  
TCC0  
Description  
Port C  
Port D  
Port E  
Port G  
Port M  
Port R  
Timer/Counter 0 on port C  
Timer/Counter 1 on port C  
Advanced Waveform Extension on port C  
High Resolution Extension on port C  
USART 0 on port C  
Serial Peripheral Interface on port C  
Infrared Communication Module  
Timer/Counter 0 on port E  
USART 0 on port E  
Liquid Crystal Display  
TCC1  
AWEXC  
HIRESC  
USARTC0  
SPIC  
IRCOM  
TCE0  
USARTE0  
LCD  
XMEGA B1 [DATASHEET]  
60  
8330C–AVR–07/2012  
34. Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
Arithmetic and Logic Instructions  
ADD  
ADC  
ADIW  
SUB  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add without Carry  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd + Rr  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
None  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
1/2  
Add with Carry  
Rd + Rr + C  
Rd + 1:Rd + K  
Rd - Rr  
Add Immediate to Word  
Subtract without Carry  
Subtract Immediate  
Subtract with Carry  
Subtract Immediate with Carry  
Subtract Immediate from Word  
Logical AND  
SUBI  
SBC  
Rd - K  
Rd - Rr - C  
Rd - K - C  
Rd + 1:Rd - K  
Rd Rr  
SBCI  
SBIW  
AND  
ANDI  
OR  
Rd + 1:Rd  
Rd  
Logical AND with Immediate  
Logical OR  
Rd  
Rd K  
Rd  
Rd v Rr  
ORI  
Logical OR with Immediate  
Exclusive OR  
Rd  
Rd v K  
EOR  
COM  
NEG  
SBR  
Rd  
Rd Rr  
One’s Complement  
Two’s Complement  
Set Bit(s) in Register  
Clear Bit(s) in Register  
Increment  
Rd  
$FF - Rd  
Rd  
Rd  
$00 - Rd  
Rd,K  
Rd,K  
Rd  
Rd  
Rd v K  
CBR  
INC  
Rd  
Rd ($FFh - K)  
Rd + 1  
Rd  
DEC  
TST  
Rd  
Decrement  
Rd  
Rd - 1  
Rd  
Test for Zero or Minus  
Clear Register  
Rd  
Rd Rd  
CLR  
Rd  
Rd  
Rd Rd  
SER  
Rd  
Set Register  
Rd  
$FF  
MUL  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
DES  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
K
Multiply Unsigned  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
Rd x Rr (UU)  
Rd x Rr (SS)  
Rd x Rr (SU)  
Rd x Rr<<1 (UU)  
Rd x Rr<<1 (SS)  
Rd x Rr<<1 (SU)  
Z,C  
Multiply Signed  
Z,C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Data Encryption  
Z,C  
Z,C  
Z,C  
Z,C  
if (H = 0) then R15:R0  
else if (H = 1) then R15:R0  
Encrypt(R15:R0, K)  
Decrypt(R15:R0, K)  
Branch instructions  
RJMP  
IJMP  
k
Relative Jump  
PC  
PC + k + 1  
None  
None  
2
2
Indirect Jump to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
0
EIJMP  
Extended Indirect Jump to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
2
JMP  
k
k
Jump  
PC  
PC  
k
None  
None  
3
RCALL  
Relative Call Subroutine  
PC + k + 1  
2 / 3 (1)  
XMEGA B1 [DATASHEET]  
61  
8330C–AVR–07/2012  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
ICALL  
Indirect Call to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
0
None  
2 / 3 (1)  
EICALL  
Extended Indirect Call to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
3 (1)  
CALL  
RET  
k
call Subroutine  
PC  
PC  
k
None  
None  
I
3 / 4 (1)  
4 / 5 (1)  
4 / 5 (1)  
1 / 2 / 3  
1
Subroutine Return  
STACK  
STACK  
PC + 2 or 3  
RETI  
Interrupt Return  
PC  
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC  
None  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Rd,Rr  
Rd - Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd - Rr - C  
1
CPI  
Rd,K  
Compare with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd - K  
1
SBRC  
SBRS  
SBIC  
SBIS  
Rr, b  
if (Rr(b) = 0) PC  
if (Rr(b) = 1) PC  
if (I/O(A,b) = 0) PC  
If (I/O(A,b) =1) PC  
if (SREG(s) = 1) then PC  
if (SREG(s) = 0) then PC  
if (Z = 1) then PC  
if (Z = 0) then PC  
if (C = 1) then PC  
if (C = 0) then PC  
if (C = 0) then PC  
if (C = 1) then PC  
if (N = 1) then PC  
if (N = 0) then PC  
if (N V= 0) then PC  
if (N V= 1) then PC  
if (H = 1) then PC  
if (H = 0) then PC  
if (T = 1) then PC  
if (T = 0) then PC  
if (V = 1) then PC  
if (V = 0) then PC  
if (I = 1) then PC  
if (I = 0) then PC  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
1 / 2 / 3  
1 / 2 / 3  
2 / 3 / 4  
2 / 3 / 4  
1 / 2  
Rr, b  
A, b  
A, b  
s, k  
s, k  
k
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
BRIE  
BRID  
1 / 2  
1 / 2  
k
Branch if Not Equal  
1 / 2  
k
Branch if Carry Set  
1 / 2  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if Minus  
1 / 2  
k
Branch if Plus  
1 / 2  
k
Branch if Greater or Equal, Signed  
Branch if Less Than, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
Data transfer instructions  
MOV  
MOVW  
LDI  
Rd, Rr  
Rd, Rr  
Rd, K  
Copy Register  
Rd  
Rd+1:Rd  
Rd  
Rr  
None  
None  
None  
1
1
1
Copy Register Pair  
Load Immediate  
Rr+1:Rr  
K
XMEGA B1 [DATASHEET]  
62  
8330C–AVR–07/2012  
Mnemonics  
Operands  
Rd, k  
Description  
Operation  
Flags  
None  
None  
None  
#Clocks  
2 (1)(2)  
LDS  
LD  
Load Direct from data space  
Load Indirect  
Rd  
Rd  
(k)  
Rd, X  
(X)  
1 (1)(2)  
LD  
Rd, X+  
Load Indirect and Post-Increment  
Rd  
X
(X)  
X + 1  
1 (1)(2)  
LD  
Rd, -X  
Load Indirect and Pre-Decrement  
X X - 1,  
Rd (X)  
X - 1  
(X)  
None  
2 (1)(2)  
LD  
LD  
Rd, Y  
Load Indirect  
Rd (Y)  
(Y)  
None  
None  
1 (1)(2)  
1 (1)(2)  
Rd, Y+  
Load Indirect and Post-Increment  
Rd  
Y
(Y)  
Y + 1  
LD  
Rd, -Y  
Load Indirect and Pre-Decrement  
Y
Rd  
Y - 1  
(Y)  
None  
2 (1)(2)  
LDD  
LD  
Rd, Y+q  
Rd, Z  
Load Indirect with Displacement  
Load Indirect  
Rd  
Rd  
(Y + q)  
(Z)  
None  
None  
None  
2 (1)(2)  
1 (1)(2)  
1 (1)(2)  
LD  
Rd, Z+  
Load Indirect and Post-Increment  
Rd  
Z
(Z),  
Z+1  
LD  
Rd, -Z  
Load Indirect and Pre-Decrement  
Z
Rd  
Z - 1,  
(Z)  
None  
2 (1)(2)  
LDD  
STS  
ST  
Rd, Z+q  
k, Rr  
Load Indirect with Displacement  
Store Direct to Data Space  
Store Indirect  
Rd  
(k)  
(X)  
(Z + q)  
Rd  
None  
None  
None  
None  
2 (1)(2)  
2 (1)  
X, Rr  
Rr  
1 (1)  
ST  
X+, Rr  
Store Indirect and Post-Increment  
(X)  
X
Rr,  
X + 1  
1 (1)  
ST  
-X, Rr  
Store Indirect and Pre-Decrement  
X
(X)  
X - 1,  
Rr  
None  
2 (1)  
ST  
ST  
Y, Rr  
Store Indirect  
(Y)  
Rr  
None  
None  
1 (1)  
1 (1)  
Y+, Rr  
Store Indirect and Post-Increment  
(Y)  
Y
Rr,  
Y + 1  
ST  
-Y, Rr  
Store Indirect and Pre-Decrement  
Y
(Y)  
Y - 1,  
Rr  
None  
2 (1)  
STD  
ST  
Y+q, Rr  
Z, Rr  
Store Indirect with Displacement  
Store Indirect  
(Y + q)  
(Z)  
Rr  
Rr  
None  
None  
None  
2 (1)  
1 (1)  
1 (1)  
ST  
Z+, Rr  
Store Indirect and Post-Increment  
(Z)  
Z
Rr  
Z + 1  
ST  
-Z, Rr  
Store Indirect and Pre-Decrement  
Store Indirect with Displacement  
Load Program Memory  
Z
(Z + q)  
R0  
Z - 1  
Rr  
None  
None  
None  
None  
None  
2 (1)  
2 (1)  
3
STD  
LPM  
LPM  
LPM  
Z+q,Rr  
(Z)  
Rd, Z  
Load Program Memory  
Rd  
(Z)  
3
Rd, Z+  
Load Program Memory and Post-Increment  
Rd  
Z
(Z),  
Z + 1  
3
ELPM  
ELPM  
ELPM  
Extended Load Program Memory  
Extended Load Program Memory  
R0  
Rd  
(RAMPZ:Z)  
(RAMPZ:Z)  
None  
None  
None  
3
3
3
Rd, Z  
Rd, Z+  
Extended Load Program Memory and Post-  
Increment  
Rd  
Z
(RAMPZ:Z),  
Z + 1  
SPM  
SPM  
Store Program Memory  
(RAMPZ:Z)  
R1:R0  
None  
None  
-
-
Z+  
Store Program Memory and Post-Increment  
by 2  
(RAMPZ:Z)  
Z
R1:R0,  
Z + 2  
XMEGA B1 [DATASHEET]  
63  
8330C–AVR–07/2012  
Mnemonics  
IN  
Operands  
Rd, A  
A, Rr  
Rr  
Description  
Operation  
Flags  
None  
None  
None  
None  
None  
#Clocks  
In From I/O Location  
Out To I/O Location  
Push Register on Stack  
Pop Register from Stack  
Exchange RAM location  
Rd  
I/O(A)  
STACK  
Rd  
I/O(A)  
Rr  
1
1
OUT  
PUSH  
POP  
Rr  
1 (1)  
2 (1)  
2
Rd  
STACK  
XCH  
Z, Rd  
Temp  
Rd  
(Z)  
Rd,  
(Z),  
Temp  
LAS  
LAC  
LAT  
Z, Rd  
Z, Rd  
Z, Rd  
Load and Set RAM location  
Load and Clear RAM location  
Load and Toggle RAM location  
Temp  
Rd  
(Z)  
Rd,  
(Z),  
Temp v (Z)  
None  
None  
None  
2
2
2
Temp  
Rd  
(Z)  
Rd,  
(Z),  
($FFh – Rd) (Z)  
Temp  
Rd  
(Z)  
Rd,  
(Z),  
Temp (Z)  
Bit and bit-test instructions  
LSL  
Rd  
Rd  
Rd  
Rd  
Logical Shift Left  
Rd(n+1)  
Rd(0)  
C
Rd(n),  
0,  
Rd(7)  
Z,C,N,V,H  
Z,C,N,V  
1
1
1
1
LSR  
ROL  
ROR  
Logical Shift Right  
Rd(n)  
Rd(7)  
C
Rd(n+1),  
0,  
Rd(0)  
Rotate Left Through Carry  
Rotate Right Through Carry  
Rd(0)  
Rd(n+1)  
C
C,  
Rd(n),  
Rd(7)  
Z,C,N,V,H  
Z,C,N,V  
Rd(7)  
Rd(n)  
C
C,  
Rd(n+1),  
Rd(0)  
ASR  
SWAP  
BSET  
BCLR  
SBI  
Rd  
Arithmetic Shift Right  
Swap Nibbles  
Rd(n)  
Rd(n+1), n=0..6  
Z,C,N,V  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Rd  
Rd(3..0)  
Rd(7..4)  
None  
s
Flag Set  
SREG(s)  
1
SREG(s)  
s
Flag Clear  
SREG(s)  
0
SREG(s)  
A, b  
A, b  
Rr, b  
Rd, b  
Set Bit in I/O Register  
Clear Bit in I/O Register  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
I/O(A, b)  
1
None  
CBI  
I/O(A, b)  
0
None  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
T
Rr(b)  
T
1
T
Rd(b)  
None  
C
C
N
N
Z
Z
I
C
C
N
N
Z
Z
I
Clear Carry  
0
Set Negative Flag  
Clear Negative Flag  
Set Zero Flag  
1
0
1
Clear Zero Flag  
0
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
1
CLI  
I
0
I
SES  
CLS  
S
S
1
S
S
0
XMEGA B1 [DATASHEET]  
64  
8330C–AVR–07/2012  
Mnemonics  
SEV  
Operands  
Description  
Operation  
Flags  
#Clocks  
Set Two’s Complement Overflow  
Clear Two’s Complement Overflow  
Set T in SREG  
V
V
T
1
0
1
0
1
0
V
V
T
T
H
H
1
1
1
1
1
1
CLV  
SET  
CLT  
Clear T in SREG  
T
SEH  
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
H
H
CLH  
MCU control instructions  
BREAK  
NOP  
Break  
(See specific descr. for BREAK)  
None  
None  
None  
None  
1
1
1
1
No Operation  
Sleep  
SLEEP  
WDR  
(see specific descr. for Sleep)  
(see specific descr. for WDR)  
Watchdog Reset  
Notes:  
1. Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.  
2. One extra cycle must be added when accessing Internal SRAM.  
XMEGA B1 [DATASHEET]  
65  
8330C–AVR–07/2012  
35. Packaging information  
35.1 100A  
PIN 1  
B
PIN 1 IDENTIFIER  
E1  
E
e
D1  
D
C
0°~7°  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
15.75  
13.90  
15.75  
13.90  
0.17  
0.09  
0.45  
0.15  
1.00  
16.00  
14.00  
16.00  
14.00  
1.05  
16.25  
D1  
E
14.10 Note 2  
