TS80C51RA2-LJEB [ATMEL]

暂无描述;
TS80C51RA2-LJEB
型号: TS80C51RA2-LJEB
厂家: ATMEL    ATMEL
描述:

暂无描述

微控制器
文件: 总86页 (文件大小:986K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1. Features  
80C52 Compatible  
– 8051 pin and instruction compatible  
– Four 8-bit I/O ports  
– Three 16-bit timer/counters  
– 256 bytes scratchpad RAM  
High-Speed Architecture  
– 40 MHz @ 5V, 30MHz @ 3V  
– X2 Speed Improvement capability (6 clocks/machine cycle)  
– 30 MHz @ 5V, 20 MHz @ 3V (Equivalent to  
– 60 MHz @ 5V, 40 MHz @ 3V)  
High  
Performance  
8-bit  
Dual Data Pointer  
On-chip ROM/EPROM (16K-bytes, 32K-bytes, 64K-bytes)  
On-chip eXpanded RAM (XRAM) (256 or 768 bytes)  
Programmable Clock Out and Up/Down Timer/Counter 2  
Programmable Counter Array with  
– High Speed Output,  
Microcontroller  
– Compare / Capture,  
TS80C51RA2  
TS83C51RB2  
TS83C51RC2  
TS83C51RD2  
TS87C51RB2  
TS87C51RC2  
TS87C51RD2  
AT80C51RA2  
AT83C51RB2  
AT83C51RC2  
AT83C51RD2  
AT87C51RB2  
AT87C51RC2  
– Pulse Width Modulator,  
– Watchdog Timer Capabilities  
Hardware Watchdog Timer (One-time enabled with Reset-Out)  
2 extra 8-bit I/O ports available on RD2 with high pin count packages  
Asynchronous port reset  
Interrupt Structure with  
– 7 Interrupt sources,  
– 4 level priority interrupt system  
Full duplex Enhanced UART  
– Framing error detection  
– Automatic address recognition  
Low EMI (inhibit ALE)  
Power Control modes  
– Idle mode  
– Power-down mode  
– Power-off Flag  
Once mode (On-chip Emulation)  
Power supply: 4.5-5V, 2.7-5.5V  
Temperature ranges: Commercial (0 to 70oC) and Industrial (-40 to 85oC)  
Packages: PDIL40, PLCC44, VQFP44 1.4, PLCC68, VQFP64 1.4  
2. Description  
Atmel TS8xC51Rx2 is a high performance CMOS ROM, OTP, EPROM and ROMless  
versions of the 80C51 CMOS single chip 8-bit microcontroller.  
The TS8xC51Rx2 retains all features of the 80C51 with extended ROM/EPROM  
capacity (16/32/64 Kbytes), 256 bytes of internal RAM, a 7-source , 4-level interrupt  
system, an on-chip oscilator and three timer/counters.  
In addition, the TS80C51Rx2 has a Programmable Counter Array, an XRAM of 256 or  
768 bytes, a Hardware Watchdog Timer, a more versatile serial channel that  
Rev. 4188F–8051–01/08  
facilitates multiprocessor communication (EUART) and an X2 speed improvement mechanism.  
The fully static design of the TS80C51Rx2 allows to reduce system power consumption by  
bringing the clock frequency down to any value, even DC, without loss of data.  
The TS80C51Rx2 has 2 software-selectable modes of reduced activity for further reduction in  
power consumption. In the idle mode the CPU is frozen while the timers, the serial port and the  
interrupt system are still operating. In the power-down mode the RAM is saved and all other  
functions are inoperative.  
PDIL40  
PLCC44  
TOTAL RAM  
(bytes)  
VQFP44 1.4  
ROM (bytes)  
EPROM (bytes)  
XRAM (bytes)  
I/O  
TS80C51RA2  
TS80C51RD2  
0
0
0
0
256  
768  
512  
32  
32  
1024  
TS83C51RB2  
TS83C51RC2  
TS83C51RD2  
16k  
32k  
64k  
0
0
0
256  
256  
768  
512  
512  
32  
32  
32  
1024  
TS87C51RB2  
TS87C51RC2  
TS87C51RD2  
0
0
0
16k  
32k  
64k  
256  
256  
768  
512  
512  
32  
32  
32  
1024  
PLCC68  
TOTAL RAM  
(bytes)  
VQFP64 1.4  
ROM (bytes)  
EPROM (bytes)  
XRAM (bytes)  
I/O  
48  
48  
48  
TS80C51RD2  
TS83C51RD2  
TS87C51RD2  
0
64k  
0
0
0
768  
768  
768  
1024  
1024  
1024  
64k  
2
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
3. Block Diagram  
(3) (3)  
(1)  
(1) (1) (1)  
XTAL1  
XTAL2  
ROM  
/EPROM  
0/16/32/64Kx8 256/768x8  
RAM  
256x8  
XRAM  
PCA  
EUART  
Timer2  
ALE/PROG  
PSEN  
C51  
CORE  
IB-bus  
CPU  
EA/VPP  
(3)  
(3)  
Timer 0  
Timer 1  
Parallel I/O Ports & Ext. Bus  
Port 4 Port 5  
INT  
Ctrl  
Watch  
Dog  
RD  
Port 0Port 1  
Port 3  
Port 2  
WR  
(2)  
(2)  
(3) (3)  
(3) (3)  
(1): Alternate function of Port 1  
(2): Only available on high pin count packages  
(3): Alternate function of Port 3  
3
4188F–8051–01/08  
4. SFR Mapping  
The Special Function Registers (SFRs) of the TS80C51Rx2 fall into the following categories:  
• C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1  
• I/O port registers: P0, P1, P2, P3, P4, P5  
• Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L,  
RCAP2H  
• Serial I/O port registers: SADDR, SADEN, SBUF, SCON  
• Power and clock control registers: PCON  
• HDW Watchdog Timer Reset: WDTRST, WDTPRG  
• PCA registers: CL, CH, CCAPiL, CCAPiH, CCON, CMOD, CCAPMi  
• Interrupt system registers: IE, IP, IPH  
• Others: AUXR, CKCON  
4
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Table 4-1.  
All SFRs with their address and their reset value  
Bit  
Non Bit addressable  
addressable  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
CH  
CCAP0H  
CCAP1H  
CCAPL2H  
CCAPL3H  
CCAPL4H  
F8h  
F0h  
FFh  
F7h  
0000 0000  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
B
0000 0000  
P5 bit  
addressable  
CL  
CCAP0L  
CCAP1L  
CCAPL2L  
CCAPL3L  
CCAPL4L  
E8h  
EFh  
0000 0000  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
1111 1111  
ACC  
0000 0000  
E0h  
D8h  
D0h  
C8h  
E7h  
DFh  
D7h  
CFh  
CCON  
CMOD  
CCAPM0  
CCAPM1  
CCAPM2  
CCAPM3  
CCAPM4  
00X0 0000  
00XX X000  
X000 0000  
X000 0000  
X000 0000  
X000 0000  
X000 0000  
PSW  
0000 0000  
T2CON  
0000 0000  
T2MOD  
XXXX XX00  
RCAP2L  
0000 0000  
RCAP2H  
0000 0000  
TL2  
0000 0000  
TH2  
0000 0000  
P4 bit  
P5 byte  
addressable  
addressable  
C0h  
C7h  
1111 1111  
1111 1111  
IP  
SADEN  
B8h  
B0h  
A8h  
A0h  
98h  
90h  
88h  
80h  
BFh  
B7h  
AFh  
A7h  
9Fh  
97h  
8Fh  
87h  
X000 000  
0000 0000  
P3  
IPH  
X000 0000  
1111 1111  
IE  
SADDR  
0000 0000  
0000 0000  
P2  
AUXR1  
WDTRST  
WDTPRG  
1111 1111  
XXXX0XX0  
XXXX XXXX  
XXXX X000  
SCON  
SBUF  
0000 0000  
XXXX XXXX  
P1  
1111 1111  
TCON  
TMOD  
TL0  
TL1  
TH0  
TH1  
CKCON  
AUXR  
XXXXXX00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
XXXX XXX0  
P0  
PCON  
SP  
0000 0111  
DPL  
0000 0000  
DPH  
0000 0000  
1111 1111  
00X1 0000  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
reserved  
5
4188F–8051–01/08  
5. Pin Configuration  
P1.0 / T2  
P1.1 / T2EX  
P1.2  
40  
39  
38  
1
2
3
4
VCC  
P0.0 / A0  
P0.1 / A1  
P1.3  
37 P0.2 / A2  
P1.4  
P1.5  
P0.3 / A3  
P0.4 / A4  
P0.5 / A5  
P0.6 / A6  
P0.7 / A7  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
5
6
7
8
P1.6  
P1.7  
RST  
6
5
4
3
2 1 44 43 42 41 40  
39  
P1.5  
P1.6  
P1.7  
7
8
9
10  
11  
12  
13  
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA/VPP  
NIC*  
ALE/PROG  
PSEN  
P2.7/A15  
P2.6/A14  
P2.5/A13  
9
38  
37  
36  
35  
34  
33  
EA/VPP  
ALE/PROG  
PSEN  
P2.7 / A15  
P2.6 / A14  
P3.0/RxD 10  
P3.1/TxD  
11  
P3.2/INT0  
P3.3/INT1 13  
PDIL/  
RST  
12  
CDIL40  
P3.0/RxD  
NIC*  
PLCC/CQPJ 44  
14  
15  
16  
17  
18  
19  
20  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
P2.5 / A13  
14  
15  
16  
17  
32  
31  
30  
29  
P2.4 / A12  
P2.3 / A11  
P3.7/RD  
XTAL2  
XTAL1  
VSS  
P2.2 / A10  
P2.1 / A9  
P2.0 / A8  
18 19 20 21 22 23 24 25 26 27 28  
4443424140393837363534  
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA/VPP  
NIC*  
ALE/PROG  
PSEN  
P2.7/A15  
P2.6/A14  
P2.5/A13  
33  
32  
31  
P1.5  
P1.6  
P1.7  
RST  
1
2
3
4
30  
29  
28  
27  
26  
25  
24  
23  
P3.0/RxD  
NIC*  
5
VQFP44 1.4  
6
7
8
9
10  
11  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
12 13 14 15 16 17 18 19 20 21 22  
*NIC: No Internal Connection  
6
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
60  
P5.5  
P0.3/AD3  
P0.2/AD2  
P5.6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
P5.0  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
P2.4/A12  
P2.3/A11  
P4.7  
P0.1/AD1  
P0.0/AD0  
P5.7  
P2.2/A10  
P2.1/A9  
P2.0/A8  
P4.6  
VCC  
PLCC 68  
NIC  
NIC  
VSS  
P1.0/T2  
P4.0  
P4.5  
P1.1/T2EX  
P1.2  
XTAL1  
XTAL2  
P3.7/RD  
P4.4  
P1.3  
P4.1  
P1.4  
P3.6/WR  
P4.3  
P4.2  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P5.5  
P0.3/AD3  
P0.2/AD2  
P5.6  
P0.1/AD1  
P0.0/AD0  
P5.7  
VCC  
VSS  
P1.0/T2  
P4.0  
P1.1/T2EX  
P1.2  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P2.4/A12  
P2.3/A11  
P4.7  
P2.2/A10  
P2.1/A9  
P2.0/A8  
P4.6  
NIC  
VSS  
P4.5  
XTAL1  
XTAL2  
P3.7/RD  
P4.4  
P3.6/WR  
P4.3  
9
VQFP64 1.4  
10  
11  
12  
13  
14  
15  
16  
P1.3  
P4.1  
P1.4  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NIC: No InternalConnection  
7
4188F–8051–01/08  
Pin Number  
Mnemonic  
VSS  
DIL  
LCC  
22  
VQFP 1.4  
Type  
Name And Function  
20  
16  
39  
I
I
Ground: 0V reference  
Vss1  
1
Optional Ground: Contact the Sales Office for ground connection.  
Power Supply: This is the power supply voltage for normal, idle and power-down  
operation  
VCC  
40  
44  
38  
I
P0.0-P0.7  
39-32  
43-36  
37-30  
I/O  
Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to  
them float and can be used as high impedance inputs. Port 0 pins must be polarized to  
Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the  
multiplexed low-order address and data bus during access to external program and  
data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0  
also inputs the code bytes during EPROM programming. External pull-ups are required  
during program verification during which P0 outputs the code bytes.  
P1.0-P1.7  
1-8  
2-9  
40-44  
1-3  
I/O  
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that  
have 1s written to them are pulled high by the internal pull-ups and can be used as  
inputs. As inputs, Port 1 pins that are externally pulled low will source current because  
of the internal pull-ups. Port 1 also receives the low-order address byte during memory  
programming and verification.  
Alternate functions for Port 1 include:  
1
2
40  
41  
I/O  
I
T2 (P1.0): Timer/Counter 2 external count input/Clockout  
T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control  
ECI (P1.2): External Clock for the PCA  
2
3
3
4
42  
I
4
5
43  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CEX0 (P1.3): Capture/Compare External I/O for PCA module 0  
CEX1 (P1.4): Capture/Compare External I/O for PCA module 1  
CEX0 (P1.5): Capture/Compare External I/O for PCA module 2  
CEX0 (P1.6): Capture/Compare External I/O for PCA module 3  
CEX0 (P1.7): Capture/Compare External I/O for PCA module 4  
5
6
44  
6
7
7
8
45  
46  
8
9
47  
P2.0-P2.7  
21-28  
24-31  
18-25  
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that  
have 1s written to them are pulled high by the internal pull-ups and can be used as  
inputs. As inputs, Port 2 pins that are externally pulled low will source current because  
of the internal pull-ups. Port 2 emits the high-order address byte during fetches from  
external program memory and during accesses to external data memory that use 16-  
bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups  
emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX  
@Ri), port 2 emits the contents of the P2 SFR. Some Port 2 pins (P2.0 to P2.5) receive  
the high order address bits during EPROM programming and verification:  
P3.0-P3.7  
10-17  
11,  
13-19  
5,  
7-13  
I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that  
have 1s written to them are pulled high by the internal pull-ups and can be used as  
inputs. As inputs, Port 3 pins that are externally pulled low will source current because  
of the internal pull-ups. Some Port 3 pins (P3.4 to P3.5) receive the high order address  
bits during EPROM programming and verification.  
Port 3 also serves the special features of the 80C51 family, as listed below.  
10  
11  
11  
13  
5
7
I
RXD (P3.0): Serial input port  
O
TXD (P3.1): Serial output port  
8
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Pin Number  
Mnemonic  
DIL  
12  
13  
14  
15  
16  
17  
9
LCC  
14  
VQFP 1.4  
Type  
Name And Function  
8
9
I
I
INT0 (P3.2): External interrupt 0  
INT1 (P3.3): External interrupt 1  
T0 (P3.4): Timer 0 external input  
T1 (P3.5): Timer 1 external input  
WR (P3.6): External data memory write strobe  
RD (P3.7): External data memory read strobe  
15  
16  
10  
11  
12  
13  
4
I
17  
I
18  
O
O
I
19  
Reset  
10  
Reset: A high on this pin for two machine cycles while the oscillator is running, resets  
the device. An internal diffused resistor to VSS permits a power-on reset using only an  
external capacitor to VCC. If the hardware watchdog reaches its time-out, the reset pin  
becomes an output during the time the internal reset is activated.  
ALE/PROG  
30  
33  
27  
O (I)  
Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the  
address during an access to external memory. In normal operation, ALE is emitted at a  
constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for  
external timing or clocking. Note that one ALE pulse is skipped during each access to  
external data memory. This pin is also the program pulse input (PROG) during EPROM  
programming. ALE can be disabled by setting SFR’s AUXR.0 bit. With this bit set, ALE  
will be inactive during internal fetches.  
PSEN  
29  
31  
32  
35  
26  
29  
O
Program Store ENable: The read strobe to external program memory. When  
executing code from the external program memory, PSEN is activated twice each  
machine cycle, except that two PSEN activations are skipped during each access to  
external data memory. PSEN is not activated during fetches from internal program  
memory.  
EA/VPP  
I
External Access Enable/Programming Supply Voltage: EA must be externally held  
low to enable the device to fetch code from external program memory locations 0000H  
and 3FFFH (RB) or 7FFFH (RC), or FFFFH (RD). If EA is held high, the device  
executes from internal program memory unless the program counter contains an  
address greater than 3FFFH (RB) or 7FFFH (RC) EA must be held low for ROMless  
devices. This pin also receives the 12.75V programming supply voltage (VPP) during  
EPROM programming. If security level 1 is programmed, EA will be internally latched  
on Reset.  
XTAL1  
XTAL2  
19  
18  
21  
20  
15  
14  
I
Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock  
generator circuits.  
O
Crystal 2: Output from the inverting oscillator amplifier  
