T4260 [ATMEL]

AM/FM Front End IC; AM / FM前端IC
T4260
型号: T4260
厂家: ATMEL    ATMEL
描述:

AM/FM Front End IC
AM / FM前端IC

文件: 总31页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
AM/FM Tuner Front End with Integrated PLL  
AM Up-conversion System (AM-IF: 10.7 MHz)  
FM Down-conversion System (FM-IF: 10.7 MHz)  
IF Frequencies up to 25 MHz  
Fine-tuning Steps: AM = 1 kHz and FM = 50 kHz/25 kHz/12.5 kHz  
Fast Fractional PLL (Lock Time < 1 ms) Inclusive Spurious Compensation  
Fast RF-AGC, Programmable in 1-dB Steps  
Fast IF-AGC, Programmable in 2-dB Steps  
Fast Frequency Change by 2 Programmable N-divider  
Two DACs for Automatic Tuner Alignment  
High S/N Ratio  
AM/FM  
Front End IC  
3-wire Bus (Enable, Clock and Data; 3 V and 5 V Microcontrollers-compatible)  
Description  
T4260  
The T4260 is an advanced AM/FM receiver with integrated fast PLL as a single-chip  
solution based on Atmel’s high-performance BICMOS II technology. The low-imped-  
ance driver at the IF output is designed for the A/D of a digital IF. The fast tuning  
concept realized in this part is based on patents held by Atmel and allows lock times  
less than 1 ms for a jump over the FM band with a step width of 12.5 kHz. The AM  
up-conversion and the FM down-conversion allows an economic filter concept. An  
automatic tuner alignment is provided by built-in DACs for gain and offset compensa-  
tion. The frequency range of the IC covers the FM broadcasting band as well as the  
AM band. The low current consumption helps the designers to achieve economic  
power consumption concepts and helps to keep the power dissipation in the tuner low.  
Pin Description  
Figure 1. Pinning SSO44  
Rev. 4528G–AUDR–12/03  
Pin Description  
Pin  
Symbol  
DAC1  
Function  
1
DAC1 output  
2
DAC2  
DAC2 output  
3
FMAGCO  
MXFMIA  
MXFMIB  
GNDRF  
MXAMIB  
MXAMIA  
AMAGCO  
IFAGCA2  
SW2/AGC  
RFAGCA2  
SW1  
FM AGC current  
FM mixer input A  
FM mixer input B  
RF ground  
4
5
6
7
AM mixer input B  
AM mixer input A  
AM AGC current  
AM IF-AGC filter 2  
Switch 2 / AM AGC voltage  
RF AM-AGC filter 2  
Switching output 1  
VCO reference voltage  
PLL supply voltage  
FM loop filter  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VRVCO  
VSPLL  
FMLF  
AMLF  
AM loop filter  
VTUNE  
OSCGND  
OSCE  
Tuning voltage  
Oscillator ground  
Oscillator emitter  
Oscillator base  
OSCB  
OSCBUF  
EN  
Oscillator buffer output/input  
3-wire bus Enable  
3-wire bus Clock  
3-wire bus Data  
CLK  
DATA  
VRPLL  
PLL reference voltage  
PLL reference frequency  
PLL ground  
REFFREQ  
GNDPLL  
IFOUTB  
IFOUTA  
IFAGCFM  
IFAGCA1  
RFAGCFM  
IFREF  
IF output B  
IF output A  
FM IF-AGC filter  
AM IF-AGC filter 1  
RF FM-AGC filter  
IF amplifier reference input  
IF amplifier AM input  
IF amplifier FM input  
Tuner reference voltage  
Tuner ground  
IFINAM  
IFINFM  
VRT  
GNDT  
MXAMOB  
MXAMOA  
VST  
AM mixer output B  
AM mixer output A  
Tuner supply voltage  
RF AM-AGC filter 1  
FM mixer output A  
FM mixer output B  
RFAGCA1  
MXFMOA  
MXFMOB  
2
T4260  
4528G–AUDR–12/03  
T4260  
Figure 2. Block Diagram  
IFAGCFM  
IFAGCA2  
IFAGCA1  
MXFMOB  
MXFMOA  
MXAMOA  
40  
IFINAM  
IFREF ININFM  
IFOUTA  
IFOUTB  
MXAMOB  
29  
10  
30 31  
32  
44  
36  
43  
39  
34  
35  
41  
37  
38  
14  
VST  
VRT  
RF/IF  
SUPPLY  
GNDT  
VRVCO  
4
5
6
MXFMIA  
MXFMIB  
AGC  
15  
26  
28  
VSPLL  
VRPLL  
GNDPLL  
GNDRF  
PLL  
SUPPLY  
7
8
MXAMIB  
MXAMIA  
42  
33  
12  
DIV  
RFAGCA1  
RFAGCFM  
23  
24  
25  
EN  
BUS  
CLK  
DATA  
RFAGCA2  
11  
13  
SW2/AGC  
SW1  
FM  
AM  
AMAGCO  
FMAGCO  
9
3
SW-AMLF  
2
1
DAC2  
DAC1  
N DIV  
R DIV  
PD  
VCO  
21  
19  
27  
22  
OSCBUF  
20  
16  
FMLF AMLF  
18  
17  
OSCE  
OSCGND  
VTUNE  
REFFREQ  
OSCB  
Functional  
Description  
The T4260 implements an AM up-conversion reception path from the RF input signal to  
the IF output signal. A VCO and an LO prescaler for AM are integrated to generate the  
LO frequency to the AM mixer. The FM reception path generates the same LO  
frequency from the RF input signal by a down-conversion to the IF output. The IF A/D  
output is designed for digital signal processing. The IF can be chosen in the range of  
10 MHz to 25 MHz. Automatic gain control (AGC) circuits are implemented to control the  
preamplifier stages in the AM and FM reception paths.  
For improved performance, the PLL has an integrated special 2-bit shift fractional logic  
with spurious suppression that enables fast frequency changes in AM and FM mode by  
a low step frequency (fPDF). In addition, two programmable DACs (Digital to Analog  
Converter) support the alignment via a microcontroller.  
For a double-tuner concept, external voltage can be applied at the input of the DACs,  
the internal PLL can switched off and the OSC buffer (output) can also be used as input.  
Several register bits (Bit 0 to Bit 145) are used to control the circuit’s operation and to  
adapt certain circuit parameters to the specific application. The control bits are orga-  
nized in four 8-bit, four 16-bit and three 24-bit registers that can be programmed by the  
3-wire bus protocol. The bus protocol and the bit-to-register mapping is described in the  
section “3-wire Bus Description” on page 9. The meaning of the control bits is mentioned  
in the following sections.  
3
4528G–AUDR–12/03  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
All voltages are referred to GND  
Parameters  
Symbol  
VST, VSPLL  
Ptot  
Value  
10  
Unit  
V
Analog supply voltage  
Pins 15 and 41  
Maximum power consumption  
Ambient temperature range  
Storage temperature range  
Junction temperature  
1.0  
W
Tamb  
-40 to +85  
-40 to +150  
150  
°C  
°C  
°C  
Tstg  
Tj  
Thermal Resistance  
Parameters  
Symbol  
Value  
Unit  
Junction ambient, soldered to PCB  
RthJA  
52  
K/W  
Operating Range  
Parameters  
Symbol  
VST, VSPLL  
Tamb  
Min.  
8
Typ.  
Max.  
10  
Unit  
Supply voltage range(1)  
Ambient temperature  
Oscillator frequency  
Pins 15 and 41  
8.5  
V
-40  
60  
85  
°C  
Pin 21  
Rfi  