16.25  
Notes:  
E1  
B
14.10 Note 2  
0.27  
1. This package conforms to JEDEC reference MS-026, Variation AED.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
C
0.20  
3. Lead coplanarity is 0.08 mm maximum.  
L
0.75  
e
0.50 TYP  
2010-10-20  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
100A, 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,  
0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
100A  
D
R
XMEGA B1 [DATASHEET]  
66  
8330C–AVR–07/2012  
36. Electrical Characteristics  
All typical values are measured at T = 25C unless other temperature condition is given. All minimum and maximum  
values are valid across operating temperature and voltage unless other conditions are given.  
36.1 Absolute Maximum Ratings  
Stresses beyond those listed in Table 36-1 on page 67 under may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or other conditions beyond those indicated in the  
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability.  
Table 36-1. Absolute maximum ratings.  
Symbol  
VCC  
Parameter  
Condition  
Min.  
Typ.  
Max.  
4
Units  
Power supply voltage  
Current into a Vcc pin  
Current out of a Gnd pin  
-0.3  
V
IVCC  
200  
200  
mA  
IGND  
Pin voltage with respect to  
Gnd and VCC  
VPIN  
-0.5  
Vcc+0.5  
V
IPIN  
TA  
Tj  
I/O pin sink/source current  
Storage temperature  
-25  
-65  
25  
mA  
150  
150  
°C  
Junction temperature  
36.2 General Operating Ratings  
The device must operate within the ratings listed in Table 36-2 on page 67 in order for all other electrical characteristics  
and typical characteristics of the device to be guaranteed and valid.  
Table 36-2. General operating conditions.  
Symbol  
VCC  
AVCC  
TA  
Parameter  
Condition  
Min.  
1.60  
1.60  
-40  
Typ.  
Max.  
3.6  
Units  
Power supply voltage  
Power supply voltage  
Temperature range  
Junction temperature  
V
3.6  
85  
°C  
Tj  
-40  
105  
Table 36-3. Operating voltage and frequency.  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
VCC = 1.8V  
VCC = 2.7V  
VCC = 3.6V  
Min  
0
Typ.  
Max.  
12  
Units  
0
12  
ClkCPU  
CPU clock frequency  
MHz  
0
32  
0
32  
XMEGA B1 [DATASHEET]  
67  
8330C–AVR–07/2012  
The maximum System clock frequency of the Atmel® AVR® XMEGA B1 devices is depending on VCC. As shown in Figure  
36-1 on page 68 the Frequency vs. VCC curve is linear between 1.8V < VCC < 2.7V.  
Figure 36-1. Maximum Frequency vs. Vcc  
MHz  
32  
Safe Operating Area  
12  
V
1.6  
1.8  
2.7  
3.6  
XMEGA B1 [DATASHEET]  
68  
8330C–AVR–07/2012  
36.3 DC Characteristics  
Table 36-4. Current Consumption for active and sleep modes.  
Symbol Parameter  
Condition  
Min  
Typ  
150  
320  
350  
700  
650  
1.0  
10  
Max  
Units  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
32kHz, Ext. Clk  
µA  
1MHz, Ext. Clk  
Active Power  
consumption(1)  
800  
1.6  
15  
2MHz, Ext. Clk  
32MHz, Ext. Clk  
32kHz, Ext. Clk  
VCC = 3.0V  
mA  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
4.0  
8.0  
80  
1MHz, Ext. Clk  
2MHz, Ext. Clk  
µA  
Idle Power  
150  
160  
300  
4.7  
0.1  
2.1  
1.2  
1.3  
3.1  
1.2  
1.3  
0.8  
0.9  
1.3  
1.6  
consumption(1)  
250  
600  
7
ICC  
VCC = 3.0V  
32MHz, Ext. Clk  
mA  
T = 25°C  
1.0  
5
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
T = 85°C  
Power-down  
power  
consumption  
WDT and Sampled BOD enabled, T = 25°C  
WDT and Sampled BOD enabled, T = 25°C  
WDT and Sampled BOD enabled, T=85°C  
2.5  
3
7
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
µA  
RTC on ULP clock, WDT and sampled BOD  
enabled, T = 25°C  
Power-save  
power  
RTC on 1.024kHz low power 32.768kHz  
TOSC, T = 25°C  
consumption(2)  
RTC from low power 32.768kHz TOSC,  
T = 25°C  
XMEGA B1 [DATASHEET]  
69  
8330C–AVR–07/2012  
Symbol Parameter  
Condition  
Min  
Typ  
4.6  
5.2  
3.9  
Max  
Units  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
RTC on ULP clock, WDT, sampled BOD and  
LCD enabled, and all pixels ON, T = 25°C  
Power-save  
RTC on 1.024kHz low power 32.768kHz  
TOSC, LCD enabled and all pixels ON  
T = 25°C  
ICC  
power  
consumption(2)  
VCC = 3.0V  
4.3  
µA  
VCC = 1.8V  
VCC = 3.0V  
4.0  
4.5  
RTC from low power 32.768kHz TOSC, LCD  
enabled and all pixels ON, T = 25°C  
Reset power  
consumption  
Current through RESET pin substracted  
VCC = 3.0V  
420  
Notes:  
1. All Power Reduction Registers set.  
2. Maximum limits are based on characterization and not tested in production.  
XMEGA B1 [DATASHEET]  
70  
8330C–AVR–07/2012  
Table 36-5. Current Consumption for modules and peripherals.  
Symbol Parameter  
Condition(1)  
Min  
Typ  
Max  
Units  
ULP oscillator  
1.0  
32.768kHz int.  
oscillator  
26  
80  
112  
255  
444  
316  
1
2MHz int.  
oscillator  
DFLL enabled with 32.768kHz int. osc. as reference  
32MHz int.  
oscillator  
DFLL enabled with 32.768kHz int. osc. as reference  
Multiplication factor = 20x  
PLL  
Watchdog Timer  
Continuous mode  
126  
1.3  
3.0  
3.0  
3.0  
3.3  
3.4  
3.4  
3.8  
3.9  
3.9  
3.7  
4.3  
BOD  
Sampled mode, include ULP oscillator  
All pixels OFF  
Contrast min  
Contrast typ  
100 pixels ON  
All pixels ON  
All pixels OFF  
100 pixels ON  
All pixels ON  
All pixels OFF  
100 pixels ON  
All pixels ON  
All pixels OFF  
All pixels ON  
µA  
No pixel load  
LCD(2)  
ICC  
Contrast max  
Contrast typ  
22pF pixel load  
Internal 1.0V  
reference  
100  
100  
Temperature  
sensor  
1.3  
1.1  
1.0  
0.9  
CURRLIMIT = LOW  
16ksps  
VREF = Ext ref  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
ADC  
mA  
75ksps  
VREF = Ext ref  
1.7  
3.1  
300ksps  
VREF = Ext ref  
XMEGA B1 [DATASHEET]  
71  
8330C–AVR–07/2012  
Symbol Parameter  
Condition(1)  
Min  
Typ  
440  
115  
9
Max  
Units  
µA  
AC  
DMA  
615Kbps between I/O registers and SRAM  
Rx and Tx enabled, 9600 BAUD  
ICC  
USART  
Flash memory and EEPROM programming  
4.4  
mA  
Notes:  
1. .All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz External  
clock without prescaling, T = 25°C unless other conditiond are given.  
2. LCD configuration: internal voltage generation, 32Hz low power frame rate, 1/3 bias, clocked by low power 32.768kHz TOSC.  
36.4 Wake-up time from sleep modes  
Table 36-6. Device wake-up time from sleep modes with various system clock sources.  
Symbol Parameter  
Condition  
External 2MHz clock  
Min  
Typ  
2
Max  
Units  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
120  
2
Wake-up time from Idle,  
Standby, and Extend Standby  
0.2  
4.5  
320  
9
twakeup  
µs  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
Wake-up time from Power-save  
and Power-down mode  
5
Note:  
1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 36-2 on page 72. All peripherals and  
modules start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.  
Figure 36-2. Wake-up time definition.  
Wakeup time  
Wakeup request  
Clock output  
XMEGA B1 [DATASHEET]  
72  
8330C–AVR–07/2012  
36.5 I/O Pin Characteristics  
The I/O pins complies with the JEDEC LVTTL and LVCSMOS specification and the high- and low level input and output  
voltage limits reflect or exceed this specification.  
Table 36-7. I/O Pin Characteristics.  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
(1)  
I
/
OH  
I/O pin source/sink current  
-20  
20  
mA  
(2)  
I
OL  
VCC = 3.0 - 3.6V  
0.6*VCC  
0.6*VCC  
0.6*VCC  
-0.3  
VCC+0.3  
VCC+0.3  
VCC+0.3  
0.4*VCC  
0.4*VCC  
0.4*VCC  
0.76  
VIH  
High Level Input Voltage  
VCC = 2.3 - 2.7V  
VCC = 1.6 - 2.3V  
VCC = 3.0 - 3.6V  
VCC = 2.3 - 2.7V  
VCC = 1.6 - 2.3V  
VCC = 3.3V  
VIL  
Low Level Input Voltage  
Output Low Voltage GPIO  
Output High Voltage GPIO  
-0.3  
-0.3  
V
IOL = 15mA  
IOL = 10mA  
IOL = 5mA  
IOH = -8mA  
IOH = -6mA  
IOH = -2mA  
0.4  
0.26  
0.17  
2.8  
2.6  
1.6  
<0.01  
25  
VOL  
VCC = 3.0V  
0.64  
VCC = 1.8V  
0.46  
VCC = 3.3V  
2.6  
2.1  
1.4  
VOH  
VCC = 3.0V  
VCC = 1.8V  
IIN  
Input Leakage Current I/O pin  
Pull/Buss keeper Resistor  
Reset pin Pull-up Resistor  
1
µA  
RP  
k  
RRST  
25  
4
(3)tr  
Rise time  
No load  
ns  
slew rate limitation  
7
Notes:  
1. The sum of all IOH for PORTA and PORTB must not exceed 100mA.  
The sum of all IOH for PORTC, PORTD, PORTE and PDI must for each port not exceed 200mA  
TThe sum of all IOH for PORTG and PORTM must not exceed 100mA.  
The sum of all IOH for PORTR must not exceed 100mA.  
2. The sum of all IOL for PORTA and PORTB must not exceed 100mA.  
The sum of all IOL for PORTC, PORTD, PORTE must for each port not exceed 200mA.  
The sum of all IOL for PORTG and PORTM must not exceed 100mA.  
The sum of all IOL PORTR must not exceed 100mA.  
3. From design simulations  
XMEGA B1 [DATASHEET]  
73  
8330C–AVR–07/2012  
36.6 Liquid Crystal Display Characteristics  
Table 36-8. Liquid crystal display characteristics.  
Symbol  
SEG  
Parameter  
Condition  
Min  
0
Typ  
Max  
40  
Units  
Segment terminal pins  
Common terminal pins  
LCD frame frequency  
Flying capacitor  
COM  
0
4
fFrame  
F(clkLCD)=32.768kHz  
31.25  
512  
Hz  
nF  
CFlying  
100  
Contrast Contrast adjustment  
VLCD  
-0.5  
0
3
0.5  
CFlying = 0.1µF  
0.1µF on VLCD, BIAS2 and  
BIAS1 pins  
V
BIAS2  
BIAS1  
RCOM  
RSEG  
LCD regulated voltages  
2*VLCD/3  
VLCD/3  
0.5  
Common output impedance  
Segment output impedance  
COM0 to COM3(1)  
SEG0 to SEG39(1)  
0.25  
2
1
8
k  
4
Notes:  
1. Applies to Static and 1/3 bias  
36.7 ADC characteristics  
Table 36-9. Power supply, reference and input range.  
Symbol  
AVCC  
Parameter  
Condition  
Min.  
VCC- 0.3  
1
Typ.  
Max.  
Units  
Analog supply voltage  
Reference voltage  
Input resistance  
VCC+ 0.3  
AVCC- 0.6  
4.5  
V
VREF  
Rin  
Cin  
RAREF  
Switched  
k  
pF  
Input capacitance  
Reference input resistance  
Switched  
5
(leakage only)  
>10  
7
M  
pF  
CAREF  
Vin  
Reference input capacitance Static load  
Input range  
0
VREF  
Vin  
Conversion range  
Conversion range  
Differential mode, Vinp - Vinn  
-0.95*VREF  
-0.05*VREF  
0.95*VREF  
0.95*VREF  
V
Vin  
Single ended unsigned mode, Vinp  
Table 36-10. Clock and timing.  
Symbol  
ClkADC  