5.1  
Pin Description for 64/68 pin Packages  
Port 4 and Port 5 are 8-bit bidirectional I/O ports with internal pull-ups. Pins that have 1s written  
to them are pulled high by the internal pull ups and can be used as inputs.  
As inputs, pins that are externally pulled low will source current because of the internal pull-ups.  
Refer to the previous pin description for other pins.  
Table 5-1.  
64/68 Pin Packages Configuration  
Pin  
PLCC68  
51  
SQUARE VQFP64 1.4  
VSS  
VCC  
9/40  
8
17  
9
4188F–8051–01/08  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P3.0  
P3.1  
15  
14  
12  
11  
9
6
5
3
2
64  
61  
60  
59  
10  
12  
13  
14  
16  
18  
19  
20  
43  
44  
45  
47  
48  
50  
53  
54  
25  
28  
6
5
3
19  
21  
22  
23  
25  
27  
28  
29  
54  
55  
56  
58  
59  
61  
64  
65  
34  
39  
Pin  
PLCC68  
40  
SQUARE VQFP64 1.4  
P3.2  
29  
30  
31  
32  
34  
36  
21  
56  
P3.3  
41  
P3.4  
42  
P3.5  
43  
P3.6  
45  
P3.7  
47  
RESET  
ALE/PROG  
30  
68  
10  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
PSEN  
EA/VPP  
XTAL1  
XTAL2  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
67  
2
55  
58  
38  
37  
11  
15  
17  
33  
35  
39  
42  
46  
49  
51  
52  
62  
63  
1
49  
48  
20  
24  
26  
44  
46  
50  
53  
57  
60  
62  
63  
7
8
10  
13  
16  
4
7
11  
4188F–8051–01/08  
5.2  
TS80C51Rx2 Enhanced Features  
In comparison to the original 80C52, the TS8xC51Rx2 implements some new features, which  
are  
:
• The X2 option.  
• The Dual Data Pointer.  
• The extended RAM.  
• The Programmable Counter Array (PCA).  
• The Watchdog.  
• The 4 level interrupt priority system.  
• The power-off flag.  
• The ONCE mode.  
• The ALE disabling.  
• Some enhanced features are also located in the UART and the timer 2.  
5.3  
X2 Feature  
The TS80C51Rx2 core needs only 6 clock periods per machine cycle. This feature called ”X2”  
provides the following advantages:  
• Divides frequency crystals by 2 (cheaper crystals) while keeping same CPU power.  
• Saves power consumption while keeping same CPU power (oscillator power saving).  
• Saves power consumption by dividing dynamically operating frequency by 2 in operating and  
idle modes.  
• Increases CPU power by 2 while keeping same crystal frequency.  
In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 sig-  
nal and the main clock input of the core (phase generator). This divider may be disabled by  
software.  
5.3.1  
Description  
The clock for the whole circuit and peripheral is first divided by two before being used by the  
CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2  
mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to  
60%. Figure 5-1 shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 ris-  
ing edge to avoid glitches when switching from X2 to STD mode. Figure 5-2 shows the mode  
switching waveforms.  
12  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Figure 5-1. Clock Generation Diagram  
XTAL1:2  
2
state machine: 6 clock cycles.  
CPU control  
XTAL1  
0
1
FXTAL  
FOSC  
X2  
CKCON reg  
Figure 5-2. Mode Switching Waveforms  
XTAL1  
XTAL1:2  
X2 bit  
CPU clock  
STD Mode  
X2 Mode  
STD Mode  
The X2 bit in the CKCON register (Table 5-2) allows to switch from 12 clock cycles per instruc-  
tion to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode).  
Setting this bit activates the X2 feature (X2 mode).  
Note:  
In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all  
peripherals using clock frequency as time reference (UART, timers, PCA...) will have their time ref-  
erence divided by two. For example a free running timer generating an interrupt every 20 ms will  
then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.  
Table 5-2.  
CKCON Register  
CKCON - Clock Control Register (8Fh)  
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
X2  
Bit  
Mnemonic Description  
Bit Number  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
7
-
Reserved  
6
5
-
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
13  
4188F–8051–01/08  
Bit  
Bit Number  
Mnemonic Description  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
4
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
3
2
1
-
-
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
CPU and peripheral clock bit  
Clear to select 12 clock periods per machine cycle (STD mode, FOSC=FXTAL  
Set to select 6 clock periods per machine cycle (X2 mode, FOSC=FXTAL).  
0
X2  
/2).  
Reset Value = XXXX XXX0b  
Not bit addressable  
For further details on the X2 feature, please refer to ANM072 available on the web  
(http://www.atmel.com)  
14  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
5.4  
Dual Data Pointer Register  
The additional data pointer can be used to speed up code execution and reduce code size in a  
number of ways.  
The dual DPTR structure is a way by which the chip will specify the address of an external data  
memory location. There are two 16-bit DPTR registers that address the external memory, and a  
single bit called DPS = AUXR1/bit0 (Table 5-3) that allows the program code to switch between  
them (Refer to Figure 5-3).  
Figure 5-3. Use of Dual Pointer  
External Data Memory  
7
0
DPS  
DPTR1  
DPTR0  
AUXR1(A2H)  
DPH(83H) DPL(82H)  
Table 5-3.  
AUXR1: Auxiliary Register 1  
AUXR1  
Address 0A2H  
-
-
-
-
GF3  
-
-
DPS  
Reset value  
Function  
X
X
X
X
0
X
X
0
Symbol  
-
Not implemented, reserved for future use (1)  
Data Pointer Selection.  
DPS  
DPS  
Operating Mode  
DPTR0 Selected  
DPTR1 Selected  
0
1
GF3  
This bit is a general purpose user flag(2)  
.
1.  
User software should not write 1s to reserved bits. These bits may be used in future 8051 family  
products to invoke new feature. In that case, the reset value of the new bit will be 0, and its  
active value will be 1. The value read from a reserved bit is indeterminate.  
GF3 will not be available on first version of the RC devices.  
15  
4188F–8051–01/08  
6. Application  
Software can take advantage of the additional data pointers to both increase speed and reduce  
code size, for example, block operations (copy, compare, search ...) are well served by using  
one data pointer as a ’source’ pointer and the other one as a "destination" pointer.  
ASSEMBLY LANGUAGE  
; Block move using dual data pointers  
; Destroys DPTR0, DPTR1, A and PSW  
; note: DPS exits opposite of entry state  
; unless an extra INC AUXR1 is added  
;
00A2 AUXR1 EQU 0A2H  
;
0000 909000MOV DPTR,#SOURCE ; address of SOURCE  
0003 05A2 INC AUXR1 ; switch data pointers  
0005 90A000 MOV DPTR,#DEST ; address of DEST  
0008 LOOP:  
0008 05A2 INC AUXR1 ; switch data pointers  
000A E0 MOVX A,@DPTR ; get a byte from SOURCE  
000B A3 INC DPTR ; increment SOURCE address  
000C 05A2 INC AUXR1 ; switch data pointers  
000E F0 MOVX @DPTR,A ; write the byte to DEST  
000F A3 INC DPTR ; increment DEST address  
0010 70F6JNZ LOOP ; check for 0 terminator  
0012 05A2 INC AUXR1 ; (optional) restore DPS  
INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR.  
However, note that the INC instruction does not directly force the DPS bit to a particular state,  
but simply toggles it. In simple routines, such as the block move example, only the fact that DPS  
is toggled in the proper sequence matters, not its actual value. In other words, the block move  
routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruc-  
tion (INC AUXR1), the routine will exit with DPS in the opposite state.  
16  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
6.1  
Expanded RAM (XRAM)  
The TS80C51Rx2 provide additional Bytes of ramdom access memory (RAM) space for  
increased data parameter handling and high level language usage.  
RA2, RB2 and RC2 devices have 256 bytes of expanded RAM, from 00H to FFH in external  
data space; RD2 devices have 768 bytes of expanded RAM, from 00H to 2FFH in external data  
space.  
The TS80C51Rx2 has internal data memory that is mapped into four separate segments.  
The four segments are:  
• 1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly  
addressable.  
• 2. The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable only.  
• 3. The Special Function Registers, SFRs, (addresses 80H to FFH) are directly addressable  
only.  
• 4. The expanded RAM bytes are indirectly accessed by MOVX instructions, and with the  
EXTRAM bit cleared in the AUXR register. (See Table 6-1.)  
The Lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128  
bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same  
address space as the SFR. That means they have the same address, but are physically sepa-  
rate from SFR space.  
When an instruction accesses an internal location above address 7FH, the CPU knows whether  
the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used  
in the instruction.  
• Instructions that use direct addressing access SFR space. For example: MOV 0A0H, #  
data, accesses the SFR at location 0A0H (which is P2).  
• Instructions that use indirect addressing access the Upper 128 bytes of data RAM. For  
example: MOV @R0, # data where R0 contains 0A0H, accesses the data byte at address  
0A0H, rather than P2 (whose address is 0A0H).  
• The 256 or 768 XRAM bytes can be accessed by indirect addressing, with EXTRAM bit  
cleared and MOVX instructions. This part of memory which is physically located on-chip,  
logically occupies the first 256 or 768 bytes of external data memory.  
• With EXTRAM = 0, the XRAM is indirectly addressed, using the MOVX instruction in  
combination with any of the registers R0, R1 of the selected bank or DPTR. An access to  
XRAM will not affect ports P0, P2, P3.6 (WR) and P3.7 (RD). For example, with EXTRAM  
= 0, MOVX @R0, # data where R0 contains 0A0H, accesses the XRAM at address 0A0H  
rather than external memory. An access to external data memory locations higher than FFH  
(i.e. 0100H to FFFFH) (higher than 2FFH (i.e. 0300H to FFFFH for RD devices) will be  
performed with the MOVX DPTR instructions in the same way as in the standard 80C51, so  
with P0 and P2 as data/address busses, and P3.6 and P3.7 as write and read timing signals.  
Refer to Figure 6-1. For RD devices, accesses to expanded RAM from 100H to 2FFH can  
only be done thanks to the use of DPTR.  
• With EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51.  
MOVX @ Ri will provide an eight-bit address multiplexed with data on Port0 and any output  
port pins can be used to output higher order address bits. This is to provide the external  
paging capability. MOVX @DPTR will generate a sixteen-bit address. Port2 outputs the high-  
order eight address bits (the contents of DPH) while Port0 multiplexes the low-order eight  
17  
4188F–8051–01/08  
address bits (DPL) with data. MOVX @ Ri and MOVX @DPTR will generate either read or  
write signals on P3.6 (WR) and P3.7 (RD).  
The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM)  
internal data memory. The stack may not be located in the XRAM.  
Figure 6-1. Internal and External Data Memory Address  
FF(RA, RB, RC)/2FF (RD)  
FF  
FF  
80  
FFFF  
Upper  
128 bytes  
Internal  
Special  
Function  
External  
Data  
Memory  
Register  
Ram  
direct accesses  
indirect accesses  
80  
XRAM  
256 bytes  
Lower  
128 bytes  
Internal  
Ram  
direct or indirect  
accesses  
0100 (RA, RB, RC) or 0300 (RD)  
0000  
00  
00  
Table 6-1.  
Auxiliary Register AUXR  
AUXR  
Address 08EH  
Reset value  
Function  
-
-
-
-
-
-
EXTRAM  
AO  
X
X
X
X
X
X
0
0
Symbol  
-
Not implemented, reserved for future use. (1)  
Disable/Enable ALE  
AO  
AO  
0
Operating Mode  
ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 if X2 mode  
is used)  
1
ALE is active only during a MOVX or MOVC instruction  
EXTRAM  
Internal/External RAM (00H-FFH) access using MOVX @ Ri/ @ DPTR  
EXTRAM  
Operating Mode  
0
1
Internal XRAM access using MOVX @ Ri/ @ DPTR  
External data memory access  
1.  
User software should not write 1s to reserved bits. These bits may be used in future 8051 family  
products to invoke new features. In that case, the reset or inactive value of the new bit will be 0,  
and its active value will be 1. The value read from a reserved bit is indeterminate.  
18  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
6.2  
Timer 2  
The timer 2 in the TS80C51RX2 is compatible with the timer 2 in the 80C52.  
It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2,  
connected in cascade. It is controlled by T2CON register (See Table 6-2) and T2MOD register  
(See Table 6-3). Timer 2 operation is similar to Timer 0 and Timer 1. C/T2 selects FOSC/12 (timer  
operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2  
to be incremented by the selected input.  
Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes  
are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON), as described in the  
Atmel 8-bit Microcontroller Hardware description.  
Refer to the Atmel 8-bit Microcontroller Hardware description for the description of Capture and  
Baud Rate Generator Modes.  
In TS80C51RX2 Timer 2 includes the following enhancements:  
• Auto-reload mode with up or down counter  
• Programmable clock-output  
6.2.1  
Auto-reload Mode  
The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic  
reload. If DCEN bit in T2MOD is cleared, timer 2 behaves as in 80C52 (refer to the Atmel 8-bit  
Microcontroller Hardware description). If DCEN bit is set, timer 2 acts as an Up/down  
timer/counter as shown in Figure 6-2. In this mode the T2EX pin controls the direction of count.  
When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag  
and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and  
RCAP2L registers to be loaded into the timer registers TH2 and TL2.  
When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer  
registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The under-  
flow sets TF2 flag and reloads FFFFh into the timer registers.  
The EXF2 bit toggles when timer 2 overflows or underflows according to the the direction of the  
count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution.  
19  
4188F–8051–01/08  
Figure 6-2. Auto-reload Mode Up/Down Counter (DCEN = 1)  
(:6 in X2 mode)  
:12  
0
1
XTAL1  
FOSC  
FXTAL  
T2  
TR2  
C/T2  