175  
MHz  
Note:  
1. VST and VSPLL must have the same voltage.  
Electrical Characteristics  
Test conditions (unless otherwise specified): VST/VSPLL = +8.5 V, Tamb = +25° C  
No.  
1
Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
Power Supply  
15,  
41  
1.1  
Supply voltage  
VS  
IS  
8
8.5  
85  
10  
V
C
A
AM and FM mode,  
VS = 10 V  
15,  
41  
1.2  
2
Supply current  
70  
110  
mA  
PLL Divider  
Programmable  
R-divider  
2.1  
14-bit register  
3
3
16383  
A
A
B
Programmable (VCO)  
N-divider  
(1 kHz step frequency)  
2- × 18-bit register  
switchable via Bit 5  
2.2  
262143  
Reference oscillator  
input voltage  
2.3  
2.4  
f = 0.1 MHz to 3 MHz  
27  
100  
mVrms  
FM  
AM  
120  
120  
150  
2850  
10000  
10000  
kHz  
kHz  
Reference frequency  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Note:  
1. Minimum and maximum limits are characterized for entire temperature range (-40°C to +85° C) but are tested at +25°C  
4
T4260  
4528G–AUDR–12/03  
T4260  
Electrical Characteristics (Continued)  
Test conditions (unless otherwise specified): VST/VSPLL = +8.5 V, Tamb = +25° C  
No.  
Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
Settling time in FM  
mode (switching from  
87.5 MHz to 108 MHz  
or vice versa)  
fPD = 50 kHz  
2.5  
1
ms  
B
I
PD = 2 mA  
3
AMLF/FMLF  
16,  
17  
3.1  
Output current 1  
FMLF, AMLF = 1.8 V  
FMLF, AMLF = 1.8 V  
FMLF, AMLF = 1.8 V  
FMLF, AMLF = 1.8 V  
FMLF, AMLF = 1.8 V  
40  
80  
50  
60  
120  
1250  
2450  
10  
µA  
µA  
µA  
µA  
nA  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
16,  
17  
3.2  
3.3  
3.4  
Output current 2  
Output current 3  
Output current 4  
100  
16,  
17  
850  
1650  
1000  
2000  
16,  
17  
16,  
17  
3.5  
4
Leakage current  
VTUNE  
Saturation voltage  
LOW  
4.1  
VSATH = (VA-VPDOFM  
VSATH = (VA-VPDOFM  
)
)
18  
18  
VSATL  
VSATH  
100  
200  
400  
500  
mV  
mV  
C
C
Saturation voltage  
HIGH  
4.2  
5
DAC1, DAC2  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
6
Output current  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
IDAC1,2  
1
mA  
V
D
Output voltage  
VDAC1,2  
0.3  
0.9  
VS-0.6  
1.1  
A
Maximum offset range  
Minimum offset range  
Maximum gain range  
Minimum gain range  
Oscillator  
Offset = 0, gain = 58  
Offset = 127, gain = 58  
Gain = 255, offset = 64  
Gain = 0, offset = 64  
0.98  
-0.98  
2.09  
0.67  
V
A(1)  
A(1)  
A(1)  
A(1)  
-0.9  
2.06  
0.63  
-1.1  
V
2.13  
0.73  
6.1  
Frequency range  
21  
21  
22  
60  
60  
170  
140  
MHz  
MHz  
B
A
Fractional frequency  
range  
6.2  
Fractional mode  
6.3  
7
Buffer output  
Oscillator Input  
Input voltage  
FM Mixer  
150  
mVrms  
mVrms  
C
A
7.1  
8
21  
VOSC  
150  
75  
8.1  
8.2  
8.3  
8.4  
8.5  
Frequency range  
Input IP3  
163  
MHz  
dBµV  
kΩ  
B
C
D
D
C
133  
3.5  
Input impedance  
Input capacitance  
Noise figure  
4
pF  
F
14  
dB  
Conversion  
transconductance  
8.6  
2.6  
3.1  
3.6  
ms  
D(1)  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Note: 1. Minimum and maximum limits are characterized for entire temperature range (-40°C to +85° C) but are tested at +25°C  
5
4528G–AUDR–12/03  
Electrical Characteristics (Continued)  
Test conditions (unless otherwise specified): VST/VSPLL = +8.5 V, Tamb = +25° C  
No.  
9
Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
AM Mixer (Symmetrical Input)  
Frequency range  
Input IP3  
9.1  
9.2  
9.3  
9.4  
0.075  
26  
MHz  
dBµV  
kΩ  
B
C
D
C
133  
2.5  
10  
Input impedance  
Noise figure  
F
dB  
Conversion  
transconductance  
9.5  
2.6  
3.1  
3.6  
mS  
D(1)  
10  
Isolation  
10.1 Isolation AM-FM  
10.2 IF suppression  
40  
40  
dB  
dB  
C
C
11  
RF-AGC  
FM  
AM  
75  
0.075  
163  
26  
MHz  
MHz  
11.1 Frequency range  
11.2 Output current  
A
B
FM  
AM  
5
5
mA  
mA  
FM rising  
FM falling  
AM symmetrical  
2
50  
40  
ms  
ms  
ms  
Output current time  
constant  
11.3  
C
88 dBµV  
89 dBµV  
90 dBµV  
91 dBµV  
92 dBµV  
93 dBµV  
94 dBµV  
95 dBµV  
96 dBµV  
97 dBµV  
98 dBµV  
99 dBµV  
100 dBµV  
101 dBµV  
102 dBµV  
103 dBµV  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
87  
88  
88  
89  
90  
91  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
89  
90  
92  
90  
91  
93  
91  
92  
94  
92  
93  
95  
93  
94  
96  
RF-AGC AM threshold  
11.4 (programmable with  
Bit 12 - Bit 15)  
94  
95  
97  
95  
96  
98  
96  
97  
99  
97  
98  
100  
101  
102  
103  
104  
107  
98  
99  
99  
100  
101  
102  
103  
100  
101  
102  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Note:  
1. Minimum and maximum limits are characterized for entire temperature range (-40°C to +85° C) but are tested at +25°C  
6
T4260  
4528G–AUDR–12/03  
T4260  
Electrical Characteristics (Continued)  
Test conditions (unless otherwise specified): VST/VSPLL = +8.5 V, Tamb = +25° C  
No.  
Parameters  
Test Conditions  
91 dBµV  
Pin  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
Symbol  
Min.  
90  
Typ.  
91  
Max.  
93  
Unit  
Type*  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
92 dBµV  
91  
92  
95  
93 dBµV  
92  
93  
96  
94 dBµV  
93  
94  
96  
95 dBµV  
94  
95  
98  
96 dBµV  
95  
96  
99  
97 dBµV  
96  
97  
102  
101  
102  
104  
104  
105  
106  
107  
108  
109  
RF-AGC FM threshold  
98 dBµV  
97  
98  
11.5 (programmable with  
Bit 12 - Bit 15)  
99 dBµV  
98  
99  
100 dBµV  
101 dBµV  
102 dBµV  
103 dBµV  
104 dBµV  
105 dBµV  
106 dBµV  
99  
100  
101  
102  
103  
104  
105  
106  
100  
101  
102  
103  
104  
105  
12  
IF Amplifier  
12.1 Frequency range  
12.2 Output voltage  
10  
25  
MHz  
A
B
117  
55  
dBµV  
f1 = 10.7 MHz  
f2 = 10.75 MHz  
RL = 2 × 300 Ω  
Distortion  
12.3  
dB  
A
(2-tone IM3)  
Gain (programmable in  
2-dB steps)  
Minimum gain  
Maximum gain  
12  
42  
dB  
dB  
12.4  
A
D
FM  
AM  
36,  
35  
330  
2500  
12.5 Input impedance  
13  
IF-AGC  
109 dBµV  
111 dBµV  
113 dBµV  
115 dBµV  
117 dBµV  
118 dBµV  
119 dBµV  
121 dBµV  
29/30  
29/30  
29/30  
29/30  
29/30  
29/30  
29/30  
29/30  
108  
110  
111  
113  
116  
117  
118  
120  
109  
111  
113  
115  
117  
118  
119  
121  
40  
112  
114  
115  
117  
121  
122  
123  
126  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dB  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
B
IF-AGC  
AM/FM threshold  
(programmable with  
Bit 0 - Bit 2)  
13.1  
13.2 AGC dynamic range  
AGC time constant  
13.3 (external capacity  
100 nF)  
FM rising  
FM falling  
AM symmetrical  
16  
4
200  
µs  
ms  
ms  
D
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Note: 1. Minimum and maximum limits are characterized for entire temperature range (-40°C to +85° C) but are tested at +25°C  
7
4528G–AUDR–12/03  
Electrical Characteristics (Continued)  
Test conditions (unless otherwise specified): VST/VSPLL = +8.5 V, Tamb = +25° C  
No.  
14  
Parameters  
IF Gain  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
12 dB  
14 dB  
16 dB  
18 dB  
20 dB  
22 dB  
24 dB  
26 dB  
28 dB  
30 dB  
32 dB  
34 dB  
36 dB  
38 dB  
40 dB  
42 dB  
9
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
A(1)  
A(1)  
A(1)  
C(1)  
A(1)  
C(1)  
C(1)  
C(1)  
A(1)  
C(1)  
C(1)  
C(1)  
C(1)  
C(1)  
C(1)  
A(1)  
12  
14  
17  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
IF gain  
14.1 (programmable with  
Bit 6 - Bit 9)  
15  
SWO1 (Open Drain)  
15.1 Output voltageLOW  
13  
13  
13  
VSWOL  
IOHL  
100  
160  
200  
10  
mV  
µA  
V
A
A
C
I = 1 mA,  
Output leakage current  
HIGH  
VSWO1 = 8.5 V  
15.2  
15.3 Maximum output voltage  
8.5  
16  
SW2/AGC (Open Drain in Switch Mode)  
16.1 Output voltage LOW  
11  
11  
11  
VSWOL  
IOHL  
100  
160  
200  
10  
mV  
µA  
V
A
A
C
I = 1 mA,  
V11 = 6 V  
16.2 Output leakage current  
HIGH  
16.3 Maximum output voltage  
6
17  
3-wire Bus, ENABLE, DATA, CLOCK  
High  
Low  
VBUS  
VBUS  
2.7  
-0.3  
5.3  
+0.8  
V
V
A
A
17.1 Input voltage  
17.2 Clock frequency  
17.3 Period of CLK  
23-25  
24  
1.0  
MHz  
B
tH  
tL  
250  
250  
ns  
ns  
C
C
24  
17.4 Rise time EN, DA, CLK  
17.5 Fall time EN, DA, CLK  
17.6 Set-up time  
23-25  
23-25  
23-25  
23  
tR  
tF  
400  
100  
ns  
ns  
ns  
ns  
ns  
C
C
C
C
C
tS  
100  
250  
0
17.7 Hold time EN  
tHEN  
tHDA  
17.8 Hold time DA  
25  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Note:  
1. Minimum and maximum limits are characterized for entire temperature range (-40°C to +85° C) but are tested at +25°C  
8
T4260  
4528G–AUDR–12/03  
T4260  
3-wire Bus  
Description  
The register settings of the T4260 are programmed by a 3-wire bus protocol. The bus  
protocol consists of separate commands. A defined number of bits is transmitted  
sequentially during each command.  
One command is used to program all bits of one register. The different registers avail-  
able (see chapter “3-wire Bus Data Transfer” on page 11) are addressed by the length  
of the command (number of transmitted bits) and by two address bits that are unique to  
each register of a given length. 8-bit registers are programmed by 8-bit commands, 16-  
bit registers are programmed by 16-bit commands and 24-bit registers are programmed  
by 24-bit commands.  
Each bus command starts with a falling edge on the enable line (EN) and ends with a  
rising edge on EN. EN has to be kept LOW during the bus command.  
The sequence of transmitted bits during one command starts with the MSB of the first  
byte and ends with the LSB of the last byte of the register addressed. To transmit one bit  
(0/1), DATA has to be set to the appropriate value (LOW/HIGH) and a LOW-to-HIGH  
transition has to be performed on the clock line (CLK) while DATA is valid. The DATA is  
evaluated at the rising edges of CLK. The number of LOW-to-HIGH transitions on CLK  
during the LOW period of EN is used to determine the length of the command.  
Figure 3. 3-wire Pulse Diagram  
8-bit command  
EN  
DATA  
CLK  
MSB  
BYTE 1  
LSB  
16-bit command  
EN  
DATA  
CLK  
MSB  
BYTE 1  
LSB MSB  
BYTE 2  
LSB  
24-bit command  
EN  
DATA  
CLK  
MSB  
BYTE 1  
LSB MSB  
BYTE 2  
LSB MSB  
BYTE 3  
LSB  
e.g. R-Divider  
PDFM  
PDAM  
20  
20  
X
26  
23  
22  
21  
2
2
211  
29  
28  
13  
12  
27  
25  
24  
2
1
0
23  
Fract.  
22  
VCO-Divider  
2 1  
10  
X
R-Divider  
Addr.  
9
4528G–AUDR–12/03  
Figure 4. 3-wire Bus Timing Diagram  
tF  
tR  
VHigh  
VLow  
Enable  
tHEN  
tS  
tR  
tF  
VHigh  
VLow  
Data  
tHDA  
tS  
tR  
tF  
VHigh  
VLow  
Clock  
tH  
tL  
10  
T4260  
4528G–AUDR–12/03  
T4260  
3-wire Bus Data Transfer  
Table 1. Control Registers  
A24_10  
MSB  
BYTE 1  
LSB  
MSB  
BYTE 2  
LSB  
MSB  
BYTE 3  
Fractio-  
LSB  
PDAM/  
PDFM  
R-Divider  
R-Divider  
ADDR.  
Divider VCO  
nal  
0/1  
144  
27  
26  
25  
24  
23  
127  
22  
21  
20  
x
x
213  
212  
211  
135  
210  
29  
28  
1
x
0
x
1/0  
23  
22  
21  
20  
131  
130  
129  
128  
126  
125  
124  
139  
138  
137  
136  
134  
133  
132  
145  
143  
142  
141  
140  
A24_01  
MSB  
BYTE 1  
N2-Divider  
LSB  
MSB  
BYTE 2  
N2-Divider  
LSB  
MSB  
ADDR.  
BYTE 3  
LSB  
x
x
x
x
N2-Divider  
27  
26  
108  
1.  
25  
24  
23  
22  
21  
20  
215  
214  
213  
212  
211  
210  
29  
28  
0
x
1
x
01)  
01)  
01)  
01)  
217  
216  
109  
107  
106  
105  
104  
103  
102  
117  
116  
115  
114  
113  
112  
111  
110  
123  
122  
121  
120  
119  
118  
Note:  
Value has to be 0.  
A24_00  
MSB  
BYTE 1  
LSB  
MSB  
BYTE 2  
N1-Divider  
LSB  
MSB  
ADDR.  
BYTE 3  
LSB  
N1-Divider  
x
x
x
x
N1-Divider  
27  
26  
86  
1.  
25  
24  
23  
22  
21  
20  
215  
95  
214  
94  
213  
93  
212  
211  
210  
90  
29  
28  
0
x
0
x
01)  
01)  
01)  
01)  
217  
216  
87  
85  
84  
83  
82  
81  
80  
92  
91  
89  
88  
101  
100  
99  
98  
97  
96  
Note:  
Value has to be 0.  
A16_11  
MSB  
BYTE 1  
LSB  
MSB  
ADDR.  
BYTE 2  
LSB  
DAC2-Gain  
27  
26  
25  
24  
23  
22  
21  
20  
1
x
1
x
x
x
x
x
x
x
73  
72  
71  
70  
69  
68  
67  
66  
79  
78  
77  
76  
75  
74  
A16_10  
MSB  
BYTE 1  
DAC2-Offset  
LSB  
MSB  
ADDR.  
BYTE 2  
LSB  
SW-  
AMLF  
Osc.-  
Low  
High  
c.CP  
SW-  
impulse  
SW-  
wire  
Buffer  
c. CP  
1 =  
ON/  
OFF  
HI/  
LO  
HI/  
LO  
ON/  
OFF  
ON/  
OFF  
x
26  
25  
24  
23  
55  
22  
21  
20  
1
x
0
x
standard  
65  
59  
58  
57  
56  
54  
53  
52  
64  
63  
62  
61  
60  
A16_01  
MSB  
BYTE 1  
DAC1-Gain  
LSB  
MSB  
ADDR.  
BYTE 2  
LSB  
1=SW2  
0=AGC  
SW2  
1=low  
SW1  
1=low  
27  
26  
25  
24  
23  
41  
22  
21  
20  
0
x
1
x
x
x
x
1/0  
1/0  
47  
1/0  
46  
45  
44  
43  
42  
40  
39  
38  
51  
50  
49  
48  
11  
4528G–AUDR–12/03  
A16_00  
MSB  
BYTE 1  
LSB  
MSB  
BYTE 2  
LSB  
SHIFT  
1/0  
DAC1-Offset  
ADDR.  
x
0
x
x
0
x
0
x
x
26  
25  
24  
23  
22  
21  
20  
0
x
0
x
0
01)  
31  
30  
29  
28  
27  
26  
25  
24  
37  
36  
35  
34  
33  
32  
Note:  
1.  
Value has to be 0.  
A8_11  
MSB  
BYTE 1  
LSB  
Delay time high  
cur. CP2  
Delay time  
high cur. CP1  
ADDR.  
x
HCDEL  
ON/  
OFF  
HI/  
LO  
ON/  
OFF  
HI/  
LO  
1
1
x
01)  
19  
1/0  
18  
x
23  
22  
21  
20  
Note:  
1.  
Value has to be 0.  
A8_10  
MSB  
BYTE 1  
LSB  
AM/  
FM  
IF-  
AGC  
ADDR.  
RF-AGC  
1
x
0
x
1/0  
17  
1/0  
16  
23  
22  
21  
20  
15  
14  
13  
12  
A8_01  
MSB  
BYTE 1  
LSB  
ADDR.  
IF-IN  
VCO  
HI/LO  
10  
IF-Gain  
AM/  
FM  
0
x
1
x
23  
9
22  
8
21  
7
20  
6
11  
A8_00  
MSB  
BYTE 1  
LSB  
PLL  
ON/  
OFF  
PDTE/  
PD  
ADDR.  
N2/N1  
IF-AGC  
0
x
0
x
1/0  
5
1/0  
4
01)  
3
22  
2
21  
1
20  
0
Note:  
1.  
Value has to be 0.  
12  
T4260  
4528G–AUDR–12/03  
T4260  
Bus Control  
IF-AGC  
The IF-AGC controls the level of the IF signal that is passed to the external ceramic filter  
and the IF input (AM Pin 35 or FM Pin 36 and Pin 34). In AM mode the time constant  
can be selected by the external capacitors at Pin 32 (IFAGCA1) and Pin 10 (IFAGCA2)  
and in FM mode by an external capacitor at Pin 31 (IFAGCFM). In AM mode, the double  
pole (by the capacitors at Pin 32 and Pin 10) allows a better harmonic distortion by a  
lower time constant.  
The IF-AGC threshold can be controlled by setting Bits 0 to 2 as given in Table 2.  
Table 2. IF-AGC Threshold  
IF-AGC  
B2  
0
B1  
0
B0  
0
109 dBµV  
111 dBµV  
113 dBµV  
115 dBµV  
117 dBµV  
118 dBµV  
119 dBµV  
121 dBµV  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
The IF-AGC ON/OFF can be controlled by Bit 16 as given in Table 3.  
Table 3. IF-AGC  
IF-AGC ON/OFF  
B16  
0
IF-AGC ON  
IF-AGC OFF  
1
PD Test  
A special test mode for PD is implemented for final production test only. This mode is  
activated by setting Bit 3 = 1. This mode is not intended to be used by customer  
application. For normal operation Bit 3 has to be set to 0.  
Table 4. PD-Test Mode  
PD TE/PD  
B3  
0
Pin 17 = AMLF output (standard)  
Pin 17 = PD Testmode  
1
N1/N2  
The N2/N1 Bit controls the active N-divider. Only one of the two N-Divider can be active.  
The N1-Divider is activated by setting Bit 5 = 0, the N2-Divider by setting Bit 5 = 1.  
Table 5. N-Divider  
N2/N1  
B5  
0
N1-divider active  
N2-divider active  
1
13  
4528G–AUDR–12/03  
IF Amplifier  
The IF gain amplifier can be used in AM and FM mode to compensate the loss of the  
external ceramic bandfilters.  
The IF gain can be controlled in 2-dB steps by setting Bit 6 to Bit 9 as given in Table 6.  
Table 6. IF Gain  
IF Gain  
12 dB  
14 dB  
16 dB  
18 dB  
20 dB  
...  
B9  
0
B8  
0
B7  
0
B6  
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
...  
1
...  
1
...  
1
...  
0
40 dB  
42 dB  
1
1
1
1
The selection of the IF amplifier input can be controlled by Bit 11 as given in Table 7.  
Table 7. IF-IN Operating Mode  
IF-IN AM/FM  
B11  
0
IF-IN FM  
IF-IN AM  
1
REMARK:  
The AM input (Pin 35) has an input impedance of 2.5 kfor matching with a crystal filter.  
The FM input (Pin 36) has an input impedance of 330 for matching with a ceramic  
filter.  
VCO  
The VCO HI/LO function is controlled by means of Bit 10.  
Table 8. VCO Operating Mode  
VCO HI/LO  
B10  
0
VCO high current  
VCO low current  
1
RF-AGC  
The AM and FM RF-AGC controls the current into the AM and FM pin diodes (FM Pin 3  
and AM Pin 9) to limit the level at the AM or FM mixer input. If the level at the AM or FM  
mixer input exceeds the selected threshold, then the current into the AM or FM pin  
diodes increases. If this step is not sufficient in AM mode, the source drain voltage of  
the MOSFET (Pin 11) can be decreased. In AM mode, the time constants can be  
selected by the external capacitors at Pin 42 (RFAGCA1) and at Pin 12 (RFAGCAM2)  
and in FM mode by an external capacitor at Pin 33 (RFAGCFM). In AM mode, the dou-  
ble pole (by the capacitors at Pin 42 and Pin 12) allows a better harmonic distortion by a  
lower time constant.  
The RF-AGC can be controlled in 1-dB steps by setting the Bits 12 to 15. The values for  
FM and AM are controlled by Bit 17.  
14  
T4260  
4528G–AUDR–12/03  
T4260  
Table 9. RF-AGC  
RF-AGC AM  
88 dB  
RF-AGC FM  
91 dB  
92 dB  
93 dB  
94 dB  
95 dB  
...  
B15  
0
B14  
0
B13  
0
B12  
0
89 dB  
0
0
0
1
90 dB  
0
0
1
0
91 dB  
0
0
1
1
92 dB  
0
1
0
0
...  
...  
1
...  
1
...  
1
...  
0
102 dB  
103 dB  
105 dB  
106 dB  
1
1
1
1
Reception Mode  
There are two different operation modes, AM and FM, which are selected by means of  
Bit 17 and Bit 145 according to Table 1 and Table 2. In AM mode (Bit 17 = 1), the AM  
mixer, the AM RF-AGC, the AM divider (prescaler) and the IF AM amplifier (input at  
Pin 35) are activated. In FM mode (Bit 17 = 0), the FM mixer, the FM RF-AGC and the  
IF FM amplifier (input at Pin 36) are activated.  
In AM or FM reception mode, Bit 145 has to be set to the corresponding mode. The  
buffer amplifier input can be connected to Pin 16 (with the external FM loop filter) by Bit  
145 = 0 and to Pin 17 (with the external AM loopfilter) by Bit 145 = 1.  
The AM/FM function for the tuner part is controlled by Bit 17 as given in Table 10.  
Table 10. Tuner Operating Modes  
AM/FM  
B17  
0
FM  
AM  
1
PLL  
The PLL can switch off by Bit 4 = 0. In this case, the N-Divider input signal is internally  
connected to ground.  
Table 11. PLL Mode  
PLL ON/OFF  
B4  
0
PLL OFF  
PLL ON  
1
HCDEL  
There are two registers, HCDEL 1 (Bits 20 and 21) and HCDEL 2 (Bits 22 and 23), to  
control the delay time of the high-current charge pump and to deactivate them. Bit 18  
(HCDEL) determines whether register HCDEL 1 or 2 is used.  
Table 12. High-current Charge Pump Delay Time Register  
HCDEL 1/2 Select Mode  
HCDEL (B18)  
HCDEL 1  
HCDEL 2  
0
1
15  
4528G–AUDR–12/03  
If Bits 20 and 21 (HCDEL 1) or Bits 22 and 23 (HDCEL 2) are both set to 0, then the  
high-current charge pump is deactivated. Otherwise, the delay time can be selected as  
described in Table 13.  
Table 13. Delay Time of HCDEL Register  
High-current Charge Pump  
B21/B23  
B20/B22  
OFF  
0
0
1
1
0
1
0
1
Delay time 5 ns  
Delay time 10 ns  
Delay time 15 ns  
2-bit Shift  
A divider 2-bit shift (Bit 32 = 0) allows faster frequeny changes by using a four times  
higher step frequeny (e.g., fPDF = 50 kHz instead of fPDF = 12.5 kHz). If the PLL is locked  
(after the frequency change), the normal step frequency (e.g., fPDF = 12.5 kHz) will be  
active again.  
If no 2-bit shift is used (Bit 32 = 1), the frequeny changes will be done with the normal  
step frequency (12.5 kHz).  
In 2-bit shift mode the N- and R-divider are shifted by two bits to the right (this corre-  
sponds by a R- and N-divider division by 4). An important condition for this mode is that  
the R-divider has to be a multiple of 4.  
Table 14. Manual and Lock Detect Shift Mode  
2-bit Shift  
B32  
0
Dividers 2-bit shift  
No shift  
1
SW1 (Pin 13)  
The switching output SW1 (Pin 13) is controlled by Bit 46 as given in Table 15.  
Table 15. Switching Output  
SW1  
High  
Low  
B46  
0
1
REMARK:  
SW1 is an open-drain output.  
Figure 5. Internal Components at SW1  
SW1  
16  
T4260  
4528G–AUDR–12/03  
T4260  
SW2/AGC (Pin 11)  
The Pin SW2/AGC works as a switching output (open drain, Pin 11) or as an AM AGC-  
control pin to control the cascade stage of an external AM-preamplifier.  
The SW2/AGC is controlled by Bits 47 and 48 as given in Table 16.  
Table 16. Switching Output 2 / AGC Mode  
SW2/AGC  
AGC function  
High  
B48  
0
B47  
X
1
0
Low  
1
1
REMARK:  
In AGC mode, the output voltage is 6 V down to 1 V.  
Figure 6. Internal Components at SW2/AGC  
VS  
AGC  
SWO/AGC  
SW2  
Test Mode  
A special test mode is implemented for final production test only. This mode is activated  
by setting Bit 123 = 1. This mode is not intended to be used by customer application. For  
normal operation Bit 123 has to be set to 0.  
Table 17. Test Mode  
Test Mode  
B123  
ON  
1
0
OFF  
AM Mixer  
The AM mixer is used for up-conversion of the AM reception frequency to the IF  
frequency. Therefore, an AM prescaler is implemented to generate the necessary LO  
frequency from the VCO frequency.  
The VCO divider can be controlled by the Bits 140 to 143 as given in Table 18.  
(The VCO divider is only active in AM mode)  
17  
4528G–AUDR–12/03  
Table 18. Divider Factor of the AM Prescaler  
Divider AM Prescaler  
B143  
B142  
B141  
B140  
Divide by 2  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
x
0
0
1
1
0
0
1
1
x
0
1
0
1
0
1
0
1
x
Divide by 3  
Divide by 4  
Divide by 5  
Divide by 6  
Divide by 7  
Divide by 8  
Divide by 9  
Divide by 10  
FM Mixer  
In the FM mixer stage, the FM reception frequency is down-converted to the IF  
frequency. The VCO frequency is used as LO frequency for the mixer.  
PLL Loop Filter  
The PLL loop filter selection for AM and FM mode can be controlled by Bit 145 as given  
in Table 19.  
Table 19. Loop Filter Operating Mode  
PDAM/PDFM  
PDFM active  
PDAM active  
B145  
0
1
Fractional Mode  
The activated fractional mode (Bit 144 = 0) in connection with the direct shift (Bit 32 = 0)  
allows fast frequency changes (with the help of the 2-bit shift) with a four times higher  
step frequency. After the frequency change, the normal step frequency is active again.  
If the fractional mode is deactivated (Bit 144 = 1) and direct shift mode is active,  
(Bit 32 = 0) the VCO frequency is set to the next lower frequency which is many times  
the amount frequency of 4 times step frequency. This means that the 2 shifted bits of the  
active N-Divider are not used in this mode. The shift bits are interpreted as logic 0.  
The fractional mode with direct shift mode deactivated (Bit 32 = 1) allows normal fre-  
quency changes with a step frequency of 12.5 kHz.  
Table 20. Fractional Mode  
Fractional  
B144  
ON  
0
1
OFF  
Spurious Suppression  
In fractional and direct shift mode the spurious suppression is able by SW wire and SW  
impulse.  
Table 21. Spurious Suppression by SW Wire  
SW Wire  
B60  
0
OFF  
ON  
1
18  
T4260  
4528G–AUDR–12/03  
T4260  
Table 22. Spurious Suppression by Correction Current Charge Pump  
SW Impulse  
B61  
OFF  
0
ON  
1
Charge Pump  
(AMLF/FMLF)  
AMLF/FMLF is the current charge pump output of the PLL. The current can be con-  
trolled by setting the Bits 62 and 63. The loop filter has to be designed correspondingly  
to the chosen pump current and the internal reference frequency.  
During the frequency change, the high-current charge pump (Bit 62) is active to enable  
fast frequency changes. After the frequency change, the current will be reduced to guar-  
antee a high S/N ratio. The low-current charge pump (Bit 63) is then active. The high  
current charge pump can also be switched off by setting the bits of the active HCDEL  
register to 0 (Bit 20 and Bit 21 [HCDEL 1] or Bit 22 and Bit 23 [HCDEL 2]).  
The current of the high-current charge pump is controlled by Bit 62 as given in Table 23.  
Table 23. High-current Charge Pump  
High-current Charge Pump  
B62  
0
1 mA  
2 mA  
1
The current of the low-current charge pump is controlled by Bit 63 as given in Table 24.  
Table 24. Low-current Charge Pump  
Low Current Charge Pump  
B63  
0
50 µA  
100 µA  
1
External Voltage at AMLF The oscillator (Pin 22) can be switched on/off by Bit 65. It is possible to use the oscillator  
buffer as an input or as an output. At the AMLF (Pin 17), an external tuning voltage can  
be applied (Bit 65 = 0). If this is not done, the IC operates in standard mode (Bit 65 = 1).  
(Oscillator)  
The oscillator, oscillator buffer and the AMLF are controlled by the Bits 65 and 64 as  
given in Table 25.  
Table 25. Oscillator Operating Modes  
Oscillator  
Oscillator Buffer  
AMLF (Pin 17)  
INPUT f. DAC’s  
AMLF (standard)  
AMLF (standard)  
B65  
0
B64  
X
OFF  
INPUT  
ON  
OFF  
1
0
ON  
OUTPUT  
1
1
19  
4528G–AUDR–12/03  
DAC1, 2 (Pins 1, 2)  
For automatic tuner alignment, the DAC1 and DAC2 of the IC can be controlled by set-  
ting gain and offset values. The principle of the operation is shown in Figure 7. The gain  
is in the range of 0.67 × VTune to 2.09 × VTune. The offset range is +0.98 V to -0.98 V.  
For alignment, DAC1 and DAC2 are connected to the varicaps of the preselection filter  
and the IF filter. For alignment, offset and gain are set for having the best tuner tracking.  
Figure 7. Block Diagram of DAC1, 2  
VTUNE  
DAC1, 2  
Gain  
+/-  
Offset  
The gain of DAC1 and DAC2 has a range of approximately 0.67 × V(VTUNE) to  
2.09 × V(TUNE). This range is divided into 255 steps. One step is approximately (2.09-  
0.67)/255 = 0.00557 × V(TUNE). The gain of DAC1 can be controlled by the Bits 38 to  
45 (20 to 27) and the gain of DAC2 can be controlled by the Bits 66 to Bit 73 (20 to 27) as  
given in Table 26.  
Table 26. Gain of DAC1, 2  
Gain DAC1  
Approximately  
Decimal  
Gain  
B45  
B44  
B43  
B42  
B41  
B40  
B39  
B38  
Gain DAC2  
Approximately  
Decimal  
Gain  
B73  
0
B72  
0
B71  
0
B70  
0
B69  
0
B68  
0
B67  
0
B66  
0
0.6728 × V(TUNE)  
0.6783 × V(TUNE)  
0.6838 × V(TUNE)  
0.6894 × V(TUNE)  
...  
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
2
0
0
0
0
0
0
1
1
3
...  
0
...  
0
...  
1
...  
1
...  
1
...  
0
...  
1
...  
0
...  
0.9959 × V(TUNE)  
...  
58  
...  
...  
1
...  
1
...  
1
...  
1
...  
1
...  
1
...  
0
...  
1
2.0821 × V(TUNE)  
2.0877 × V(TUNE)  
2.0932 × V(TUNE)  
253  
254  
255  
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
Offset = 64 (intermediate position)  
The offset of DAC1 and DAC2 has a range of approximately +0.98 V to -0.99 V. This  
range is divided into 127 steps. One step is approximately 1.97 V/127 = 15.52 mV. The  
offset of DAC1 can be controlled by the Bits 24 to Bit 30 (20 to 26) and the offset gain of  
DAC2 can be controlled by the Bits 52 to Bit 58 (20 to 26) as given in Table 27.  
20  
T4260  
4528G–AUDR–12/03  
T4260  
Table 27. Offset of DAC1, 2  
Offset DAC1  
Approximately  
B30 B29 B28 B26  
B26  
B25 B24  
B53 B52  
Decimal Offset  
Offset DAC2  
Approximately  
B58 B57 B56 B55  
B54  
0
Decimal Offset  
0.9815 V  
0.9659 V  
0.9512 V  
0.9353 V  
...  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
2
0
0
0
0
1
1
3
...  
0
...  
0
...  
0
...  
0
...  
0
...  
0
...  
-0.0120 V  
...  
1
64  
...  
...  
1
...  
1
...  
1
...  
1
...  
0
...  
1
-0.9576 V  
-0.9733 V  
-0.9890 V  
1
1
1
125  
126  
127  
1
1
1
1
1
0
1
1
1
1
1
1
Gain = 58 (intermediate position)  
21  
4528G–AUDR–12/03  
Permitted DAC  
Conditons  
The internal operation amplifier of the DACs should not operate with a too high internal  
difference voltage at their inputs. This means that a voltage difference higher than 0.5 V  
at the internal OP input should be avoided in operation mode. The respective output OP  
in the DAC is necessary for the addition and amplification of the tuning voltage (at pin  
18) with the desired voltage gain and offset value.  
If the tuning voltage reaches a high value e.g. 9 V, with a gain setting of 2 times VTune  
and an offset of +1 V, then the output OP of the DAC should reach the (calculated) volt-  
age of 19 V. The supply voltage of e.g. 10 V, however, limits the output voltage (of the  
DAC) to 10 V maximum.  
Due to the (limiting) supply voltage and the internal gain resistance ratio of 6 , the miss-  
ing 9 V (calculated voltage - Vs) cause a voltage of 1.5 V at the OP input. This condition  
may not remain for a longer period of time.  
As long as the calculated DAC output voltage value does not exceed the supply voltage  
value by more than 3 V, no damages should occur during the product’s lifetime as the  
input voltage of the internal OP input voltage does not exceed 0.5 V.  
VTune x DAC gain factor + DAC offset < Vs + 3 V  
(9 V x 2 + 1 V) < 10 V + 3 V (condition not allowed)  
This means when having a gain factor of 2 and an offset value of 1 V, the tuning voltage  
should not exceed 6 V.  
Maximum tuning voltage < (VS + 3 V - DAC offset) / DAC gain factor  
e.g.: maximum tuing voltage = (10 V + 3 V - 1 V) / 2 = 6 V  
It is also possible to reduce the gain or the offset value instead of (or along with) the tun-  
ing voltage.  
Figure 8. Internal Components of DAC1, 2  
VS  
DAC1, 2  
22  
T4260  
4528G–AUDR–12/03  
T4260  
Input/Output Interface Circuits  
VTUNE, AMLF and  
FMLF (Pins 16-18)  
VTUNE is the loop amplifier output of the PLL. The bipolar output stage is a rail-to-rail  
amplifier.  
Figure 9. Internal Components at VTune, AMLF and FMLF  
VS  
VS  
V5  
VTUNE  
AMLF/FMLF  
EN, DATA, CLK  
(Pins 23-25)  
All functions can be controlled via a 3-wire bus consisting of Enable, Data and Clock.  
The bus is designed for microcontrollers which can operate with 3-V supply voltage.  
Details of the data transfer protocol can be found in the chapter “3-Wire Bus  
Description”.  
Figure 10. Internal Components at Enable, Data and Clock  
V5  
EN  
DATA  
CLK  
23  
4528G–AUDR–12/03  
Figure 11. Block Diagram of the PLL Core  
14 - BIT  
BIT 18  
BIT 32  
LATCH R - DIV.  
SWITCH  
HCDEL 1 HCDEL 2  
SHIFT 2 BIT  
DELAYTIME high  
cur. CP  
F
ref  
AM - LOOP  
FILTER  
R - DIVIDER  
B145  
AM / FM  
PHASE  
DETECTOR  
CHARGE  
PUMP  
AM/FM  
FILTER  
FM - LOOP  
FILTER  
N / N+1  
DIVIDER  
PREAMP  
VCO  
B62,63  
B61  
SWITCH N+1, N  
ACCU 2 - BIT  
SHIFT 2 BIT  
MUX N1 N2  
B5  
2-BIT (LSB)  
B60, B144  
LATCH N - DIV 1  
LATCH N - DIV 2  
18 - BIT  
18 - BIT  
PLL Core Block Diagram The two N-dividers are stored in two 18-bit memory register (LATCH N-DIV) and the  
R-divider in a 14-bit memory register (LATCH R-DIV). One of the the two N-dividers  
(N1 or N2) can be activated by Bit 5 as active N-divider (with the 18-bit multiplexer  
MUX).  
Description  
The (divider) 2-bit shift mode can be activated with Bit 32 = 0. The N- and R-divider are  
shifted two bits to the right in this shift mode. Because the two lowest R-divider bits  
(Bit 124 and Bit 125) are 0 they do not have to be evaluated. In opposite to the R-divider  
the lowest two N-divider bits (Bit 102 and Bit 103 or Bit 80 and Bit 81, depends on the  
active N-divider) are special evaluated in the ACCU block if fractional mode is active  
(Bit 144 = 0). The two lowest N- and R-divider bits are also called shift bits.  
The SWITCH N+1, N block is steering the division through N or N+1 in the N-divider if  
fractional and 2-bit shift mode are active. There is only a division by N if the fractional  
mode is deactivated in 2-bit shift mode.  
The output signals of the 18-bit N-divider and 14-bit R-divider will be compared in the  
PHASEDETECTOR which one activates the sink and source currents of the charge  
pumps (CP).  
24  
T4260  
4528G–AUDR–12/03  
T4260  
There are also two HCDEL registers (for the high current CP delay time) but only one of  
them is active. One of the HCDEL registers can be activated by Bit 18. The delay time of  
the HCDEL register can be selected with Bit 20 and Bit 21 or Bit 22 and Bit 23). The  
current for the high CP (HCCP) can be set by Bit 62 and the current for the low current  
CP (LCCP) by Bit 63.  
With Bit 145 the AM- or FM-Loopfilter (pin) can be activated. It is also possible to use  
the AM-Loopfilter in FM mode (instead of the FM-Loopfilter) or the FM-Loopfilter in AM  
mode.  
High-speed Tuning  
The fractional mode (Bit 144 = 0) in connection with the direct shift mode (Bit 32 = 0)  
allows very fast frequency changes with four times the step frequency (50 kHz = 4 ×  
fPDF) at low frequency steps (e.g., fPDF = 12.5 kHz). In direct shift mode, the R- and the  
N-divider are shifted by 2 bits to the right (this corresponds to a R- and N-divider division  
by 4 or a step frequency multiplication by 4).  
Due to the 2-bit shift, a faster tuning response time of approximately 1 ms instead of 3-  
4 ms for a tune over the whole FM band from 87.5 MHz to 108 MHz is possible with  
fPDF = 12.5 kHz.  
If the FM receiving frequency is 103.2125 MHz (with e.g. fPDF = 12.5 kHz and  
fIF = 10.7 MHz), an N-divider of 9113 and an R-divider of 12 are necessary when using a  
reference-frequency (fref) of 150 kHz.  
fVCO = fIF + frec = 10.7 MHz + 103.2125 MHz = 113.9125 MHz  
fPDF = fVCO / N = fref / R = 113.9125 MHz / 9113 = 150 kHz /12 = 12.5 kHz  
An important condition for the use of the fractional mode is an R-divider with an integer  
value after the division by 4 (R-dividers have to be a multiple of 4).  
After a 2-bit shift (divider division by 4), the R-divider is now 3 (instead of 12) and the  
N-divider is 2278.25 (instead of 9113). The new N-divider of 2278.25 is also called ¼  
fractional step because the modulo value of the N-divider is 0.25 = ¼. In total, there are  
4 different fractional 2-bit shift steps: full, ¼, ½ and ¾ step.  
If the fractional mode is switched off (Bit 144 = 1) during direct shift mode (Bit 32 = 0),  
the modulo value of the N-divider will be ignored (the new N-divider is then 2278 instead  
of 2278.25). This means that the PLL locks on the next lower multiple frequency of  
4 × fPDF (in our case fPDF = 12.5 kHz). The new VCO frequency (fVCO) is then 113.9 MHz  
(instead of 113.9125 MHz in fractional mode).  
Also the PLL has additionally a special fractional logic which allows a good spurious  
suppression in the fractional and direct shift mode. Activating the wire switch (Bit 60 = 1)  
and the correction charge pump (Bit 60 = 1) the spurious suppression is active.  
25  
4528G–AUDR–12/03  
Charge Pump Current  
Settings  
Bit 62 (0 = 1 mA; 1 = 2 mA) allows to adjust the high current, which is active during a fre-  
quency change (if the delay time of the active HCDEL register is not switched off). A  
high charge pump current allows faster frequeny changes. After a frequency change,  
the current reduction is reduced (in locked mode) to the low current which is set by bit 63  
(0 = 50 µA; 1 = 100 µA). A lower charge pump current guarantees a higher S/N ratio.  
The high current charge pump can be switched off by the active HCDEL register bits. In  
this case, when HCDEL 1 is active and the bits 20 and 21 are 0 (HCDEL 1 delay time =  
off) or HCDEL 2 is active and the bits 22 and 23 are 0 (HCDEL 2 delay time = off), only  
the low current charge pump (current) is active in locked and in the frequency change  
mode.  
AM Prescaler (Divider)  
Settings  
The AM mixer is used for up-conversion of the AM reception frequency to the IF fre-  
quency. Therefore, an AM prescaler is implemented to generate the necessary LO from  
the VCO frequency. For the reception of the AM band, different prescaler (divider) set-  
tings are possible.  
Table 28 lists the AM prescaler (divider) settings and the reception frequencies.  
f
VCO = 98.2 MHz to 124 MHz  
fIF = 10.7 MHz  
rec = fVCO - fIF  
f
fVCO = AM prescaler x (frec + fIF)  
The following formula can also be useful by AM frequencies higher than 20 MHz:  
fVCO = AM prescaler x (frec - fIF)  
Table 28. AM Prescaler (Divider) Settings and the Reception Frequencies  
Minimum Reception  
Frequency [MHz]  
Maximum Reception  
Divider (AM Prescaler)  
no divider  
Frequency [MHz]  
113.3  
51.3  
87.5  
38.4  
Divide by 2  
Divide by 3  
22.033  
13.85  
8.94  
30.633  
20.3  
Divide by 4  
Divide by 5  
14.1  
Divide by 6  
5.667  
3.329  
1.575  
0.211  
0
9.967  
7.014  
4.8  
Divide by 7  
Divide by 8  
Divide by 9  
3.078  
1.7  
Divide by 10  
Note:  
The AM Prescaler Divider Settings with fVCO from 98.2 MHz to 124 MHz is only an exam-  
ple. The tuning range depends on the tuning diode and the inductor in the VCO circuit.  
The tank of the VCO should be designed for a maximum range at pin 18 (VTUNE) of 1.5 V  
to VSPLL - 1 V for a good S/N performance.  
26  
T4260  
4528G–AUDR–12/03  
T4260  
The N- and R- divider can be calculated as following:  
N = AM Prescaler × (frec + fIF)/fstep  
N = (frec + fIF)/fstep  
(AM mode)  
(FM mode)  
R = fref/fstep  
(For all modes)  
fVCO = N × fstep  
fref = reference oscillator frequency (pin 27)  
Example of AM settings:  
If the receiving frequency is 0.84 MHz (AM) and the following conditions are:  
fref = 4 MHz; fstep = 10 kHz; fIF = 10.7 MHz and an AM-Prescaler of 10 a N-Divider of  
11540 and a R-Divider of 400 is necessary.  
R = fref/fstep = 4 MHz/10 KHz = 400  
N = AM Prescaler × (frec + fIF)/fstep = 10 × (0.84 MHz + 10.7 MHz)/10 KHz = 11540  
External Voltage at AMLF By using two ICs, for example, it is possible to operate the AMLF (Pin 17) of the second  
IC either with the tuning voltage (Vtune [Pin 18]), the DAC 1 voltage [Pin 1] or the DAC 2  
voltage [Pin 2] from the first T4260. For voltage reduction at the AMLF [Pin 17], a volt-  
age factor ratio of 100/16 (R1/R2) is required.  
(Pin 17)  
This means that an applied voltage from 0.5 V at Pin 17 (AMLF) corresponds to a tuning  
voltage of 3.625 V. It is recommended to use R1 with 100 kand R2 with 16 k. The  
allowed range of R1 is 10 kto 1 Mand 1.6 kto 160 kfor R2.  
Figure 12. External Voltage at AMLF (Pin 17)  
T4260  
Vtune or DAC  
R1  
R2  
AMLF  
T4260  
The maximum input voltage at the AMLF input (Pin 17) depends on the applied supply  
voltage as well as on the gain and offset settings. To avoid any damages during the  
product’s lifetime, the following formulas regarding SWAMLF voltage, gain and offset  
settings have to be observed (see chapter “Permitted DAC Conditons” on page 22).  
VSWAMLF x ([R1 + R2] / R2) x DAC gain factor + DAC offset < VS + 3 V  
(R1 + R2) / R2 = 7.25  
This means when having a gain factor of 2 and an offset value of 1 V, the applied  
SWAMLF voltage should be limited to a voltage lower than 0.83 V.  
SWAMLF voltage < (VS + 3 V - DAC offset) / (DAC gain factor × 7.25)  
e.g.: maximum SWAMLF voltage = (10 V + 3 V - 1 V) / (2 × 7.25) = 0.83 V  
It is also possible to reduce the gain or offset instead (or along with) the SWAMLF  
voltage.  
27  
4528G–AUDR–12/03  
Figure 13. Test Circuit  
Test Point  
100n  
1
2
3
4
5
6
7
8
9
DAC1  
DAC2  
MXFMOB 44  
MXFMOA 43  
10n  
10n  
330  
FMAGCO RFAGCA1 42  
MXFMIA  
MXFMIB  
GNDRF  
VST 41  
MXAMOA 40  
MXAMOB 39  
GNDT 38  
VST  
10n  
3k  
MXAMIB  
MXAMIA  
AMAGCO  
VRT 37  
10n  
100n  
330  
IFINFM 36  
IFINAM 35  
IFREF 34  
10 IFAGCA2  
11 SW2/AGC  
2k4  
100n  
RFAGCA  
12  
2
RFAGCFM 33  
IFAGCA1 32  
IFAGCFM 31  
IFOUTA 30  
IFOUTB 29  
GNDPLL 28  
REFFREQ 27  
VRPLL 26  
DATA 25  
100k  
100k  
13 SW1  
14 VRVCO  
15 VSPLL  
16 FMLF  
100n  
VSPLL  
100  
10n  
100n  
5k1  
17 AMLF  
18 VTUNE  
19 OSCGND  
20 OSCE  
1n  
10k  
5k6  
10n  
1n  
15p  
22p  
47p  
21 OSCB  
CLK 24  
BUS  
22 OSCBUF  
EN 23  
10n  
10n  
28  
T4260  
4528G–AUDR–12/03  
T4260  
Figure 14. Application Circuit  
P2  
P3  
GNDT  
GNDPLL  
C13  
IFoutA  
Bu2  
R2  
10uF  
180  
C4  
1u  
C7  
KF2  
KF1  
IFoutB  
Bu3  
R8  
R5  
5R6  
100n  
2k2  
VST R1  
C15  
REFFREQ  
Bu4  
C2  
P1 5R6  
C1  
10u  
R3  
300  
100n  
R6  
300  
F1  
100n  
C14  
C9  
DATA  
P4  
100n  
F2  
CLK  
100n  
C3  
C6  
P5  
C5  
C8  
100n  
C10 C11 C12  
100n220n100n  
EN  
P6  
220n  
100p  
47p  
44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23  
1
2
3
4
5
6
C29  
7
8
C30  
9
10 11 12 13 14 15 16 17 18 19 20 21 22  
DAC1  
C28  
C37 C39  
OSCBUF  
Bu5  
C47 C48  
P7  
P11 P12 P13  
FM AM VT  
100n  
100n  
4u7  
2u2 100n  
C16 10n  
22p 47p  
DAC2  
P8  
C31  
12p  
C50  
C41  
OSCB  
Bu4  
C40  
15n  
P15  
SW1  
C17 10n  
L2  
100uH  
100n  
C42  
1n  
C49  
6p8  
1n  
C23 C24  
R14  
68k  
BC 848  
T3  
C32  
6p8  
C43  
R25  
R11  
R24  
6k2  
F5  
1n 6p8  
C22  
CD1  
5k1  
C25  
4n7  
F3  
C38  
L3  
2m2  
R16  
2k7  
2n2  
68k  
100n  
R26  
100  
18p  
CD3  
BB804  
C46  
1n  
BB804  
T4  
C44  
R9  
470  
R10 47k  
R12  
68k  
J109  
100n  
R27  
5k6  
C45  
10u  
C21  
10n  
10p  
C20  
27p  
C19  
L1  
R17  
47  
C34  
R23  
5R6  
T1  
BFR93A  
2u2  
F4  
C18  
10n  
220n  
VSPLL  
BB804  
P10  
R13  
1k  
R18  
T2  
BC848B  
P16  
CD2  
D1 C26  
470k  
C27  
R19  
470k  
R15  
1k  
3p9 S391D10n  
AMPREIN  
AMAGCO  
C36  
10n  
P14  
P9  
Bu1  
D2  
L4  
S391D  
Ant  
4u7  
C33  
R28 R22  
3k9 470k  
C35  
10p  
100n  
D3  
S391D  
29  
4528G–AUDR–12/03  
Ordering Information  
Extended Type Number  
Package  
SSO44  
SSO44  
Remarks  
T4260IL  
Tube  
T4260ILQ  
Taped and reeled  
Package Information  
9.15  
8.65  
Package SSO44  
Dimensions in mm  
18.05  
17.80  
7.50  
7.30  
2.35  
0.3  
0.8  
0.25  
0.10  
0.25  
10.50  
10.20  
16.8  
44  
23  
technical drawings  
according to DIN  
specifications  
1
22  
30  
T4260  
4528G–AUDR–12/03  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard  
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any  
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and  
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are  
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use  
as critical components in life support devices or systems.  
© Atmel Corporation 2003. All rights reserved.  
Atmel® and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.  
Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
4528G–AUDR–12/03  

相关型号:

T4260-IL

AUDIO TUNER, PDSO44, SSO44
ATMEL

T4260-ILQ

AUDIO TUNER, PDSO44, SSO44
ATMEL

T4260-ILQH

AM/FM Front End IC
ATMEL

T4260-ILSH

AM/FM Front End IC
ATMEL

T4260IL

AM/FM Front End IC
ATMEL

T4260ILQ

AM/FM Front End IC
ATMEL

T4260ILS

Audio Tuner, PDSO44, SSO-44
ATMEL

T4260_08

AM/FM Front End IC
ATMEL

T4260_09

AM/FM Front End IC
ATMEL

T428P156M050AH6110

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 50V, 20% +Tol, 20% -Tol, 15uF, 2824
KEMET

T428P156M050AT6320

CAPACITOR, TANTALUM, SOLID
KEMET

T428P156M050BT6210

CAPACITOR, TANTALUM, SOLID
KEMET