fClkADC  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
kHz  
Maximum is 1/4 of Peripheral clock  
frequency  
100  
1800  
ADC Clock frequency  
Sample rate  
Measuring internal signals  
125  
16  
300  
ksps  
XMEGA B1 [DATASHEET]  
74  
8330C–AVR–07/2012  
Symbol  
Parameter  
Condition  
Current limitation (CURRLIMIT) off  
CURRLIMIT = LOW  
Min.  
Typ.  
Max.  
300  
250  
150  
50  
Units  
ksps  
µs  
16  
fADC  
Sample rate  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
Sampling Time  
1/2 ClkADC cycle  
0.25  
6
5
(RES+2)/2+(GAIN !=0)  
RES (Resolution) = 8 or 12  
ClkADC  
cycles  
Conversion time (latency)  
10  
Start-up time  
ADC clock cycles  
12  
7
24  
7
ClkADC  
cycles  
ADC settling time  
After changing reference or input mode  
Table 36-11. Accuracy characteristics.  
Symbol  
RES  
Parameter  
Resolution  
Resolution  
Resolution  
Condition(2)  
Min.  
Typ.  
12  
11  
12  
1
Max.  
12  
Units  
Differential  
8
7
8
RES  
12-bit resolution  
Single ended signed  
Single ended unsigned  
16kSPS, VREF = 3V  
16kSPS, VREF = 1V  
300kSPS, VREF = 3V  
300kSPS, VREF = 1V  
16kSPS, VREF = 3.0V  
16kSPS, VREF = 1.0V  
16kSPS, VREF = 3V  
16kSPS, VREF = 1V  
300kSPS, VREF = 3V  
300kSPS, VREF = 1V  
16kSPS, VREF = 3.0V  
16kSPS, VREF = 1.0V  
11  
Bits  
RES  
12  
2
Differential mode  
1
INL(1)  
Integral non-linearity  
2
1
1.5  
3
Single ended  
unsigned mode  
2
lsb  
1
2
Differential mode  
1
DNL(1)  
Differential non-linearity  
2
1
1.5  
3
Single ended  
unsigned mode  
2
8
mV  
Offset Error  
Differential mode  
Temperature drift  
0.01  
mV/K  
mV/V  
Operating voltage drift  
0.25  
XMEGA B1 [DATASHEET]  
75  
8330C–AVR–07/2012  
Symbol  
Parameter  
Condition(2)  
External reference  
Min.  
Typ.  
-5  
Max.  
Units  
AVCC/1.6  
AVCC/2.0  
-5  
mV  
-6  
Gain Error  
Differential mode  
Bandgap  
±10  
0.02  
2
Temperature drift  
Operating voltage drift  
External reference  
AVCC/1.6  
mV/K  
mV/V  
-8  
-8  
mV  
AVCC/2.0  
-8  
Single ended  
unsigned mode  
Gain Error  
Bandgap  
±10  
0.03  
2
Temperature drift  
Operating voltage drift  
mV/K  
mV/V  
Notes:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 10% to 90% input voltage range.  
2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.  
Table 36-12. Gain stage characteristics.  
Symbol  
Rin  
Csample  
Parameter  
Condition  
Switched in normal mode  
Min.  
Typ.  
4.0  
Max.  
Units  
k  
Input resistance  
Input capacitance  
Signal range  
Switched in normal mode  
Gain stage output  
4.4  
pF  
0
AVCC- 0.3  
1800  
V
ClkADC  
cycles  
Propagation delay  
Clock rate  
ADC conversion rate  
1
Same as ADC  
100  
kHz  
0.5x gain, normal mode  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
0.5x gain, normal mode  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
-1  
-1  
Gain error  
%
-1  
10  
10  
10  
Offset error,  
mV  
input referred  
-20  
-150  
XMEGA B1 [DATASHEET]  
76  
8330C–AVR–07/2012  
36.8 Analog Comparator Characteristics  
Table 36-13. Analog comparator characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
10  
Max.  
Units  
mV  
nA  
Voff  
Ilk  
Input offset voltage  
Input leakage current  
Input voltage range  
AC startup time  
<10  
50  
0.1  
AVCC- 0.1  
V
50  
0
µs  
Vhys1  
Vhys2  
Vhys3  
Hysteresis, none  
Hysteresis, small  
Hysteresis, large  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
12  
28  
22  
21  
mV  
ns  
VCC = 3.0V, T= 85°C  
30  
40  
tdelay  
Propagation delay  
VCC = 1.6V - 3.6V  
64-Level Voltage Scaler Integral non-  
linearity (INL)  
0.3  
5
0.5  
lsb  
%
Current source accuracy after calibration  
Current source calibration range  
Current source calibration range  
Single mode  
Double mode  
4
8
6
µA  
12  
36.9 Bandgap and Internal 1.0V Reference Characteristics  
Table 36-14. Bandgap and internal 1.0V reference characteristics.  
Symbol Parameter  
Condition  
As reference for ADC  
Min  
Typ  
Max  
Units  
1 ClkPER + 2.5µs  
Startup time  
µs  
As input voltage to ADC and AC  
1.5  
1.1  
1
Bandgap voltage  
V
INT1V  
Internal 1.00V reference for ADC  
T= 85°C, After calibration  
Calibrated at T= 85°C  
0.99  
1.01  
Variation over voltage and temperature  
2.25  
%
XMEGA B1 [DATASHEET]  
77  
8330C–AVR–07/2012  
36.10 Brownout Detection Characteristics  
Table 36-15. Brownout Detection Characteristics(1)  
.
Symbol Parameter  
BOD level 0 falling Vcc  
BOD level 1 falling Vcc  
BOD level 2 falling Vcc  
BOD level 3 falling Vcc  
BOD level 4 falling Vcc  
BOD level 5 falling Vcc  
BOD level 6 falling Vcc  
BOD level 7 falling Vcc  
Condition  
T = 85C, calibrated  
Min  
Typ  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
0.4  
1000  
1.6  
Max  
Units  
1.5  
1.72  
V
Continuous mode  
Sampled mode  
tBOD  
Detection time  
Hysteresis  
µs  
%
VHYST  
Note:  
1. BOD is calibrated at 85°C within BOD level 0 values, and BOD level 0 is the default level.  
36.11 External Reset Characteristics  
Table 36-16. External reset characteristics.  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
tEXT  
Minimum reset pulse width  
90  
1000  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
0.50*VCC  
0.40*VCC  
VRST  
Reset threshold voltage  
V
36.12 Power-on Reset Characteristics  
Table 36-17. Power-on reset characteristics.  
Symbol Parameter  
Condition  
Min  
0.4  
0.8  
Typ  
1.0  
1.3  
1.3  
Max  
Units  
VCC falls faster than 1V/ms  
VCC falls at 1V/ms or slower  
(1)  
VPOT-  
POR threshold voltage falling VCC  
POR threshold voltage rising VCC  
V
VPOT+  
1.59  
Note:  
1. Both VPOT- values are only valid when BOD is disabled. When BOD is enabled the µBOD is enabled, and VPOT- =VPOT+  
XMEGA B1 [DATASHEET]  
78  
8330C–AVR–07/2012  
36.13 Flash and EEPROM Memory Characteristics  
Table 36-18. Endurance and data retention.  
Symbol Parameter  
Condition  
Min  
10K  
10K  
100  
25  
Typ  
Max  
Units  
25°C  
85°C  
25°C  
55°C  
25°C  
85°C  
25°C  
55°C  
Write/Erase cycles  
Cycle  
Flash  
Data retention  
Year  
Cycle  
Year  
100K  
100K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
Table 36-19. Programming time.  
Symbol Parameter  
Condition  
Min  
Typ(1)  
Max  
Units  
128KB Flash, EEPROM(2)  
64KB Flash, EEPROM(2)  
Page Erase  
75  
55  
4
Chip Erase  
Flash  
Page Write  
4
ms  
Page Write Automatic Page Erase and Write  
Page Erase  
8
4
EEPROM  
Page Write  
4
Page Write Automatic Page Erase and Write  
8
Notes:  
1. Programming is timed from the 2MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
36.14 Clock and Oscillator Characteristics  
36.14.1 Calibrated 32.768kHz Internal Oscillator characteristics  
Table 36-20. Calibrated 32.768kHz internal oscillator characteristics.  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
Frequency  
32.768  
kHz  
Factory calibrated accuracy  
User calibration accuracy  
T = 85C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
XMEGA B1 [DATASHEET]  
79  
8330C–AVR–07/2012  
36.14.2 Calibrated 2MHz RC Internal Oscillator characteristics  
Table 36-21. Calibrated 2MHz internal oscillator characteristics.  
Symbol Parameter  
Frequency range  
Condition  
Min  
Typ  
Max  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
1.8  
2.2  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration stepsize  
2.0  
T = 85C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.22  
36.14.3 Calibrated and tunable 32MHz Internal Oscillator characteristics  
Table 36-22. Calibrated 32MHz internal oscillator characteristics.  
Symbol Parameter  
Frequency range  
Condition  
Min  
Typ  
Max  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
30  
35  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
32  
T = 85C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.23  
36.14.4 32kHz Internal ULP Oscillator characteristics  
Table 36-23. 32kHz internal ULP oscillator characteristics.  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
kHz  
%
Factory calibrated frequency  
32  
Factory calibration accuracy  
T = 85C, VCC= 3.0V  
-12  
12  
36.14.5 Phase Locked Loop (PLL) characteristics  
Table 36-24. Calibrated 32MHz internal oscillator characteristics.  
Symbol Parameter Condition  
Min  
0.4  
20  
Typ  
Max  
64  
Units  
fIN  
Input Frequency  
Output frequency must be within fOUT  
VCC= 1.60V  
32  
MHz  
fOUT  
Output frequency(1)  
VCC= 2.70V  
20  
128  
100  
50  
Start-up time  
re-lock time  
23  
20  
µs  
Note:  
1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than 4 times the maximum CPU frequency.  
XMEGA B1 [DATASHEET]  
80  
8330C–AVR–07/2012  
36.14.6 External Clock Characteristics  
Figure 36-3. External Clock Drive Waveform  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
Table 36-25. External clock used as system clock without prescaling.  
Symbol Parameter  
Condition  
Min  
0
Typ  
Max  
12  
Units  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
1/tCK  
Clock frequency(1)  
Clock period  
MHz  
0
32  
83.3  
31.5  
30.0  
12.5  
30.0  
12.5  
tCK  
tCH  
Clock high time  
tCL  
Clock low time  
ns  
10  
3
tCR  
Rise time (for maximum frequency)  
10  
3
tCF  
Fall time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
10  
%
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
XMEGA B1 [DATASHEET]  
81  
8330C–AVR–07/2012  
Table 36-26. External clock with prescaler(1) for system clock  
Symbol Parameter  
Condition  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
Min  
0
Typ  
Max  
90  
Units  
1/tCK  
Clock Frequency(2)  
Clock Period  
MHz  
0
142  
11  
7
tCK  
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
Clock Low Time  
ns  
tCL  
tCR  
tCF  
Rise Time (for maximum frequency)  
1.5  
1.5  
10  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
%
Notes:  
1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters with supply voltage conditions  
36.14.7 External 16MHz crystal oscillator and XOSC characteristics  
Table 36-27. External 16MHz crystal oscillator and XOSC characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
0
Max.  
Units  
XOSCPWR=0, FRQRANGE=0  
XOSCPWR=0, FRQRANGE=1, 2, or 3  
XOSCPWR=1  
Cycle to cycle jitter  
0
0
ns  
XOSCPWR=0, FRQRANGE=0  
XOSCPWR=0, FRQRANGE=1, 2, or 3  
XOSCPWR=1  
0
Long term jitter  
Frequency error  
0
0
XOSCPWR=0, FRQRANGE=0  
XOSCPWR=0, FRQRANGE=1  
XOSCPWR=0, FRQRANGE=2 or 3  
XOSCPWR=1  
0.03  
0.03  
0.03  
0.03  
50  
50  
50  
50  
%
XOSCPWR=0, FRQRANGE=0  
XOSCPWR=0, FRQRANGE=1  
XOSCPWR=0, FRQRANGE=2 or 3  
XOSCPWR=1  
Duty cycle  
XMEGA B1 [DATASHEET]  
82  
8330C–AVR–07/2012  
Symbol Parameter  
Condition  
Min.  
Typ.  
44k  
Max.  
Units  
0.4MHz resonator, CL=100pF  
1MHz crystal, CL=20pF  
2MHz crystal, CL=20pF  
2MHz crystal  
XOSCPWR=0,  
FRQRANGE=0  
67k  
67k  
82k  
XOSCPWR=0,  
FRQRANGE=1,  
CL=20pF  
8MHz crystal  
1500  
1500  
2700  
2700  
1000  
3600  
1300  
590  
9MHz crystal  
8MHz crystal  
XOSCPWR=0,  
FRQRANGE=2,  
CL=20pF  
9MHz crystal  
12MHz crystal  
9MHz crystal  
XOSCPWR=0,  
FRQRANGE=3,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
Negative impedance (1)  
RQ  
390  
XOSCPWR=1,  
FRQRANGE=0,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
50  
10  
1500  
650  
XOSCPWR=1,  
FRQRANGE=1,  
CL=20pF  
12MHz crystal  
16MHz crystal  
12MHz crystal  
270  
XOSCPWR=1,  
FRQRANGE=2,  
CL=20pF  
1000  
16MHz crystal  
12MHz crystal  
16MHz crystal  
440  
1300  
590  
XOSCPWR=1,  
FRQRANGE=3,  
CL=20pF  
XOSCPWR=0,  
FRQRANGE=0  
0.4MHz resonator, CL=100pF  
2MHz crystal, CL=20pF  
8MHz crystal, CL=20pF  
12MHz crystal, CL=20pF  
16MHz crystal, CL=20pF  
1.0  
2.6  
0.8  
1.0  
1.4  
XOSCPWR=0,  
FRQRANGE=1  
XOSCPWR=0,  
FRQRANGE=2  
Start-up time  
ms  
XOSCPWR=0,  
FRQRANGE=3  
XOSCPWR=1,  
FRQRANGE=3  
CXTAL1  
CXTAL2  
CLOAD  
Parasitic capacitance  
Parasitic capacitance  
Parasitic capacitance load  
5.9  
8.3  
3.5  
pF  
Note:  
1. Numbers for negative impedance are not tested but guaranteed from design and characterization.  
XMEGA B1 [DATASHEET]  
83  
8330C–AVR–07/2012  
36.14.8 External 32.768kHz crystal oscillator and TOSC characteristics  
Table 36-28. External 32.768kHz crystal oscillator and TOSC characteristics.  
Symbol Parameter  
Condition  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Crystal load capacitance 12.0pF  
Normal mode  
Min  
Typ  
Max  
60  
Units  
Recommended crystal equivalent  
series resistance (ESR)  
ESR/R1  
35  
k  
28  
3.5  
3.5  
CIN_TOSC Input capacitance between TOSC pins  
pF  
%
Low power mode  
capacitance load matched to  
crystal specification  
Recommended Safety factor  
Long term Jitter (SIT)  
3
0
Note:  
1. See Figure 36-4 on page 84 for definition  
Figure 36-4. TOSC input capacitance  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768kHz crystal  
The input capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without  
external capacitors.  
XMEGA B1 [DATASHEET]  
84  
8330C–AVR–07/2012  
36.15 SPI characteristics  
Figure 36-5. SPI interface requirements in master mode  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
MSB  
tSCK  
MISO  
(Data Input)  
LSB  
tMOH  
tMOH  
MOSI  
(Data Output)  
MSB  
LSB  
Figure 36-6. SPI timing requirements in slave mode  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
MSB  
tSSCK  
LSB  
MOSI  
(Data Input)  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data Output)  
MSB  
LSB  
XMEGA B1 [DATASHEET]  
85  
8330C–AVR–07/2012  
Table 36-29. SPI Timing characteristics and requirements.  
Symbol Parameter Condition  
Min  
Typ  
Max  
Units  
(See Table 21-4 in  
XMEGA B Manual)  
tSCK  
SCK Period  
Master  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK high/low width  
SCK Rise time  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
0.5*SCK  
2.7  
SCK Fall time  
2.7  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
11  
tMIH  
0
0.5*SCK  
1
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
Slave SCK Period  
SCK high/low width  
SCK Rise time  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
4*t ClkPER  
2*t ClkPER  
ns  
1600  
1600  
SCK Fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
3
t ClkPER  
21  
tSIH  
tSSS  
tSSH  
SS hold after SCK  
MISO setup SCK  
20  
tSOS  
8
13  
11  
8
tSOH  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
tSOSS  
tSOSH  
XMEGA B1 [DATASHEET]  
86  
8330C–AVR–07/2012  
36.16 Two-Wire Interface Characteristics  
Table 2-1 describes the requirements for devices connected to the Two Wire Serial Bus. The XMEGA Two-Wire Interface  
meets or exceeds these requirements under the noted conditions. Timing symbols refer to Figure 36-7.  
Figure 36-7. Two-Wire Interface Bus Timing  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
Table 36-30. Two wire serial bus characteristics.  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
VCC+0.5  
0.3*VCC  
0
Units  
VIH  
VIL  
Input High Voltage  
0.7*VCC  
-0.5  
Input Low Voltage  
V
(1)  
Vhys  
Hysteresis of Schmitt Trigger Inputs  
Output Low Voltage  
0.05VCC  
VOL  
3mA, sink current  
0
20+0.1Cb  
20+0.1Cb  
0
0.4  
(1)(2)  
(1)(2)  
tr  
tof  
Rise Time for both SDA and SCL  
Output Fall Time from VIHmin to VILmax  
Spikes Suppressed by Input Filter  
Input Current for each I/O Pin  
Capacitance for each I/O Pin  
SCL Clock Frequency  
300  
250  
50  
10pF < Cb < 400pF(2)  
0.1VCC < VI < 0.9VCC  
ns  
tSP  
II  
-10  
10  
µA  
pF  
CI  
10  
fSCL  
fPER(3)>max(10fSCL, 250kHz)  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
0
400  
kHz  
VCC 0.4V  
---------------------------  
3mA  
100ns  
300ns  
--------------  
--------------  
RP  
Value of Pull-up resistor  
Cb  
Cb  
4.0  
0.6  
4.7  
1.3  
4.0  
0.6  
4.7  
0.6  
tHD;STA  
Hold Time (repeated) START condition  
Low Period of SCL Clock  
tLOW  
µs  
tHIGH  
High Period of SCL Clock  
tSU;STA  
Set-up time for a repeated START condition  
XMEGA B1 [DATASHEET]  
87  
8330C–AVR–07/2012  
Symbol Parameter  
Condition  
fSCL 100kHz  
Min  
0
Typ  
Max  
3.5  
Units  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Data hold time  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
0
0.9  
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
µs  
Setup time for STOP condition  
Bus free time between a STOP and START  
condition  
Notes:  
1. Required only for fSCL > 100kHz  
2. Cb = Capacitance of one bus line in pF  
3.  
fPER = Peripheral clock frequency  
XMEGA B1 [DATASHEET]  
88  
8330C–AVR–07/2012  
37. Typical Characteristics  
37.1 Current consumption  
37.1.1 Active mode supply current  
Figure 37-1. Active supply current vs. frequency.  
fSYS = 0 - 1MHz external clock, T = 25°C.  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
3.6V  
3.0V  
2.7V  
2.2V  
1.8V  
1.6V  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 37-2. Active supply current vs. frequency.  
fSYS = 1 - 32MHz external clock, T = 25°C.  
14  
12  
10  
8
3.6V  
3.0V  
2.7V  
6
2.2V  
4
1.8V  
2
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
XMEGA B1 [DATASHEET]  
89  
8330C–AVR–07/2012  
Figure 37-3. Active mode supply current vs. VCC  
.
fSYS = 2MHz internal oscillator.  
2100  
1900  
1700  
1500  
1300  
1100  
900  
-40°C  
25°C  
85°C  
700  
500  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 37-4. Active mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator.  
14000  
13250  
12500  
11750  
11000  
10250  
9500  
-40 °C  
25 °C  
85 °C  
8750  
8000  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Vcc [V]  
XMEGA B1 [DATASHEET]  
90  
8330C–AVR–07/2012  
37.1.2 Idle mode supply current  
Figure 37-5. Idle mode supply current vs. frequency.  
fSYS = 0 - 1MHz external clock, T = 25°C.  
180  
160  
140  
120  
100  
80  
3.6V  
3.0V  
2.7V  
2.2V  
1.8V  
1.6V  
60  
40  
20  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 37-6. Idle mode supply current vs. frequency.  
fSYS = 1 - 32MHz external clock, T = 25°C.  
6
5
4
3
2
3.6V  
3.0V  
2.7V  
2.2V  
1
1.8V  
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
XMEGA B1 [DATASHEET]  
91  
8330C–AVR–07/2012  
Figure 37-7. Idle mode supply current vs. VCC  
.
fSYS = 32.768kHz internal oscillator.  
34.5  
33.75  
33  
-40°C  
85°C  
32.25  
31.5  
30.75  
30  
25°C  
29.25  
28.5  
27.75  
27  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-8. Idle mode supply current vs. VCC  
.
fSYS = 2MHz internal oscillator.  
450  
425  
400  
375  
350  
325  
300  
275  
250  
225  
200  
175  
150  
-40°C  
25°C  
85°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA B1 [DATASHEET]  
92  
8330C–AVR–07/2012  
Figure 37-9. Idle mode current vs. VCC  
.
fSYS = 32MHz internal oscillator.  
5800  
-40 °C  
25 °C  
85 °C  
5300  
4800  
4300  
3800  
3300  
2800  
2300  
1800  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
37.1.3 Power-down mode supply current  
Figure 37-10.Power-down mode supply current vs. Temperature.  
All functions disabled.  
2.5  
2.25  
2
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
XMEGA B1 [DATASHEET]  
93  
8330C–AVR–07/2012  
Figure 37-11.Power-down mode supply current vs. Temperature.  
Watchdog and sampled BOD enabled.  
3.5  
3.25  
3
3.0 V  
2.7 V  
2.2 V  
1.8 V  
2.75  
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature [°C]  
37.2 I/O Pin Characteristics  
37.2.1 Pull-up  
Figure 37-12.I/O pin pull-up resistor current vs. input voltage.  
VCC = 1.8V.  
80  
70  
60  
50  
40  
30  
20  
10  
0
85°C  
25°C  
-40°C  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
VPIN [V]  
XMEGA B1 [DATASHEET]  
94  
8330C–AVR–07/2012  
Figure 37-13.I/O pin pull-up resistor current vs. input voltage.  
VCC = 3.0V.  
140  
120  
100  
80  
60  
40  
85°C  
25°C  
20  
-40°C  
0
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
VPIN [V]  
Figure 37-14.I/O pin pull-up resistor current vs. pin voltage.  
VCC = 3.3V.  
160  
140  
120  
100  
80  
60  
40  
85°C  
25°C  
-40°C  
20  
0
0
0.35  
0.7  
1.05  
1.4  
1.75  
2.1  
2.45  
2.8  
3.15  
3.5  
VPIN [V]  
XMEGA B1 [DATASHEET]  
95  
8330C–AVR–07/2012  
37.2.2 Output Voltage vs. Sink/Source Current  
Figure 37-15.I/O pin output voltage vs. source current.  
VCC = 1.8V.  
1.3  
1.2  
1.1  
1
-40°C  
25°C  
85°C  
0.9  
0.8  
0.7  
0.6  
-6  
-5.4  
-4.8  
-4.2  
-3.6  
-3  
-2.4  
-1.8  
-1.2  
-0.6  
0
IPIN [mA]  
Figure 37-16.I/O pin output voltage vs. source current.  
VCC = 3.0V.  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
-40°C  
25°C  
85°C  
-20  
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
IPIN [mA]  
XMEGA B1 [DATASHEET]  
96  
8330C–AVR–07/2012  
Figure 37-17.I/O pin output voltage vs. source current.  
VCC = 3.3V.  
2.5  
2.25  
2
85°C  
25°C  
-40°C  
1.75  
1.5  
1.25  
1
-20  
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
IPIN [mA]  
Figure 37-18.I/O pin output voltage vs. sink current.  
VCC = 1.8V.  
1.8  
1.6  
1.4  
1.2  
1
85°C  
0.8  
0.6  
0.4  
0.2  
0
25°C  
-40°C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
XMEGA B1 [DATASHEET]  
97  
8330C–AVR–07/2012  
Figure 37-19.I/O pin output voltage vs. sink current.  
VCC = 3.0V.  
0.6  
0.54  
0.48  
0.42  
0.36  
0.3  
85°C  
25°C  
-40°C  
0.24  
0.18  
0.12  
0.06  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
Figure 37-20.I/O pin output voltage vs. sink current.  
VCC = 3.3V.  
0.4  
0.35  
0.3  
85°C  
25°C  
-40°C  
0.25  
0.2  
0.15  
0.1  
0.05  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
XMEGA B1 [DATASHEET]  
98  
8330C–AVR–07/2012  
37.2.3 Thresholds and Hysteresis  
Figure 37-21.I/O pin input threshold voltage vs. VCC  
.
VIH I/O pin read as “1”.  
1.8  
1.6  
1.4  
1.2  
1
-40°C  
25°C  
85°C  
0.8  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-22.I/O pin input threshold voltage vs. VCC  
.
VIL I/O pin read as “0”.  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
-40°C  
25°C  
85°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA B1 [DATASHEET]  
99  
8330C–AVR–07/2012  
Figure 37-23.I/O pin input hysteresis vs. VCC  
.
350  
300  
250  
200  
150  
100  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
37.3 ADC Characteristics  
Figure 37-24.ADC INL vs. VREF  
.
Differential signed mode, VCC = 3.6V, external reference.  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
-40ºC  
85ºC  
25ºC  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
XMEGA B1 [DATASHEET]  
100  
8330C–AVR–07/2012  
Figure 37-25.ADC INL vs. VREF  
.
SE Unsigned mode, VCC = 3.6V, external reference.  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
85ºC  
25ºC  
-40ºC  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
Figure 37-26.ADC DNL vs. VREF  
.
Differential signed mode, VCC = 3.6V, external reference.  
2.1  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
-40ºC  
85ºC  
25ºC  
0.9  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
XMEGA B1 [DATASHEET]  
101  
8330C–AVR–07/2012  
Figure 37-27.ADC DNL vs. VREF  
.
SE Unsigned mode, VCC = 3.6V, external reference.  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
-40ºC  
25ºC  
85ºC  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
Figure 37-28.ADC Offset vs. VCC  
.
SE Unsigned mode, VREF = 1.0V, external reference.  
14  
85ºC  
12  
10  
8
25ºC  
-40ºC  
6
4
2
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA B1 [DATASHEET]  
102  
8330C–AVR–07/2012  
Figure 37-29.ADC Offset vs. VREF  
.
SE Unsigned mode, VCC = 3.6V, external reference.  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
85ºC  
25ºC  
-40ºC  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
Figure 37-30.ADC Offset vs. VREF  
.
Differential signed mode, VCC = 3.6V, external reference.  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
85ºC  
25ºC  
-40ºC  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREFV]  
XMEGA B1 [DATASHEET]  
103  
8330C–AVR–07/2012  
Figure 37-31.ADC Offset vs. VCC  
.
Differential signed mode, VREF = 1.0V, external reference.  
-3  
-3.5  
-4  
-4.5  
-5  
-5.5  
-6  
85ºC  
25ºC  
-6.5  
-7  
-7.5  
-40ºC  
-8  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-32.ADC Gain Error vs. VREF  
.
Differential signed mode, external reference.  
-1.0  
-3.0  
-5.0  
-7.0  
-9.0  
-40ºC  
25ºC  
85ºC  
-11.0  
-13.0  
-15.0  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
XMEGA B1 [DATASHEET]  
104  
8330C–AVR–07/2012  
Figure 37-33.ADC Gain Error vs. VREF  
.
SE Unsigned mode, external reference.  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-6.0  
-7.0  
-8.0  
-9.0  
-10.0  
-40ºC  
25ºC  
85ºC  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
Figure 37-34.ADC Gain Error vs. VCC  
.
Differential signed mode, external reference.  
-3.0  
-3.5  
-4.0  
-4.5  
-5.0  
-5.5  
-6.0  
-6.5  
-7.0  
-7.5  
25ºC  
-40ºC  
85ºC  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA B1 [DATASHEET]  
105  
8330C–AVR–07/2012  
Figure 37-35.ADC Gain Error vs. VCC  
.
SE Unsigned mode, external reference.  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-40ºC  
25ºC  
85ºC  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-36.ADC Gain Error vs. Temperature.  
Differential signed mode, external reference.  
-5.0  
-6.0  
1.0V Vref  
-7.0  
1.5V Vref  
2.0V Vref  
-8.0  
-9.0  
-10.0  
-11.0  
-12.0  
2.5V Vref  
3.0V Vref  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature [ºC]  
XMEGA B1 [DATASHEET]  
106  
8330C–AVR–07/2012  
Figure 37-37.ADC Gain Error vs. Temperature.  
SE Unsigned mode, VCC = 3.6V, external reference.  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
-3.0  
-4.0  
-5.0  
-6.0  
-7.0  
-8.0  
-9.0  
1.0V Vref  
1.5V Vref  
2.0V Vref  
2.5V Vref  
3.0V Vref  
Temperature [ºC]  
37.4 Analog Comparator Characteristics  
Figure 37-38.Analog comparator hysteresis vs. VCC  
.
High-speed mode, small hysteresis.  
16  
15  
14  
13  
12  
11  
10  
9
85ºC  
25ºC  
-40ºC  
8
7
6
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
[V]  
CC  
XMEGA B1 [DATASHEET]  
107  
8330C–AVR–07/2012  
Figure 37-39.Analog comparator hysteresis vs. VCC  
.
High-speed mode, large hysteresis.  
32  
30  
28  
26  
24  
22  
20  
18  
16  
85°C  
25°C  
-40°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
[V]  
CC  
Figure 37-40.Analog comparator propagation delay vs. VCC  
.
High speed mode.  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
85°C  
25°C  
40°C  
-
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA B1 [DATASHEET]  
108  
8330C–AVR–07/2012  
Figure 37-41.Analog comparator current consumption vs. VCC  
.
High-speed mode.  
290  
270  
250  
230  
210  
190  
170  
150  
85°C  
25°C  
-40°C  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCM [V]  
Figure 37-42.Analog comparator voltage scaler vs. SCALEFAC.  
T = 25C.  
4
3.5  
3
3.6V  
3.3V  
3.0V  
2.7V  
2.5  
2
1.8V  
1.6V  
1.5  
1
0.5  
0
0
7
14  
21  
28  
35  
42  
49  
56  
63  
SCALEFAC  
XMEGA B1 [DATASHEET]  
109  
8330C–AVR–07/2012  
Figure 37-43.Analog comparator offset voltage vs. Common mode voltage.  
High-speed mode.  
20  
18  
16  
14  
12  
10  
8
-40°C  
25°C  
85°C  
6
4
2
0
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
V
[V]  
CC  
Figure 37-44.Analog comparator current source vs. Calibration.  
VCC = 3.0V, double mode.  
12  
11.5  
11  
10.5  
10  
9.5  
9
-40°C  
25°C  
85°C  
8.5  
8
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CURRCALIBA[3..0]  
XMEGA B1 [DATASHEET]  
110  
8330C–AVR–07/2012  
37.5 Internal 1.0V reference Characteristics  
Figure 37-45.ADC/DAC Internal 1.0V reference vs. temperature.  
1.012  
1.01  
1.008  
1.006  
1.004  
1.002  
1
1.8V  
2.7V  
3.0V  
0.998  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature [°C]  
37.6 BOD Characteristics  
Figure 37-46.BOD current consumption vs. VCC  
.
Continuous mode, BOD level = 1.6V.  
150  
140  
130  
120  
110  
100  
90  
85°C  
25°C  
-40°C  
80  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA B1 [DATASHEET]  
111  
8330C–AVR–07/2012  
Figure 37-47.BOD current consumption vs. VCC  
.
Sampled mode, BOD level = 1.6V.  
5
4.5  
4
85°C  
3.5  
3
2.5  
2
1.5  
1
25°C  
-40°C  
0.5  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-48.BOD thresholds vs. temperature.  
BOD level = 1.6V.  
1.626  
1.624  
1.622  
1.62  
1.618  
1.616  
1.614  
1.612  
1.61  
Rising Vcc  
Falling Vcc  
1.608  
1.606  
1.604  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature [°C]  
XMEGA B1 [DATASHEET]  
112  
8330C–AVR–07/2012  
Figure 37-49.BOD thresholds vs. temperature.  
BOD level = 2.2V.  
2.35  
2.345  
2.34  
Rising Vcc  
2.335  
2.33  
2.325  
2.32  
2.315  
2.31  
Falling Vcc  
2.305  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 37-50.BOD thresholds vs. temperature.  
BOD level = 3.0V.  
3.07  
3.06  
3.05  
3.04  
3.03  
3.02  
3.01  
3
Rising Vcc  
Falling Vcc  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature [°C]  
XMEGA B1 [DATASHEET]  
113  
8330C–AVR–07/2012  
37.7 External Reset Characteristics  
Figure 37-51.Minimum Reset pin pulse width vs. VCC  
.
140  
130  
120  
110  
100  
90  
85°C  
25°C  
-40°C  
80  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-52.Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 1.8V.  
70  
60  
50  
40  
30  
20  
10  
0
85°C  
25°C  
-40°C  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
VRESET [V]  
XMEGA B1 [DATASHEET]  
114  
8330C–AVR–07/2012  
Figure 37-53.Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 3.0V.  
140  
120  
100  
80  
60  
40  
85°C  
20  
25°C  
-40°C  
0
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
VRESET [V]  
Figure 37-54.Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 3.3V.  
140  
120  
100  
80  
60  
40  
85°C  
25°C  
-40°C  
20  
0
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
VRESET [V]  
XMEGA B1 [DATASHEET]  
115  
8330C–AVR–07/2012  
Figure 37-55.Reset pin input threshold voltage vs. VCC.  
VIH - Reset pin read as “1”.  
1.8  
1.6  
1.4  
1.2  
1
-40°C  
25°C  
85°C  
0.8  
0.6  
0.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-56.Reset pin input threshold voltage vs. VCC.  
VIL - Reset pin read as “0”.  
1.8  
1.6  
1.4  
1.2  
1
-40 °C  
25 °C  
85 °C  
0.8  
0.6  
0.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA B1 [DATASHEET]  
116  
8330C–AVR–07/2012  
37.8 Oscillator Characteristics  
37.8.1 32.768kHz Internal Oscillator  
Figure 37-57.32.768kHz internal oscillator frequency vs. temperature.  
32.83  
32.82  
32.81  
32.8  
1.8V  
1.6V  
2.2V  
3.6V  
2.7V  
3.0V  
32.79  
32.78  
32.77  
32.76  
32.75  
32.74  
32.73  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature [°C]  
Figure 37-58.32.768kHz ULP internal oscillator frequency vs. temperature.  
36000  
35500  
35000  
34500  
34000  
33500  
33000  
32500  
32000  
31500  
31000  
3.6V  
3.0V  
2.7V  
1.8V  
1.6V  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature [°C]  
XMEGA B1 [DATASHEET]  
117  
8330C–AVR–07/2012  
Figure 37-59.32.768kHz internal oscillator calibration step size.  
T = -40C to 85C, VCC = 3V.  
0.01  
0.005  
0.000  
-0.005  
-0.01  
85°C  
25°C  
-40°C  
-0.015  
-0.02  
-0.025  
-0.03  
-0.035  
-0.04  
-0.045  
0
32  
64  
96  
128  
160  
192  
224  
256  
RC32KCAL[7..0]  
Figure 37-60.32.768kHz internal oscillator frequency vs. calibration value.  
VCC = 3.0V, T = 25°C.  
55  
50  
45  
40  
35  
30  
25  
20  
3.0 V  
0
16  
32  
48  
64  
80  
96  
112 128 144 160 176 192 208 224 240 256  
RC32KCAL[7..0]  
XMEGA B1 [DATASHEET]  
118  
8330C–AVR–07/2012  
37.8.2 2MHz Internal Oscillator  
Figure 37-61.2MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
2.16  
2.14  
2.12  
2.1  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 37-62.2MHz internal oscillator frequency vs. temperature.  
DFLL enabled.  
2.006  
2.005  
2.004  
2.003  
2.002  
2.001  
2.000  
1.999  
1.6 V  
2.2 V  
1.8 V  
2.7 V  
3.0 V  
3.6 V  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature [°C]  
XMEGA B1 [DATASHEET]  
119  
8330C–AVR–07/2012  
Figure 37-63.2MHz internal oscillator CALA calibration step size.  
VCC = 3V.  
-0.14  
-0.15  
-0.16  
-0.17  
-0.18  
-0.19  
-0.2  
85 °C  
25 °C  
-40 °C  
-0.21  
-0.22  
-0.23  
-0.24  
-0.25  
-0.26  
-0.27  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
DFLLRC2MCALA  
Figure 37-64.2MHz internal oscillator CALB calibration step size.  
VCC = 3V, DFLL enabled.  
-0.155  
-0.165  
-0.175  
-0.185  
-0.195  
-0.205  
-0.215  
-0.225  
-0.235  
-0.245  
-0.255  
85°C  
25°C  
-40°C  
0
7
14  
21  
28  
35  
42  
49  
56  
63  
DFLLRC2MCALB  
XMEGA B1 [DATASHEET]  
120  
8330C–AVR–07/2012  
37.8.3 32MHz Internal Oscillator  
Figure 37-65.32MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
35.5  
35  
34.5  
34  
33.5  
33  
3.6V  
3.0V  
2.7V  
2.2V  
1.8V  
1.6V  
32.5  
32  
31.5  
31  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 37-66.32MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator.  
32.08  
32.06  
32.04  
32.02  
32  
1.8V  
3.3V  
2.2V  
1.6V  
2.7V  
3.0V  
31.98  
31.96  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
XMEGA B1 [DATASHEET]  
121  
8330C–AVR–07/2012  
Figure 37-67.32MHz internal oscillator CALA calibration step size.  
VCC = 3.0V.  
-0.1  
-0.12  
-0.14  
-0.16  
-0.18  
-0.2  
25°C  
85°C  
-40°C  
-0.22  
-0.24  
-0.26  
-0.28  
-0.3  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
DFLLRC32MCALA  
Figure 37-68.32MHz internal oscillator CALB calibration step size.  
VCC = 3.0V, CALA = mid value.  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
-40°C  
25°C  
85°C  
0
8
16  
24  
32  
40  
48  
56  
64  
DFLLRC32MCALB  
XMEGA B1 [DATASHEET]  
122  
8330C–AVR–07/2012  
Figure 37-69.32MHz internal oscillator frequency vs. CALA calibration value.  
VCC = 3.0V.  
56  
54  
52  
50  
48  
46  
44  
42  
40  
38  
36  
-40°C  
25°C  
85°C  
0
8
16  
24  
32  
40  
48  
56  
64  
72  
80  
88  
96  
104 112 120 128  
DFLLRC32MCALA  
Figure 37-70.32MHz internal oscillator frequency vs. CALB calibration value.  
VCC = 3.0V, DFLL enabled.  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
-40°C  
25°C  
85°C  
0
7
14  
21  
28  
35  
42  
49  
56  
63  
DFLLRC32MCALB  
XMEGA B1 [DATASHEET]  
123  
8330C–AVR–07/2012  
37.8.4 32MHz internal oscillator calibrated to 48MHz  
Figure 37-71.48MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
53  
52  
51  
50  
49  
48  
47  
46  
3.6V  
3.0V  
2.7V  
2.2V  
1.8V  
1.6V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 37-72.48MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator.  
48.12  
48.1  
1.8V  
2.2V  
3.6V  
3.0V  
1.6V  
2.7V  
48.08  
48.06  
48.04  
48.02  
48  
47.98  
47.96  
47.94  
47.92  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
XMEGA B1 [DATASHEET]  
124  
8330C–AVR–07/2012  
Figure 37-73. 32MHz internal oscillator CALA calibration step size.  
Using 48MHz calibration value from signature row, VCC = 3.0V.  
0.80  
0.60  
0.40  
0.20  
0.00  
-0.20  
-0.40  
-0.60  
-40°C  
85°C  
25°C  
0
8
16  
24  
32  
40  
48  
56  
64  
72  
80  
88  
96  
104 112 120 128  
CALA  
Figure 37-74. 48MHz internal oscillator frequency vs. CALA calibration value.  
VCC = 3.0V.  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
-40°C  
25°C  
85°C  
0
8
16  
24  
32  
40  
48  
56  
64  
72  
80  
88  
96  
104 112 120 128  
CALA  
XMEGA B1 [DATASHEET]  
125  
8330C–AVR–07/2012  
37.9 PDI characteristics  
Figure 37-75.Maximum PDI frequency vs. VCC  
.
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
25°C  
-40°C  
85°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA B1 [DATASHEET]  
126  
8330C–AVR–07/2012  
37.10 LCD Characteristics  
Figure 37-76.ICC vs. Frame Rate  
32Hz Low P ower Frame Rate from 32.768KHz TOSC, w/ and w/o pixel load, VCC = 1.8V, T = 25°C  
11  
10  
9
22pF All Pixels ON  
8
22pF All Pixels OFF  
7
6
5
0pF All Pixels ON  
0pF All Pixels OFF  
4
3
32  
64  
96  
128  
160  
192  
224  
256  
Frame Rate[Hz]  
Figure 37-77.ICC vs. Frame Rate  
32Hz Low P ower Frame Rate from 32.768KHz TOSC, w/ and w/o pixel load, VCC = 3.0V, T = 25°C  
13  
12  
11  
10  
9
22pF All Pixels ON  
22pF 100 Pixels ON  
8
7
22pF All Pixels OFF  
6
0pF All Pixels ON  
0pF 100 Pixels ON  
5
4
0pF All Pixels OFF  
3
32  
64  
96  
128  
160  
192  
224  
256  
Frame Rate[Hz]  
XMEGA B1 [DATASHEET]  
127  
8330C–AVR–07/2012  
Figure 37-78.ICC vs. Frame Rate  
0pF load  
15  
13  
11  
9
85°C  
25°C  
-40°C  
7
5
3
32  
64  
96  
128  
160  
192  
224  
256  
Frame Rate[Hz]  
Figure 37-79.ICC vs. Contrast  
32Hz Low Power Frame Rate from 32.768KHz TOSC, w/o pixel load, VCC = 1.8V  
7.5  
7
6.5  
6
85°C  
5.5  
5
25°C  
4.5  
4
-40°C  
3.5  
3
-32  
-23  
-14  
-5  
4
13  
22  
31  
Contrast  
XMEGA B1 [DATASHEET]  
128  
8330C–AVR–07/2012  
Figure 37-80.ICC vs. Contrast  
32Hz Low Power Frame Rate from 32.768KHz TOSC, w/o pixel load, VCC = 3.0V  
7.5  
7
85°C  
6.5  
6
5.5  
5
25°C  
4.5  
4
-40°C  
3.5  
3
-32  
-23  
-14  
-5  
4
13  
22  
31  
Contrast  
Figure 37-81.Psave LCD LP 32Hz vs. Temperature  
3.2  
3
2.8  
2.6  
2.4  
2.2  
2
3.6V  
3.0V  
2.2V  
1.8V  
1.6V  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature [°C]  
XMEGA B1 [DATASHEET]  
129  
8330C–AVR–07/2012  
Figure 37-82.Psave LCD LP 32Hz vs. Temperature  
RTC, WDT, BOD sampled  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
3.6V  
3.0V  
2.2V  
1.8V  
1.6V  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature [°C]  
Figure 37-83.Psave vs. Temperature  
RTC, WDT, BOD sampled.  
0.3  
0.275  
0.25  
3.6V  
0.225  
0.2  
3.0V  
2.2V  
0.175  
1.8V  
1.6V  
0.15  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature [°C]  
XMEGA B1 [DATASHEET]  
130  
8330C–AVR–07/2012  
38. Errata  
38.1 ATxmega64B1, ATxmega128B1  
38.1.1 Rev. C  
Device revision number  
AWeX fault protection restore is not done correct in Pattern Generation Mode  
1. Device revision number is unchanged between rev. B and rev. C  
2. AWeX fault protection restore is not done correctly in Pattern Generation Mode  
When a fault is detected the OUTOVEN register is cleared, and when fault condition is cleared, OUTOVEN is  
restored according to the corresponding enabled DTI channels. For Common Waveform Channel Mode (CWCM),  
this has no effect as the OUTOVEN is correct after restoring from fault. For Pattern Generation Mode (PGM),  
OUTOVEN should instead have been restored according to the DTILSBUF register.  
Problem fix/Workaround  
For CWCM no workaround is required.  
For PGM in latched mode, disable the DTI channels before returning from the fault condition. Then, set correct  
OUTOVEN value and enable the DTI channels, before the direction (DIR) register is written to enable the correct  
outputs again.  
For PGM in cycle-by-cycle mode there is no workaround.  
38.1.2 Rev. B  
Not sampled.  
38.1.3 Rev. A  
Power down consumption  
ADC conversion error when x0.5 gain is used  
1. Power Down consumption  
After reset, when system enters in power down or when ADC is disabled, extra power consumption is drawn.  
Problem fix/Workaround  
Set ADC to a configuration different from differential mode.  
2. ADC conversion error when x0.5 gain is used  
When the gain is set to x0.5, the conversion result is similar to the gain setting x1.  
Problem fix/Workaround  
There is no workaround.  
XMEGA B1 [DATASHEET]  
131  
8330C–AVR–07/2012  
39. Datasheet Revision History  
Please note that the referring page numbers in this section are referred to this document. The referring revision in this  
section are referring to the document revision.  
39.1 8386C –07/2012  
1.  
2.  
3.  
Updated the Table 32-4 on page 56. PDI_CLOCK is on pin 16 and PDI_DATA on pin 15.  
Updated the datasheet using the Atmel new template.  
Updated “Errata” , “Rev. C” on page 131: “JTAG revision” replaced by “Device revision number”.  
39.2 8386B –02/2012  
1.  
Updated the Table 7-2 on page 14. The page size (words) for ATxmega128B1 changed from 256  
to 128.  
2.  
3.  
4.  
Updated all “Electrical Characteristics” on page 67.  
Updated all “Typical Characteristics” on page 89.  
Updated “Errata” on page 131.  
39.3 8386A – 10/2011  
1.  
Initial revision.  
XMEGA B1 [DATASHEET]  
132  
8330C–AVR–07/2012  
Table Of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Pinout/Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.1  
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4. Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.1  
Recommended reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
5. Capacitive touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
6. AVR CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
ALU - Arithmetic Logic Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Stack and Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
7. Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Flash Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Fuses and Lock bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
I/O Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Memory and Bus Arbitration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7.10 Device ID and Revision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7.11 JTAG Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7.12 I/O Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7.13 Flash and EEPROM Page Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
8. DMAC – Direct Memory Access Controller . . . . . . . . . . . . . . . . . . . 15  
8.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
8.2  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
9. Event System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
9.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
9.2  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
10. System Clock and Clock options . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10.3 Clock Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Enter Title of Manual [DATASHEET]  
i
8330C–AVR–07/2012  
11. Power Management and Sleep Modes . . . . . . . . . . . . . . . . . . . . . . 21  
11.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
11.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
11.3 Sleep Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
12. System Control and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
12.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
12.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
12.3 Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
12.4 Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
13. WDT – Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
13.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
13.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
14. Interrupts and Programmable Multilevel Interrupt Controller . . . . . . 26  
14.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
14.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
14.3 Interrupt vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
15. I/O Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
15.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
15.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
15.3 Output Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
15.4 Input sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
15.5 Alternate Port Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
16. T/C – 16-bit Timer/Counter Type 0 and 1 . . . . . . . . . . . . . . . . . . . . 32  
16.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
16.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
17. TC2 –16-bit Timer/Counter Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . 34  
17.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
17.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
18. AWeX – Advanced Waveform Extension . . . . . . . . . . . . . . . . . . . . . 35  
18.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
18.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
19. Hi-Res – High Resolution Extension . . . . . . . . . . . . . . . . . . . . . . . . 36  
19.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
19.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
20. RTC – 16-bit Real-Time Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
20.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
20.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
21. USB – Universal Serial Bus Interface . . . . . . . . . . . . . . . . . . . . . . . 38  
21.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
21.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
22. TWI – Two Wire Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
22.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Enter Title of Manual [DATASHEET]  
ii  
8330C–AVR–07/2012  
22.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
23. SPI – Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
23.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
23.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
24. USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
24.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
24.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
25. IRCOM – IR Communication Module . . . . . . . . . . . . . . . . . . . . . . . . 43  
25.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
25.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
26. AES and DES Crypto Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
26.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
26.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
27. CRC – Cyclic Redundancy Check Generator . . . . . . . . . . . . . . . . . 45  
27.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
27.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
28. LCD - Liquid Crystal Display Controller . . . . . . . . . . . . . . . . . . . . . . 46  
28.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
28.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
29. ADC – 12-bit Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . 47  
29.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
29.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
30. AC – Analog Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
30.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
30.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
31. Programming and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
31.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
31.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
32. Pinout and Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
32.1 Alternate Pin Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
32.2 Alternate Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
33. Peripheral Module Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
34. Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
35. Packaging information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
35.1 100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
36. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
36.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
36.2 General Operating Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
36.3 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
36.4 Wake-up time from sleep modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Enter Title of Manual [DATASHEET]  
iii  
8330C–AVR–07/2012  
36.5 I/O Pin Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
36.6 Liquid Crystal Display Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
36.7 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
36.8 Analog Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
36.9 Bandgap and Internal 1.0V Reference Characteristics. . . . . . . . . . . . . . . . . . 77  
36.10 Brownout Detection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
36.11 External Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
36.12 Power-on Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
36.13 Flash and EEPROM Memory Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 79  
36.14 Clock and Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
36.15 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
36.16 Two-Wire Interface Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
37. Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
37.1 Current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
37.2 I/O Pin Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
37.3 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
37.4 Analog Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
37.5 Internal 1.0V reference Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
37.6 BOD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
37.7 External Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
37.8 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
37.9 PDI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
37.10 LCD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
38. Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
38.1 ATxmega64B1, ATxmega128B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
39. Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
39.1 8386C –07/2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
39.2 8386B –02/2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
39.3 8386A – 10/2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Table Of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i  
Enter Title of Manual [DATASHEET]  
iv  
8330C–AVR–07/2012  
Enter Title of Manual [DATASHEET]  
v
8330C–AVR–07/2012  
Atmel Corporation  
Atmel Asia Limited  
Atmel Munich GmbH  
Atmel Japan G.K.  
1600 Technology Drive  
Unit 01-5 & 16, 19F  
Business Campus  
16F Shin-Osaki Kangyo Bldg  
San Jose, CA 95110  
USA  
BEA Tower, Millennium City 5  
418 Kwun Tong Roa  
Kwun Tong, Kowloon  
HONG KONG  
Parkring 4  
1-6-4 Osaki, Shinagawa-ku  
Tokyo 141-0032  
D-85748 Garching b. Munich  
GERMANY  
Tel: (+1) (408) 441-0311  
Fax: (+1) (408) 487-2600  
www.atmel.com  
JAPAN  
Tel: (+49) 89-31970-0  
Fax: (+49) 89-3194621  
Tel: (+81) (3) 6417-0300  
Fax: (+81) (3) 6417-0370  
Tel: (+852) 2245-6100  
Fax: (+852) 2722-1369  
© 2012 Atmel Corporation. All rights reserved. / Rev.: 8330C–AVR–07/2012  
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its  
subsidiaries. Other terms and product names may be trademarks of others.  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this  
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES  
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED  
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,  
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF  
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time  
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,  
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.  

相关型号:

ATXMEGA64B1-AU

8/16-bit Atmel XMEGA B1 Microcontroller
ATMEL

ATXMEGA64B1_14

8/16-bit Atmel XMEGA B1 Microcontroller
ATMEL

ATXMEGA64B3

8/16-bit Atmel XMEGA B3 Microcontroller
ATMEL

ATXMEGA64B3-AN

IC MCU 8BIT 64KB FLASH 64TQFP
MICROCHIP

ATXMEGA64B3-ANR

IC MCU 8BIT 64KB FLASH 64TQFP
MICROCHIP

ATXMEGA64B3-AU

8/16-bit Atmel XMEGA B3 Microcontroller
ATMEL

ATXMEGA64B3-MH

8/16-bit Atmel XMEGA B3 Microcontroller
ATMEL

ATXMEGA64B3-MN

IC MCU 8BIT 64KB FLASH 64QFN
MICROCHIP

ATXMEGA64B3-MNR

IC MCU 8BIT 64KB FLASH 64QFN
MICROCHIP

ATXMEGA64B3-MUR

IC MCU 8BIT 64KB FLASH 64QFN
MICROCHIP

ATXMEGA64D3

8/16-bit AVR XMEGA D3 Microcontroller
ATMEL

ATXMEGA64D3-15A2T1

IC MCU 8BIT 64KB FLASH 64QFN
MICROCHIP