T2CONreg  
T2CONreg  
T2EX:  
if DCEN=1, 1=UP  
(DOWN COUNTING RELOAD VALUE)  
FFh  
(8-bit)  
FFh  
(8-bit)  
if DCEN=1, 0=DOWN  
if DCEN = 0, up  
counting  
T2CONreg  
TOGGLE  
EXF2  
TL2  
(8-bit)  
TH2  
(8-bit)  
TIMER 2  
INTERRUPT  
TF2  
T2CONreg  
RCAP2L  
(8-bit)  
RCAP2H  
(8-bit)  
(UP COUNTING RELOAD VALUE)  
6.2.2  
Programmable Clock-Output  
In the clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock generator  
(See Figure 6-3) . The input clock increments TL2 at frequency FOSC/2. The timer repeatedly  
counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L reg-  
isters are loaded into TH2 and TL2. In this mode, timer 2 overflows do not generate interrupts.  
The formula gives the clock-out frequency as a function of the system oscillator frequency and  
the value in the RCAP2H and RCAP2L registers:  
F
osc  
Clock OutFrequency = ----------------------------------------------------------------------------------------  
4 × (65536 RCAP2H RCAP2L)  
For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz  
(FOSC/216) to 4 MHz (FOSC/4). The generated clock signal is brought out to T2 pin (P1.0).  
Timer 2 is programmed for the clock-out mode as follows:  
• Set T2OE bit in T2MOD register.  
• Clear C/T2 bit in T2CON register.  
• Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L  
registers.  
• Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value  
or a different one depending on the application.  
To start the timer, set TR2 run control bit in T2CON register.  
20  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For  
this configuration, the baud rates and clock frequencies are not independent since both func-  
tions use the values in the RCAP2H and RCAP2L registers.  
Figure 6-3. Clock-Out Mode C/T2 = 0  
:2  
XTAL1  
(:1 in X2 mode)  
TR2  
T2CON reg  
TH2  
(8-bit)  
TL2  
(8-bit)  
OVERFLOW  
RCAP2H  
(8-bit)  
RCAP2L  
(8-bit)  
Toggle  
T2  
Q
D
T2OE  
T2MOD reg  
TIMER 2  
INTERRUPT  
T2EX  
EXF2  
T2CON reg  
EXEN2  
T2CON reg  
Table 6-2.  
T2CON Register  
T2CON - Timer 2 Control Register (C8h)  
7
6
5
4
3
2
1
0
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2#  
CP/RL2#  
21  
4188F–8051–01/08  
Bit  
Bit  
Number  
Mnemonic Description  
Timer 2 overflow Flag  
Must be cleared by software.  
Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.  
7
6
TF2  
Timer 2 External Flag  
Set when a capture or a reload is caused by a negative transition on T2EX pin if  
EXEN2=1.  
When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is  
EXF2  
enabled.  
Must be cleared by software. EXF2 doesn’t cause an interrupt in Up/down counter mode  
(DCEN = 1)  
Receive Clock bit  
5
4
RCLK  
TCLK  
Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3.  
Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.  
Transmit Clock bit  
Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3.  
Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.  
Timer 2 External Enable bit  
Clear to ignore events on T2EX pin for timer 2 operation.  
Set to cause a capture or reload when a negative transition on T2EX pin is detected, if  
timer 2 is not used to clock the serial port.  
3
2
1
EXEN2  
TR2  
Timer 2 Run control bit  
Clear to turn off timer 2.  
Set to turn on timer 2.  
Timer/Counter 2 select bit  
Clear for timer operation (input from internal clock system: FOSC).  
Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock  
out mode.  
C/T2#  
Timer 2 Capture/Reload bit  
If RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to auto-reload on timer 2  
overflow.  
0
CP/RL2#  
Clear to auto-reload on timer 2 overflows or negative transitions on T2EX pin if EXEN2=1.  
Set to capture on negative transitions on T2EX pin if EXEN2=1.  
Reset Value = 0000 0000b  
Bit addressable  
Table 6-3.  
T2MOD Register  
T2MOD - Timer 2 Mode Control Register (C9h)  
7
-
6
5
4
3
2
-
1
0
-
-
-
-
T2OE  
DCEN  
22  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Bit  
Bit  
Number  
Mnemonic  
Description  
Reserved  
7
6
5
4
3
2
-
-
-
-
-
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Timer 2 Output Enable bit  
Clear to program P1.0/T2 as clock input or I/O port.  
Set to program P1.0/T2 as clock output.  
1
T2OE  
Down Counter Enable bit  
0
DCEN  
Clear to disable timer 2 as up/down counter.  
Set to enable timer 2 as up/down counter.  
Reset Value = XXXX XX00b  
Not bit addressable  
23  
4188F–8051–01/08  
6.3  
Programmable Counter Array PCA  
The PCA provides more timing capabilities with less CPU intervention than the standard  
timer/counters. Its advantages include reduced software overhead and improved accuracy. The  
PCA consists of a dedicated timer/counter which serves as the time base for an array of five  
compare/capture modules. Its clock input can be programmed to count any one of the following  
signals:  
• Oscillator frequency  
• Oscillator frequency  
• Timer 0 overflow  
÷
÷
12 (  
4 (  
÷
6 in X2 mode)  
÷
2 in X2 mode)  
• External input on ECI (P1.2)  
Each compare/capture modules can be programmed in any one of the following modes:  
• rising and/or falling edge capture,  
• software timer,  
• high-speed output, or  
• pulse width modulator.  
Module 4 can also be programmed as a watchdog timer (See Section "PCA Watchdog Timer",  
page 33).  
When the compare/capture modules are programmed in the capture mode, software timer, or  
high speed output mode, an interrupt can be generated when the module executes its function.  
All five modules plus the PCA timer overflow share one interrupt vector.  
The PCA timer/counter and compare/capture modules share Port 1 for external I/O. These pins  
are listed below. If the port is not used for the PCA, it can still be used for standard I/O.  
PCA component  
16-bit Counter  
16-bit Module 0  
16-bit Module 1  
16-bit Module 2  
16-bit Module 3  
16-bit Module 4  
External I/O Pin  
P1.2 / ECI  
P1.3 / CEX0  
P1.4 / CEX1  
P1.5 / CEX2  
P1.6 / CEX3  
P1.7 / CEX4  
The PCA timer is a common time base for all five modules (See Figure 6-4). The timer count  
source is determined from the CPS1 and CPS0 bits in the CMOD SFR (See Table 6-4) and can  
be programmed to run at:  
• 1/12 the oscillator frequency. (Or 1/6 in X2 Mode)  
• 1/4 the oscillator frequency. (Or 1/2 in X2 Mode)  
• The Timer 0 overflow  
• The input on the ECI pin (P1.2)  
24  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Figure 6-4. PCA Timer/Counter  
To PCA  
modules  
Fosc /12  
Fosc / 4  
T0 OVF  
P1.2  
overflow  
It  
CH  
CL  
16 bit up/down counter  
CMOD  
0xD9  
CIDL WDTE  
CPS1 CPS0 ECF  
Idle  
CCON  
0xD8  
CF  
CR  
CCF4 CCF3 CCF2 CCF1 CCF0  
Table 6-4.  
CMOD: PCA Counter Mode Register  
CMOD  
Address 0D9H  
CIDL  
WDTE  
-
-
-
CPS1  
CPS0  
ECF  
Reset value  
Function  
0
0
X
X
X
0
0
0
Symbol  
Counter Idle control: CIDL = 0 programs the PCA Counter to continue functioning during idle Mode.  
CIDL = 1 programs it to be gated off during idle.  
CIDL  
Watchdog Timer Enable: WDTE = 0 disables Watchdog Timer function on PCA Module 4. WDTE = 1  
enables it.  
WDTE  
-
Not implemented, reserved for future use. (1)  
PCA Count Pulse Select bit 1.  
CPS1  
CPS0  
PCA Count Pulse Select bit 0.  
CPS1 CPS0 Selected PCA input. (2)  
0
0
1
1
0
1
0
1
Internal clock fosc/12 ( Or fosc/6 in X2 Mode).  
Internal clock fosc/4 ( Or fosc/2 in X2 Mode).  
Timer 0 Overflow  
External clock at ECI/P1.2 pin (max rate = fosc/ 8)  
PCA Enable Counter Overflow interrupt: ECF = 1 enables CF bit in CCON to generate an interrupt.  
ECF = 0 disables that function of CF.  
ECF  
1.  
2.  
User software should not write 1s to reserved bits. These bits may be used in future 8051 family  
products to invoke new features. In that case, the reset or inactive value of the new bit will be 0,  
and its active value will be 1. The value read from a reserved bit is indeterminate.  
fosc = oscillator frequency  
The CMOD SFR includes three additional bits associated with the PCA (See Figure 6-4 and  
Table 6-4).  
25  
4188F–8051–01/08  
• The CIDL bit which allows the PCA to stop during idle mode.  
• The WDTE bit which enables or disables the watchdog function on module 4.  
• The ECF bit which when set causes an interrupt and the PCA overflow flag CF (in the CCON  
SFR) to be set when the PCA timer overflows.  
The CCON SFR contains the run control bit for the PCA and the flags for the PCA timer (CF)  
and each module (Refer to Table 6-5).  
• Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this  
bit.  
• Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be  
generated if the ECF bit in the CMOD register is set. The CF bit can only be cleared by  
software.  
• Bits 0 through 4 are the flags for the modules (bit 0 for module 0, bit 1 for module 1, etc.) and  
are set by hardware when either a match or a capture occurs. These flags also can only be  
cleared by software.  
Table 6-5.  
CCON: PCA Counter Control Register  
CCON  
Address 0D8H  
Reset value  
Function  
PCA Counter Overflow flag. Set by hardware when the counter rolls over. CF flags  
CF  
CR  
-
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
0
0
X
0
0
0
0
0
Symbol  
CF  
an interrupt if bit ECF in CMOD is set. CF may be set by either hardware or software but can only be  
cleared by software.  
PCA Counter Run control bit. Set by software to turn the PCA counter on. Must be cleared by  
software to turn the PCA counter off.  
CR  
-
Not implemented, reserved for future use. (1)  
PCA Module 4 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by  
software.  
CCF4  
PCA Module 3 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by  
software.  
CCF3  
CCF2  
CCF1  
CCF0  
PCA Module 2 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by  
software.  
PCA Module 1 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by  
software.  
PCA Module 0 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by  
software.  
1.  
User software should not write 1s to reserved bits. These bits may be used in future 8051 family  
products to invoke new features. In that case, the reset or inactive value of the new bit will be 0,  
and its active value will be 1. The value read from a reserved bit is indeterminate.  
The watchdog timer function is implemented in module 4 (See Figure 6-7).  
The PCA interrupt system is shown in Figure 6-5.  
26  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Figure 6-5. PCA Interrupt System  
CCON  
0xD8  
CF  
CR  
CCF4 CCF3 CCF2 CCF1 CCF0  
PCA Timer/Counter  
Module 0  
Module 1  
Module 2  
Module 3  
Module 4  
To Interrupt  
priority decoder  
IE.6  
EC  
IE.7  
EA  
CMOD.0  
CCAPMn.0  
ECCFn  
ECF  
PCA Modules: each one of the five compare/capture modules has six possible functions. It can  
perform:  
• 16-bit Capture, positive-edge triggered,  
• 16-bit Capture, negative-edge triggered,  
• 16-bit Capture, both positive and negative-edge triggered,  
• 16-bit Software Timer,  
• 16-bit High Speed Output,  
• 8-bit Pulse Width Modulator.  
In addition, module 4 can be used as a Watchdog Timer.  
Each module in the PCA has a special function register associated with it. These registers are:  
CCAPM0 for module 0, CCAPM1 for module 1, etc. (See Table 6-6). The registers contain the  
bits that control the mode that each module will operate in.  
• The ECCF bit (CCAPMn.0 where n=0, 1, 2, 3, or 4 depending on the module) enables the  
CCF flag in the CCON SFR to generate an interrupt when a match or compare occurs in the  
associated module.  
• PWM (CCAPMn.1) enables the pulse width modulation mode.  
• The TOG bit (CCAPMn.2) when set causes the CEX output associated with the module to  
toggle when there is a match between the PCA counter and the module's capture/compare  
register.  
• The match bit MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON register to be  
set when there is a match between the PCA counter and the module's capture/compare  
register.  
• The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5) determine the edge that a  
capture input will be active on. The CAPN bit enables the negative edge, and the CAPP bit  
enables the positive edge. If both bits are set both edges will be enabled and a capture will  
occur for either transition.  
27  
4188F–8051–01/08  
• The last bit in the register ECOM (CCAPMn.6) when set enables the comparator function.  
Table 6-7 shows the CCAPMn settings for the various PCA functions.  
.
Table 6-6.  
CCAPMn: PCA Modules Compare/Capture Control Registers  
CCAPM0=0DAH  
CCAPM1=0DBH  
CCAPM2=0DCH  
CCAPM3=0DDH  
CCAPM4=0DEH  
CCAPMn Address  
n = 0 - 4  
-
ECOMn CAPPn CAPNn MATn  
TOGn PWMm ECCFn  
Reset value  
X
0
0
0
0
0
0
0
Symbol  
Function  
Not implemented, reserved for future use. (1)  
-
ECOMn  
CAPPn  
CAPNn  
Enable Comparator. ECOMn = 1 enables the comparator function.  
Capture Positive, CAPPn = 1 enables positive edge capture.  
Capture Negative, CAPNn = 1 enables negative edge capture.  
Match. When MATn = 1, a match of the PCA counter with this module's compare/capture register  
causes the CCFn bit in CCON to be set, flagging an interrupt.  
MATn  
Toggle. When TOGn = 1, a match of the PCA counter with this module's compare/capture register  
causes the CEXn pin to toggle.  
TOGn  
PWMn  
ECCFn  
Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width  
modulated output.  
Enable CCF interrupt. Enables compare/capture flag CCFn in the CCON register to generate an  
interrupt.  
1.  
User software should not write 1s to reserved bits. These bits may be used in future 8051 family  
products to invoke new features. In that case, the reset or inactive value of the new bit will be 0,  
and its active value will be 1. The value read from a reserved bit is indeterminate.  
Table 6-7.  
PCA Module Modes (CCAPMn Registers)  
ECOMn CAPPn CAPNn  
MATn  
TOGn  
PWMm  
ECCFn Module Function  
0
0
1
0
0
0
0
0
0
No Operation  
16-bit capture by a positive-edge trigger  
on CEXn  
X
0
0
0
0
0
0
X
16-bit capture by a negative trigger on  
CEXn  
X
0
1
X
X
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
1
1
0
1
0
0
1
0
X
0
0
0
1
0
X
X
X
0
16-bit capture by a transition on CEXn  
16-bit Software Timer / Compare mode.  
16-bit High Speed Output  
8-bit PWM  
X
Watchdog Timer (module 4 only)  
28  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
There are two additional registers associated with each of the PCA modules. They are CCAPnH  
and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a  
compare should occur. When a module is used in the PWM mode these registers are used to  
control the duty cycle of the output (See Table 6-8 & Table 6-9)  
Table 6-8.  
CCAPnH: PCA Modules Capture/Compare Registers High  
CCAP0H=0FAH  
CCAP1H=0FBH  
CCAP2H=0FCH  
CCAP3H=0FDH  
CCAP4H=0FEH  
CCAPnH Address  
n = 0 - 4  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset value  
Table 6-9.  
CCAPnL: PCA Modules Capture/Compare Registers Low  
CCAP0L=0EAH  
CCAP1L=0EBH  
CCAP2L=0ECH  
CCAP3L=0EDH  
CCAP4L=0EEH  
CCAPnL Address  
n = 0 - 4  
7
0
6
0
5
0
4
0
3
0
2
1
0
0
Reset value  
0
0
Table 6-10. CH: PCA Counter High  
CH  
Address 0F9H  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset value  
0
Table 6-11. CL: PCA Counter Low  
CL  
Address 0E9H  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset value  
0
6.3.1  
PCA Capture Mode  
To use one of the PCA modules in the capture mode either one or both of the CCAPM bits  
CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1)  
is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of  
the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and  
CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn  
SFR are set then an interrupt will be generated (Refer to Figure 6-6).  
29  
4188F–8051–01/08  
Figure 6-6. PCA Capture Mode  
CCON  
0xD8  
CF  
CR  
CCF4 CCF3 CCF2 CCF1 CCF0  
PCA IT  
PCA Counter/Timer  
Cex.n  
CH  
CL  
Capture  
CCAPnH  
CCAPnL  
CCAPMn, n= 0 to 4  
0xDA to 0xDE  
ECOMnCAPPn CAPNn MATn TOGn PWMn ECCFn  
6.3.2  
16-bit Software Timer/ Compare Mode  
The PCA modules can be used as software timers by setting both the ECOM and MAT bits in  
the modules CCAPMn register. The PCA timer will be compared to the module's capture regis-  
ters and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn  
(CCAPMn SFR) bits for the module are both set (See Figure 6-7).  
30  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Figure 6-7. PCA Compare Mode and PCA Watchdog Timer  
CCON  
0xD8  
CCF4  
CCF3 CCF2 CCF1 CCF0  
CF  
CR  
Write to  
CCAPnL Reset  
PCA IT  
Write to  
CCAPnH  
CCAPnH  
CCAPnL  
Enable  
1
0
Match  
16 bit comparator  
RESET *  
CH  
CL  
PCA counter/timer  
CCAPMn, n = 0 to 4  
0xDA to 0xDE  
ECOMnCAPPn CAPNn MATn TOGn PWMn ECCFn  
CMOD  
0xD9  
CIDL WDTE  
CPS1 CPS0 ECF  
*
Only for Module 4  
Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, other-  
wise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.  
Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn’t occur  
while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user  
software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be  
controlled by accessing to CCAPMn register.  
6.3.3  
High Speed Output Mode  
In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a  
match occurs between the PCA counter and the module's capture registers. To activate this  
mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (See Figure 6-  
8).  
A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.  
31  
4188F–8051–01/08  
Figure 6-8. PCA High Speed Output Mode  
CCON  
0xD8  
CF  
CR  
CCF4 CCF3 CCF2 CCF1 CCF0  
Write to  
CCAPnL  
Reset  
PCA IT  
Write to  
CCAPnH  
CCAPnH  
CCAPnL  
0
Enable  
1
Match  
16 bit comparator  
CEXn  
CH  
CL  
PCA counter/timer  
CCAPMn, n = 0 to 4  
0xDA to 0xDE  
ECOMnCAPPn CAPNn MATn TOGn PWMn ECCFn  
Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, other-  
wise an unwanted match could happen.  
Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn’t occur  
while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user  
software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be  
controlled by accessing to CCAPMn register.  
6.3.4  
Pulse Width Modulator Mode  
All of the PCA modules can be used as PWM outputs. Figure 6-9 shows the PWM function. The  
frequency of the output depends on the source for the PCA timer. All of the modules will have  
the same frequency of output because they all share the PCA timer. The duty cycle of each  
module is independently variable using the module's capture register CCAPLn. When the value  
of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low,  
when it is equal to or greater than the output will be high. When CL overflows from FF to 00,  
CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches.  
The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM  
mode.  
32  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Figure 6-9. PCA PWM Mode  
CCAPnH  
Overflow  
CCAPnL  
“0”  
CEXn  
Enable  
<
8 bit comparator  
Š
“1”  
CL  
PCA counter/timer  
CCAPMn, n= 0 to 4  
0xDA to 0xDE  
ECOMnCAPPn CAPNn MATn TOGn PWMn ECCFn  
6.3.5  
PCA Watchdog Timer  
An on-board watchdog timer is available with the PCA to improve the reliability of the system  
without increasing chip count. Watchdog timers are useful for systems that are susceptible to  
noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be  
programmed as a watchdog. However, this module can still be used for other modes if the  
watchdog is not needed. Figure 6-7 shows a diagram of how the watchdog works. The user pre-  
loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit  
value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be  
generated. This will not cause the RST pin to be driven high.  
In order to hold off the reset, the user has three options:  
• 1. Periodically change the compare value so it will never match the PCA timer,  
• 2. periodically change the PCA timer value so it will never match the compare values, or  
• 3. Disable the watchdog by clearing the WDTE bit before a match occurs and then re-enable  
it.  
The first two options are more reliable because the watchdog timer is never disabled as in option  
#3. If the program counter ever goes astray, a match will eventually occur and cause an internal  
reset. The second option is also not recommended if other PCA modules are being used.  
Remember, the PCA timer is the time base for all modules; changing the time base for other  
modules would not be a good idea. Thus, in most applications the first solution is the best option.  
This watchdog timer won’t generate a reset out on the reset pin.  
33  
4188F–8051–01/08  
6.4  
TS80C51Rx2 Serial I/O Port  
The serial I/O port in the TS80C51Rx2 is compatible with the serial I/O port in the 80C52.  
It provides both synchronous and asynchronous communication modes. It operates as an Uni-  
versal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2  
and 3). Asynchronous transmission and reception can occur simultaneously and at different  
baud rates  
Serial I/O port includes the following enhancements:  
• Framing error detection  
• Automatic address recognition  
6.4.1  
Framing Error Detection  
Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To  
enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 6-  
10).  
Figure 6-10. Framing Error Block Diagram  
SM0/FE SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
SCON (98h)  
Set FE bit if stop bit is 0 (framing error) (SMOD0 = 1)  
SM0 to UART mode control (SMOD = 0)  
PCON (87h)  
SMOD1SMOD0  
-
POF GF1  
GF0  
PD  
IDL  
To UART framing error control  
When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit.  
An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by  
two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table  
6-14.) bit is set.  
Software may examine FE bit after each reception to check for data errors. Once set, only soft-  
ware or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear  
FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 6-  
11 and Figure 6-12).  
Figure 6-11. UART Timings in Mode 1  
RXD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Start  
bit  
Data byte  
Stop  
bit  
RI  
SMOD0=X  
FE  
SMOD0=1  
34  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Figure 6-12. UART Timings in Modes 2 and 3  
RXD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
Start  
bit  
Data byte  
Ninth Stop  
bit  
bit  
RI  
SMOD0=0  
RI  
SMOD0=1  
FE  
SMOD0=1  
6.4.2  
Automatic Address Recognition  
The automatic address recognition feature is enabled when the multiprocessor communication  
feature is enabled (SM2 bit in SCON register is set).  
Implemented in hardware, automatic address recognition enhances the multiprocessor commu-  
nication feature by allowing the serial port to examine the address of each incoming command  
frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON  
register to generate an interrupt. This ensures that the CPU is not interrupted by command  
frames addressed to other devices.  
If desired, you may enable the automatic address recognition feature in mode 1. In this configu-  
ration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received  
command frame address matches the device’s address and is terminated by a valid stop bit.  
To support automatic address recognition, a device is identified by a given address and a broad-  
cast address.  
Note:  
The multiprocessor communication and automatic address recognition features cannot be  
enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).  
6.4.3  
Given Address  
Each device has an individual address that is specified in SADDR register; the SADEN register  
is a mask byte that contains don’t-care bits (defined by zeros) to form the device’s given  
address. The don’t-care bits provide the flexibility to address one or more slaves at a time. The  
following example illustrates how a given address is formed.  
To address a device by its individual address, the SADEN mask byte must be 1111 1111b.  
For example:  
SADDR0101 0110b  
SADEN1111 1100b  
Given0101 01XXb  
The following is an example of how to use given addresses to address different slaves:  
Slave A:SADDR1111 0001b  
SADEN1111 1010b  
Given1111 0X0Xb  
Slave B:SADDR1111 0011b  
SADEN1111 1001b  
Given1111 0XX1b  
35  
4188F–8051–01/08  
Slave C:SADDR1111 0010b  
SADEN1111 1101b  
Given1111 00X1b  
The SADEN byte is selected so that each slave may be addressed separately.  
For slave A, bit 0 (the LSB) is a don’t-care bit; for slaves B and C, bit 0 is a 1. To communicate  
with slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000b).  
For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don’t care bit. To communicate with slaves  
B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111  
0011b).  
To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1  
clear, and bit 2 clear (e.g. 1111 0001b).  
6.4.4  
Broadcast Address  
A broadcast address is formed from the logical OR of the SADDR and SADEN registers with  
zeros defined as don’t-care bits, e.g.:  
SADDR0101 0110b  
SADEN1111 1100b  
Broadcast =SADDR OR SADEN1111 111Xb  
The use of don’t-care bits provides flexibility in defining the broadcast address, however in most  
applications, a broadcast address is FFh. The following is an example of using broadcast  
addresses:  
Slave A:SADDR1111 0001b  
SADEN1111 1010b  
Broadcast1111 1X11b,  
Slave B:SADDR1111 0011b  
SADEN1111 1001b  
Broadcast1111 1X11B,  
Slave C:SADDR=1111 0010b  
SADEN1111 1101b  
Broadcast1111 1111b  
For slaves A and B, bit 2 is a don’t care bit; for slave C, bit 2 is set. To communicate with all of  
the slaves, the master must send an address FFh. To communicate with slaves A and B, but not  
slave C, the master can send and address FBh.  
6.4.5  
Reset Addresses  
On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast  
addresses are XXXX XXXXb(all don’t-care bits). This ensures that the serial port will reply to any  
address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not  
support automatic address recognition.  
36  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Table 6-12. SADEN - Slave Address Mask Register (B9h)  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000b  
Not bit addressable  
Table 6-13. SADDR - Slave Address Register (A9h)  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000b  
Not bit addressable  
Table 6-14. SCON Register  
SCON - Serial Control Register (98h)  
7
6
5
4
3
2
1
0
FE/SM0  
SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
37  
4188F–8051–01/08  
Bit  
Bit Number  
Mnemonic  
Description  
Framing Error bit (SMOD0=1)  
Clear to reset the error state, not cleared by a valid stop bit.  
Set by hardware when an invalid stop bit is detected.  
7
FE  
SMOD0 must be set to enable access to the FE bit  
Serial port Mode bit 0  
Refer to SM1 for serial port mode selection.  
SM0  
SMOD0 must be cleared to enable access to the SM0 bit  
Serial port Mode bit 1  
SM0 SM1ModeDescriptionBaud Rate  
0
0
1
1
0
1
0
1
0Shift RegisterFXTAL/12 (/6 in X2 mode)  
18-bit UARTVariable  
29-bit UARTFXTAL/64 or FXTAL/32 (/32, /16 in X2 mode)  
39-bit UARTVariable  
6
5
SM1  
SM2  
Serial port Mode 2 bit / Multiprocessor Communication Enable bit  
Clear to disable multiprocessor communication feature.  
Set to enable multiprocessor communication feature in mode 2 and 3, and eventually  
mode 1. This bit should be cleared in mode 0.  
Reception Enable bit  
Clear to disable serial reception.  
Set to enable serial reception.  
4
3
REN  
TB8  
Transmitter Bit 8 / Ninth bit to transmit in modes 2 and 3  
Clear to transmit a logic 0 in the 9th bit.  
Set to transmit a logic 1 in the 9th bit.  
Receiver Bit 8 / Ninth bit received in modes 2 and 3  
Cleared by hardware if 9th bit received is a logic 0.  
Set by hardware if 9th bit received is a logic 1.  
2
RB8  
In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.  
Transmit Interrupt flag  
Clear to acknowledge interrupt.  
Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop  
bit in the other modes.  
1
0
TI  
Receive Interrupt flag  
Clear to acknowledge interrupt.  
Set by hardware at the end of the 8th bit time in mode 0, see Figure 6-11. and Figure 6-  
12. in the other modes.  
RI  
Reset Value = 0000 0000b  
Bit addressable  
Table 6-15. PCON Register  
PCON - Power Control Register (87h)  
7
6
5
-
4
3
2
1
0
SMOD1  
SMOD0  
POF  
GF1  
GF0  
PD  
IDL  
38  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Bit  
Bit  
Number  
Mnemonic Description  
Serial port Mode bit 1  
Set to select double baud rate in mode 1, 2 or 3.  
7
6
5
4
SMOD1  
SMOD0  
-
Serial port Mode bit 0  
Clear to select SM0 bit in SCON register.  
Set to to select FE bit in SCON register.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Power-Off Flag  
Clear to recognize next reset type.  
POF  
Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.  
General purpose Flag  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
3
2
1
0
GF1  
GF0  
PD  
General purpose Flag  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
Power-Down mode bit  
Cleared by hardware when reset occurs.  
Set to enter power-down mode.  
Idle mode bit  
Clear by hardware when interrupt or reset occurs.  
Set to enter idle mode.  
IDL  
Reset Value = 00X1 0000b  
Not bit addressable  
Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn’t affect  
the value of this bit.  
39  
4188F–8051–01/08  
6.5  
Interrupt System  
The TS80C51Rx2 has a total of 7 interrupt vectors: two external interrupts (INT0 and INT1),  
three timer interrupts (timers 0, 1 and 2), the serial port interrupt and the PCA global interrupt.  
These interrupts are shown in Figure 6-13.  
WARNING: Note that in the first version of RC devices, the PCA interrupt is in the lowest priority.  
Thus the order in INT0, TF0, INT1, TF1, RI or TI, TF2 or EXF2, PCA.  
Figure 6-13. Interrupt Control System  
High priority  
interrupt  
IPH, IP  
3
0
INT0  
IE0  
IE1  
3
0
3
0
3
TF0  
Interrupt  
polling  
INT1  
sequence, decreasing from  
high to low priority  
TF1  
0
3
PCA IT  
0
3
0
RI  
TI  
3
TF2  
EXF2  
0
Low priority  
interrupt  
Individual Enable  
Global Disable  
Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit  
in the Interrupt Enable register (See Table 6-17.Table 6-18.). This register also contains a global  
disable bit, which must be cleared to disable all interrupts at once.  
Each interrupt source can also be individually programmed to one out of four priority levels by  
setting or clearing a bit in the Interrupt Priority register (See Table 6-18.) and in the Interrupt Pri-  
ority High register (See Table 6-19.). shows the bit values and priority levels associated with  
each combination.  
The PCA interrupt vector is located at address 0033H. All other vector addresses are the same  
as standard C52 devices.  
40  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Table 6-16. Priority Level Bit Values  
IPH.x  
IP.x  
0
Interrupt Level Priority  
0
0
1
1
0 (Lowest)  
1
1
0
2
1
3 (Highest)  
A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-prior-  
ity interrupt. A high-priority interrupt can’t be interrupted by any other interrupt source.  
If two interrupt requests of different priority levels are received simultaneously, the request of  
higher priority level is serviced. If interrupt requests of the same priority level are received simul-  
taneously, an internal polling sequence determines which request is serviced. Thus within each  
priority level there is a second priority structure determined by the polling sequence.  
Table 6-17. IE Register  
IE - Interrupt Enable Register (A8h)  
7
6
5
4
3
2
1
0
EA  
EC  
ET2  
ES  
ET1  
EX1  
ET0  
EX0  
Bit Number Bit  
Mnemonic Description  
Enable All interrupt bit  
Clear to disable all interrupts.  
Set to enable all interrupts.  
7
EA  
If EA=1, each interrupt source is individually enabled or disabled by setting or  
clearing its own interrupt enable bit.  
PCA interrupt enable bit  
Clear to disable . Set to enable.  
6
5
EC  
Timer 2 overflow interrupt Enable bit  
Clear to disable timer 2 overflow interrupt.  
Set to enable timer 2 overflow interrupt.  
ET2  
Serial port Enable bit  
4
3
2
1
0
ES  
Clear to disable serial port interrupt.  
Set to enable serial port interrupt.  
Timer 1 overflow interrupt Enable bit  
Clear to disable timer 1 overflow interrupt.  
Set to enable timer 1 overflow interrupt.  
ET1  
EX1  
ET0  
EX0  
External interrupt 1 Enable bit  
Clear to disable external interrupt 1.  
Set to enable external interrupt 1.  
Timer 0 overflow interrupt Enable bit  
Clear to disable timer 0 overflow interrupt.  
Set to enable timer 0 overflow interrupt.  
External interrupt 0 Enable bit  
Clear to disable external interrupt 0.  
Set to enable external interrupt 0.  
Reset Value = 0000 0000b  
Bit addressable  
41  
4188F–8051–01/08  
Table 6-18. IP Register  
IP - Interrupt Priority Register (B8h)  
7
-
6
5
4
3
2
1
0
PPC  
PT2  
PS  
PT1  
PX1  
PT0  
PX0  
Bit Number  
Bit Mnemonic  
Description  
Reserved  
7
-
The value read from this bit is indeterminate. Do not set this bit.  
PCA interrupt priority bit  
6
5
4
3
2
1
0
PPC  
PT2  
PS  
Refer to PPCH for priority level.  
Timer 2 overflow interrupt Priority bit  
Refer to PT2H for priority level.  
Serial port Priority bit  
Refer to PSH for priority level.  
Timer 1 overflow interrupt Priority bit  
PT1  
PX1  
PT0  
PX0  
Refer to PT1H for priority level.  
External interrupt 1 Priority bit  
Refer to PX1H for priority level.  
Timer 0 overflow interrupt Priority bit  
Refer to PT0H for priority level.  
External interrupt 0 Priority bit  
Refer to PX0H for priority level.  
Reset Value = X000 0000b  
Bit addressable  
42  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Table 6-19. IPH Register  
IPH - Interrupt Priority High Register (B7h)  
7
-
6
5
4
3
2
1
0
PPCH  
PT2H  
PSH  
PT1H  
PX1H  
PT0H  
PX0H  
Bit  
Number  
Bit  
Mnemonic  
Description  
Reserved  
7
-
The value read from this bit is indeterminate. Do not set this bit.  
PCA interrupt priority bit high.  
PPCHPPC  
Priority Level  
Lowest  
0
0
1
1
0
1
0
6
PPCH  
1 Highest  
Timer 2 overflow interrupt Priority High bit  
PT2HPT2  
Priority Level  
Lowest  
0
0
1
1
0
1
0
1
5
4
3
2
1
0
PT2H  
PSH  
Highest  
Serial port Priority High bit  
PSH PS Priority Level  
0Lowest  
0
0
1
1
1
0
1Highest  
Timer 1 overflow interrupt Priority High bit  
PT1HPT1Priority Level  
0
0
1
1
0Lowest  
1
0
PT1H  
PX1H  
PT0H  
PX0H  
1Highest  
External interrupt 1 Priority High bit  
PX1HPX1Priority Level  
0
0
1
1
0Lowest  
1
0
1Highest  
Timer 0 overflow interrupt Priority High bit  
PT0HPT0  
Priority Level  
Lowest  
0
0
1
1
0
1
0
1
Highest  
External interrupt 0 Priority High bit  
PX0HPX0  
Priority Level  
Lowest  
0
0
1
1
0
1
0
1
Highest  
Reset Value = X000 0000b  
Not bit addressable  
43  
4188F–8051–01/08  
6.6  
Idle Mode  
An instruction that sets PCON.0 causes that to be the last instruction executed before going into  
the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the  
interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirety: the Stack  
Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain  
their data during Idle. The port pins hold the logical states they had at the time Idle was acti-  
vated. ALE and PSEN hold at logic high levels.  
There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0  
to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and follow-  
ing RETI the next instruction to be executed will be the one following the instruction that put the  
device into idle.  
The flag bits GF0 and GF1 can be used to give an indication if an interrupt occured during nor-  
mal operation or during an Idle. For example, an instruction that activates Idle can also set one  
or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can exam-  
ine the flag bits.  
The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is  
still running, the hardware reset needs to be held active for only two machine cycles (24 oscilla-  
tor periods) to complete the reset.  
6.7  
Power-down Mode  
To save maximum power, a power-down mode can be invoked by software (Refer to Table 6-15,  
PCON register).  
In power-down mode, the oscillator is stopped and the instruction that invoked power-down  
mode is the last instruction executed. The internal RAM and SFRs retain their value until the  
power-down mode is terminated. VCC can be lowered to save further power. Either a hardware  
reset or an external interrupt can cause an exit from power-down. To properly terminate power-  
down, the reset or external interrupt should not be executed before VCC is restored to its normal  
operating level and must be held active long enough for the oscillator to restart and stabilize.  
Only external interrupts INT0 and INT1 are useful to exit from power-down. For that, interrupt  
must be enabled and configured as level or edge sensitive interrupt input.  
Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed  
in Figure 6-14. When both interrupts are enabled, the oscillator restarts as soon as one of the  
two inputs is held low and power down exit will be completed when the first input will be  
released. In this case the higher priority interrupt service routine is executed.  
Once the interrupt is serviced, the next instruction to be executed after RETI will be the one fol-  
lowing the instruction that put TS80C51Rx2 into power-down mode.  
44  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Figure 6-14. Power-Down Exit Waveform  
INT0  
INT1  
XTAL1  
Active phase  
Power-down phase Oscillator restart phase  
Active phase  
Exit from power-down by reset redefines all the SFRs, exit from power-down by external inter-  
rupt does no affect the SFRs.  
Exit from power-down by either reset or external interrupt does not affect the internal RAM  
content.  
Note:  
If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is  
unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is  
not entered.  
Table 6-20. The state of ports during idle and power-down mode  
Program  
Mode  
Idle  
Memory  
Internal  
External  
Internal  
External  
ALE  
PSEN  
PORT0  
Port Data*  
Floating  
PORT1  
Port Data  
Port Data  
Port Data  
Port Data  
PORT2  
Port Data  
Address  
Port Data  
Port Data  
PORT3  
Port Data  
Port Data  
Port Data  
Port Data  
1
1
0
0
1
1
0
0
Idle  
Power-down  
Power-down  
Port Data*  
Floating  
* Port 0 can force a "zero" level. A "one" will leave port floating.  
45  
4188F–8051–01/08  
6.8  
Hardware Watchdog Timer  
The WDT is intended as a recovery method in situations where the CPU may be subjected to  
software upset. The WDT consists of a 14-bit counter and the WatchDog Timer ReSeT  
(WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user  
must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is  
enabled, it will increment every machine cycle while the oscillator is running and there is no way  
to disable the WDT except through reset (either hardware reset or WDT overflow reset). When  
WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.  
6.8.1  
Using the WDT  
To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR loca-  
tion 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to  
WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH)  
and this will reset the device. When WDT is enabled, it will increment every machine cycle while  
the oscillator is running. This means the user must reset the WDT at least every 16383 machine  
cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write  
only register. The WDT counter cannot be read or written. When WDT overflows, it will generate  
an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x TOSC , where TOSC  
=
1/FOSC . To make the best use of the WDT, it should be serviced in those sections of code that  
will periodically be executed within the time required to prevent a WDT reset.  
To have a more powerful WDT, a 27 counter has been added to extend the Time-out capability,  
ranking from 16ms to 2s @ FOSC = 12MHz. To manage this feature, refer to WDTPRG register  
description, Table 6-22 (SFR0A7h).  
Table 6-21. WDTRST Register  
WDTRST Address (0A6h)  
7
6
5
4
3
2
1
Reset value  
X
X
X
X
X
X
X
Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.  
Table 6-22. WDTPRG Register  
WDTPRG Address (0A7h)  
7
6
5
4
3
2
1
0
T4  
T3  
T2  
T1  
T0  
S2  
S1  
S0  
46  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Bit  
Bit  
Number  
Mnemonic Description  
7
6
5
4
3
2
1
0
T4  
T3  
Reserved  
Do not try to set or clear this bit.  
T2  
T1  
T0  
S2  
S1  
S0  
WDT Time-out select bit 2  
WDT Time-out select bit 1  
WDT Time-out select bit 0  
S2 S1 S0Selected Time-out  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0(214 - 1) machine cycles, 16.3 ms @ 12 MHz  
1(215 - 1) machine cycles, 32.7 ms @ 12 MHz  
0(216 - 1) machine cycles, 65.5 ms @ 12 MHz  
1(217 - 1) machine cycles, 131 ms @ 12 MHz  
0(218 - 1) machine cycles, 262 ms @ 12 MHz  
1(219 - 1) machine cycles, 542 ms @ 12 MHz  
0(220 - 1) machine cycles, 1.05 s @ 12 MHz  
1(221 - 1) machine cycles, 2.09 s @ 12 MHz  
Reset value XXXX X000  
6.8.2  
WDT during Power-down and Idle  
In Power-down mode the oscillator stops, which means the WDT also stops. While in Power-  
down mode the user does not need to service the WDT. There are 2 methods of exiting Power-  
down mode: by a hardware reset or via a level activated external interrupt which is enabled prior  
to entering Power-down mode. When Power-down is exited with hardware reset, servicing the  
WDT should occur as it normally should whenever the TS80C51Rx2 is reset. Exiting Power-  
down with an interrupt is significantly different. The interrupt is held low long enough for the  
oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the  
WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the  
interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.  
To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best  
to reset the WDT just before entering powerdown.  
In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the  
TS80C51Rx2 while in Idle mode, the user should always set up a timer that will periodically exit  
Idle, service the WDT, and re-enter Idle mode.  
47  
4188F–8051–01/08  
6.9  
ONCETM Mode (ON Chip Emulation)  
The ONCE mode facilitates testing and debugging of systems using TS8xC51Rx2 without  
removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the  
TS80C51Rx2; the following sequence must be exercised:  
• Pull ALE low while the device is in reset (RST high) and PSEN is high.  
• Hold ALE low as RST is deactivated.  
While the TS80C51Rx2 is in ONCE mode, an emulator or test CPU can be used to drive the cir-  
cuit Table 26. shows the status of the port pins during ONCE mode.  
Normal operation is restored when normal reset is applied.  
Table 6-23. External Pin Status during ONCE Mode  
ALE  
PSEN  
Port 0  
Port 1  
Port 2  
Port 3  
XTAL1/2  
Weak pull-up  
Weak pull-up  
Float  
Weak pull-up  
Weak pull-up  
Weak pull-up  
Active  
48  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
7. Power-Off Flag  
The power-off flag allows the user to distinguish between a “cold start” reset and a “warm start”  
reset.  
A cold start reset is the one induced by VCC switch-on. A warm start reset occurs while VCC is still  
applied to the device and could be generated for example by an exit from power-down.  
The power-off flag (POF) is located in PCON register (See Table 7-1). POF is set by hardware  
when VCC rises from 0 to its nominal voltage. The POF can be set or cleared by software allow-  
ing the user to determine the type of reset.  
The POF value is only relevant with a Vcc range from 4.5V to 5.5V. For lower Vcc value, reading  
POF bit will return indeterminate value.  
Table 7-1.  
PCON Register  
PCON - Power Control Register (87h)  
7
6
5
4
3
2
1
0
SMOD1  
SMOD0  
-
POF  
GF1  
GF0  
PD  
IDL  
Bit  
Bit  
Number  
Mnemonic  
Description  
Serial port Mode bit 1  
Set to select double baud rate in mode 1, 2 or 3.  
7
6
5
SMOD1  
SMOD0  
-
Serial port Mode bit 0  
Clear to select SM0 bit in SCON register.  
Set to to select FE bit in SCON register.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Power-Off Flag  
Clear to recognize next reset type.  
Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by  
software.  
4
POF  
General purpose Flag  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
3
2
1
0
GF1  
GF0  
PD  
General purpose Flag  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
Power-Down mode bit  
Cleared by hardware when reset occurs.  
Set to enter power-down mode.  
Idle mode bit  
Clear by hardware when interrupt or reset occurs.  
Set to enter idle mode.  
IDL  
Reset Value = 00X1 0000b  
Not bit addressable  
49  
4188F–8051–01/08  
7.1  
Reduced EMI Mode  
The ALE signal is used to demultiplex address and data buses on port 0 when used with exter-  
nal program or data memory. Nevertheless, during internal code execution, ALE signal is still  
generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.  
The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer  
output but remains active during MOVX and MOVC instructions and external fetches. During  
ALE disabling, ALE pin is weakly pulled high.  
Table 7-2.  
AUXR Register  
AUXR - Auxiliary Register (8Eh)  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
EXTRAM  
AO  
Bit  
Number  
Bit  
Mnemonic  
Description  
Reserved  
7
6
5
4
3
2
1
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
Reserved  
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
EXTRAM bit  
See Table 6-1.  
EXTRAM  
ALE Output bit  
0
AO  
Clear to restore ALE operation during internal fetches.  
Set to disable ALE operation during internal fetches.  
Reset Value = XXXX XX00b  
Not bit addressable  
50  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
8. TS83C51RB2/RC2/RD2 ROM  
8.1  
ROM Structure  
The TS83C51RB2/RC2/RD2 ROM memory is divided in three different arrays:  
• the code array:16/32/64 Kbytes.  
• the encryption array:64 bytes.  
• the signature array:4 bytes.  
8.2  
ROM Lock System  
The program Lock system, when programmed, protects the on-chip program against software  
piracy.  
8.2.1  
8.2.1 Encryption Array  
Within the ROM array are 64 bytes of encryption array that are initially unprogrammed (all FF’s).  
Every time a byte is addressed during program verify, 6 address lines are used to select a byte  
of the encryption array. This byte is then exclusive-NOR’ed (XNOR) with the code byte, creating  
an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state,  
will return the code in its original, unmodified form.  
When using the encryption array, one important factor needs to be considered. If a byte has the  
value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes)  
of code is left unprogrammed, a verification routine will display the content of the encryption  
array. For this reason all the unused code bytes should be programmed with random values.  
This will ensure program protection.  
8.2.2  
Program Lock Bits  
The lock bits when programmed according to Table 8-1. will provide different level of protection  
for the on-chip code and data.  
Table 8-1.  
Program Lock bits  
Program Lock Bits  
Security  
level  
LB1  
LB2  
LB3  
Protection Description  
No program lock features enabled. Code verify will still be encrypted  
by the encryption array if programmed. MOVC instruction executed  
from external program memory returns non encrypted data.  
1
U
U
U
MOVC instruction executed from external program memory are  
disabled from fetching code bytes from internal memory, EA is  
sampled and latched on reset.  
2
3
P
U
U
P
U
U
Same as level 1+ Verify disable.  
This security level is only available for 51RDX2 devices.  
U: unprogrammed  
P: programmed  
8.2.3  
Signature bytes  
The TS83C51RB2/RC2/RD2 contains 4 factory programmed signatures bytes. To read these  
bytes, perform the process described in section 8.3.  
51  
4188F–8051–01/08  
8.2.4  
Verify Algorithm  
Refer to Section “Verify algorithm”.  
52  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
9. TS87C51RB2/RC2/RD2 EPROM  
9.1  
EPROM Structure  
The TS87C51RB2/RC2/RD2 EPROM is divided in two different arrays:  
• the code array:16/32/64 Kbytes.  
• the encryption array:64 bytes.  
In addition a third non programmable array is implemented:  
• the signature array: 4 bytes.  
9.2  
EPROM Lock System  
The program Lock system, when programmed, protects the on-chip program against software  
piracy.  
9.2.1  
Encryption Array  
Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all  
FF’s). Every time a byte is addressed during program verify, 6 address lines are used to select a  
byte of the encryption array. This byte is then exclusive-NOR’ed (XNOR) with the code byte, cre-  
ating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed  
state, will return the code in its original, unmodified form.  
When using the encryption array, one important factor needs to be considered. If a byte has the  
value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes)  
of code is left unprogrammed, a verification routine will display the content of the encryption  
array. For this reason all the unused code bytes should be programmed with random values.  
This will ensure program protection.  
9.2.2  
Program Lock Bits  
The three lock bits, when programmed according to Table 9-1.9.2.3, will provide different level of  
protection for the on-chip code and data.  
Table 9-1.  
Program Lock bits  
Program Lock Bits  
Security  
level  
LB1  
LB2  
LB3  
Protection Description  
No program lock features enabled. Code verify will still be  
encrypted by the encryption array if programmed. MOVC  
instruction executed from external program memory returns non  
encrypted data.  
1
U
U
U
MOVC instruction executed from external program memory are  
disabled from fetching code bytes from internal memory, EA is  
sampled and latched on reset, and further programming of the  
EPROM is disabled.  
2
P
U
U
3
4
U
U
P
U
U
P
Same as 2, also verify is disabled.  
Same as 3, also external execution is disabled.  
U: unprogrammed,  
P: programmed  
53  
4188F–8051–01/08  
WARNING: Security level 2 and 3 should only be programmed after EPROM and Core  
verification.  
9.2.3  
Signature bytes  
The TS87C51RB2/RC2/RD2 contains 4 factory programmed signatures bytes. To read these  
bytes, perform the process described in Section “Signature bytes”.  
9.3  
EPROM Programming  
9.3.1  
Set-up Modes  
In order to program and verify the EPROM or to read the signature bytes, the  
TS87C51RB2/RC2/RD2 is placed in specific set-up modes (See Figure 9-1.).  
Control and program signals must be held at the levels indicated in Table 9-2.  
9.3.2  
Definition of Terms  
Address Lines:P1.0-P1.7, P2.0-P2.5, P3.4, P3.5 respectively for A0-A15 (P2.5 (A13) for RB,  
P3.4 (A14) for RC, P3.5 (A15) for RD)  
Data Lines:P0.0-P0.7 for D0-D7  
Control Signals:RST, PSEN, P2.6, P2.7, P3.3, P3.6, P3.7.  
Program Signals:ALE/PROG, EA/VPP.  
Table 9-2.  
EPROM Set-Up Modes  
ALE/P EA/VP  
P
Mode  
RST  
PSEN  
ROG  
P2.6  
P2.7  
P3.3  
P3.6  
P3.7  
Program Code data  
Verify Code data  
1
0
12.75V  
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
0
0
1
1
1
0
1
0
1
1
1
1
0
0
1
0
1
1
1
0
1
0
0
Program Encryption  
Array Address 0-3Fh  
12.75V  
1
1
Read Signature Bytes  
Program Lock bit 1  
Program Lock bit 2  
Program Lock bit 3  
1
12.75V  
12.75V  
12.75V  
1
1
0
54  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Figure 9-1. Set-Up Modes Configuration  
+5V  
EA/VPP  
VCC  
PROGRAM SIGNALS*  
ALE/PROG  
P0.0-P0.7  
D0-D7  
RST  
PSEN  
P2.6  
P2.7  
P3.3  
P3.6  
P3.7  
P1.0-P1.7  
A0-A7  
CONTROL SIGNALS*  
A8-A15  
P2.0-P2.5  
P3.4-P3.5  
4 to 6 MHz  
XTAL1  
VSS  
GND  
* See Table 31. for proper value on these inputs  
9.3.3  
Programming Algorithm  
The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and decreases the  
number of pulses applied during byte programming from 25 to 1.  
To program the TS87C51RB2/RC2/RD2 the following sequence must be exercised:  
• Step 1: Activate the combination of control signals.  
• Step 2: Input the valid address on the address lines.  
• Step 3: Input the appropriate data on the data lines.  
• Step 4: Raise EA/VPP from VCC to VPP (typical 12.75V).  
• Step 5: Pulse ALE/PROG once.  
• Step 6: Lower EA/VPP from VPP to VCC  
Repeat step 2 through 6 changing the address and data for the entire array or until the end of  
the object file is reached (See Figure 9-2).  
9.3.4  
Verify algorithm  
Code array verify must be done after each byte or block of bytes is programmed. In either case,  
a complete verify of the programmed array will ensure reliable programming of the  
TS87C51RB2/RC2/RD2.  
P 2.7 is used to enable data output.  
To verify the TS87C51RB2/RC2/RD2 code the following sequence must be exercised:  
• Step 1: Activate the combination of program and control signals.  
• Step 2: Input the valid address on the address lines.  
• Step 3: Read data on the data lines.  
Repeat step 2 through 3 changing the address for the entire array verification (See Figure 9-2.)  
55  
4188F–8051–01/08  
The encryption array cannot be directly verified. Verification of the encryption array is done by  
observing that the code array is well encrypted.  
Figure 9-2. Programming and Verification Signal’s Waveform  
Programming Cycle  
Read/Verify Cycle  
Data Out  
A0-A12  
D0-D7  
Data In  
100µs  
ALE/PROG  
EA/VPP  
12.75V  
5V  
0V  
Control signals  
9.4  
EPROM Erasure (Windowed Packages Only)  
Erasing the EPROM erases the code array, the encryption array and the lock bits returning the  
parts to full functionality.  
Erasure leaves all the EPROM cells in a 1’s state (FF).  
9.4.1  
Erasure Characteristics  
The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated  
dose at least 15 W-sec/cm2. Exposing the EPROM to an ultraviolet lamp of 12,000 µW/cm2 rat-  
ing for 30 minutes, at a distance of about 25 mm, should be sufficient. An exposure of 1 hour is  
recommended with most of standard erasers.  
Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength  
shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have wavelengths in  
this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3  
years in room-level fluorescent lighting) could cause inadvertent erasure. If an application sub-  
jects the device to this type of exposure, it is suggested that an opaque label be placed over the  
window.  
10. Signature Bytes  
The TS83/87C51RB2/RC2/RD2 has four signature bytes in location 30h, 31h, 60h and 61h. To  
read these bytes follow the procedure for EPROM verify but activate the control lines provided in  
Table 31. for Read Signature Bytes. Table 10-1. shows the content of the signature byte for the  
TS87C51RB2/RC2/RD2.  
Table 10-1. Signature Bytes Content  
Location  
30h  
Contents  
58h  
Comment  
Manufacturer Code: Atmel  
Family Code: C51 X2  
Product name: TS83C51RD2  
31h  
57h  
60h  
7Ch  
56  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
60h  
60h  
60h  
60h  
60h  
61h  
FCh  
37h  
B7h  
3Bh  
BBh  
FFh  
Product name: TS87C51RD2  
Product name: TS83C51RC2  
Product name: TS87C51RC2  
Product name: TS83C51RB2  
Product name: TS87C51RB2  
Product revision number  
57  
4188F–8051–01/08  
11. Electrical Characteristics  
11.1 Absolute Maximum Ratings  
*NOTICE:  
Stresses at or above those listed under “ Abso-  
lute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only  
and functional operation of the device at these or  
any other conditions above those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Power dissipation is based on the maximum  
allowable die temperature and the thermal resis-  
tance of the package.  
Ambiant Temperature Under Bias:  
C = commercial......................................................0°C to 70°C  
I = industrial ........................................................-40°C to 85°C  
Storage Temperature.................................... -65°C to + 150°C  
Voltage on VCC to VSS ........................................-0.5 V to + 7 V  
Voltage on Any Pin to VSS........................-0.5 V to VCC + 0.5 V  
Power Dissipation.............................................................. 1 W  
11.2 Power Consumption Measurement  
Since the introduction of the first C51 devices, every manufacturer made operating Icc measure-  
ments under reset, which made sense for the designs were the CPU was running under reset. In  
Atmel new devices, the CPU is no more active during reset, so the power consumption is very  
low but is not really representative of what will happen in the customer system. That’s why, while  
keeping measurements under Reset, Atmel presents a new way to measure the operating Icc:  
Using an internal test ROM, the following code is executed:  
Label:  
SJMP Label (80 FE)  
Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not con-  
nected and XTAL1 is driven by the clock.  
This is much more representative of the real operating Icc.  
11.3 DC Parameters for Standard Voltage  
T
A
= 0°C to +70°C; VSS = 0 V; VCC = 5 V 10%; F = 0 to 40 MHz.  
= -40°C to +85°C; VSS = 0 V; VCC = 5 V 10%; F = 0 to 40 MHz.  
T
A
Table 11-1. DC Parameters in Standard Voltage  
Symbol  
Parameter  
Min  
-0.5  
Typ  
Max  
Unit  
V
Test Conditions  
VIL  
Input Low Voltage  
0.2 VCC - 0.1  
VCC + 0.5  
VCC + 0.5  
VIH  
Input High Voltage except XTAL1, RST  
Input High Voltage, XTAL1, RST  
0.2 VCC + 0.9  
0.7 VCC  
V
VIH1  
V
0.3  
0.45  
1.0  
V
V
V
IOL = 100 µA(4)  
IOL = 1.6 mA(4)  
IOL = 3.5 mA(4)  
VOL  
VOL1  
VOL2  
Output Low Voltage, ports 1, 2, 3, 4, 5(6)  
Output Low Voltage, port 0 (6)  
0.3  
0.45  
1.0  
V
V
V
IOL = 200 µA(4)  
IOL = 3.2 mA(4)  
IOL = 7.0 mA(4)  
0.3  
0.45  
1.0  
V
V
V
IOL = 100 µA(4)  
IOL = 1.6 mA(4)  
IOL = 3.5 mA(4)  
Output Low Voltage, ALE, PSEN  
58  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Table 11-1. DC Parameters in Standard Voltage  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
IOH = -10 µA  
VCC - 0.3  
VCC - 0.7  
VCC - 1.5  
V
V
V
IOH = -30 µA  
VOH  
Output High Voltage, ports 1, 2, 3, 4, 5  
IOH = -60 µA  
VCC = 5 V 10%  
IOH = -200 µA  
IOH = -3.2 mA  
IOH = -7.0 mA  
VCC = 5 V 10%  
VCC - 0.3  
VCC - 0.7  
VCC - 1.5  
V
V
V
VOH1  
Output High Voltage, port 0  
IOH = -100 µA  
IOH = -1.6 mA  
IOH = -3.5 mA  
VCC = 5 V 10%  
VCC - 0.3  
VCC - 0.7  
VCC - 1.5  
V
V
V
VOH2  
Output High Voltage,ALE, PSEN  
RRST  
IIL  
RST Pulldown Resistor  
50  
90 (5)  
200  
-50  
10  
kΩ  
µA  
µA  
Logical 0 Input Current ports 1, 2, 3, 4, 5  
Input Leakage Current  
Vin = 0.45 V  
ILI  
0.45 V < Vin < VCC  
Logical 1 to 0 Transition Current, ports 1, 2, 3, 4,  
5
ITL  
-650  
µA  
Vin = 2.0 V  
Fc = 1 MHz  
CIO  
IPD  
Capacitance of I/O Buffer  
Power-down Current  
10  
50  
pF  
TA  
= 25°C  
20(5)  
µA  
2.0 V < VCC < 5.5 V(3)  
1 + 0.4 Freq  
(MHz)  
@12MHz 5.8  
ICC  
Power Supply Current Maximum values, X1  
mode: (7)  
under  
RESET  
V
CC = 5.5 V(1)  
mA  
mA  
@16MHz 7.4  
3 + 0.6 Freq  
(MHz)  
@12MHz 10.2  
ICC  
Power Supply Current Maximum values, X1  
mode: (7)  
operating  
VCC = 5.5 V(8)  
@16MHz 12.6  
0.25+0.3 Freq  
(MHz)  
ICC  
Power Supply Current Maximum values, X1  
mode: (7)  
V
CC = 5.5 V(2)  
@12MHz 3.9  
@16MHz 5.1  
idle  
mA  
59  
4188F–8051–01/08  
11.4 DC Parameters for Low Voltage  
T
T
A
= 0°C to +70°C; VSS = 0 V; VCC = 2.7 V to 5.5 V 10%; F = 0 to 30 MHz.  
= -40°C to +85°C; VSS = 0 V; VCC = 2.7 V to 5.5 V 10%; F = 0 to 30 MHz.  
A
Table 11-2. DC Parameters for Low Voltage  
Symbol  
Parameter  
Min  
-0.5  
Typ  
Max  
0.2 VCC - 0.1  
VCC + 0.5  
VCC + 0.5  
0.45  
Unit  
V
Test Conditions  
VIL  
Input Low Voltage  
VIH  
Input High Voltage except XTAL1, RST  
Input High Voltage, XTAL1, RST  
Output Low Voltage, ports 1, 2, 3, 4, 5 (6)  
Output Low Voltage, port 0, ALE, PSEN (6)  
Output High Voltage, ports 1, 2, 3, 4, 5  
Output High Voltage, port 0, ALE, PSEN  
Logical 0 Input Current ports 1, 2, 3, 4, 5  
Input Leakage Current  
0.2 VCC + 0.9  
0.7 VCC  
V
VIH1  
VOL  
VOL1  
VOH  
VOH1  
IIL  
V
V
IOL = 0.8 mA(4)  
0.45  
V
IOL = 1.6 mA(4)  
IOH = -10 µA  
0.9 VCC  
0.9 VCC  
V
V
IOH = -40 µA  
-50  
10  
µA  
µA  
Vin = 0.45 V  
ILI  
0.45 V < Vin < VCC  
Logical 1 to 0 Transition Current, ports 1, 2, 3, 4,  
5
ITL  
-650  
200  
10  
µA  
kΩ  
pF  
Vin = 2.0 V  
RRST  
CIO  
RST Pulldown Resistor  
Capacitance of I/O Buffer  
50  
90 (5)  
Fc = 1 MHz  
TA = 25°C  
20 (5)  
10 (5)  
50  
30  
VCC = 2.0 V to 5.5 V(3)  
VCC = 2.0 V to 3.3 V(3)  
IPD  
Power-down Current  
µA  
µA  
Power-down Current (Only for TS87C51RD2  
S287-xxx Very Low power)  
IPD  
2 (5)  
15  
2.0 V < VCC < 3.6 V(3)  
1 + 0.2 Freq  
(MHz)  
@12MHz 3.4  
ICC  
Power Supply Current Maximum values, X1  
mode: (7)  
under  
RESET  
VCC = 3.3 V(1)  
mA  
@16MHz 4.2  
1 + 0.3 Freq  
(MHz)  
@12MHz 4.6  
ICC  
Power Supply Current Maximum values, X1  
mode: (7)  
VCC = 3.3 V(8)  
operating  
mA  
mA  
@16MHz 5.8  
0.15 Freq  
(MHz) + 0.2  
ICC  
Power Supply Current Maximum values, X1  
mode: (7)  
idle  
VCC = 3.3 V(2)  
@12MHz 2  
@16MHz 2.6  
Notes: 1. ICC under reset is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns (see Figure 11-5.), VIL  
= VSS + 0.5 V,  
VIH = VCC - 0.5V; XTAL2 N.C.; EA = RST = Port 0 = VCC. ICC would be slightly higher if a crystal oscillator used..  
2. Idle ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VCC  
0.5 V; XTAL2 N.C; Port 0 = VCC; EA = RST = VSS (see Figure 11-3.).  
-
3. Power-down ICC is measured with all output pins disconnected; EA = VSS, PORT 0 = VCC; XTAL2 NC.; RST = VSS (see Fig-  
ure 11-4.).  
60  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLs of ALE and Ports 1  
and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0  
transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed  
0.45V with maxi VOL peak 0.6V. A Schmitt Trigger use is not necessary.  
5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and  
5V.  
6. Under steady state (non-transient) conditions, IOL must be externally limited as follows:  
Maximum IOL per port pin: 10 mA  
Maximum IOL per 8-bit port:  
Port 0: 26 mA  
Ports 1, 2, 3 and 4 and 5 when available: 15 mA  
Maximum total IOL for all output pins: 71 mA  
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater  
than the listed test conditions.  
7. For other values, please contact your sales office.  
8. Operating ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns (see Figure 11-5.), VIL =  
VSS + 0.5 V,  
V
IH = VCC - 0.5V; XTAL2 N.C.; EA = Port 0 = VCC; RST = VSS. The internal ROM runs the code 80 FE (label: SJMP label). ICC  
would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is  
the worst case.  
Figure 11-1. ICC Test Condition, under reset  
VCC  
ICC  
VCC  
VCC  
P0  
VCC  
RST  
EA  
XTAL2  
XTAL1  
(NC)  
CLOCK  
SIGNAL  
VSS  
All other pins are disconnected.  
Figure 11-2. Operating ICC Test Condition  
VCC  
ICC  
VCC  
VCC  
P0  
EA  
Reset = Vss after a high pulse  
during at least 24 clock cycles  
RST  
XTAL2  
XTAL1  
(NC)  
CLOCK  
SIGNAL  
All other pins are disconnected.  
VSS  
61  
4188F–8051–01/08  
Figure 11-3. ICC Test Condition, Idle Mode  
VCC  
ICC  
VCC  
VCC  
P0  
EA  
Reset = Vss after a high pulse  
during at least 24 clock cycles  
RST  
(NC)  
XTAL2  
XTAL1  
VSS  
CLOCK  
SIGNAL  
All other pins are disconnected.  
Figure 11-4. ICC Test Condition, Power-Down Mode  
VCC  
ICC  
VCC  
VCC  
P0  
EA  
Reset = Vss after a high pulse  
during at least 24 clock cycles  
RST  
(NC)  
XTAL2  
XTAL1  
VSS  
All other pins are disconnected.  
Figure 11-5. Clock Signal Waveform for ICC Tests in Active and Idle Modes  
VCC-0.5V  
0.7VCC  
0.2VCC-0.1  
0.45V  
TCLCH  
TCHCL  
TCLCH = TCHCL = 5ns.  
11.5 AC Parameters  
11.5.1  
Explanation of the AC Symbols  
Each timing symbol has 5 characters. The first character is always a “T” (stands for time). The  
other characters, depending on their positions, stand for the name of a signal or the logical sta-  
tus of that signal. The following is a list of all the characters and what they stand for.  
Example:TAVLL = Time for Address Valid to ALE Low.  
TLLPL = Time for ALE Low to PSEN Low.  
T
T
A
A
= 0 to +70°C (commercial temperature range); VSS = 0 V; VCC = 5 V 10%; -M and -V ranges.  
= -40°C to +85°C (industrial temperature range); VSS = 0 V; VCC = 5 V 10%; -M and -V  
ranges.  
62  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
T
T
A
A
= 0 to +70°C (commercial temperature range); VSS = 0 V; 2.7 V < VCC < 5.5 V; -L range.  
= -40°C to +85°C (industrial temperature range); VSS = 0 V; 2.7 V < VCC < 5.5 V; -L range.  
Table 11-3. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3, and ALE  
and PSEN signals. Timings will be guaranteed if these capacitances are respected. Higher  
capacitance values can be used, but timings will then be degraded.  
Table 11-3. Load Capacitance versus speed range, in pF  
-M  
100  
80  
-V  
50  
50  
30  
-L  
Port 0  
100  
80  
Port 1, 2, 3  
ALE / PSEN  
100  
100  
Table 11-5., Table 39. and Table 42. give the description of each AC symbols.  
Table 11-6., Table 11-8. and Table 11-10. give for each range the AC parameter.  
Table 11-7., Table 11-9. and Table 11-11. give the frequency derating formula of the AC param-  
eter. To calculate each AC symbols, take the x value corresponding to the speed grade you  
need (-M, -V or -L) and replace this value in the formula. Values of the frequency must be limited  
to the corresponding speed grade:  
Table 11-4. Max frequency for derating formula regarding the speed grade  
-M X1 mode  
-M X2 mode  
-V X1 mode  
-V X2 mode  
-L X1 mode  
-L X2 mode  
Freq (MHz)  
T (ns)  
40  
25  
20  
50  
40  
25  
30  
30  
20  
50  
33.3  
33.3  
Example:  
T
LLIV in X2 mode for a -V part at 20 MHz (T = 1/20E6 = 50 ns):  
x= 22 (Table 11-7.)  
T= 50ns  
T
LLIV= 2T - x = 2 x 50 - 22 = 78ns  
63  
4188F–8051–01/08  
11.5.2  
External Program Memory Characteristics  
Table 11-5. Symbol Description  
Symbol  
T
Parameter  
Oscillator clock period  
ALE pulse width  
TLHLL  
TAVLL  
TLLAX  
TLLIV  
TLLPL  
TPLPH  
TPLIV  
TPXIX  
TPXIZ  
TPXAV  
TAVIV  
TPLAZ  
Address Valid to ALE  
Address Hold After ALE  
ALE to Valid Instruction In  
ALE to PSEN  
PSEN Pulse Width  
PSEN to Valid Instruction In  
Input Instruction Hold After PSEN  
Input Instruction FloatAfter PSEN  
PSEN to Address Valid  
Address to Valid Instruction In  
PSEN Low to Address Float  
Table 11-6. AC Parameters for Fix Clock  
-V  
-L  
-V  
-L  
standard  
mode  
standard  
mode  
X2 mode  
X2 mode  
20 MHz  
-M  
30 MHz  
40 MHz  
30 MHz  
Speed  
Symbol  
T
40 MHz  
60 MHz equiv.  
40 MHz equiv.  
Units  
Min  
Max  
Min  
33  
25  
4
Max  
Min  
Max  
Min  
50  
35  
5
Max  
Min  
Max  
25  
40  
10  
10  
25  
42  
12  
12  
33  
52  
13  
13  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TLHLL  
TAVLL  
TLLAX  
TLLIV  
4
5
70  
35  
45  
25  
78  
50  
65  
30  
98  
55  
TLLPL  
TPLPH  
TPLIV  
TPXIX  
TPXIZ  
TAVIV  
TPLAZ  
15  
55  
9
17  
60  
10  
50  
18  
75  
35  
0
0
0
0
0
18  
85  
10  
12  
53  
10  
20  
95  
10  
10  
80  
10  
18  
122  
10  
64  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Table 11-7. AC Parameters for a Variable Clock: derating formula  
Standard  
Clock  
Symbol  
TLHLL  
TAVLL  
TLLAX  
TLLIV  
Type  
Min  
X2 Clock  
T - x  
-M  
10  
15  
15  
30  
10  
20  
40  
0
-V  
8
-L  
15  
20  
20  
35  
15  
25  
45  
0
Units  
ns  
2 T - x  
T - x  
T - x  
4 T - x  
T - x  
3 T - x  
3 T - x  
x
Min  
0.5 T - x  
0.5 T - x  
2 T - x  
0.5 T - x  
1.5 T - x  
1.5 T - x  
x
13  
13  
22  
8
ns  
Min  
ns  
Max  
Min  
ns  
TLLPL  
TPLPH  
TPLIV  
ns  
Min  
15  
25  
0
ns  
Max  
Min  
ns  
TPXIX  
TPXIZ  
TAVIV  
ns  
Max  
Max  
Max  
T - x  
5 T - x  
x
0.5 T - x  
2.5 T - x  
x
7
5
15  
45  
10  
ns  
40  
10  
30  
10  
ns  
TPLAZ  
ns  
11.5.3  
External Program Memory Read Cycle  
Figure 11-6. External Program Memory Read Cycle  
12 TCLCL  
TLHLL  
TLLIV  
TLLPL  
ALE  
PSEN  
TPLPH  
TPXAV  
TPXIZ  
TLLAX  
TAVLL  
TPLIV  
TPLAZ  
TPXIX  
INSTR IN  
PORT 0  
PORT 2  
INSTR IN  
A0-A7  
A0-A7  
INSTR IN  
TAVIV  
ADDRESS A8-A15  
ADDRESS  
OR SFR-P2  
ADDRESS A8-A15  
65  
4188F–8051–01/08  
11.5.4  
External Data Memory Characteristics  
Symbol  
TRLRH  
TWLWH  
TRLDV  
TRHDX  
TRHDZ  
TLLDV  
Parameter  
RD Pulse Width  
WR Pulse Width  
RD to Valid Data In  
Data Hold After RD  
Data Float After RD  
ALE to Valid Data In  
Address to Valid Data In  
ALE to WR or RD  
TAVDV  
TLLWL  
TAVWL  
TQVWX  
TQVWH  
TWHQX  
TRLAZ  
Address to WR or RD  
Data Valid to WR Transition  
Data set-up to WR High  
Data Hold After WR  
RD Low to Address Float  
RD or WR High to ALE high  
TWHLH  
Table 11-8. AC Parameters for a Fix Clock  
-V  
-L  
-L  
-V  
X2 mode  
X2 mode  
20 MHz  
standard mode  
30 MHz  
standard mode 40  
MHz  
Speed  
-M  
30 MHz  
40 MHz  
60 MHz equiv.  
40 MHz equiv.  
Units  
Symbol  
TRLRH  
TWLWH  
TRLDV  
TRHDX  
TRHDZ  
TLLDV  
Min  
Max  
Min  
85  
Max  
Min  
135  
135  
Max  
Min  
125  
125  
Max  
Min  
175  
175  
Max  
130  
130  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
85  
100  
60  
102  
95  
137  
0
0
0
0
0
30  
18  
98  
35  
165  
175  
95  
25  
42  
160  
165  
100  
155  
160  
105  
222  
235  
130  
TAVDV  
TLLWL  
TAVWL  
TQVWX  
TQVWH  
TWHQX  
TRLAZ  
100  
70  
50  
75  
30  
47  
7
55  
80  
45  
70  
5
70  
103  
13  
10  
15  
160  
15  
107  
9
165  
17  
155  
10  
213  
18  
0
0
0
0
0
TWHLH  
10  
40  
7
27  
15  
35  
5
45  
13  
53  
66  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Table 11-9. AC Parameters for a Variable Clock: derating formula  
Standard  
Clock  
Symbol  
TRLRH  
TWLWH  
TRLDV  
TRHDX  
TRHDZ  
TLLDV  
Type  
Min  
Min  
Max  
Min  
Max  
Max  
Max  
Min  
Max  
Min  
Min  
Min  
Min  
Max  
Min  
Max  
X2 Clock  
3 T - x  
3 T - x  
2.5 T - x  
x
-M  
20  
20  
25  
0
-V  
15  
15  
23  
0
-L  
25  
25  
30  
0
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6 T - x  
6 T - x  
5 T - x  
x
2 T - x  
8 T - x  
9 T - x  
3 T - x  
3 T + x  
4 T - x  
T - x  
T - x  
20  
40  
60  
25  
25  
25  
15  
15  
10  
0
15  
35  
50  
20  
20  
20  
10  
10  
8
25  
45  
65  
30  
30  
30  
20  
20  
15  
0
4T -x  
TAVDV  
TLLWL  
4.5 T - x  
1.5 T - x  
1.5 T + x  
2 T - x  
0.5 T - x  
3.5 T - x  
0.5 T - x  
x
TLLWL  
TAVWL  
TQVWX  
TQVWH  
TWHQX  
TRLAZ  
TWHLH  
TWHLH  
7 T - x  
T - x  
x
0
T - x  
0.5 T - x  
0.5 T + x  
15  
15  
10  
10  
20  
20  
T + x  
11.5.5  
External Data Memory Write Cycle  
Figure 11-7. External Data Memory Write Cycle  
TWHLH  
ALE  
PSEN  
WR  
TLLWL  
TWLWH  
TQVWX  
TWHQX  
TLLAX  
A0-A7  
TQVWH  
DATA OUT  
PORT 0  
TAVWL  
ADDRESS  
PORT 2  
ADDRESS A8-A15 OR SFR P2  
OR SFR-P2  
11.5.6  
External Data Memory Read Cycle  
67  
4188F–8051–01/08  
Figure 11-8. External Data Memory Read Cycle  
TWHLH  
TLLDV  
ALE  
PSEN  
RD  
TLLWL  
TRLRH  
TRLDV  
TRHDZ  
TAVDV  
TLLAX  
TRHDX  
DATA IN  
PORT 0  
PORT 2  
A0-A7  
TRLAZ  
TAVWL  
ADDRESS  
ADDRESS A8-A15 OR SFR P2  
OR SFR-P2  
11.5.7  
Serial Port Timing - Shift Register Mode  
Symbol  
TXLXL  
Parameter  
Serial port clock cycle time  
TQVHX  
TXHQX  
TXHDX  
TXHDV  
Output data set-up to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
Table 11-10. AC Parameters for a Fix Clock  
-V  
-L  
-L  
-V  
X2 mode  
30 MHz  
X2 mode  
20 MHz  
standard mode  
30 MHz  
standard mode 40  
MHz  
-M  
Speed  
Symbol  
TXLXL  
40 MHz  
60 MHz equiv.  
40 MHz equiv.  
Units  
Min  
Max  
Min  
200  
117  
13  
Max  
Min  
300  
200  
30  
Max  
Min  
300  
200  
30  
Max  
Min  
400  
283  
47  
Max  
300  
200  
30  
ns  
ns  
ns  
ns  
ns  
TQVHX  
TXHQX  
TXHDX  
TXHDV  
0
0
0
0
0
117  
34  
117  
117  
200  
68  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Table 11-11. AC Parameters for a Variable Clock: derating formula  
Standard  
Clock  
Symbol  
TXLXL  
Type  
Min  
Min  
Min  
Min  
Max  
X2 Clock  
6 T  
-M  
-V  
-L  
Units  
ns  
12 T  
10 T - x  
2 T - x  
x
TQVHX  
TXHQX  
TXHDX  
TXHDV  
5 T - x  
T - x  
50  
20  
0
50  
20  
0
50  
20  
0
ns  
ns  
x
ns  
10 T - x  
5 T- x  
133  
133  
133  
ns  
11.5.8  
Shift Register Timing Waveforms  
Figure 11-9. Shift Register Timing Waveforms  
0
1
2
3
4
5
6
7
8
INSTRUCTION  
ALE  
TXLXL  
CLOCK  
TXHQX  
1
TQVXH  
0
2
3
4
5
6
7
OUTPUT DATA  
TXHDX  
SET TI  
TXHDV  
WRITE to SBUF  
INPUT DATA  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET RI  
CLEAR RI  
69  
4188F–8051–01/08  
11.5.9  
EPROM Programming and Verification Characteristics  
= 21°C to 27°C; VSS = 0V; VCC = 5V 10% while programming. VCC = operating range while  
T
A
Symbol  
VPP  
Parameter  
Min  
Max  
13  
75  
6
Units  
V
Programming Supply Voltage  
Programming Supply Current  
Oscillator Frquency  
12.5  
IPP  
mA  
1/TCLCL  
TAVGL  
TGHAX  
TDVGL  
TGHDX  
TEHSH  
TSHGL  
TGHSL  
TGLGH  
TAVQV  
TELQV  
TEHQZ  
4
MHz  
Address Setup to PROG Low  
Adress Hold after PROG  
Data Setup to PROG Low  
Data Hold after PROG  
(Enable) High to VPP  
48 TCLCL  
48 TCLCL  
48 TCLCL  
48 TCLCL  
48 TCLCL  
10  
VPP Setup to PROG Low  
µs  
µs  
µs  
V
PP Hold after PROG  
10  
PROG Width  
90  
110  
Address to Valid Data  
ENABLE Low to Data Valid  
Data Float after ENABLE  
48 TCLCL  
48 TCLCL  
48 TCLCL  
0
verifying  
11.5.10 EPROM Programming and Verification Waveforms  
Figure 11-10. EPROM Programming and Verification Waveforms  
PROGRAMMING  
VERIFICATION  
ADDRESS  
TAVQV  
P1.0-P1.7  
ADDRESS  
P2.0-P2.5  
P3.4-P3.5*  
DATA OUT  
P0  
DATA IN  
TGHDX  
TGHAX  
TDVGL  
TAVGL  
ALE/PROG  
EA/VPP  
TSHGL  
TGHSL  
TGLGH  
VPP  
VCC  
VCC  
TELQV  
TEHSH  
TEHQZ  
CONTROL  
SIGNALS  
(ENABLE)  
* 8KB: up to P2.4, 16KB: up to P2.5, 32KB: up to P3.4, 64KB: up to P3.5  
70  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
11.5.11 External Clock Drive Characteristics (XTAL1)  
Symbol  
TCLCL  
Parameter  
Min  
25  
5
Max  
Units  
ns  
Oscillator Period  
High Time  
TCHCX  
ns  
TCLCX  
Low Time  
5
ns  
TCLCH  
Rise Time  
5
5
ns  
TCHCL  
Fall Time  
ns  
TCHCX/TCLCX  
Cyclic ratio in X2 mode  
40  
60  
%
11.5.12 External Clock Drive Waveforms  
Figure 11-11. External Clock Drive Waveforms  
VCC-0.5 V  
0.7VCC  
0.2VCC-0.1 V  
0.45 V  
TCHCX  
TCLCH  
TCHCL  
TCLCX  
TCLCL  
11.5.13 AC Testing Input/Output Waveforms  
Figure 11-12. AC Testing Input/Output Waveforms  
VCC-0.5 V  
0.2VCC+0.9  
0.2VCC-0.1  
INPUT/OUTPUT  
0.45 V  
AC inputs during testing are driven at VCC - 0.5 for a logic “1” and 0.45V for a logic “0”. Timing  
measurement are made at VIH min for a logic “1” and VIL max for a logic “0”.  
11.5.14 Float Waveforms  
Figure 11-13. Float Waveforms  
FLOAT  
VLOAD  
VOH-0.1 V  
VOL+0.1 V  
VLOAD+0.1 V  
VLOAD-0.1 V  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage  
occurs and begins to float when a 100 mV change from the loaded VOH/VOL level occurs. IOL/IOH  
20mA.  
71  
4188F–8051–01/08  
11.5.15 Clock Waveforms  
Valid in normal clock mode. In X2 mode XTAL2 signal must be changed to XTAL2 divided by  
two.  
Figure 11-14. Clock Waveforms  
STATE1  
P1P2  
STATE2  
P1P2  
STATE3  
P1P2  
STATE4  
P1P2  
STATE4  
STATE5  
P1P2  
STATE6  
P1P2  
STATE5  
P1P2  
INTERNAL  
CLOCK  
P1P2  
XTAL2  
ALE  
THESE SIGNALS ARE NOT ACTIVATED DURING THE  
EXECUTION OF A MOVX INSTRUCTION  
EXTERNAL PROGRAM MEMORY FETCH  
PSEN  
PCL OUT  
PCL OUT  
PCL OUT  
DATA  
P0  
DATA  
DATA  
SAMPLED  
FLOAT  
SAMPLED  
FLOAT  
SAMPLED  
FLOAT  
INDICATES ADDRESS TRANSITIONS  
P2 (EXT)  
READ CYCLE  
RD  
PCL OUT (IF PROGRAM  
MEMORY IS EXTERNAL)  
P0  
P2  
DPL OR Rt OUT  
FLOAT  
INDICATES DPH OR P2 SFR TO PCH TRANSITION  
WRITE CYCLE  
WR  
PCL OUT (EVEN IF PROGRAM  
MEMORY IS INTERNAL)  
P0  
DPL OR Rt OUT  
DATA OUT  
INDICATES DPH OR P2 SFR TO PCH TRANSITION  
PCL OUT (IF PROGRAM  
MEMORY IS EXTERNAL)  
P2  
PORT OPERATION  
OLD DATA  
P0 PINS SAMPLED  
NEW DATA  
P0 PINS SAMPLED  
RXD SAMPLED  
MOV DEST P0  
P1, P2, P3 PINS SAMPLED  
RXD SAMPLED  
P1, P2, P3 PINS SAMPLED  
MOV DEST PORT (P1, P2, P3)  
(INCLUDES INT0, INT1, TO, T1)  
SERIAL PORT SHIFT CLOCK  
TXD (MODE 0)  
This diagram indicates when signals are clocked internally. The time it takes the signals to prop-  
agate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on  
variables such as temperature and pin loading. Propagation also varies from output to output  
and component. Typically though (TA=25°C fully loaded) RD and WR propagation delays are  
approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated  
in the AC specifications.  
72  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
12. Ordering Information  
Part Number  
Memory size  
Supply Voltage Temperature Range  
Max Frequency  
Package  
Packing  
TS80C51RA2-MCA  
TS80C51RA2-MCB  
TS80C51RA2-MCE  
TS80C51RA2-MIA  
TS80C51RA2-MIB  
TS80C51RA2-MIE  
TS80C51RA2-LCA  
TS80C51RA2-LCB  
TS80C51RA2-LCE  
TS80C51RA2-LIA  
TS80C51RA2-LIB  
TS80C51RA2-LIE  
TS80C51RA2-VCA  
TS80C51RA2-VCB  
TS80C51RA2-VCE  
TS80C51RA2-VIA  
TS80C51RA2-VIB  
TS80C51RA2-VIE  
OBSOLETE  
AT80C51RA2-3CSUM  
AT80C51RA2-SLSUM  
AT80C51RA2-RLTUM  
AT80C51RA2-3CSIM  
AT80C51RA2-SLSIM  
AT80C51RA2-RLTIM  
AT80C51RA2-3CSCL  
AT80C51RA2-SLSCL  
AT80C51RA2-RLTCL  
AT80C51RA2-3CSUL  
AT80C51RA2-SLSUL  
AT80C51RA2-RLTUL  
Romless  
Romless  
Romless  
5V  
5V  
5V  
Industrial & Green  
Industrial & Green  
Industrial & Green  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
Stick  
Stick  
Tray  
OBSOLETE  
Romless  
Romless  
Romless  
3-5V  
3-5V  
3-5V  
Industrial & Green  
Industrial & Green  
Industrial & Green  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
Stick  
Stick  
Tray  
73  
4188F–8051–01/08  
Part Number  
Memory size  
Supply Voltage Temperature Range  
Max Frequency  
Package  
Packing  
AT80C51RA2-3CSCV  
AT80C51RA2-SLSCV  
AT80C51RA2-RLTCV  
AT80C51RA2-3CSIV  
AT80C51RA2-SLSIV  
AT80C51RA2-RLSIV  
OBSOLETE  
TS80C51RD2-MCA  
TS80C51RD2-MCB  
TS80C51RD2-MCE  
TS80C51RD2-MIA  
TS80C51RD2-MIB  
TS80C51RD2-MIE  
TS80C51RD2-LCA  
TS80C51RD2-LCB  
TS80C51RD2-LCE  
TS80C51RD2-LIA  
TS80C51RD2-LIB  
TS80C51RD2-LIE  
TS80C51RD2-VCA  
TS80C51RD2-VCB  
TS80C51RD2-VCE  
TS80C51RD2-VIA  
TS80C51RD2-VIB  
TS80C51RD2-VIE  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
AT80C51RD2-3CSUM  
AT80C51RD2-SLSUM  
AT80C51RD2-RLTUM  
AT80C51RD2-3CSUL  
AT80C51RD2-SLSUL  
AT80C51RD2-RLTUL  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
Not recommended use AT87C51RD2  
74  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Part Number  
Memory size  
Supply Voltage Temperature Range  
Max Frequency  
Package  
Packing  
TS87C51RB2-MCA  
TS87C51RB2-MCB  
TS87C51RB2-MCE  
TS87C51RB2-MIA  
TS87C51RB2-MIB  
TS87C51RB2-MIE  
TS87C51RB2-LCA  
TS87C51RB2-LCB  
TS87C51RB2-LCE  
TS87C51RB2-LIA  
TS87C51RB2-LIB  
TS87C51RB2-LIE  
TS87C51RB2-VCA  
TS87C51RB2-VCB  
TS87C51RB2-VCE  
TS87C51RB2-VIA  
TS87C51RB2-VIB  
TS87C51RB2-VIE  
OBSOLETE  
AT87C51RB2-3CSUM  
AT87C51RB2-SLSUM  
AT87C51RB2-RLTUM  
AT87C51RB2-3CSUL  
AT87C51RB2-SLSUL  
AT87C51RB2-RLTUL  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
5V  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
5V  
5V  
3-5V  
3-5V  
3-5V  
75  
4188F–8051–01/08  
Part Number  
Memory size  
Supply Voltage Temperature Range  
Max Frequency  
Package  
Packing  
TS87C51RC2-MCA  
TS87C51RC2-MCB  
TS87C51RC2-MCE  
TS87C51RC2-MIA  
TS87C51RC2-MIB  
TS87C51RC2-MIE  
TS87C51RC2-LCA  
TS87C51RC2-LCB  
TS87C51RC2-LCE  
TS87C51RC2-LIA  
TS87C51RC2-LIB  
TS87C51RC2-LIE  
TS87C51RC2-VCA  
TS87C51RC2-VCB  
TS87C51RC2-VCE  
TS87C51RC2-VIA  
TS87C51RC2-VIB  
TS87C51RC2-VIE  
OBSOLETE  
AT87C51RC2-3CSUM  
AT87C51RC2-SLSUM  
AT87C51RC2-RLTUM  
AT87C51RC2-3CSUL  
AT87C51RC2-SLSUL  
AT87C51RC2-RLTUL  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
5V  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
5V  
5V  
3-5V  
3-5V  
3-5V  
76  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Part Number  
Memory size  
Supply Voltage Temperature Range  
Max Frequency  
Package  
Packing  
TS87C51RD2-MCA  
TS87C51RD2-MCB  
TS87C51RD2-MCE  
TS87C51RD2-MIA  
TS87C51RD2-MIB  
TS87C51RD2-MIE  
TS87C51RD2-LCA  
TS87C51RD2-LCB  
TS87C51RD2-LCE  
TS87C51RD2-LIA  
TS87C51RD2-LIB  
TS87C51RD2-LIE  
TS87C51RD2-VCA  
TS87C51RD2-VCB  
TS87C51RD2-VCE  
TS87C51RD2-VCL  
TS87C51RD2-VIA  
TS87C51RD2-VIB  
TS87C51RD2-VIE  
OBSOLETE  
AT87C51RD2-3CSUM  
AT87C51RD2-SLSUM  
AT87C51RD2-RLTUM  
AT87C51RD2-3CSUL  
AT87C51RD2-SLSUL  
AT87C51RD2-RLTUL  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
5V  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
5V  
5V  
3-5V  
3-5V  
3-5V  
77  
4188F–8051–01/08  
Part Number  
Memory size  
Supply Voltage Temperature Range  
Max Frequency  
Package  
Packing  
TS83C51RB2-MCA  
TS83C51RB2-MCB  
TS83C51RB2-MCE  
TS83C51RB2-MIA  
TS83C51RB2-MIB  
TS83C51RB2-MIE  
TS83C51RB2-LCA  
TS83C51RB2-LCB  
TS83C51RB2-LCE  
TS83C51RB2-LIA  
TS83C51RB2-LIB  
TS83C51RB2-LIE  
TS83C51RB2-VCA  
TS83C51RB2-VCB  
TS83C51RB2-VCE  
TS83C51RB2-VIA  
TS83C51RB2-VIB  
TS83C51RB2-VIE  
OBSOLETE  
AT83C51RB2-3CSUM  
AT83C51RB2-SLSUM  
AT83C51RB2-RLTUM  
AT83C51RB2-3CSUL  
AT83C51RB2-SLSUL  
AT83C51RB2-RLTUL  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
5V  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
5V  
5V  
3-5V  
3-5V  
3-5V  
78  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
Part Number  
Memory size  
Supply Voltage Temperature Range  
Max Frequency  
Package  
Packing  
TS83C51RC2-MCA  
TS83C51RC2-MCB  
TS83C51RC2-MCE  
TS83C51RC2-MIA  
TS83C51RC2-MIB  
TS83C51RC2-MIE  
TS83C51RC2-LCA  
TS83C51RC2-LCB  
TS83C51RC2-LCE  
TS83C51RC2-LIA  
TS83C51RC2-LIB  
TS83C51RC2-LIE  
TS83C51RC2-VCA  
TS83C51RC2-VCB  
TS83C51RC2-VCE  
TS83C51RC2-VIA  
TS83C51RC2-VIB  
TS83C51RC2-VIE  
OBSOLETE  
AT83C51RC2-3CSUM  
AT83C51RC2-SLSUM  
AT83C51RC2-RLTUM  
AT83C51RC2-3CSUL  
AT83C51RC2-SLSUL  
AT83C51RC2-RLTUL  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
5V  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
5V  
5V  
3-5V  
3-5V  
3-5V  
79  
4188F–8051–01/08  
Part Number  
Memory size  
Supply Voltage Temperature Range  
Max Frequency  
Package  
Packing  
TS83C51RD2-MCA  
TS83C51RD2-MCB  
TS83C51RD2-MCE  
TS83C51RD2-MIA  
TS83C51RD2-MIB  
TS83C51RD2-MIE  
TS83C51RD2-LCB  
TS83C51RD2-LCE  
TS83C51RD2-LIA  
TS83C51RD2-LIB  
TS83C51RD2-LIE  
TS83C51RD2-VCA  
TS83C51RD2-VCB  
TS83C51RD2-VCE  
TS83C51RD2-VIA  
TS83C51RD2-VIB  
TS83C51RD2-VIE  
OBSOLETE  
AT83C51RD2-3CSUM  
AT83C51RD2-SLSUM  
AT83C51RD2-RLTUM  
AT83C51RD2-3CSUL  
AT83C51RD2-SLSUL  
AT83C51RD2-RLTUL  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
5V  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
40 MHz (30 MHz X2) PDIL40  
Stick  
Stick  
Tray  
Stick  
Tray  
Stick  
5V  
5V  
3-5V  
3-5V  
5V  
80  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
13. Package Drawings  
13.1 PLCC44  
81  
4188F–8051–01/08  
13.2 PDIL40  
82  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
13.3 VQFP44  
83  
4188F–8051–01/08  
13.4 VQFP64  
84  
AT/TS8xC51Rx2  
4188F–8051–01/08  
AT/TS8xC51Rx2  
13.5 PLCC68  
14. Datasheet Revision History  
14.1 Changes from 4188E to 4188F  
1. Removed TS80C51RD2 and AT80C51RD2 from “Ordering Information” on page 73.  
2. Removed non-green part numbers from ordering information.  
85  
4188F–8051–01/08  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
Atmel Europe  
Le Krebs  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Product Contact  
Web Site  
www.atmel.com  
Technical Support  
Enter Product Line E-mail  
Sales Contact  
www.atmel.com/contacts  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of  
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
4188F–8051–01/08  

相关型号:

TS80C51RA2-LJED

Microcontroller, 8-Bit, 30MHz, CMOS, PQFP44, 1.40 MM HEIGHT, VQFP-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LLA

Microcontroller, 8-Bit, 30MHz, CMOS, PDIP40, PLASTIC, DIP-40

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TS80C51RA2-LLAD

Microcontroller, 8-Bit, 30MHz, CMOS, PDIP40, PLASTIC, DIP-40

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LLBB

Microcontroller, 8-Bit, 30MHz, CMOS, PQCC44, PLASTIC, LCC-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LLBD

Microcontroller, 8-Bit, 30MHz, CMOS, PQCC44, PLASTIC, LCC-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LLBR

Microcontroller, 8-Bit, 30MHz, CMOS, PQCC44, PLASTIC, LCC-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LLEB

Microcontroller, 8-Bit, 30MHz, CMOS, PQFP44, 1.40 MM HEIGHT, VQFP-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LLED

Microcontroller, 8-Bit, 30MHz, CMOS, PQFP44, 1.40 MM HEIGHT, VQFP-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-LLER

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-MCA

High Performance 8-bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS80C51RA2-MCA

High Performance 8-bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TS80C51RA2-MCAB

High Performance 8-bit Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL