TS80C51RA2-LIKR [ATMEL]

High Performance 8-bit Microcontrollers; 高性能8位微控制器
TS80C51RA2-LIKR
型号: TS80C51RA2-LIKR
厂家: ATMEL    ATMEL
描述:

High Performance 8-bit Microcontrollers
高性能8位微控制器

微控制器
文件: 总74页 (文件大小:830K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
High Performance 8-bit Microcontrollers  
1. Description  
Atmel Wireless & Microcontrollers TS80C51Rx2 is high The fully static design of the TS80C51Rx2 allows to  
reduce system power consumption by bringing the clock  
frequency down to any value, even DC, without loss of  
data.  
performance CMOS ROM, OTP, EPROM and ROMless  
versions of the 80C51 CMOS single chip 8-bit  
microcontroller.  
The TS80C51Rx2 has 2 software-selectable modes of  
reduced activity for further reduction in power  
consumption. In the idle mode the CPU is frozen while  
the timers, the serial port and the interrupt system are still  
operating. In the power-down mode the RAM is saved  
and all other functions are inoperative.  
The TS80C51Rx2 retains all features of the 80C51 with  
extended ROM/EPROM capacity (16/32/64 Kbytes), 256  
bytes of internal RAM, a 7-source , 4-level interrupt  
system, an on-chip oscilator and three timer/counters.  
In addition, the TS80C51Rx2 has a Programmable  
Counter Array, an XRAM of 256 or 768 bytes, a  
Hardware Watchdog Timer, a more versatile serial  
channel that facilitates multiprocessor communication  
(EUART) and a X2 speed improvement mechanism.  
2. Features  
80C52 Compatible  
Hardware Watchdog Timer (One-time enabled with  
Reset-Out)  
8051 pin and instruction compatible  
Four 8-bit I/O ports  
2 extra 8-bit I/O ports available on RD2 with high  
pin count packages  
Three 16-bit timer/counters  
256 bytes scratchpad RAM  
Asynchronous port reset  
Interrupt Structure with  
High-Speed Architecture  
7 Interrupt sources,  
40 MHz @ 5V, 30MHz @ 3V  
4 level priority interrupt system  
X2 Speed Improvement capability (6 clocks/  
machine cycle)  
Full duplex Enhanced UART  
30 MHz @ 5V, 20 MHz @ 3V (Equivalent to  
60 MHz @ 5V, 40 MHz @ 3V)  
Framing error detection  
Automatic address recognition  
Dual Data Pointer  
Low EMI (inhibit ALE)  
Power Control modes  
On-chip ROM/EPROM (16K-bytes, 32K-bytes, 64K-  
bytes)  
Idle mode  
On-chip eXpanded RAM (XRAM) (256 or 768 bytes)  
Power-down mode  
Power-off Flag  
Programmable Clock Out and Up/Down Timer/  
Counter 2  
Once mode (On-chip Emulation)  
Programmable Counter Array with  
Power supply: 4.5-5V, 2.7-5.5V  
Temperature ranges: Commercial (0 to 70oC) and  
Industrial (-40 to 85oC)  
High Speed Output,  
Compare / Capture,  
Pulse Width Modulator,  
Watchdog Timer Capabilities  
Packages: PDIL40, PLCC44, VQFP44 1.4, CQPJ44  
(window), CDIL40 (window), PLCC68, VQFP64  
1.4, JLCC68 (window)  
Rev. C - 06 March, 2001  
1
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
PDIL40  
TOTAL RAM  
(bytes)  
PLCC44  
ROM (bytes)  
EPROM (bytes)  
XRAM (bytes)  
I/O  
VQFP44 1.4  
TS80C51RA2  
TS80C51RD2  
0
0
0
0
256  
768  
512  
1024  
32  
32  
TS83C51RB2  
TS83C51RC2  
TS83C51RD2  
16k  
32k  
64k  
0
0
0
256  
256  
768  
512  
512  
1024  
32  
32  
32  
TS87C51RB2  
TS87C51RC2  
TS87C51RD2  
0
0
0
16k  
32k  
64k  
256  
256  
768  
512  
512  
1024  
32  
32  
32  
PLCC68  
TOTAL RAM  
(bytes)  
ROM (bytes)  
EPROM (bytes)  
XRAM (bytes)  
I/O  
VQFP64 1.4  
TS80C51RD2  
TS83C51RD2  
TS87C51RD2  
0
64k  
0
0
0
768  
768  
768  
1024  
1024  
1024  
48  
48  
48  
64k  
3. Block Diagram  
(3) (3)  
(1)  
(1) (1)  
(1)  
XTAL1  
XTAL2  
ROM  
RAM  
256x8  
XRAM  
256/768x8  
/EPROM  
PCA  
EUART  
Timer2  
0/16/32/64Kx8  
ALE/PROG  
PSEN  
C51  
CORE  
IB-bus  
CPU  
EA/VPP  
(3)  
Parallel I/O Ports & Ext. Bus  
Timer 0  
Timer 1  
INT  
Ctrl  
Watch  
Dog  
RD  
Port 4 Port 5  
(3)  
Port 0 Port 1  
Port 3  
Port 2  
WR  
(2)  
(2)  
(3) (3)  
(3) (3)  
(1): Alternate function of Port 1  
(2): Only available on high pin count packages  
(3): Alternate function of Port 3  
2
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
4. SFR Mapping  
The Special Function Registers (SFRs) of the TS80C51Rx2 fall into the following categories:  
C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1  
I/O port registers: P0, P1, P2, P3, P4, P5  
Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H  
Serial I/O port registers: SADDR, SADEN, SBUF, SCON  
Power and clock control registers: PCON  
HDW Watchdog Timer Reset: WDTRST, WDTPRG  
PCA registers: CL, CH, CCAPiL, CCAPiH, CCON, CMOD, CCAPMi  
Interrupt system registers: IE, IP, IPH  
Others: AUXR, CKCON  
Table 1. All SFRs with their address and their reset value  
Bit  
Non Bit addressable  
addressable  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
CH  
0000 0000  
CCAP0H  
CCAP1H  
CCAPL2H  
CCAPL3H  
CCAPL4H  
F8h  
F0h  
E8h  
FFh  
F7h  
EFh  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
B
0000 0000  
P5 bit  
addressable  
1111 1111  
CL  
0000 0000  
CCAP0L  
CCAP1L  
CCAPL2L  
CCAPL3L  
CCAPL4L  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
ACC  
0000 0000  
E0h  
D8h  
D0h  
C8h  
C0h  
E7h  
DFh  
D7h  
CFh  
C7h  
CCON  
00X0 0000  
CMOD  
00XX X000  
CCAPM0  
X000 0000  
CCAPM1  
X000 0000  
CCAPM2  
X000 0000  
CCAPM3  
X000 0000  
CCAPM4  
X000 0000  
PSW  
0000 0000  
T2CON  
0000 0000  
T2MOD  
XXXX XX00  
RCAP2L  
0000 0000  
RCAP2H  
0000 0000  
TL2  
0000 0000  
TH2  
0000 0000  
P4 bit  
addressable  
1111 1111  
P5 byte  
addressable  
1111 1111  
IP  
SADEN  
0000 0000  
B8h  
B0h  
A8h  
A0h  
98h  
90h  
88h  
80h  
BFh  
B7h  
AFh  
A7h  
9Fh  
97h  
8Fh  
87h  
X000 000  
P3  
IPH  
X000 0000  
1111 1111  
IE  
SADDR  
0000 0000  
0000 0000  
P2  
AUXR1  
XXXX0XX0  
WDTRST  
XXXX XXXX  
WDTPRG  
XXXX X000  
1111 1111  
SCON  
0000 0000  
SBUF  
XXXX XXXX  
P1  
1111 1111  
TCON  
0000 0000  
TMOD  
0000 0000  
TL0  
0000 0000  
TL1  
0000 0000  
TH0  
0000 0000  
TH1  
0000 0000  
AUXR  
XXXXXX00  
CKCON  
XXXX XXX0  
P0  
SP  
0000 0111  
DPL  
0000 0000  
DPH  
0000 0000  
PCON  
00X1 0000  
1111 1111  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
reserved  
Rev. C - 06 March, 2001  
3
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
5. Pin Configuration  
P1.0 / T2  
40  
39  
38  
1
2
VCC  
P0.0 / A0  
P0.1 / A1  
P1.1 / T2EX  
P1.2  
3
4
P1.3  
37 P0.2 / A2  
P0.3 / A3  
36  
P1.4  
P1.5  
P1.6  
5
6
P0.4 / A4  
35  
P0.5 / A5  
34  
7
8
6
5
4
3
2
1
44 43 42 41 40  
P0.6 / A6  
33  
32  
31  
30  
P1.7  
RST  
P1.5  
P1.6  
39  
38  
7
8
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA/VPP  
NIC*  
P0.7 / A7  
9
EA/VPP  
ALE/PROG  
PSEN  
P3.0/RxD  
P3.1/TxD  
10  
11  
12  
13  
P1.7  
37  
9
PDIL/  
RST  
10  
11  
12  
13  
36  
35  
34  
33  
P3.2/INT0  
P3.3/INT1  
29  
28  
27  
26  
CDIL40  
P3.0/RxD  
NIC*  
P2.7 / A15  
P2.6 / A14  
PLCC/CQPJ 44  
14  
15  
16  
17  
18  
19  
20  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
P2.5 / A13  
ALE/PROG  
PSEN  
14  
15  
16  
17  
32  
31  
30  
29  
P2.4 / A12  
P2.3 / A11  
25  
24  
23  
22  
21  
P2.7/A15  
P2.6/A14  
P2.5/A13  
P3.7/RD  
XTAL2  
P2.2 / A10  
P2.1 / A9  
P2.0 / A8  
XTAL1  
VSS  
18 19 20 21 22 23 24 25 26 27 28  
44 43 42 41 40 39 38 37 36 35 34  
P1.5  
P1.6  
P1.7  
RST  
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA/VPP  
NIC*  
33  
32  
1
2
31  
3
4
30  
29  
28  
27  
P3.0/RxD  
NIC*  
5
6
VQFP44 1.4  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
ALE/PROG  
PSEN  
7
8
26  
25  
24  
23  
P2.7/A15  
P2.6/A14  
P2.5/A13  
9
10  
11  
P3.5/T1  
12 13 14 15 16 17 18 19 20 21 22  
*NIC: No Internal Connection  
4
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
60  
P5.5  
P0.3/AD3  
P0.2/AD2  
P5.6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
P5.0  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
P2.4/A12  
P2.3/A11  
P4.7  
P0.1/AD1  
P0.0/AD0  
P5.7  
P2.2/A10  
P2.1/A9  
P2.0/A8  
P4.6  
VCC  
PLCC 68  
NIC  
NIC  
VSS  
P1.0/T2  
P4.0  
P4.5  
P1.1/T2EX  
P1.2  
XTAL1  
XTAL2  
P3.7/RD  
P4.4  
P1.3  
P4.1  
P1.4  
P3.6/WR  
P4.3  
P4.2  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P5.5  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P2.4/A12  
P2.3/A11  
P4.7  
P2.2/A10  
P2.1/A9  
P2.0/A8  
P4.6  
NIC  
VSS  
P4.5  
XTAL1  
XTAL2  
P3.7/RD  
P4.4  
P3.6/WR  
P4.3  
P0.3/AD3  
P0.2/AD2  
P5.6  
P0.1/AD1  
P0.0/AD0  
P5.7  
VCC  
VSS  
P1.0/T2  
P4.0  
9
VQFP64 1.4  
10  
11  
12  
13  
14  
15  
16  
P1.1/T2EX  
P1.2  
P1.3  
P4.1  
P1.4  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NIC: No InternalConnection  
Rev. C - 06 March, 2001  
5
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Pin Number  
Mnemonic  
Type  
Name And Function  
DIL LCC VQFP 1.4  
V
20  
22  
1
16  
39  
I
I
Ground: 0V reference  
SS  
Vss1  
Optional Ground: Contact the Sales Office for ground connection.  
Power Supply: This is the power supply voltage for normal, idle and power-  
down operation  
V
40  
44  
38  
I
CC  
P0.0-P0.7  
39-32 43-36  
37-30  
I/O  
Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s  
written to them float and can be used as high impedance inputs. Port 0 pins must  
be polarized to Vcc or Vss in order to prevent any parasitic current consumption.  
Port 0 is also the multiplexed low-order address and data bus during access to  
external program and data memory. In this application, it uses strong internal  
pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM  
programming. External pull-ups are required during program verification during  
which P0 outputs the code bytes.  
P1.0-P1.7  
1-8  
2-9  
40-44  
1-3  
I/O  
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1  
pins that have 1s written to them are pulled high by the internal pull-ups and  
can be used as inputs. As inputs, Port 1 pins that are externally pulled low will  
source current because of the internal pull-ups. Port 1 also receives the low-order  
address byte during memory programming and verification.  
Alternate functions for Port 1 include:  
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
9
40  
41  
I/O  
I
T2 (P1.0): Timer/Counter 2 external count input/Clockout  
T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control  
ECI (P1.2): External Clock for the PCA  
42  
I
43  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CEX0 (P1.3): Capture/Compare External I/O for PCA module 0  
CEX1 (P1.4): Capture/Compare External I/O for PCA module 1  
CEX0 (P1.5): Capture/Compare External I/O for PCA module 2  
CEX0 (P1.6): Capture/Compare External I/O for PCA module 3  
CEX0 (P1.7): Capture/Compare External I/O for PCA module 4  
44  
45  
46  
47  
P2.0-P2.7  
21-28 24-31  
18-25  
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2  
pins that have 1s written to them are pulled high by the internal pull-ups and  
can be used as inputs. As inputs, Port 2 pins that are externally pulled low will  
source current because of the internal pull-ups. Port 2 emits the high-order address  
byte during fetches from external program memory and during accesses to external  
data memory that use 16-bit addresses (MOVX @DPTR).In this application, it  
uses strong internal pull-ups emitting 1s. During accesses to external data memory  
that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR.  
Some Port 2 pins (P2.0 to P2.5) receive the high order address bits during  
EPROM programming and verification:  
P3.0-P3.7  
10-17  
11,  
13-19  
5,  
7-13  
I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3  
pins that have 1s written to them are pulled high by the internal pull-ups and  
can be used as inputs. As inputs, Port 3 pins that are externally pulled low will  
source current because of the internal pull-ups. Some Port 3 pins (P3.4 to P3.5)  
receive the high order address bits during EPROM programming and verification.  
Port 3 also serves the special features of the 80C51 family, as listed below.  
10  
11  
12  
13  
14  
15  
16  
17  
11  
13  
14  
15  
16  
17  
18  
19  
5
7
I
O
I
RXD (P3.0): Serial input port  
TXD (P3.1): Serial output port  
8
INT0 (P3.2): External interrupt 0  
INT1 (P3.3): External interrupt 1  
T0 (P3.4): Timer 0 external input  
T1 (P3.5): Timer 1 external input  
WR (P3.6): External data memory write strobe  
RD (P3.7): External data memory read strobe  
9
I
10  
11  
12  
13  
I
I
O
O
6
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Reset  
9
10  
4
I
Reset: A high on this pin for two machine cycles while the oscillator is running,  
resets the device. An internal diffused resistor to V permits a power-on reset  
SS  
using only an external capacitor to V  
If the hardware watchdog reaches its  
CC.  
time-out, the reset pin becomes an output during the time the internal reset is  
activated.  
Rev. C - 06 March, 2001  
7
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Mnemonic  
Name And Function  
Pin Number  
Type  
ALE/PROG  
30  
33  
27  
O (I) Address Latch Enable/Program Pulse: Output pulse for latching the low byte  
of the address during an access to external memory. In normal operation, ALE  
is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency,  
and can be used for external timing or clocking. Note that one ALE pulse is  
skipped during each access to external data memory. This pin is also the program  
pulse input (PROG) during EPROM programming. ALE can be disabled by  
setting SFR’s AUXR.0 bit. With this bit set, ALE will be inactive during internal  
fetches.  
PSEN  
29  
31  
32  
35  
26  
29  
O
Program Store ENable: The read strobe to external program memory. When  
executing code from the external program memory, PSEN is activated twice each  
machine cycle, except that two PSEN activations are skipped during each access  
to external data memory. PSEN is not activated during fetches from internal  
program memory.  
EA/V  
I
External Access Enable/Programming Supply Voltage: EA must be externally  
held low to enable the device to fetch code from external program memory  
locations 0000H and 3FFFH (RB) or 7FFFH (RC), or FFFFH (RD). If EA is  
held high, the device executes from internal program memory unless the program  
counter contains an address greater than 3FFFH (RB) or 7FFFH (RC) EA must  
be held low for ROMless devices. This pin also receives the 12.75V programming  
PP  
supply voltage (V ) during EPROM programming. If security level 1 is  
PP  
programmed, EA will be internally latched on Reset.  
XTAL1  
XTAL2  
19  
18  
21  
20  
15  
14  
I
Crystal 1: Input to the inverting oscillator amplifier and input to the internal  
clock generator circuits.  
O
Crystal 2: Output from the inverting oscillator amplifier  
8
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
5.1. Pin Description for 64/68 pin Packages  
Port 4 and Port 5 are 8-bit bidirectional I/O ports with internal pull-ups. Pins that have 1 written to them are pulled  
high by the internal pull ups and can be used as inputs.  
As inputs, pins that are externally pulled low will source current because of the internal pull-ups.  
Refer to the previous pin description for other pins.  
Table 2. 64/68 Pin Packages Configuration  
SQUARE VQFP64  
PLCC68  
1.4  
VSS  
VCC  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P3.0  
P3.1  
51  
17  
15  
14  
12  
11  
9
6
5
3
19  
21  
22  
23  
25  
27  
28  
29  
54  
55  
56  
58  
59  
61  
64  
65  
34  
39  
9/40  
8
6
5
3
2
64  
61  
60  
59  
10  
12  
13  
14  
16  
18  
19  
20  
43  
44  
45  
47  
48  
50  
53  
54  
25  
28  
Rev. C - 06 March, 2001  
9
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
SQUARE VQFP64  
1.4  
PLCC68  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
RESET  
ALE/PROG  
PSEN  
EA/VPP  
XTAL1  
XTAL2  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
40  
41  
42  
43  
45  
47  
30  
68  
67  
2
49  
48  
20  
24  
26  
44  
46  
50  
53  
57  
60  
62  
63  
7
29  
30  
31  
32  
34  
36  
21  
56  
55  
58  
38  
37  
11  
15  
17  
33  
35  
39  
42  
46  
49  
51  
52  
62  
63  
1
8
P5.5  
P5.6  
P5.7  
10  
13  
16  
4
7
10  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6. TS80C51Rx2 Enhanced Features  
In comparison to the original 80C52, the TS80C51Rx2 implements some new features, which are:  
The X2 option.  
The Dual Data Pointer.  
The extended RAM.  
The Programmable Counter Array (PCA).  
The Watchdog.  
The 4 level interrupt priority system.  
The power-off flag.  
The ONCE mode.  
The ALE disabling.  
Some enhanced features are also located in the UART and the timer 2.  
6.1. X2 Feature  
The TS80C51Rx2 core needs only 6 clock periods per machine cycle. This feature called ”X2” provides the  
following advantages:  
Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.  
Save power consumption while keeping same CPU power (oscillator power saving).  
Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.  
Increase CPU power by 2 while keeping same crystal frequency.  
In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main  
clock input of the core (phase generator). This divider may be disabled by software.  
6.1.1. Description  
The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and  
peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed,  
the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 1. shows the clock generation block  
diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode.  
Figure 2. shows the mode switching waveforms.  
XTAL1:2  
2
state machine: 6 clock cycles.  
CPU control  
XTAL1  
0
1
FXTAL  
FOSC  
X2  
CKCON reg  
Figure 1. Clock Generation Diagram  
Rev. C - 06 March, 2001  
11  
 
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
XTAL1  
XTAL1:2  
X2 bit  
CPU clock  
STD Mode  
X2 Mode  
STD Mode  
Figure 2. Mode Switching Waveforms  
The X2 bit in the CKCON register (See Table 3.) allows to switch from 12 clock cycles per instruction to 6 clock  
cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature  
(X2 mode).  
CAUTION  
In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals  
using clock frequency as time reference (UART, timers, PCA...) will have their time reference divided by two.  
For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms.  
UART with 4800 baud rate will have 9600 baud rate.  
12  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 3. CKCON Register  
CKCON - Clock Control Register (8Fh)  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
X2  
Bit  
Mnemonic  
Bit Number  
Description  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
7
6
5
4
3
2
1
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
-
-
-
-
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
CPU and peripheral clock bit  
Clear to select 12 clock periods per machine cycle (STD mode, F  
=FXTAL/2).  
0
X2  
OSC  
Set to select 6 clock periods per machine cycle (X2 mode, F  
=F  
).  
OSC XTAL  
Reset Value = XXXX XXX0b  
Not bit addressable  
For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel-wm.com)  
Rev. C - 06 March, 2001  
13  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.2. Dual Data Pointer Register Ddptr  
The additional data pointer can be used to speed up code execution and reduce code size in a number of  
ways.  
The dual DPTR structure is a way by which the chip will specify the address of an external data memory  
location. There are two 16-bit DPTR registers that address the external memory, and a single bit called  
DPS = AUXR1/bit0 (See Table 4.) that allows the program code to switch between them (Refer to Figure 3).  
External Data Memory  
7
0
DPS  
DPTR1  
DPTR0  
AUXR1(A2H)  
DPH(83H) DPL(82H)  
Figure 3. Use of Dual Pointer  
Table 4. AUXR1: Auxiliary Register 1  
AUXR1  
Address 0A2H  
-
-
-
-
GF3  
-
-
DPS  
Reset value  
X
X
X
X
0
X
X
0
Symbol  
Function  
a
-
Not implemented, reserved for future use.  
Data Pointer Selection.  
DPS  
DPS  
Operating Mode  
DPTR0 Selected  
DPTR1 Selected  
0
1
b
GF3  
This bit is a general purpose user flag .  
a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family  
products to invoke new feature. In that case, the reset value of the new bit will be 0, and its active  
value will be 1. The value read from a reserved bit is indeterminate.  
b. GF3 will not be available on first version of the RC devices.  
Application  
Software can take advantage of the additional data pointers to both increase speed and reduce code size, for  
example, block operations (copy, compare, search ...) are well served by using one data pointer as a ’source’  
pointer and the other one as a "destination" pointer.  
14  
Rev. C - 06 March, 2001  
 
 
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
ASSEMBLY LANGUAGE  
; Block move using dual data pointers  
; Destroys DPTR0, DPTR1, A and PSW  
; note: DPS exits opposite of entry state  
; unless an extra INC AUXR1 is added  
;
00A2  
AUXR1 EQU 0A2H  
;
0000 909000  
0003 05A2  
0005 90A000  
0008  
MOV DPTR,#SOURCE  
INC AUXR1  
MOV DPTR,#DEST  
LOOP:  
; address of SOURCE  
; switch data pointers  
; address of DEST  
0008 05A2  
000A E0  
000B A3  
000C 05A2  
000E F0  
000F A3  
0010 70F6  
0012 05A2  
INC AUXR1  
MOVX A,@DPTR  
INC DPTR  
INC AUXR1  
MOVX @DPTR,A  
INC DPTR  
; switch data pointers  
; get a byte from SOURCE  
; increment SOURCE address  
; switch data pointers  
; write the byte to DEST  
; increment DEST address  
; check for 0 terminator  
; (optional) restore DPS  
JNZ LOOP  
INC AUXR1  
INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However,  
note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it.  
In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence  
matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1'  
on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the  
opposite state.  
Rev. C - 06 March, 2001  
15  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.3. Expanded RAM (XRAM)  
The TS80C51Rx2 provide additional Bytes of ramdom access memory (RAM) space for increased data  
parameter handling and high level language usage.  
RA2, RB2 and RC2 devices have 256 bytes of expanded RAM, from 00H to FFH in external data space;  
RD2 devices have 768 bytes of expanded RAM, from 00H to 2FFH in external data space.  
The TS80C51Rx2 has internal data memory that is mapped into four separate segments.  
The four segments are:  
• 1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly addressable.  
• 2. The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable only.  
• 3. The Special Function Registers, SFRs, (addresses 80H to FFH) are directly addressable only.  
• 4. The expanded RAM bytes are indirectly accessed by MOVX instructions, and with the EXTRAM  
bit cleared in the AUXR register. (See Table 5.)  
The Lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be  
accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. That  
means they have the same address, but are physically separate from SFR space.  
When an instruction accesses an internal location above address 7FH, the CPU knows whether the access is  
to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction.  
Instructions that use direct addressing access SFR space. For example: MOV 0A0H, # data ,accesses the SFR  
at location 0A0H (which is P2).  
Instructions that use indirect addressing access the Upper 128 bytes of data RAM. For example: MOV @R0,  
# data where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).  
The 256 or 768 XRAM bytes can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX  
instructions. This part of memory which is physically located on-chip, logically occupies the first 256 or 768  
bytes of external data memory.  
With EXTRAM = 0, the XRAM is indirectly addressed, using the MOVX instruction in combination with any  
of the registers R0, R1 of the selected bank or DPTR. An access to XRAM will not affect ports P0, P2, P3.6  
(WR) and P3.7 (RD). For example, with EXTRAM = 0, MOVX @R0, # data where R0 contains 0A0H,  
accesses the XRAM at address 0A0H rather than external memory. An access to external data memory locations  
higher than FFH (i.e. 0100H to FFFFH) (higher than 2FFH (i.e. 0300H to FFFFH for RD devices) will be  
performed with the MOVX DPTR instructions in the same way as in the standard 80C51, so with P0 and P2  
as data/address busses, and P3.6 and P3.7 as write and read timing signals. Refer to Figure . For RD devices,  
accesses to expanded RAM from 100H to 2FFH can only be done thanks to the use of DPTR.  
With EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51. MOVX @ Ri  
will provide an eight-bit address multiplexed with data on Port0 and any output port pins can be used to output  
higher order address bits. This is to provide the external paging capability. MOVX @DPTR will generate a  
sixteen-bit address. Port2 outputs the high-order eight address bits (the contents of DPH) while Port0 multiplexes  
the low-order eight address bits (DPL) with data. MOVX @ Ri and MOVX @DPTR will generate either read  
or write signals on P3.6 (WR) and P3.7 (RD).  
The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal  
data memory. The stack may not be located in the XRAM.  
16  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
FF(RA, RB, RC)/2FF (RD)  
FF  
80  
FF  
80  
FFFF  
Upper  
128 bytes  
Internal  
Special  
External  
Function  
Data  
Register  
Memory  
Ram  
direct accesses  
indirect accesses  
XRAM  
256 bytes  
Lower  
128 bytes  
Internal  
Ram  
direct or indirect  
accesses  
0100 (RA, RB, RC) or 0300 (RD)  
0000  
00  
00  
Figure 4. Internal and External Data Memory Address  
Table 5. Auxiliary Register AUXR  
AUXR  
Address 08EH  
EXTRA  
M
-
-
-
-
-
-
AO  
Reset value  
X
X
X
X
X
X
0
0
Symbol  
Function  
a
-
Not implemented, reserved for future use.  
Disable/Enable ALE  
AO  
AO  
0
Operating Mode  
ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 if  
X2 mode is used)  
1
ALE is active only during a MOVX or MOVC instruction  
EXTRAM  
Internal/External RAM (00H-FFH) access using MOVX @ Ri/ @ DPTR  
EXTRAM Operating Mode  
0
1
Internal XRAM access using MOVX @ Ri/ @ DPTR  
External data memory access  
a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family  
products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and  
its active value will be 1. The value read from a reserved bit is indeterminate.  
Rev. C - 06 March, 2001  
17  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.4. Timer 2  
The timer 2 in the TS80C51RX2 is compatible with the timer 2 in the 80C52.  
It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2, connected in  
cascade. It is controlled by T2CON register (See Table 6) and T2MOD register (See Table 7). Timer 2 operation  
is similar to Timer 0 and Timer 1. C/T2 selects F  
/12 (timer operation) or external pin T2 (counter operation)  
OSC  
as the timer clock input. Setting TR2 allows TL2 to be incremented by the selected input.  
Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the  
combination of RCLK, TCLK and CP/RL2 (T2CON), as described in the Atmel Wireless & Microcontrollers 8-  
bit Microcontroller Hardware description.  
Refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description for the description of  
Capture and Baud Rate Generator Modes.  
In TS80C51RX2 Timer 2 includes the following enhancements:  
Auto-reload mode with up or down counter  
Programmable clock-output  
6.4.1. Auto-Reload Mode  
The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload. If DCEN bit  
in T2MOD is cleared, timer 2 behaves as in 80C52 (refer to the Atmel Wireless & Microcontrollers 8-bit  
Microcontroller Hardware description). If DCEN bit is set, timer 2 acts as an Up/down timer/counter as shown in  
Figure 5. In this mode the T2EX pin controls the direction of count.  
When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates  
an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded  
into the timer registers TH2 and TL2.  
When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and  
TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh  
into the timer registers.  
The EXF2 bit toggles when timer 2 overflows or underflows according to the the direction of the count. EXF2  
does not generate any interrupt. This bit can be used to provide 17-bit resolution.  
18  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
(:6 in X2 mode)  
:12  
0
1
XTAL1  
F
F
OSC  
XTAL  
T2  
TR2  
C/T2  
T2CONreg  
T2CONreg  
(DOWN COUNTING RELOAD VALUE)  
T2EX:  
if DCEN=1, 1=UP  
if DCEN=1, 0=DOWN  
if DCEN = 0, up counting  
FFh  
(8-bit)  
FFh  
(8-bit)  
T2CONreg  
EXF2  
TOGGLE  
TL2  
(8-bit)  
TH2  
(8-bit)  
TIMER 2  
INTERRUPT  
TF2  
T2CONreg  
RCAP2L  
(8-bit)  
RCAP2H  
(8-bit)  
(UP COUNTING RELOAD VALUE)  
Figure 5. Auto-Reload Mode Up/Down Counter (DCEN = 1)  
6.4.2. Programmable Clock-Output  
In the clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock generator (See Figure 6) . The  
input clock increments TL2 at frequency F /2. The timer repeatedly counts to overflow from a loaded value.  
OSC  
At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer  
2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system  
oscillator frequency and the value in the RCAP2H and RCAP2L registers :  
F
osc  
Clock OutFrequency = --------------------------------------------------------------------------------------  
4 × (65536 – RCAP2H RCAP2L)  
For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz  
16)  
(F  
/2 to 4 MHz (F  
/4). The generated clock signal is brought out to T2 pin (P1.0).  
OSC  
OSC  
Timer 2 is programmed for the clock-out mode as follows:  
Set T2OE bit in T2MOD register.  
Clear C/T2 bit in T2CON register.  
Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.  
Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different  
one depending on the application.  
To start the timer, set TR2 run control bit in T2CON register.  
Rev. C - 06 March, 2001  
19  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration,  
the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and  
RCAP2L registers.  
:2  
XTAL1  
(:1 in X2 mode)  
TR2  
T2CON reg  
TH2  
TL2  
(8-bit) (8-bit)  
OVERFLOW  
RCAP2H  
RCAP2L  
(8-bit) (8-bit)  
Toggle  
T2  
Q
D
T2OE  
T2MOD reg  
TIMER 2  
INTERRUPT  
T2EX  
EXF2  
T2CON reg  
EXEN2  
T2CON reg  
Figure 6. Clock-Out Mode C/T2 = 0  
20  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 6. T2CON Register  
T2CON - Timer 2 Control Register (C8h)  
7
6
5
4
3
2
1
0
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2#  
CP/RL2#  
Bit  
Mnemonic  
Bit Number  
Description  
Timer 2 overflow Flag  
7
TF2  
Must be cleared by software.  
Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.  
Timer 2 External Flag  
Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1.  
When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is enabled.  
Must be cleared by software. EXF2 doesn’t cause an interrupt in Up/down counter mode (DCEN = 1)  
6
EXF2  
Receive Clock bit  
5
4
RCLK  
TCLK  
Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3.  
Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.  
Transmit Clock bit  
Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3.  
Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.  
Timer 2 External Enable bit  
Clear to ignore events on T2EX pin for timer 2 operation.  
Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to  
clock the serial port.  
3
EXEN2  
Timer 2 Run control bit  
Clear to turn off timer 2.  
Set to turn on timer 2.  
2
1
TR2  
Timer/Counter 2 select bit  
Clear for timer operation (input from internal clock system: F  
).  
C/T2#  
OSC  
Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.  
Timer 2 Capture/Reload bit  
If RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to auto-reload on timer 2 overflow.  
Clear to auto-reload on timer 2 overflows or negative transitions on T2EX pin if EXEN2=1.  
Set to capture on negative transitions on T2EX pin if EXEN2=1.  
0
CP/RL2#  
Reset Value = 0000 0000b  
Bit addressable  
Rev. C - 06 March, 2001  
21  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 7. T2MOD Register  
T2MOD - Timer 2 Mode Control Register (C9h)  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
T2OE  
DCEN  
Bit  
Mnemonic  
Bit Number  
Description  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
7
6
5
4
3
2
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
-
-
-
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Timer 2 Output Enable bit  
1
0
T2OE  
Clear to program P1.0/T2 as clock input or I/O port.  
Set to program P1.0/T2 as clock output.  
Down Counter Enable bit  
DCEN  
Clear to disable timer 2 as up/down counter.  
Set to enable timer 2 as up/down counter.  
Reset Value = XXXX XX00b  
Not bit addressable  
22  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.5. Programmable Counter Array PCA  
The PCA provides more timing capabilities with less CPU intervention than the standard timer/counters. Its  
advantages include reduced software overhead and improved accuracy. The PCA consists of a dedicated  
timer/counter which serves as the time base for an array of five compare/ capture modules. Its clock input  
can be programmed to count any one of the following signals:  
• Oscillator frequency ÷ 12 (÷ 6 in X2 mode)  
• Oscillator frequency ÷ 4 (÷ 2 in X2 mode)  
• Timer 0 overflow  
• External input on ECI (P1.2)  
Each compare/capture modules can be programmed in any one of the following modes:  
• rising and/or falling edge capture,  
• software timer,  
• high-speed output, or  
• pulse width modulator.  
Module 4 can also be programmed as a watchdog timer (See Section "PCA Watchdog Timer", page 33).  
When the compare/capture modules are programmed in the capture mode, software timer, or high speed  
output mode, an interrupt can be generated when the module executes its function. All five modules plus the  
PCA timer overflow share one interrupt vector.  
The PCA timer/counter and compare/capture modules share Port 1 for external I/O. These pins are listed  
below. If the port is not used for the PCA, it can still be used for standard I/O.  
PCA component External I/O Pin  
16-bit Counter  
P1.2 / ECI  
16-bit Module 0  
16-bit Module 1  
16-bit Module 2  
16-bit Module 3  
16-bit Module 4  
P1.3 / CEX0  
P1.4 / CEX1  
P1.5 / CEX2  
P1.6 / CEX3  
P1.7 / CEX4  
The PCA timer is a common time base for all five modules (See Figure 7). The timer count source is  
determined from the CPS1 and CPS0 bits in the CMOD SFR (See Table 8) and can be programmed to run  
at:  
1/12 the oscillator frequency. (Or 1/6 in X2 Mode)  
1/4 the oscillator frequency. (Or 1/2 in X2 Mode)  
The Timer 0 overflow  
The input on the ECI pin (P1.2)  
Rev. C - 06 March, 2001  
23  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
To PCA  
modules  
Fosc /12  
Fosc / 4  
T0 OVF  
P1.2  
overflow  
It  
CH  
CL  
16 bit up/down counter  
CMOD  
0xD9  
CIDL WDTE  
CPS1 CPS0 ECF  
Idle  
CCON  
0xD8  
CF  
CR  
CCF4 CCF3 CCF2 CCF1 CCF0  
Figure 7. PCA Timer/Counter  
Table 8. CMOD: PCA Counter Mode Register  
CMOD  
Address 0D9H  
CIDL WDTE  
-
-
-
CPS1 CPS0  
ECF  
Reset value  
0
0
X
X
X
0
0
0
Symbol  
Function  
Counter Idle control: CIDL = 0 programs the PCA Counter to continue functioning during  
idle Mode. CIDL = 1 programs it to be gated off during idle.  
CIDL  
Watchdog Timer Enable: WDTE = 0 disables Watchdog Timer function on PCA Module 4.  
WDTE = 1 enables it.  
WDTE  
a
-
Not implemented, reserved for future use.  
CPS1  
CPS0  
PCA Count Pulse Select bit 1.  
PCA Count Pulse Select bit 0.  
b
CPS1 CPS0 Selected PCA input.  
0
0
1
1
0
1
0
1
Internal clock f /12 ( Or f /6 in X2 Mode).  
osc osc  
Internal clock f /4 ( Or f /2 in X2 Mode).  
osc  
osc  
Timer 0 Overflow  
External clock at ECI/P1.2 pin (max rate = f / 8)  
osc  
PCA Enable Counter Overflow interrupt: ECF = 1 enables CF bit in CCON to generate an  
interrupt. ECF = 0 disables that function of CF.  
ECF  
a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family  
products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its  
active value will be 1. The value read from a reserved bit is indeterminate.  
b.  
f
= oscillator frequency  
osc  
The CMOD SFR includes three additional bits associated with the PCA (See Figure 7 and Table 8).  
The CIDL bit which allows the PCA to stop during idle mode.  
The WDTE bit which enables or disables the watchdog function on module 4.  
24  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
The ECF bit which when set causes an interrupt and the PCA overflow flag CF (in the CCON SFR) to be set  
when the PCA timer overflows.  
Rev. C - 06 March, 2001  
25  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
The CCON SFR contains the run control bit for the PCA and the flags for the PCA timer (CF) and each  
module (Refer to Table 9).  
Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this bit.  
Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be generated if the  
ECF bit in the CMOD register is set. The CF bit can only be cleared by software.  
Bits 0 through 4 are the flags for the modules (bit 0 for module 0, bit 1 for module 1, etc.) and are set by  
hardware when either a match or a capture occurs. These flags also can only be cleared by software.  
Table 9. CCON: PCA Counter Control Register  
CCON  
CF  
CR  
-
CCF4 CCF3 CCF2 CCF1 CCF0  
Address 0D8H  
Reset value  
0
0
X
0
0
0
0
0
Symbol  
Function  
PCA Counter Overflow flag. Set by hardware when the counter rolls over. CF flags  
CF  
an interrupt if bit ECF in CMOD is set. CF may be set by either hardware or software but  
can only be cleared by software.  
PCA Counter Run control bit. Set by software to turn the PCA counter on. Must be cleared  
by software to turn the PCA counter off.  
CR  
-
a
Not implemented, reserved for future use.  
PCA Module 4 interrupt flag. Set by hardware when a match or capture occurs. Must be  
cleared by software.  
CCF4  
PCA Module 3 interrupt flag. Set by hardware when a match or capture occurs. Must be  
cleared by software.  
CCF3  
CCF2  
CCF1  
CCF0  
PCA Module 2 interrupt flag. Set by hardware when a match or capture occurs. Must be  
cleared by software.  
PCA Module 1 interrupt flag. Set by hardware when a match or capture occurs. Must be  
cleared by software.  
PCA Module 0 interrupt flag. Set by hardware when a match or capture occurs. Must be  
cleared by software.  
a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family  
products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its  
active value will be 1. The value read from a reserved bit is indeterminate.  
The watchdog timer function is implemented in module 4 (See Figure 10).  
The PCA interrupt system is shown in Figure 8  
26  
Rev. C - 06 March, 2001  
 
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
CCON  
CF  
CR  
CCF4 CCF3 CCF2 CCF1 CCF0  
0xD8  
PCA Timer/Counter  
Module 0  
Module 1  
Module 2  
Module 3  
To Interrupt  
priority decoder  
Module 4  
CMOD.0  
IE.6  
EC  
IE.7  
EA  
CCAPMn.0  
ECCFn  
ECF  
Figure 8. PCA Interrupt System  
PCA Modules: each one of the five compare/capture modules has six possible functions. It can perform:  
• 16-bit Capture, positive-edge triggered,  
• 16-bit Capture, negative-edge triggered,  
• 16-bit Capture, both positive and negative-edge triggered,  
• 16-bit Software Timer,  
• 16-bit High Speed Output,  
• 8-bit Pulse Width Modulator.  
In addition, module 4 can be used as a Watchdog Timer.  
Each module in the PCA has a special function register associated with it. These registers are: CCAPM0 for  
module 0, CCAPM1 for module 1, etc. (See Table 10). The registers contain the bits that control the mode  
that each module will operate in.  
The ECCF bit (CCAPMn.0 where n=0, 1, 2, 3, or 4 depending on the module) enables the CCF flag in the  
CCON SFR to generate an interrupt when a match or compare occurs in the associated module.  
PWM (CCAPMn.1) enables the pulse width modulation mode.  
The TOG bit (CCAPMn.2) when set causes the CEX output associated with the module to toggle when there  
is a match between the PCA counter and the module's capture/compare register.  
The match bit MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON register to be set when there  
is a match between the PCA counter and the module's capture/compare register.  
The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5) determine the edge that a capture input will  
be active on. The CAPN bit enables the negative edge, and the CAPP bit enables the positive edge. If both  
bits are set both edges will be enabled and a capture will occur for either transition.  
The last bit in the register ECOM (CCAPMn.6) when set enables the comparator function.  
Table 11 shows the CCAPMn settings for the various PCA functions.  
.
Rev. C - 06 March, 2001  
27  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 10. CCAPMn: PCA Modules Compare/Capture Control Registers  
CCAPM0=0DAH  
CCAPM1=0DBH  
CCAPM2=0DCH  
CCAPM3=0DDH  
CCAPM4=0DEH  
CCAPMn Address  
n = 0 - 4  
-
ECOMn CAPPn CAPNn MATn TOGn PWMm ECCFn  
Reset value  
X
0
0
0
0
0
0
0
Symbol  
Function  
a
-
Not implemented, reserved for future use.  
ECOMn  
Enable Comparator. ECOMn = 1 enables the comparator function.  
Capture Positive, CAPPn = 1 enables positive edge capture.  
Capture Negative, CAPNn = 1 enables negative edge capture.  
CAPPn  
CAPNn  
Match. When MATn = 1, a match of the PCA counter with this module's compare/capture  
register causes the CCFn bit in CCON to be set, flagging an interrupt.  
MATn  
TOGn  
PWMn  
ECCFn  
Toggle. When TOGn = 1, a match of the PCA counter with this module's compare/capture  
register causes the CEXn pin to toggle.  
Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width  
modulated output.  
Enable CCF interrupt. Enables compare/capture flag CCFn in the CCON register to generate  
an interrupt.  
a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family  
products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its  
active value will be 1. The value read from a reserved bit is indeterminate.  
Table 11. PCA Module Modes (CCAPMn Registers)  
ECOMn CAPPn CAPNn MATn TOGn PWMm ECCFn  
Module Function  
No Operation  
0
0
1
0
0
0
0
0
0
0
0
0
16-bit capture by a positive-edge trigger  
on CEXn  
X
X
16-bit capture by a negative trigger on  
CEXn  
X
0
1
0
0
0
X
X
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
0
X
X
X
0
16-bit capture by a transition on CEXn  
16-bit Software Timer / Compare mode.  
16-bit High Speed Output  
1
0
8-bit PWM  
X
X
Watchdog Timer (module 4 only)  
There are two additional registers associated with each of the PCA modules. They are CCAPnH and  
CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should  
occur. When a module is used in the PWM mode these registers are used to control the duty cycle of the  
output (See Table 12 & Table 13)  
28  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 12. CCAPnH: PCA Modules Capture/Compare Registers High  
CCAP0H=0FAH  
CCAP1H=0FBH  
CCAP2H=0FCH  
CCAP3H=0FDH  
CCAP4H=0FEH  
CCAPnH Address  
n = 0 - 4  
7
6
5
4
3
2
1
0
Reset value  
0
0
0
0
0
0
0
0
Table 13. CCAPnL: PCA Modules Capture/Compare Registers Low  
CCAP0L=0EAH  
CCAP1L=0EBH  
CCAP2L=0ECH  
CCAP3L=0EDH  
CCAP4L=0EEH  
CCAPnL Address  
n = 0 - 4  
7
6
5
4
3
2
1
0
Reset value  
0
0
0
0
0
0
0
0
Table 14. CH: PCA Counter High  
CH  
Address 0F9H  
7
6
5
4
3
2
1
0
Reset value  
0
0
0
0
0
0
0
0
Table 15. CL: PCA Counter Low  
CL  
Address 0E9H  
7
6
5
4
3
2
1
0
Reset value  
0
0
0
0
0
0
0
0
Rev. C - 06 March, 2001  
29  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.5.1. PCA Capture Mode  
To use one of the PCA modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP  
for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition.  
When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL)  
into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON  
SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated (Refer to Figure 9).  
CCON  
0xD8  
CF  
CR  
CCF4 CCF3 CCF2 CCF1 CCF0  
PCA IT  
PCA Counter/Timer  
Cex.n  
CH  
CL  
Capture  
CCAPnH  
CCAPnL  
CCAPMn, n= 0 to 4  
0xDA to 0xDE  
ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn  
Figure 9. PCA Capture Mode  
30  
Rev. C - 06 March, 2001  
 
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.5.2. 16-bit Software Timer / Compare Mode  
The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules  
CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match  
occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module  
are both set (See Figure 10).  
CCON  
0xD8  
CCF4  
CF  
CR  
CCF3 CCF2 CCF1 CCF0  
Write to  
CCAPnL Reset  
PCA IT  
Write to  
CCAPnH  
CCAPnH  
CCAPnL  
Enable  
1
0
Match  
16 bit comparator  
RESET *  
CH  
CL  
PCA counter/timer  
CCAPMn, n = 0 to 4  
0xDA to 0xDE  
ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn  
CMOD  
0xD9  
CIDL WDTE  
CPS1 CPS0 ECF  
* Only for Module 4  
Figure 10. PCA Compare Mode and PCA Watchdog Timer  
Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted  
match could happen. Writing to CCAPnH will set the ECOM bit.  
Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn’t occur while modifying  
the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first,  
and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.  
Rev. C - 06 March, 2001  
31  
 
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.5.3. High Speed Output Mode  
In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match  
occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT,  
and ECOM bits in the module's CCAPMn SFR must be set (See Figure 11).  
A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.  
CCON  
CF  
CR  
CCF4 CCF3 CCF2 CCF1 CCF0  
0xD8  
Write to  
CCAPnL  
Reset  
PCA IT  
Write to  
CCAPnH  
CCAPnH  
CCAPnL  
0
Enable  
1
Match  
16 bit comparator  
CEXn  
CH  
CL  
PCA counter/timer  
CCAPMn, n = 0 to 4  
0xDA to 0xDE  
ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn  
Figure 11. PCA High Speed Output Mode  
Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted  
match could happen.  
Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn’t occur while modifying  
the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first,  
and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.  
32  
Rev. C - 06 March, 2001  
 
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.5.4. Pulse Width Modulator Mode  
All of the PCA modules can be used as PWM outputs. Figure 12 shows the PWM function. The frequency of the  
output depends on the source for the PCA timer. All of the modules will have the same frequency of output  
because they all share the PCA timer. The duty cycle of each module is independently variable using the module's  
capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn  
SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from  
FF to 00, CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches. The  
PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.  
CCAPnH  
Overflow  
CCAPnL  
“0”  
CEXn  
Enable  
<
8 bit comparator  
“1”  
CL  
PCA counter/timer  
CCAPMn, n= 0 to 4  
0xDA to 0xDE  
ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn  
Figure 12. PCA PWM Mode  
6.5.5. PCA Watchdog Timer  
An on-board watchdog timer is available with the PCA to improve the reliability of the system without  
increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches,  
or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a watchdog.  
However, this module can still be used for other modes if the watchdog is not needed. Figure 10 shows a  
diagram of how the watchdog works. The user pre-loads a 16-bit value in the compare registers. Just like the  
other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur,  
an internal reset will be generated. This will not cause the RST pin to be driven high.  
In order to hold off the reset, the user has three options:  
• 1. periodically change the compare value so it will never match the PCA timer,  
• 2. periodically change the PCA timer value so it will never match the compare values, or  
• 3. disable the watchdog by clearing the WDTE bit before a match occurs and then re-enable it.  
The first two options are more reliable because the watchdog timer is never disabled as in option #3. If the  
program counter ever goes astray, a match will eventually occur and cause an internal reset. The second  
option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time  
base for all modules; changing the time base for other modules would not be a good idea. Thus, in most  
applications the first solution is the best option.  
This watchdog timer won’t generate a reset out on the reset pin.  
Rev. C - 06 March, 2001  
33  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.6. TS80C51Rx2 Serial I/O Port  
The serial I/O port in the TS80C51Rx2 is compatible with the serial I/O port in the 80C52.  
It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous  
Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and  
reception can occur simultaneously and at different baud rates  
Serial I/O port includes the following enhancements:  
Framing error detection  
Automatic address recognition  
6.6.1. Framing Error Detection  
Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing  
bit error detection feature, set SMOD0 bit in PCON register (See Figure 13).  
SM0/FE SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
SCON (98h)  
Set FE bit if stop bit is 0 (framing error) (SMOD0 = 1)  
SM0 to UART mode control (SMOD = 0)  
PCON (87h)  
SMOD1SMOD0  
-
POF  
GF1  
GF0  
PD  
IDL  
To UART framing error control  
Figure 13. Framing Error Block Diagram  
When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop  
bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit  
is not found, the Framing Error bit (FE) in SCON register (See Table 16.) bit is set.  
34  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can  
clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled,  
RI rises on stop bit instead of the last data bit (See Figure 14. and Figure 15.).  
RXD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Start  
bit  
Data byte  
Stop  
bit  
RI  
SMOD0=X  
FE  
SMOD0=1  
Figure 14. UART Timings in Mode 1  
RXD  
RI  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
Start  
bit  
Data byte  
Ninth Stop  
bit bit  
SMOD0=0  
RI  
SMOD0=1  
FE  
SMOD0=1  
Figure 15. UART Timings in Modes 2 and 3  
6.6.2. Automatic Address Recognition  
The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled  
(SM2 bit in SCON register is set).  
Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by  
allowing the serial port to examine the address of each incoming command frame. Only when the serial port  
recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that  
the CPU is not interrupted by command frames addressed to other devices.  
If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit  
takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the  
device’s address and is terminated by a valid stop bit.  
To support automatic address recognition, a device is identified by a given address and a broadcast address.  
NOTE: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON  
register in mode 0 has no effect).  
Rev. C - 06 March, 2001  
35  
 
 
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.6.3. Given Address  
Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte  
that contains don’t-care bits (defined by zeros) to form the device’s given address. The don’t-care bits provide the  
flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed.  
To address a device by its individual address, the SADEN mask byte must be 1111 1111b.  
For example:  
SADDR  
SADEN  
Given  
0101 0110b  
1111 1100b  
0101 01XXb  
The following is an example of how to use given addresses to address different slaves:  
Slave A:  
Slave B:  
Slave C:  
SADDR  
SADEN  
Given  
1111 0001b  
1111 1010b  
1111 0X0Xb  
SADDR  
SADEN  
Given  
1111 0011b  
1111 1001b  
1111 0XX1b  
SADDR  
SADEN  
Given  
1111 0010b  
1111 1101b  
1111 00X1b  
The SADEN byte is selected so that each slave may be addressed separately.  
For slave A, bit 0 (the LSB) is a don’t-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A  
only, the master must send an address where bit 0 is clear (e.g. 1111 0000b).  
For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don’t care bit. To communicate with slaves B and C, but  
not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111 0011b).  
To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2  
clear (e.g. 1111 0001b).  
6.6.4. Broadcast Address  
A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as  
don’t-care bits, e.g.:  
SADDR  
0101 0110b  
1111 1100b  
1111 111Xb  
SADEN  
Broadcast =SADDR OR SADEN  
The use of don’t-care bits provides flexibility in defining the broadcast address, however in most applications, a  
broadcast address is FFh. The following is an example of using broadcast addresses:  
Slave A:  
Slave B:  
Slave C:  
SADDR  
1111 0001b  
SADEN  
1111 1010b  
Broadcast 1111 1X11b,  
SADDR  
SADEN  
1111 0011b  
1111 1001b  
Broadcast 1111 1X11B,  
SADDR=  
SADEN  
Broadcast 1111 1111b  
1111 0010b  
1111 1101b  
For slaves A and B, bit 2 is a don’t care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the  
master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send  
and address FBh.  
36  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.6.5. Reset Addresses  
On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are XXXX  
XXXXb (all don’t-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards  
compatible with the 80C51 microcontrollers that do not support automatic address recognition.  
SADEN - Slave Address Mask Register (B9h)  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000b  
Not bit addressable  
SADDR - Slave Address Register (A9h)  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000b  
Not bit addressable  
Rev. C - 06 March, 2001  
37  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 16. SCON Register  
SCON - Serial Control Register (98h)  
7
6
5
4
3
2
1
0
FE/SM0  
SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
Bit  
Mnemonic  
Bit Number  
Description  
Framing Error bit (SMOD0=1)  
Clear to reset the error state, not cleared by a valid stop bit.  
Set by hardware when an invalid stop bit is detected.  
7
FE  
SMOD0 must be set to enable access to the FE bit  
Serial port Mode bit 0  
Refer to SM1 for serial port mode selection.  
SMOD0 must be cleared to enable access to the SM0 bit  
SM0  
SM1  
Serial port Mode bit 1  
SM0  
SM1  
Mode  
0
Description  
Baud Rate  
0
0
Shift Register  
F
/12 (/6 in X2 mode)  
6
5
XTAL  
0
1
1
1
0
1
1
2
3
8-bit UART  
9-bit UART  
9-bit UART  
Variable  
/64 or F  
F
/32 (/32, /16 in X2 mode)  
XTAL  
XTAL  
Variable  
Serial port Mode 2 bit / Multiprocessor Communication Enable bit  
Clear to disable multiprocessor communication feature.  
SM2  
Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should  
be cleared in mode 0.  
Reception Enable bit  
4
3
REN  
TB8  
Clear to disable serial reception.  
Set to enable serial reception.  
Transmitter Bit 8 / Ninth bit to transmit in modes 2 and 3.  
Clear to transmit a logic 0 in the 9th bit.  
Set to transmit a logic 1 in the 9th bit.  
Receiver Bit 8 / Ninth bit received in modes 2 and 3  
Cleared by hardware if 9th bit received is a logic 0.  
Set by hardware if 9th bit received is a logic 1.  
2
RB8  
In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.  
Transmit Interrupt flag  
Clear to acknowledge interrupt.  
Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other  
modes.  
1
0
TI  
RI  
Receive Interrupt flag  
Clear to acknowledge interrupt.  
Set by hardware at the end of the 8th bit time in mode 0, see Figure 14. and Figure 15. in the other modes.  
Reset Value = 0000 0000b  
Bit addressable  
38  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 17. PCON Register  
PCON - Power Control Register (87h)  
7
6
5
-
4
3
2
1
0
SMOD1  
SMOD0  
POF  
GF1  
GF0  
PD  
IDL  
Bit  
Mnemonic  
Bit Number  
Description  
Serial port Mode bit 1  
7
SMOD1  
SMOD0  
-
Set to select double baud rate in mode 1, 2 or 3.  
Serial port Mode bit 0  
6
5
4
Clear to select SM0 bit in SCON register.  
Set to to select FE bit in SCON register.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Power-Off Flag  
Clear to recognize next reset type.  
POF  
Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.  
General purpose Flag  
3
2
1
0
GF1  
GF0  
PD  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
General purpose Flag  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
Power-Down mode bit  
Cleared by hardware when reset occurs.  
Set to enter power-down mode.  
Idle mode bit  
IDL  
Clear by hardware when interrupt or reset occurs.  
Set to enter idle mode.  
Reset Value = 00X1 0000b  
Not bit addressable  
Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn’t affect the value of this bit.  
Rev. C - 06 March, 2001  
39  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.7. Interrupt System  
The TS80C51Rx2 has a total of 7 interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts  
(timers 0, 1 and 2), the serial port interrupt and the PCA global interrupt. These interrupts are shown in Figure 16.  
WARNING: Note that in the first version of RC devices, the PCA interrupt is in the lowest priority. Thus the  
order in INT0, TF0, INT1, TF1, RI or TI, TF2 or EXF2, PCA.  
High priority  
interrupt  
IPH, IP  
3
INT0  
IE0  
IE1  
0
3
0
3
0
3
TF0  
Interrupt  
polling  
sequence, decreasing  
from high to low priority  
INT1  
TF1  
0
3
PCA IT  
0
3
0
RI  
TI  
3
TF2  
EXF2  
0
Low priority  
interrupt  
Individual Enable  
Global Disable  
Figure 16. Interrupt Control System  
Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt  
Enable register (See Table 19.). This register also contains a global disable bit, which must be cleared to disable  
all interrupts at once.  
Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing  
a bit in the Interrupt Priority register (See Table 20.) and in the Interrupt Priority High register (See Table 21.).  
shows the bit values and priority levels associated with each combination.  
The PCA interrupt vector is located at address 0033H. All other vector addresses are the same as standard C52 devices.  
40  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 18. Priority Level Bit Values  
IPH.x  
IP.x  
Interrupt Level Priority  
0
0
1
1
0
1
0
1
0 (Lowest)  
1
2
3 (Highest)  
A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt.  
A high-priority interrupt can’t be interrupted by any other interrupt source.  
If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level  
is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence  
determines which request is serviced. Thus within each priority level there is a second priority structure determined  
by the polling sequence.  
Table 19. IE Register  
IE - Interrupt Enable Register (A8h)  
7
6
5
4
3
2
1
0
EA  
EC  
ET2  
ES  
ET1  
EX1  
ET0  
EX0  
Bit  
Mnemonic  
Bit Number  
Description  
Enable All interrupt bit  
Clear to disable all interrupts.  
Set to enable all interrupts.  
7
EA  
If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt  
enable bit.  
PCA interrupt enable bit  
6
5
EC  
Clear to disable . Set to enable.  
Timer 2 overflow interrupt Enable bit  
Clear to disable timer 2 overflow interrupt.  
Set to enable timer 2 overflow interrupt.  
ET2  
Serial port Enable bit  
4
3
2
1
0
ES  
Clear to disable serial port interrupt.  
Set to enable serial port interrupt.  
Timer 1 overflow interrupt Enable bit  
Clear to disable timer 1 overflow interrupt.  
Set to enable timer 1 overflow interrupt.  
ET1  
EX1  
ET0  
EX0  
External interrupt 1 Enable bit  
Clear to disable external interrupt 1.  
Set to enable external interrupt 1.  
Timer 0 overflow interrupt Enable bit  
Clear to disable timer 0 overflow interrupt.  
Set to enable timer 0 overflow interrupt.  
External interrupt 0 Enable bit  
Clear to disable external interrupt 0.  
Set to enable external interrupt 0.  
Reset Value = 0000 0000b  
Bit addressable  
Rev. C - 06 March, 2001  
41  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 20. IP Register  
IP - Interrupt Priority Register (B8h)  
7
-
6
5
4
3
2
1
0
PPC  
PT2  
PS  
PT1  
PX1  
PT0  
PX0  
Bit  
Mnemonic  
Bit Number  
Description  
Reserved  
7
6
5
4
3
2
1
0
-
The value read from this bit is indeterminate. Do not set this bit.  
PCA interrupt priority bit  
PPC  
PT2  
PS  
Refer to PPCH for priority level.  
Timer 2 overflow interrupt Priority bit  
Refer to PT2H for priority level.  
Serial port Priority bit  
Refer to PSH for priority level.  
Timer 1 overflow interrupt Priority bit  
PT1  
PX1  
PT0  
PX0  
Refer to PT1H for priority level.  
External interrupt 1 Priority bit  
Refer to PX1H for priority level.  
Timer 0 overflow interrupt Priority bit  
Refer to PT0H for priority level.  
External interrupt 0 Priority bit  
Refer to PX0H for priority level.  
Reset Value = X000 0000b  
Bit addressable  
42  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 21. IPH Register  
IPH - Interrupt Priority High Register (B7h)  
7
-
6
5
4
3
2
1
0
PPCH  
PT2H  
PSH  
PT1H  
PX1H  
PT0H  
PX0H  
Bit  
Number  
Bit  
Mnemonic  
Description  
Reserved  
7
6
-
The value read from this bit is indeterminate. Do not set this bit.  
PCA interrupt priority bit high.  
PPCH  
PPC  
Priority Level  
Lowest  
0
0
1
1
0
1
0
1
PPCH  
Highest  
Timer 2 overflow interrupt Priority High bit  
PT2H  
PT2  
0
1
0
1
Priority Level  
Lowest  
0
0
1
1
5
4
3
2
1
0
PT2H  
PSH  
Highest  
Serial port Priority High bit  
PSH  
PS  
0
1
0
1
Priority Level  
Lowest  
0
0
1
1
Highest  
Timer 1 overflow interrupt Priority High bit  
PT1H  
PT1  
0
1
0
1
Priority Level  
Lowest  
0
0
1
1
PT1H  
PX1H  
PT0H  
PX0H  
Highest  
External interrupt 1 Priority High bit  
PX1H  
PX1  
Priority Level  
Lowest  
0
0
1
1
0
1
0
1
Highest  
Timer 0 overflow interrupt Priority High bit  
PT0H  
PT0  
0
1
0
1
Priority Level  
Lowest  
0
0
1
1
Highest  
External interrupt 0 Priority High bit  
PX0H  
PX0  
Priority Level  
Lowest  
0
0
1
1
0
1
0
1
Highest  
Reset Value = X000 0000b  
Not bit addressable  
Rev. C - 06 March, 2001  
43  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.8. Idle mode  
An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode.  
In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port  
functions. The CPU status is preserved in its entirely : the Stack Pointer, Program Counter, Program Status Word,  
Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had  
at the time Idle was activated. ALE and PSEN hold at logic high levels.  
There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by  
hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to  
be executed will be the one following the instruction that put the device into idle.  
The flag bits GF0 and GF1 can be used to give an indication if an interrupt occured during normal operation or  
during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is  
terminated by an interrupt, the interrupt service routine can examine the flag bits.  
The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running,  
the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.  
6.9. Power-Down Mode  
To save maximum power, a power-down mode can be invoked by software (Refer to Table 17., PCON register).  
In power-down mode, the oscillator is stopped and the instruction that invoked power-down mode is the last  
instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated.  
V
can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from  
CC  
power-down. To properly terminate power-down, the reset or external interrupt should not be executed before V  
CC  
is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.  
Only external interrupts INT0 and INT1 are useful to exit from power-down. For that, interrupt must be enabled  
and configured as level or edge sensitive interrupt input.  
Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 17.  
When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power  
down exit will be completed when the first input will be released. In this case the higher priority interrupt service  
routine is executed.  
Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction  
that put TS80C51Rx2 into power-down mode.  
INT0  
INT1  
XTAL1  
Active phase  
Power-down phase  
Oscillator restart phase  
Active phase  
Figure 17. Power-Down Exit Waveform  
Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect  
the SFRs.  
Exit from power-down by either reset or external interrupt does not affect the internal RAM content.  
NOTE: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt,  
PD and IDL bits are cleared and idle mode is not entered.  
44  
Rev. C - 06 March, 2001  
 
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 22. The state of ports during idle and power-down mode  
Program  
Memory  
Mode  
ALE  
PSEN  
PORT0  
PORT1  
PORT2  
PORT3  
Idle  
Internal  
External  
Internal  
External  
1
1
0
0
1
1
0
0
Port Data*  
Floating  
Port Data  
Port Data  
Port Data  
Port Data  
Port Data  
Address  
Port Data  
Port Data  
Port Data  
Port Data  
Idle  
Power Down  
Power Down  
Port Data*  
Floating  
Port Data  
Port Data  
* Port 0 can force a "zero" level. A "one" will leave port floating.  
Rev. C - 06 March, 2001  
45  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.10. Hardware Watchdog Timer  
The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The  
WDT consists of a 14-bit counter and the WatchDog Timer ReSeT (WDTRST) SFR. The WDT is by default  
disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST,  
SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running  
and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When  
WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.  
6.10.1. Using the WDT  
To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When  
WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow.  
The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When WDT is enabled,  
it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at  
least every 16383 machine cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST  
is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an  
output RESET pulse at the RST-pin. The RESET pulse duration is 96 x T  
, where T  
= 1/F  
. To make  
OSC  
OSC  
OSC  
the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within  
the time required to prevent a WDT reset.  
7
To have a more powerful WDT, a 2 counter has been added to extend the Time-out capability, ranking from  
16ms to 2s @ F  
= 12MHz. To manage this feature, refer to WDTPRG register description, Table 24. (SFR0A7h).  
OSC  
Table 23. WDTRST Register  
WDTRST Address (0A6h)  
7
6
5
4
3
2
1
Reset value  
X
X
X
X
X
X
X
Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.  
46  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 24. WDTPRG Register  
WDTPRG Address (0A7h)  
7
6
5
4
3
2
1
0
T4  
T3  
T2  
T1  
T0  
S2  
S1  
S0  
Bit  
Mnemonic  
Bit Number  
Description  
7
6
5
4
3
2
1
0
T4  
T3  
T2  
T1  
T0  
S2  
S1  
S0  
Reserved  
Do not try to set or clear this bit.  
WDT Time-out select bit 2  
WDT Time-out select bit 1  
WDT Time-out select bit 0  
S2  
0
S1  
0
S0  
0
Selected Time-out  
14  
(2 - 1) machine cycles, 16.3 ms @ 12 MHz  
15  
0
0
1
(2 - 1) machine cycles, 32.7 ms @ 12 MHz  
16  
0
1
0
(2 - 1) machine cycles, 65.5 ms @ 12 MHz  
17  
0
1
1
(2 - 1) machine cycles, 131 ms @ 12 MHz  
18  
1
0
0
(2 - 1) machine cycles, 262 ms @ 12 MHz  
19  
1
0
1
(2 - 1) machine cycles, 542 ms @ 12 MHz  
20  
1
1
0
(2 - 1) machine cycles, 1.05 s @ 12 MHz  
21  
1
1
1
(2 - 1) machine cycles, 2.09 s @ 12 MHz  
Reset value XXXX X000  
6.10.2. WDT during Power Down and Idle  
In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the  
user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset  
or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power  
Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the TS80C51Rx2  
is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for  
the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from  
resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high.  
It is suggested that the WDT be reset during the interrupt service routine.  
To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the  
WDT just before entering powerdown.  
In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the TS80C51Rx2 while in  
Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter  
Idle mode.  
Rev. C - 06 March, 2001  
47  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
TM  
6.11. ONCE  
Mode (ON Chip Emulation)  
The ONCE mode facilitates testing and debugging of systems using TS80C51Rx2 without removing the circuit  
from the board. The ONCE mode is invoked by driving certain pins of the TS80C51Rx2; the following sequence  
must be exercised:  
Pull ALE low while the device is in reset (RST high) and PSEN is high.  
Hold ALE low as RST is deactivated.  
While the TS80C51Rx2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 26.  
shows the status of the port pins during ONCE mode.  
Normal operation is restored when normal reset is applied.  
Table 25. External Pin Status during ONCE Mode  
ALE  
PSEN  
Port 0  
Port 1  
Port 2  
Port 3  
XTAL1/2  
Weak pull-up  
Weak pull-up  
Float  
Weak pull-up  
Weak pull-up  
Weak pull-up  
Active  
48  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.12. Power-Off Flag  
The power-off flag allows the user to distinguish between a “cold start” reset and a “warm start” reset.  
A cold start reset is the one induced by V switch-on. A warm start reset occurs while V is still applied to  
CC  
CC  
the device and could be generated for example by an exit from power-down.  
The power-off flag (POF) is located in PCON register (See Table 26.). POF is set by hardware when V rises  
CC  
from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type  
of reset.  
The POF value is only relevant with a Vcc range from 4.5V to 5.5V. For lower Vcc value, reading POF bit will  
return indeterminate value.  
Table 26. PCON Register  
PCON - Power Control Register (87h)  
7
6
5
-
4
3
2
1
0
SMOD1  
SMOD0  
POF  
GF1  
GF0  
PD  
IDL  
Bit  
Mnemonic  
Bit Number  
Description  
Serial port Mode bit 1  
7
SMOD1  
SMOD0  
-
Set to select double baud rate in mode 1, 2 or 3.  
Serial port Mode bit 0  
6
5
4
Clear to select SM0 bit in SCON register.  
Set to to select FE bit in SCON register.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Power-Off Flag  
Clear to recognize next reset type.  
POF  
Set by hardware when V rises from 0 to its nominal voltage. Can also be set by software.  
CC  
General purpose Flag  
3
2
1
0
GF1  
GF0  
PD  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
General purpose Flag  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
Power-Down mode bit  
Cleared by hardware when reset occurs.  
Set to enter power-down mode.  
Idle mode bit  
IDL  
Clear by hardware when interrupt or reset occurs.  
Set to enter idle mode.  
Reset Value = 00X1 0000b  
Not bit addressable  
Rev. C - 06 March, 2001  
49  
 
 
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
6.13. Reduced EMI Mode  
The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data  
memory. Nevertheless, during internal code execution, ALE signal is still generated. In order to reduce EMI, ALE  
signal can be disabled by setting AO bit.  
The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer output but  
remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is  
weakly pulled high.  
Table 27. AUXR Register  
AUXR - Auxiliary Register (8Eh)  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
EXTRAM  
AO  
Bit  
Mnemonic  
Bit Number  
Description  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
7
6
5
4
3
2
1
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
EXTRAM bit  
EXTRAM  
See Table 5.  
ALE Output bit  
0
AO  
Clear to restore ALE operation during internal fetches.  
Set to disable ALE operation during internal fetches.  
Reset Value = XXXX XX00b  
Not bit addressable  
50  
Rev. C - 06 March, 2001  
 
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
7. TS83C51RB2/RC2/RD2 ROM  
7.1. ROM Structure  
The TS83C51RB2/RC2/RD2 ROM memory is divided in three different arrays:  
the code array: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16/32/64 Kbytes.  
the encryption array: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 bytes.  
the signature array:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 bytes.  
7.2. ROM Lock System  
The program Lock system, when programmed, protects the on-chip program against software piracy.  
7.2.1. 7.2.1. Encryption Array  
Within the ROM array are 64 bytes of encryption array that are initially unprogrammed (all FF’s). Every time a  
byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This  
byte is then exclusive-NOR’ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with  
the encryption array in the unprogrammed state, will return the code in its original, unmodified form.  
When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying  
the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a  
verification routine will display the content of the encryption array. For this reason all the unused code bytes  
should be programmed with random values. This will ensure program protection.  
7.2.2. Program Lock Bits  
The lock bits when programmed according to Table 28. will provide different level of protection for the on-chip  
code and data.  
Table 28. Program Lock bits  
Program Lock Bits  
Protection description  
Security  
level  
LB1  
LB2  
LB3  
No program lock features enabled. Code verify will still be encrypted by the encryption  
array if programmed. MOVC instruction executed from external program memory returns  
non encrypted data.  
1
U
U
U
MOVC instruction executed from external program memory are disabled from fetching  
code bytes from internal memory, EA is sampled and latched on reset.  
2
3
P
U
P
U
U
Same as level 1+ Verify disable.  
This security level is only available for 51RDX2 devices.  
U
U: unprogrammed  
P: programmed  
7.2.3. Signature bytes  
The TS83C51RB2/RC2/RD2 contains 4 factory programmed signatures bytes. To read these bytes, perform the  
process described in section 8.3.  
7.2.4. Verify Algorithm  
Refer to 8.3.4.  
Rev. C - 06 March, 2001  
51  
 
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
8. TS87C51RB2/RC2/RD2 EPROM  
8.1. EPROM Structure  
The TS87C51RB2/RC2/RD2 EPROM is divided in two different arrays:  
the code array: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16/32/64 Kbytes.  
the encryption array: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 bytes.  
In addition a third non programmable array is implemented:  
the signature array: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 bytes.  
8.2. EPROM Lock System  
The program Lock system, when programmed, protects the on-chip program against software piracy.  
8.2.1. Encryption Array  
Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF’s). Every time  
a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This  
byte is then exclusive-NOR’ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with  
the encryption array in the unprogrammed state, will return the code in its original, unmodified form.  
When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying  
the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a  
verification routine will display the content of the encryption array. For this reason all the unused code bytes  
should be programmed with random values. This will ensure program protection.  
8.2.2. Program Lock Bits  
The three lock bits, when programmed according to Table 29.8.2.3. , will provide different level of protection for  
the on-chip code and data.  
Table 29. Program Lock bits  
Program Lock Bits  
Protection description  
Security level  
LB1  
LB2  
LB3  
No program lock features enabled. Code verify will still be encrypted by the encryption  
array if programmed. MOVC instruction executed from external program memory  
returns non encrypted data.  
1
U
U
U
MOVC instruction executed from external program memory are disabled from fetching  
code bytes from internal memory, EA is sampled and latched on reset, and further  
programming of the EPROM is disabled.  
2
P
U
U
3
4
U
U
P
U
P
Same as 2, also verify is disabled.  
U
Same as 3, also external execution is disabled.  
U: unprogrammed,  
P: programmed  
WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.  
8.2.3. Signature bytes  
The TS87C51RB2/RC2/RD2 contains 4 factory programmed signatures bytes. To read these bytes, perform the  
process described in section 8.3.  
52  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
8.3. EPROM Programming  
8.3.1. Set-up modes  
In order to program and verify the EPROM or to read the signature bytes, the TS87C51RB2/RC2/RD2 is placed  
in specific set-up modes (See Figure 18.).  
Control and program signals must be held at the levels indicated in Table 30.  
8.3.2. Definition of terms  
Address Lines:  
P1.0-P1.7, P2.0-P2.5, P3.4, P3.5 respectively for A0-A15 (P2.5 (A13) for RB, P3.4 (A14) for  
RC, P3.5 (A15) for RD)  
Data Lines:  
P0.0-P0.7 for D0-D7  
Control Signals: RST, PSEN, P2.6, P2.7, P3.3, P3.6, P3.7.  
Program Signals: ALE/PROG, EA/VPP.  
Table 30. EPROM Set-Up Modes  
ALE/  
PROG  
Mode  
Program Code data  
Verify Code data  
RST  
PSEN  
EA/VPP  
12.75V  
1
P2.6  
P2.7  
P3.3  
P3.6  
P3.7  
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
0
1
1
1
1
1
0
0
1
0
1
1
1
1
0
1
0
0
1
1
Program Encryption Array  
Address 0-3Fh  
12.75V  
1
1
Read Signature Bytes  
Program Lock bit 1  
Program Lock bit 2  
Program Lock bit 3  
12.75V  
12.75V  
12.75V  
1
1
0
Rev. C - 06 March, 2001  
53  
 
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
+5V  
EA/VPP  
VCC  
PROGRAM  
SIGNALS*  
ALE/PROG  
P0.0-P0.7  
D0-D7  
RST  
PSEN  
P2.6  
P2.7  
P3.3  
P3.6  
P3.7  
P1.0-P1.7  
A0-A7  
CONTROL  
SIGNALS*  
A8-A15  
P2.0-P2.5  
P3.4-P3.5  
4 to 6 MHz  
XTAL1  
VSS  
GND  
* See Table 31. for proper value on these inputs  
Figure 18. Set-Up Modes Configuration  
8.3.3. Programming Algorithm  
The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and decreases the number of pulses  
applied during byte programming from 25 to 1.  
To program the TS87C51RB2/RC2/RD2 the following sequence must be exercised:  
Step 1: Activate the combination of control signals.  
Step 2: Input the valid address on the address lines.  
Step 3: Input the appropriate data on the data lines.  
Step 4: Raise EA/VPP from VCC to VPP (typical 12.75V).  
Step 5: Pulse ALE/PROG once.  
Step 6: Lower EA/VPP from VPP to VCC  
Repeat step 2 through 6 changing the address and data for the entire array or until the end of the object file is  
reached (See Figure 19.).  
8.3.4. Verify algorithm  
Code array verify must be done after each byte or block of bytes is programmed. In either case, a complete verify  
of the programmed array will ensure reliable programming of the TS87C51RB2/RC2/RD2.  
P 2.7 is used to enable data output.  
To verify the TS87C51RB2/RC2/RD2 code the following sequence must be exercised:  
Step 1: Activate the combination of program and control signals.  
Step 2: Input the valid address on the address lines.  
Step 3: Read data on the data lines.  
Repeat step 2 through 3 changing the address for the entire array verification (See Figure 19.)  
The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the  
code array is well encrypted.  
54  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Programming Cycle  
Read/Verify Cycle  
A0-A12  
D0-D7  
Data In  
Data Out  
100µs  
ALE/PROG  
EA/VPP  
12.75V  
5V  
0V  
Control sig-  
nals  
Figure 19. Programming and Verification Signal’s Waveform  
8.4. EPROM Erasure (Windowed Packages Only)  
Erasing the EPROM erases the code array, the encryption array and the lock bits returning the parts to full  
functionality.  
Erasure leaves all the EPROM cells in a 1’s state (FF).  
8.4.1. Erasure Characteristics  
The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated dose at least 15  
2
2
W-sec/cm . Exposing the EPROM to an ultraviolet lamp of 12,000 µW/cm rating for 30 minutes, at a distance  
of about 25 mm, should be sufficient. An exposure of 1 hour is recommended with most of standard erasers.  
Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately  
4,000 Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources  
over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause  
inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque  
label be placed over the window.  
Rev. C - 06 March, 2001  
55  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
9. Signature Bytes  
The TS83/87C51RB2/RC2/RD2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes  
follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature  
Bytes. Table 31. shows the content of the signature byte for the TS87C51RB2/RC2/RD2.  
Table 31. Signature Bytes Content  
Location  
30h  
Contents  
58h  
Comment  
Manufacturer Code: Atmel Wireless & Microcontrollers  
Family Code: C51 X2  
31h  
57h  
60h  
7Ch  
Product name: TS83C51RD2  
Product name: TS87C51RD2  
Product name: TS83C51RC2  
Product name: TS87C51RC2  
Product name: TS83C51RB2  
Product name: TS87C51RB2  
Product revision number  
60h  
FCh  
60h  
37h  
60h  
B7h  
60h  
3Bh  
60h  
BBh  
FFh  
61h  
56  
Rev. C - 06 March, 2001  
 
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
10. Electrical Characteristics  
(1)  
10.1. Absolute Maximum Ratings  
Ambiant Temperature Under Bias:  
C = commercial  
0°C to 70°C  
I = industrial  
Storage Temperature  
Voltage on V to V  
Voltage on V to V  
-40°C to 85°C  
-65°C to + 150°C  
-0.5 V to + 7 V  
-0.5 V to + 13 V  
CC  
SS  
PP  
SS  
Voltage on Any Pin to V  
Power Dissipation  
-0.5 V to V + 0.5 V  
1 W  
SS  
CC  
(2)  
NOTES  
1. Stresses at or above those listed under “ Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions may affect device reliability.  
2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.  
10.2. Power consumption measurement  
Since the introduction of the first C51 devices, every manufacturer made operating Icc measurements under reset,  
which made sense for the designs were the CPU was running under reset. In Atmel Wireless & Microcontrollers  
new devices, the CPU is no more active during reset, so the power consumption is very low but is not really  
representative of what will happen in the customer system. That’s why, while keeping measurements under Reset,  
Atmel Wireless & Microcontrollers presents a new way to measure the operating Icc:  
Using an internal test ROM, the following code is executed:  
Label:  
SJMP Label (80 FE)  
Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1  
is driven by the clock.  
This is much more representative of the real operating Icc.  
Rev. C - 06 March, 2001  
57  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
10.3. DC Parameters for Standard Voltage  
TA = 0°C to +70°C; V = 0 V; V = 5 V ± 10%; F = 0 to 40 MHz.  
SS  
CC  
TA = -40°C to +85°C; V = 0 V; V = 5 V ± 10%; F = 0 to 40 MHz.  
SS  
CC  
Table 32. DC Parameters in Standard Voltage  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
V
Input Low Voltage  
-0.5  
0.2 V - 0.1  
V
IL  
CC  
V
Input High Voltage except XTAL1, RST  
Input High Voltage, XTAL1, RST  
0.2 V + 0.9  
V
V
+ 0.5  
+ 0.5  
V
V
IH  
CC  
CC  
CC  
V
0.7 V  
CC  
IH1  
(6)  
(4)  
V
0.3  
0.45  
1.0  
V
V
V
OL  
Output Low Voltage, ports 1, 2, 3, 4, 5  
I
I
I
= 100 µA  
OL  
OL  
OL  
(4)  
= 1.6 mA  
= 3.5 mA  
(4)  
(6)  
(4)  
(4)  
(4)  
V
0.3  
0.45  
1.0  
V
V
V
OL1  
OL2  
Output Low Voltage, port 0  
I
I
I
= 200 µA  
= 3.2 mA  
= 7.0 mA  
OL  
OL  
OL  
(4)  
(4)  
(4)  
V
Output Low Voltage, ALE, PSEN  
0.3  
0.45  
1.0  
V
V
V
I
I
I
= 100 µA  
= 1.6 mA  
= 3.5 mA  
OL  
OL  
OL  
V
Output High Voltage, ports 1, 2, 3, 4, 5  
V
V
V
- 0.3  
- 0.7  
- 1.5  
V
V
V
I
I
I
= -10 µA  
= -30 µA  
= -60 µA  
OH  
CC  
CC  
CC  
OH  
OH  
OH  
V
= 5 V ± 10%  
CC  
V
V
R
Output High Voltage, port 0  
V
V
V
- 0.3  
- 0.7  
- 1.5  
V
V
V
I
I
I
= -200 µA  
= -3.2 mA  
= -7.0 mA  
= 5 V ± 10%  
OH1  
OH2  
RST  
CC  
CC  
CC  
OH  
OH  
OH  
V
CC  
Output High Voltage,ALE, PSEN  
V
V
V
- 0.3  
- 0.7  
- 1.5  
V
V
V
I
I
I
= -100 µA  
= -1.6 mA  
= -3.5 mA  
= 5 V ± 10%  
CC  
CC  
CC  
OH  
OH  
OH  
V
CC  
(5)  
RST Pulldown Resistor  
50  
200  
-50  
kΩ  
µA  
µA  
µA  
90  
I
Logical 0 Input Current ports 1, 2, 3, 4, 5  
Input Leakage Current  
Vin = 0.45 V  
0.45 V < Vin < V  
Vin = 2.0 V  
IL  
I
±10  
-650  
LI  
CC  
I
Logical 1 to 0 Transition Current, ports 1, 2, 3,  
4, 5  
TL  
C
Capacitance of I/O Buffer  
10  
50  
pF  
Fc = 1 MHz  
TA = 25°C  
IO  
(5)  
(3)  
I
Power Down Current  
µA  
PD  
20  
2.0 V < V  
5.5 V  
CC <  
I
Power Supply Current Maximum values, X1  
mode:  
1 + 0.4 Freq  
(MHz)  
@12MHz 5.8  
CC  
(7)  
(1)  
V
= 5.5 V  
CC  
under  
RESET  
mA  
@16MHz 7.4  
58  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
I
Power Supply Current Maximum values, X1  
mode:  
3 + 0.6 Freq  
(MHz)  
@12MHz 10.2  
@16MHz 12.6  
CC  
(7)  
(8)  
mA  
operating  
V
V
= 5.5 V  
= 5.5 V  
CC  
CC  
I
Power Supply Current Maximum values, X1  
mode:  
0.25+0.3Freq  
(MHz)  
@12MHz 3.9  
@16MHz 5.1  
CC  
(7)  
(2)  
mA  
idle  
10.4. DC Parameters for Low Voltage  
TA = 0°C to +70°C; V = 0 V; V = 2.7 V to 5.5 V ± 10%; F = 0 to 30 MHz.  
SS  
CC  
TA = -40°C to +85°C; V = 0 V; V = 2.7 V to 5.5 V ± 10%; F = 0 to 30 MHz.  
SS  
CC  
Table 33. DC Parameters for Low Voltage  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
V
Input Low Voltage  
-0.5  
0.2 V - 0.1  
V
IL  
CC  
V
Input High Voltage except XTAL1, RST  
Input High Voltage, XTAL1, RST  
0.2 V + 0.9  
V
V
+ 0.5  
+ 0.5  
V
V
V
IH  
CC  
CC  
CC  
V
0.7 V  
IH1  
CC  
(6)  
(4)  
V
0.45  
OL  
Output Low Voltage, ports 1, 2, 3, 4, 5  
I
= 0.8 mA  
OL  
(6)  
(4)  
V
0.45  
V
OL1  
Output Low Voltage, port 0, ALE, PSEN  
Output High Voltage, ports 1, 2, 3, 4, 5  
Output High Voltage, port 0, ALE, PSEN  
Logical 0 Input Current ports 1, 2, 3, 4, 5  
Input Leakage Current  
I
I
I
= 1.6 mA  
= -10 µA  
= -40 µA  
OL  
OH  
OH  
V
0.9 V  
0.9 V  
V
OH  
CC  
CC  
V
V
OH1  
I
-50  
±10  
-650  
µA  
µA  
µA  
Vin = 0.45 V  
IL  
LI  
I
0.45 V < Vin < V  
Vin = 2.0 V  
CC  
I
Logical 1 to 0 Transition Current, ports 1, 2, 3,  
4, 5  
TL  
(5)  
R
RST Pulldown Resistor  
50  
200  
10  
kΩ  
RST  
90  
CIO  
Capacitance of I/O Buffer  
pF  
Fc = 1 MHz  
TA = 25°C  
(5)  
(3)  
(3)  
I
Power Down Current  
µA  
PD  
20  
V
V
= 2.0 V to 5.5 V  
50  
30  
CC  
(5)  
10  
= 2.0 V to 3.3 V  
CC  
I
Power Supply Current Maximum values, X1  
mode:  
1 + 0.2 Freq  
(MHz)  
@12MHz 3.4  
CC  
(7)  
(1)  
V
= 3.3 V  
under  
CC  
CC  
mA  
mA  
RESET  
@16MHz 4.2  
I
Power Supply Current Maximum values, X1  
1 + 0.3 Freq  
(MHz)  
@12MHz 4.6  
CC  
(7)  
(8)  
mode:  
V
= 3.3 V  
operating  
@16MHz 5.8  
Rev. C - 06 March, 2001  
59  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
I
Power Supply Current Maximum values, X1  
mode:  
0.15 Freq  
(MHz) + 0.2  
CC  
(7)  
(2)  
mA  
idle  
V
= 3.3 V  
CC  
@12MHz 2  
@16MHz 2.6  
NOTES  
1.  
I
under reset is measured with all output pins disconnected; XTAL1 driven with T  
, T  
= 5 ns (see Figure 24.), V = V + 0.5 V,  
CC  
CLCH CHCL IL SS  
V
= V - 0.5V; XTAL2 N.C.; EA = RST = Port 0 = V . I would be slightly higher if a crystal oscillator used..  
CC CC CC  
IH  
2. Idle I is measured with all output pins disconnected; XTAL1 driven with T  
, T  
= 5 ns, V = V + 0.5 V, V = V - 0.5 V; XTAL2  
CC  
CLCH CHCL IL SS IH CC  
N.C; Port 0 = V ; EA = RST = V (see Figure 22.).  
CC  
SS  
3. Power Down I is measured with all output pins disconnected; EA = V , PORT 0 = V ; XTAL2 NC.; RST = V (see Figure 23.).  
CC  
SS  
CC  
SS  
4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V s of ALE and Ports 1 and 3. The noise is  
OL  
due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst  
cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V peak 0.6V. A Schmitt Trigger use is not necessary.  
OL  
5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.  
6. Under steady state (non-transient) conditions, I must be externally limited as follows:  
OL  
Maximum I per port pin: 10 mA  
OL  
Maximum I per 8-bit port:  
OL  
Port 0: 26 mA  
Ports 1, 2, 3 and 4 and 5 when available: 15 mA  
Maximum total I for all output pins: 71 mA  
OL  
If I exceeds the test condition, V may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.  
OL  
OL  
7. For other values, please contact your sales office.  
8. Operating I is measured with all output pins disconnected; XTAL1 driven with T  
, T  
= 5 ns (see Figure 24.), V = V + 0.5 V,  
IL SS  
CC  
CLCH CHCL  
V
= V - 0.5V; XTAL2 N.C.; EA = Port 0 = V ; RST = V . The internal ROM runs the code 80 FE (label: SJMP label). I would be slightly  
CC CC SS CC  
IH  
higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is the worst case.  
V
CC  
I
CC  
V
CC  
V
CC  
P0  
EA  
V
CC  
RST  
XTAL2  
XTAL1  
(NC)  
CLOCK  
SIGNAL  
V
SS  
All other pins are disconnected.  
Figure 20. I  
Test Condition, under reset  
CC  
60  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
V
CC  
I
CC  
V
CC  
V
CC  
P0  
EA  
Reset = Vss after a high pulse  
during at least 24 clock cycles  
RST  
XTAL2  
XTAL1  
(NC)  
CLOCK  
SIGNAL  
All other pins are disconnected.  
V
SS  
Figure 21. Operating I  
Test Condition  
CC  
V
CC  
I
CC  
V
CC  
V
CC  
P0  
EA  
Reset = Vss after a high pulse  
during at least 24 clock cycles  
RST  
(NC)  
XTAL2  
XTAL1  
CLOCK  
SIGNAL  
All other pins are disconnected.  
V
SS  
Figure 22. I  
Test Condition, Idle Mode  
CC  
V
CC  
I
CC  
V
CC  
V
CC  
P0  
EA  
Reset = Vss after a high pulse  
during at least 24 clock cycles  
RST  
(NC)  
XTAL2  
XTAL1  
V
All other pins are disconnected.  
SS  
Figure 23. I  
Test Condition, Power-Down Mode  
CC  
V
-0.5V  
CC  
0.7V  
CC  
0.2V -0.1  
CC  
0.45V  
T
T
CLCH  
CHCL  
T
= T  
= 5ns.  
CHCL  
CLCH  
Figure 24. Clock Signal Waveform for I  
Tests in Active and Idle Modes  
CC  
Rev. C - 06 March, 2001  
61  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
10.5. AC Parameters  
10.5.1. Explanation of the AC Symbols  
Each timing symbol has 5 characters. The first character is always a “T” (stands for time). The other characters,  
depending on their positions, stand for the name of a signal or the logical status of that signal. The following is  
a list of all the characters and what they stand for.  
Example:T  
= Time for Address Valid to ALE Low.  
AVLL  
T
= Time for ALE Low to PSEN Low.  
LLPL  
TA = 0 to +70°C (commercial temperature range); V = 0 V; V = 5 V ± 10%; -M and -V ranges.  
SS  
CC  
TA = -40°C to +85°C (industrial temperature range); V = 0 V; V = 5 V ± 10%; -M and -V ranges.  
SS  
CC  
TA = 0 to +70°C (commercial temperature range); V = 0 V; 2.7 V < V  
5.5 V; -L range.  
SS  
CC <  
TA = -40°C to +85°C (industrial temperature range); V = 0 V; 2.7 V < V  
5.5 V; -L range.  
SS  
CC <  
Table 34. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3, and ALE and PSEN signals.  
Timings will be guaranteed if these capacitances are respected. Higher capacitance values can be used, but timings  
will then be degraded.  
Table 34. Load Capacitance versus speed range, in pF  
-M  
100  
80  
-V  
50  
50  
30  
-L  
100  
80  
Port 0  
Port 1, 2, 3  
ALE / PSEN  
100  
100  
Table 36., Table 39. and Table 42. give the description of each AC symbols.  
Table 37., Table 40. and Table 43. give for each range the AC parameter.  
Table 38., Table 41. and Table 44. give the frequency derating formula of the AC parameter. To calculate each  
AC symbols, take the x value corresponding to the speed grade you need (-M, -V or -L) and replace this value  
in the formula. Values of the frequency must be limited to the corresponding speed grade:  
Table 35. Max frequency for derating formula regarding the speed grade  
-M X1 mode  
-M X2 mode  
-V X1 mode  
-V X2 mode  
-L X1 mode  
-L X2 mode  
40  
25  
20  
50  
40  
25  
30  
30  
20  
50  
Freq (MHz)  
T (ns)  
33.3  
33.3  
Example:  
E6  
T
in X2 mode for a -V part at 20 MHz (T = 1/20 = 50 ns):  
LLIV  
x= 22 (Table 38.)  
T= 50ns  
T
= 2T - x = 2 x 50 - 22 = 78ns  
LLIV  
62  
Rev. C - 06 March, 2001  
 
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
10.5.2. External Program Memory Characteristics  
Table 36. Symbol Description  
Symbol  
Parameter  
T
Oscillator clock period  
ALE pulse width  
T
LHLL  
T
Address Valid to ALE  
AVLL  
T
Address Hold After ALE  
ALE to Valid Instruction In  
ALE to PSEN  
LLAX  
T
LLIV  
LLPL  
PLPH  
T
T
PSEN Pulse Width  
T
PSEN to Valid Instruction In  
Input Instruction Hold After PSEN  
Input Instruction FloatAfter PSEN  
PSEN to Address Valid  
PLIV  
PXIX  
T
T
PXIZ  
T
PXAV  
T
Address to Valid Instruction In  
PSEN Low to Address Float  
AVIV  
T
PLAZ  
Table 37. AC Parameters for Fix Clock  
Speed  
-M  
-V  
-V  
-L  
-L  
Units  
40 MHz  
X2 mode  
30 MHz  
standard mode  
40 MHz  
X2 mode  
20 MHz  
standard mode  
30 MHz  
60 MHz equiv.  
40 MHz equiv.  
Symbol  
Min  
Max  
Min  
33  
Max  
Min  
25  
Max  
Min  
50  
Max  
Min  
33  
Max  
T
25  
40  
ns  
ns  
T
25  
42  
35  
52  
LHLL  
T
10  
10  
4
4
12  
12  
5
5
13  
13  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLL  
T
LLAX  
T
70  
35  
45  
25  
78  
50  
65  
30  
98  
55  
LLIV  
LLPL  
PLPH  
T
T
15  
55  
9
17  
60  
10  
50  
18  
75  
35  
T
PLIV  
T
0
0
0
0
0
PXIX  
T
18  
85  
10  
12  
53  
10  
20  
95  
10  
10  
80  
10  
18  
122  
10  
PXIZ  
T
AVIV  
PLAZ  
T
Rev. C - 06 March, 2001  
63  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 38. AC Parameters for a Variable Clock: derating formula  
Symbol  
Type  
Standard X2 Clock  
Clock  
-M  
-V  
-L  
Units  
T
Min  
Min  
Min  
Max  
Min  
Min  
Max  
Min  
Max  
Max  
Max  
2 T - x  
T - x  
T - x  
4 T - x  
T - x  
3 T - x  
3 T - x  
x
T - x  
0.5 T - x  
0.5 T - x  
2 T - x  
0.5 T - x  
1.5 T - x  
1.5 T - x  
x
10  
15  
15  
30  
10  
20  
40  
0
8
15  
20  
20  
35  
15  
25  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LHLL  
T
13  
13  
22  
8
AVLL  
T
LLAX  
T
LLIV  
LLPL  
PLPH  
T
T
15  
25  
0
T
PLIV  
T
PXIX  
T
T - x  
5 T - x  
x
0.5 T - x  
2.5 T - x  
x
7
5
15  
45  
10  
PXIZ  
T
40  
10  
30  
10  
AVIV  
PLAZ  
T
10.5.3. External Program Memory Read Cycle  
12 T  
CLCL  
T
T
LLIV  
LHLL  
ALE  
PSEN  
T
LLPL  
T
PLPH  
T
PXAV  
T
T
LLAX  
T
T
PXIZ  
PLIV  
AVLL  
T
TPLAZ  
PXIX  
PORT 0  
PORT 2  
INSTR IN  
A0-A7  
INSTR IN  
A0-A7  
INSTR IN  
T
AVIV  
ADDRESS  
OR SFR-P2  
ADDRESS A8-A15  
ADDRESS A8-A15  
Figure 25. External Program Memory Read Cycle  
64  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
10.5.4. External Data Memory Characteristics  
Table 39. Symbol Description  
Symbol  
Parameter  
T
RD Pulse Width  
RLRH  
T
WR Pulse Width  
WLWH  
T
RD to Valid Data In  
RLDV  
RHDX  
T
Data Hold After RD  
Data Float After RD  
ALE to Valid Data In  
Address to Valid Data In  
ALE to WR or RD  
T
RHDZ  
T
LLDV  
T
AVDV  
T
LLWL  
T
Address to WR or RD  
Data Valid to WR Transition  
Data set-up to WR High  
Data Hold After WR  
RD Low to Address Float  
RD or WR High to ALE high  
AVWL  
QVWX  
QVWH  
WHQX  
T
T
T
T
RLAZ  
T
WHLH  
Rev. C - 06 March, 2001  
65  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 40. AC Parameters for a Fix Clock  
Speed  
-M  
-V  
-V  
-L  
-L  
Units  
40 MHz  
X2 mode  
30 MHz  
standard mode  
40 MHz  
X2 mode  
20 MHz  
standard mode  
30 MHz  
60 MHz equiv.  
40 MHz equiv.  
Symbol  
Min  
Max  
Min  
85  
Max  
Min  
135  
Max  
Min  
125  
Max  
Min  
175  
Max  
T
130  
130  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
T
T
85  
135  
125  
175  
WLWH  
T
100  
60  
102  
95  
137  
RLDV  
0
0
0
0
0
RHDX  
T
30  
18  
98  
35  
165  
175  
95  
25  
42  
RHDZ  
T
160  
165  
100  
155  
160  
105  
222  
235  
130  
LLDV  
T
100  
70  
AVDV  
T
50  
75  
30  
47  
7
55  
80  
45  
70  
5
70  
103  
13  
LLWL  
T
AVWL  
QVWX  
QVWH  
WHQX  
T
T
T
10  
15  
160  
15  
107  
9
165  
17  
155  
10  
213  
18  
T
0
0
0
0
0
RLAZ  
T
10  
40  
7
27  
15  
35  
5
45  
13  
53  
WHLH  
66  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 41. AC Parameters for a Variable Clock: derating formula  
Symbol  
Type  
Standard X2 Clock  
Clock  
-M  
-V  
-L  
Units  
T
Min  
Min  
Max  
Min  
Max  
Max  
Max  
Min  
Max  
Min  
Min  
Min  
Min  
Max  
Min  
Max  
6 T - x  
6 T - x  
5 T - x  
x
3 T - x  
3 T - x  
2.5 T - x  
x
20  
20  
25  
0
15  
15  
23  
0
25  
25  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
T
WLWH  
T
RLDV  
T
RHDX  
T
2 T - x  
8 T - x  
9 T - x  
3 T - x  
3 T + x  
4 T - x  
T - x  
T - x  
20  
40  
60  
25  
25  
25  
15  
15  
10  
0
15  
35  
50  
20  
20  
20  
10  
10  
8
25  
45  
65  
30  
30  
30  
20  
20  
15  
0
RHDZ  
T
4T -x  
LLDV  
T
4.5 T - x  
1.5 T - x  
1.5 T + x  
2 T - x  
0.5 T - x  
3.5 T - x  
0.5 T - x  
x
AVDV  
T
LLWL  
LLWL  
T
T
AVWL  
QVWX  
QVWH  
WHQX  
T
T
T
7 T - x  
T - x  
T
x
0
RLAZ  
WHLH  
WHLH  
T
T
T - x  
0.5 T - x  
0.5 T + x  
15  
15  
10  
10  
20  
20  
T + x  
10.5.5. External Data Memory Write Cycle  
T
WHLH  
ALE  
PSEN  
WR  
T
T
LLWL  
WLWH  
T
QVWX  
T
T
T
QVWH  
WHQX  
LLAX  
PORT 0  
PORT 2  
A0-A7  
DATA OUT  
T
AVWL  
ADDRESS  
OR SFR-P2  
ADDRESS A8-A15 OR SFR P2  
Figure 26. External Data Memory Write Cycle  
Rev. C - 06 March, 2001  
67  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
10.5.6. External Data Memory Read Cycle  
T
WHLH  
T
ALE  
LLDV  
PSEN  
T
T
RLRH  
LLWL  
T
RLDV  
RD  
T
RHDZ  
T
AVDV  
T
T
LLAX  
RHDX  
PORT 0  
PORT 2  
A0-A7  
DATA IN  
T
RLAZ  
T
AVWL  
ADDRESS  
OR SFR-P2  
ADDRESS A8-A15 OR SFR P2  
Figure 27. External Data Memory Read Cycle  
10.5.7. Serial Port Timing - Shift Register Mode  
Table 42. Symbol Description  
Symbol  
Parameter  
T
T
T
Serial port clock cycle time  
XLXL  
QVHX  
XHQX  
Output data set-up to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
TXHDX  
T
Clock rising edge to input data valid  
XHDV  
Table 43. AC Parameters for a Fix Clock  
Speed  
-M  
40 MHz  
-V  
X2 mode  
30 MHz  
-V  
-L  
X2 mode  
20 MHz  
-L  
Units  
standard mode  
40 MHz  
standard mode  
30 MHz  
60 MHz equiv.  
40 MHz equiv.  
Symbol  
Min  
Max  
Min  
200  
117  
13  
Max  
Min  
300  
200  
30  
Max  
Min  
300  
200  
30  
Max  
Min  
400  
283  
47  
Max  
T
300  
200  
30  
ns  
ns  
ns  
ns  
ns  
XLXL  
QVHX  
XHQX  
XHDX  
XHDV  
T
T
T
T
0
0
0
0
0
117  
34  
117  
117  
200  
68  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 44. AC Parameters for a Variable Clock: derating formula  
Symbol  
Type  
Standard X2 Clock  
Clock  
-M  
-V  
-L  
Units  
T
Min  
Min  
Min  
Min  
Max  
12 T  
10 T - x  
2 T - x  
x
6 T  
5 T - x  
T - x  
x
ns  
ns  
ns  
ns  
ns  
XLXL  
QVHX  
XHQX  
XHDX  
XHDV  
T
T
T
T
50  
20  
0
50  
20  
0
50  
20  
0
10 T - x  
5 T- x  
133  
133  
133  
10.5.8. Shift Register Timing Waveforms  
0
1
2
3
4
5
6
7
8
INSTRUCTION  
ALE  
T
XLXL  
CLOCK  
T
XHQX  
T
QVXH  
0
1
2
3
4
5
6
7
OUTPUT DATA  
T
SET TI  
XHDX  
T
XHDV  
WRITE to SBUF  
INPUT DATA  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET RI  
CLEAR RI  
Figure 28. Shift Register Timing Waveforms  
Rev. C - 06 March, 2001  
69  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
10.5.9. EPROM Programming and Verification Characteristics  
TA = 21°C to 27°C; V = 0V; V = 5V ± 10% while programming. V = operating range while verifying  
SS  
CC  
CC  
Table 45. EPROM Programming Parameters  
Symbol  
Parameter  
Min  
Max  
Units  
V
Programming Supply Voltage  
Programming Supply Current  
Oscillator Frquency  
12.5  
13  
V
PP  
I
75  
6
mA  
PP  
1/T  
4
MHz  
CLCL  
T
Address Setup to PROG Low  
Adress Hold after PROG  
Data Setup to PROG Low  
Data Hold after PROG  
48 T  
CLCL  
AVGL  
GHAX  
T
48 TCLCL  
48 TCLCL  
48 TCLCL  
T
T
DVGL  
GHDX  
T
(Enable) High to V  
48 T  
CLCL  
EHSH  
SHGL  
PP  
T
T
T
VPP Setup to PROG Low  
VPP Hold after PROG  
PROG Width  
10  
µs  
µs  
µs  
10  
90  
GHSL  
110  
GLGH  
T
Address to Valid Data  
ENABLE Low to Data Valid  
Data Float after ENABLE  
48 TCLCL  
48 TCLCL  
48 TCLCL  
AVQV  
T
ELQV  
EHQZ  
T
0
10.5.10. EPROM Programming and Verification Waveforms  
PROGRAMMING  
VERIFICATION  
ADDRESS  
P1.0-P1.7  
ADDRESS  
P2.0-P2.5  
P3.4-P3.5*  
T
AVQV  
DATA OUT  
P0  
DATA IN  
T
T
GHDX  
DVGL  
AVGL  
T
T
GHAX  
ALE/PROG  
T
T
SHGL  
GHSL  
T
GLGH  
V
EA/V  
PP  
PP  
V
V
CC  
CC  
T
T
T
EHSH  
EHQZ  
ELQV  
CONTROL  
SIGNALS  
(ENABLE)  
* 8KB: up to P2.4, 16KB: up to P2.5, 32KB: up to P3.4, 64KB: up to P3.5  
Figure 29. EPROM Programming and Verification Waveforms  
70  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
10.5.11. External Clock Drive Characteristics (XTAL1)  
Table 46. AC Parameters  
Symbol  
Parameter  
Min  
Max  
Units  
T
Oscillator Period  
High Time  
Low Time  
25  
ns  
CLCL  
T
5
5
ns  
ns  
ns  
ns  
%
CHCX  
T
T
T
CLCX  
CLCH  
CHCL  
Rise Time  
5
5
Fall Time  
T
/T  
Cyclic ratio in X2 mode  
40  
60  
CHCX CLCX  
10.5.12. External Clock Drive Waveforms  
V
-0.5 V  
CC  
0.7V  
CC  
0.2V -0.1 V  
0.45 V  
T
CHCX  
CC  
T
T
T
CHCL  
CLCH  
CLCX  
T
CLCL  
Figure 30. External Clock Drive Waveforms  
10.5.13. AC Testing Input/Output Waveforms  
V
-0.5 V  
CC  
0.2V +0.9  
CC  
INPUT/OUTPUT  
0.2V -0.1  
CC  
0.45 V  
Figure 31. AC Testing Input/Output Waveforms  
AC inputs during testing are driven at V - 0.5 for a logic “1” and 0.45V for a logic “0”. Timing measurement  
CC  
are made at V min for a logic “1” and V max for a logic “0”.  
IH  
IL  
10.5.14. Float Waveforms  
FLOAT  
V
-0.1 V  
+0.1 V  
OH  
V
V
V
+0.1 V  
-0.1 V  
LOAD  
LOAD  
LOAD  
V
OL  
Figure 32. Float Waveforms  
Rev. C - 06 March, 2001  
71  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins  
to float when a 100 mV change from the loaded V /V level occurs. I /I  
≥ ± 20mA.  
OH OL  
OL OH  
10.5.15. Clock Waveforms  
Valid in normal clock mode. In X2 mode XTAL2 signal must be changed to XTAL2 divided by two.  
STATE1  
P1 P2  
STATE2  
STATE3  
STATE4  
P1 P2 P1  
STATE4  
P1 P2  
STATE5  
P1 P2  
STATE6  
P1 P2  
STATE5  
INTERNAL  
CLOCK  
P1  
P2 P1 P2  
P2  
XTAL2  
ALE  
THESE SIGNALS ARE NOT ACTIVATED DURING THE  
EXECUTION OF A MOVX INSTRUCTION  
EXTERNAL PROGRAM MEMORY FETCH  
PSEN  
PCL OUT  
PCL OUT  
PCL OUT  
DATA  
P0  
DATA  
SAMPLED  
DATA  
SAMPLED  
SAMPLED  
FLOAT  
FLOAT  
FLOAT  
INDICATES ADDRESS TRANSITIONS  
P2 (EXT)  
READ CYCLE  
RD  
PCL OUT (IF PROGRAM  
MEMORY IS EXTERNAL)  
P0  
P2  
DPL OR Rt OUT  
FLOAT  
INDICATES DPH OR P2 SFR TO PCH TRANSITION  
WRITE CYCLE  
WR  
PCL OUT (EVEN IF PROGRAM  
MEMORY IS INTERNAL)  
P0  
DPL OR Rt OUT  
DATA OUT  
PCL OUT (IF PROGRAM  
MEMORY IS EXTERNAL)  
INDICATES DPH OR P2 SFR TO PCH TRANSITION  
P2  
PORT OPERATION  
OLD DATA  
P0 PINS SAMPLED  
NEW DATA  
P0 PINS SAMPLED  
MOV DEST P0  
P1, P2, P3 PINS SAMPLED  
RXD SAMPLED  
P1, P2, P3 PINS SAMPLED  
MOV DEST PORT (P1, P2, P3)  
(INCLUDES INT0, INT1, TO, T1)  
RXD SAMPLED  
SERIAL PORT SHIFT CLOCK  
TXD (MODE 0)  
Figure 33. Clock Waveforms  
This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins,  
however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin  
loading. Propagation also varies from output to output and component. Typically though (T =25°C fully loaded)  
A
RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays  
are incorporated in the AC specifications.  
72  
Rev. C - 06 March, 2001  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
11. Ordering Information  
TS  
R
-M  
87C51RD2  
B
C
-M: VCC: 5V +/- 10%  
40 MHz, X1 mode  
Packages:  
A: PDIL 40  
20 MHz, X2 mode  
B: PLCC 44  
E: VQFP 44 (1.4mm)  
-V:  
-L:  
-E:  
VCC: 5V +/- 10%  
40 MHz, X1 mode  
30 MHz, X2 mode  
VCC: 2.7 to 5.5 V  
30 MHz, X1 mode  
20 MHz, X2 mode  
Samples  
J: Window CDIL 40*  
K: Window CQPJ 44*  
L: PLCC68 (RD devices only)*  
M: VQFP64, square package, 1.4mm  
(RD devices only)*  
N: JLCC68 (RD devices only)*  
Part Number  
80C51RA2 (ROMless, 256 bytes XRAM)  
80C51RD2 (ROMless, 768bytes XRAM)  
83C51RB2zzz (16k ROM, zzz is the customer code)  
83C51RC2zzz (32k ROM, zzz is the customer code)  
83C51RD2zzz (64k ROM, zzz is the customer code)  
87C51RB2 (16k OTP EPROM)  
Conditioning  
R: Tape & Reel  
D: Dry Pack  
B: Tape & Reel and  
Dry Pack  
87C51RC2 (32k OTP EPROM)  
87C51RD2 (64k OTP EPROM)  
Temperature Range  
C: Commercial 0 to 70oC  
I: Industrial -40 to 85oC  
(*) Check with Atmel Wireless & Microcontrollers Sales Office for availability. Ceramic packages (J, K, N) are available for proto  
typing, not for volume production. Ceramic packages are available for OTP only.  
Table 47. Maximum Clock Frequency  
-M  
-V  
-L  
Unit  
Code  
Standard Mode, oscillator frequency  
Standard Mode, internal frequency  
40  
40  
40  
40  
30  
30  
MHz  
X2 Mode, oscillator frequency  
X2 Mode, internal equivalent frequency  
20  
40  
30  
60  
20  
40  
MHz  
Rev. C - 06 March, 2001  
73  
TS80C51RA2/RD2  
TS83C51RB2/RC2/RD2  
TS87C51RB2/RC2/RD2  
Table 48. Possible Ordering Entries  
TS83C51RB2/RC2/RD2zzz  
TS80C51RA2/RD2 ROMless  
TS87C51RB2/RC2/RD2 OTP  
ROM  
-MCA  
-MCB  
-MCE  
-MCL  
-MCM  
-VCA  
-VCB  
-VCE  
-VCL  
-VCM  
-LCA  
-LCB  
-LCE  
-LCL  
-LCM  
-MIA  
-MIB  
-MIE  
-MIL  
-MIM  
-VIA  
-VIB  
-VIE  
-VIL  
-VIM  
-LIA  
-LIB  
-LIE  
X
X
X
X
X
X
X
X
X
RD2 only  
RD2 only  
RD2 only  
RD2 only  
RD2 only  
RD2 only  
X
X
X
X
X
X
X
X
X
RD2 only  
RD2 only  
RD2 only  
RD2 only  
RD2 only  
RD2 only  
X
X
X
X
X
X
X
X
X
RD2 only  
RD2 only  
RD2 only  
RD2 only  
RD2 only  
RD2 only  
X
X
X
X
X
X
X
X
X
RD2 only  
RD2 only  
RD2 only  
RD2 only  
RD2 only  
RD2 only  
X
X
X
X
X
X
X
X
RD2 only  
RD2 only  
X
X
RD2 only  
RD2 only  
RD2 only  
RD2 only  
X
X
X
X
X
X
RD2 only  
RD2 only  
X
X
X
RD2 only  
RD2 only  
X
-LIL  
RD2 only  
RD2 only  
-LIM  
-EA  
-EB  
X
X
-EE  
X
X
-EL  
RD2 only  
RD2 only  
RD2 only  
RD2 only  
RC2 and RD2 only  
RC2 and RD2 only  
RD2 only  
-EM  
-EJ  
-EK  
-EN  
-Ex for samples  
Tape and Reel available for B, E, L and M packages  
Dry pack mandatory for E and M packages  
74  
Rev. C - 06 March, 2001  

相关型号:

TS80C51RA2-LILB

High Performance 8-bit Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LILD

High Performance 8-bit Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LILR

High Performance 8-bit Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LIMB

High Performance 8-bit Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LIMD

High Performance 8-bit Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LIMR

High Performance 8-bit Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LINB

High Performance 8-bit Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LIND

High Performance 8-bit Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LINR

High Performance 8-bit Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LJA

Microcontroller, 8-Bit, 30MHz, CMOS, PDIP40, PLASTIC, DIP-40

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TS80C51RA2-LJAD

Microcontroller, 8-Bit, 30MHz, CMOS, PDIP40, PLASTIC, DIP-40

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LJBR

Microcontroller, 8-Bit, 30MHz, CMOS, PQCC44, PLASTIC, LCC-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL