TS83C51RB2-MIE [ATMEL]

High Performance 8-bit Microcontroller; 高性能8位微控制器
TS83C51RB2-MIE
型号: TS83C51RB2-MIE
厂家: ATMEL    ATMEL
描述:

High Performance 8-bit Microcontroller
高性能8位微控制器

微控制器
文件: 总83页 (文件大小:1183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
80C52 Compatible  
– 8051 pin and instruction compatible  
– Four 8-bit I/O ports  
– Three 16-bit timer/counters  
– 256 bytes scratchpad RAM  
High-Speed Architecture  
– 40 MHz @ 5V, 30MHz @ 3V  
– X2 Speed Improvement capability (6 clocks/machine cycle)  
– 30 MHz @ 5V, 20 MHz @ 3V (Equivalent to  
– 60 MHz @ 5V, 40 MHz @ 3V)  
High  
Dual Data Pointer  
On-chip ROM/EPROM (16K-bytes, 32K-bytes, 64K-bytes)  
On-chip eXpanded RAM (XRAM) (256 or 768 bytes)  
Programmable Clock Out and Up/Down Timer/Counter 2  
Programmable Counter Array with  
– High Speed Output,  
Performance  
8-bit  
Microcontroller  
– Compare / Capture,  
– Pulse Width Modulator,  
– Watchdog Timer Capabilities  
Hardware Watchdog Timer (One-time enabled with Reset-Out)  
2 extra 8-bit I/O ports available on RD2 with high pin count packages  
Asynchronous port reset  
TS80C51RA2  
TS80C51RD2  
TS83C51RB2  
TS83C51RC2  
TS83C51RD2  
TS87C51RB2  
TS87C51RC2  
TS87C51RD2  
Interrupt Structure with  
– 7 Interrupt sources,  
– 4 level priority interrupt system  
Full duplex Enhanced UART  
– Framing error detection  
– Automatic address recognition  
Low EMI (inhibit ALE)  
Power Control modes  
– Idle mode  
– Power-down mode  
– Power-off Flag  
Once mode (On-chip Emulation)  
Power supply: 4.5-5V, 2.7-5.5V  
Temperature ranges: Commercial (0 to 70oC) and Industrial (-40 to 85oC)  
Packages: PDIL40, PLCC44, VQFP44 1.4, PLCC68, VQFP64 1.4  
Description  
Atmel TS8xC51Rx2 is a high performance CMOS ROM, OTP, EPROM and ROMless  
versions of the 80C51 CMOS single chip 8-bit microcontroller.  
The TS8xC51Rx2 retains all features of the 80C51 with extended ROM/EPROM  
capacity (16/32/64 Kbytes), 256 bytes of internal RAM, a 7-source , 4-level interrupt  
system, an on-chip oscilator and three timer/counters.  
In addition, the TS80C51Rx2 has a Programmable Counter Array, an XRAM of 256 or  
768 bytes, a Hardware Watchdog Timer, a more versatile serial channel that facilitates  
multiprocessor communication (EUART) and an X2 speed improvement mechanism.  
The fully static design of the TS80C51Rx2 allows to reduce system power consump-  
tion by bringing the clock frequency down to any value, even DC, without loss of data.  
The TS80C51Rx2 has 2 software-selectable modes of reduced activity for further  
reduction in power consumption. In the idle mode the CPU is frozen while the timers,  
the serial port and the interrupt system are still operating. In the power-down mode the  
RAM is saved and all other functions are inoperative.  
Rev. 4188A–8051–10/02  
1
PDIL40  
PLCC44  
TOTAL RAM  
(bytes)  
VQFP44 1.4  
ROM (bytes)  
EPROM (bytes)  
XRAM (bytes)  
I/O  
TS80C51RA2  
TS80C51RD2  
0
0
0
0
256  
768  
512  
32  
32  
1024  
TS83C51RB2  
TS83C51RC2  
TS83C51RD2  
16k  
32k  
64k  
0
0
0
256  
256  
768  
512  
512  
32  
32  
32  
1024  
TS87C51RB2  
TS87C51RC2  
TS87C51RD2  
0
0
0
16k  
32k  
64k  
256  
256  
768  
512  
512  
32  
32  
32  
1024  
PLCC68  
TOTAL RAM  
(bytes)  
VQFP64 1.4  
ROM (bytes)  
EPROM (bytes)  
XRAM (bytes)  
I/O  
48  
48  
48  
TS80C51RD2  
TS83C51RD2  
TS87C51RD2  
0
64k  
0
0
0
768  
768  
768  
1024  
1024  
1024  
64k  
Block Diagram  
(3) (3)  
(1)  
(1) (1) (1)  
XTAL1  
XTAL2  
ROM  
/EPROM  
0/16/32/64Kx8  
XRAM  
256/768x8  
RAM  
256x8  
PCA  
EUART  
Timer2  
ALE/PROG  
PSEN  
C51  
CORE  
IB-bus  
CPU  
EA/VPP  
(3)  
(3)  
Parallel I/O Ports & Ext. Bus  
Port 4 Port 5  
Timer 0  
Timer 1  
INT  
Ctrl  
Watch  
Dog  
RD  
Port 0Port 1  
Port 3  
Port 2  
WR  
(2)  
(2)  
(3) (3)  
(3) (3)  
(1): Alternate function of Port 1  
(2): Only available on high pin count packages  
(3): Alternate function of Port 3  
2
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
SFR Mapping  
The Special Function Registers (SFRs) of the TS80C51Rx2 fall into the following  
categories:  
C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1  
I/O port registers: P0, P1, P2, P3, P4, P5  
Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2,  
RCAP2L, RCAP2H  
Serial I/O port registers: SADDR, SADEN, SBUF, SCON  
Power and clock control registers: PCON  
HDW Watchdog Timer Reset: WDTRST, WDTPRG  
PCA registers: CL, CH, CCAPiL, CCAPiH, CCON, CMOD, CCAPMi  
Interrupt system registers: IE, IP, IPH  
Others: AUXR, CKCON  
3
4188A–8051–10/02  
Table 1. All SFRs with their address and their reset value  
Bit  
Non Bit addressable  
addressable  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
CH  
CCAP0H  
CCAP1H  
CCAPL2H  
CCAPL3H  
CCAPL4H  
F8h  
F0h  
FFh  
F7h  
0000 0000  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
B
0000 0000  
P5 bit  
addressable  
CL  
CCAP0L  
CCAP1L  
CCAPL2L  
CCAPL3L  
CCAPL4L  
E8h  
EFh  
0000 0000  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
1111 1111  
ACC  
0000 0000  
E0h  
D8h  
D0h  
C8h  
E7h  
DFh  
D7h  
CFh  
CCON  
CMOD  
CCAPM0  
CCAPM1  
CCAPM2  
CCAPM3  
CCAPM4  
00X0 0000  
00XX X000  
X000 0000  
X000 0000  
X000 0000  
X000 0000  
X000 0000  
PSW  
0000 0000  
T2CON  
0000 0000  
T2MOD  
XXXX XX00  
RCAP2L  
0000 0000  
RCAP2H  
0000 0000  
TL2  
0000 0000  
TH2  
0000 0000  
P4 bit  
P5 byte  
addressable  
addressable  
C0h  
C7h  
1111 1111  
1111 1111  
IP  
SADEN  
B8h  
B0h  
A8h  
A0h  
98h  
90h  
88h  
80h  
BFh  
B7h  
AFh  
A7h  
9Fh  
97h  
8Fh  
87h  
X000 000  
0000 0000  
P3  
IPH  
X000 0000  
1111 1111  
IE  
SADDR  
0000 0000  
0000 0000  
P2  
AUXR1  
WDTRST  
WDTPRG  
1111 1111  
XXXX0XX0  
XXXX XXXX  
XXXX X000  
SCON  
SBUF  
0000 0000  
XXXX XXXX  
P1  
1111 1111  
TCON  
TMOD  
TL0  
TL1  
TH0  
TH1  
CKCON  
AUXR  
XXXXXX00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
XXXX XXX0  
P0  
PCON  
SP  
0000 0111  
DPL  
0000 0000  
DPH  
0000 0000  
1111 1111  
00X1 0000  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
reserved  
4
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Pin Configuration  
P1.0 / T2  
40  
39  
38  
1
2
VCC  
P0.0 / A0  
P0.1 / A1  
P1.1 / T2EX  
P1.2  
3
4
37 P0.2 / A2  
P1.3  
P0.3 / A3  
36  
P1.4  
P1.5  
5
P0.4 / A4  
35  
34  
33  
6
7
8
P0.5 / A5  
P0.6 / A6  
P0.7 / A7  
P1.6  
P1.7  
RST  
6
5 4 3 2 1  
44 43 42 41 40  
P1.5  
P1.6  
P1.7  
39  
38  
7
8
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA/VPP  
NIC*  
ALE/PROG  
PSEN  
P2.7/A15  
P2.6/A14  
P2.5/A13  
9
32  
31  
30  
EA/VPP  
ALE/PROG  
PSEN  
P2.7 / A15  
P2.6 / A14  
P3.0/RxD 10  
P3.1/TxD  
11  
P3.2/INT0  
P3.3/INT1 13  
37  
9
PDIL/  
RST  
10  
11  
12  
13  
36  
35  
34  
33  
12  
29  
28  
27  
26  
CDIL40  
P3.0/RxD  
NIC*  
PLCC/CQPJ 44  
14  
15  
16  
17  
18  
19  
20  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
P2.5 / A13  
14  
15  
16  
17  
32  
31  
30  
29  
P2.4 / A12  
P2.3 / A11  
25  
24  
23  
22  
21  
P3.7/RD  
XTAL2  
XTAL1  
VSS  
P2.2 / A10  
P2.1 / A9  
P2.0 / A8  
18 19 20 21 22 23 24 25 26 27 28  
4443 42 41 40 39 3837363534  
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA/VPP  
NIC*  
ALE/PROG  
PSEN  
P2.7/A15  
P2.6/A14  
P2.5/A13  
33  
32  
31  
30  
29  
28  
27  
P1.5  
P1.6  
P1.7  
RST  
1
2
3
4
P3.0/RxD  
NIC*  
5
VQFP44 1.4  
6
7
8
9
10  
11  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
26  
25  
24  
23  
12 13 14 15 16 17 18 19 20 21 22  
*NIC: No Internal Connection  
5
4188A–8051–10/02  
6
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Pin Number  
Mnemonic  
VSS  
DIL  
LCC  
22  
VQFP 1.4  
Type  
Name And Function  
20  
16  
39  
I
I
Ground: 0V reference  
Vss1  
1
Optional Ground: Contact the Sales Office for ground connection.  
Power Supply: This is the power supply voltage for normal, idle and power-down  
operation  
VCC  
40  
44  
38  
I
P0.0-P0.7  
39-32  
43-36  
37-30  
I/O  
Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to  
them float and can be used as high impedance inputs. Port 0 pins must be polarized to  
Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the  
multiplexed low-order address and data bus during access to external program and  
data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0  
also inputs the code bytes during EPROM programming. External pull-ups are required  
during program verification during which P0 outputs the code bytes.  
P1.0-P1.7  
1-8  
2-9  
40-44  
1-3  
I/O  
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that  
have 1s written to them are pulled high by the internal pull-ups and can be used as  
inputs. As inputs, Port 1 pins that are externally pulled low will source current because  
of the internal pull-ups. Port 1 also receives the low-order address byte during memory  
programming and verification.  
Alternate functions for Port 1 include:  
1
2
40  
41  
I/O  
I
T2 (P1.0): Timer/Counter 2 external count input/Clockout  
T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control  
ECI (P1.2): External Clock for the PCA  
2
3
3
4
42  
I
4
5
43  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CEX0 (P1.3): Capture/Compare External I/O for PCA module 0  
CEX1 (P1.4): Capture/Compare External I/O for PCA module 1  
CEX0 (P1.5): Capture/Compare External I/O for PCA module 2  
CEX0 (P1.6): Capture/Compare External I/O for PCA module 3  
CEX0 (P1.7): Capture/Compare External I/O for PCA module 4  
5
6
44  
6
7
7
8
45  
46  
8
9
47  
P2.0-P2.7  
21-28  
24-31  
18-25  
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that  
have 1s written to them are pulled high by the internal pull-ups and can be used as  
inputs. As inputs, Port 2 pins that are externally pulled low will source current because  
of the internal pull-ups. Port 2 emits the high-order address byte during fetches from  
external program memory and during accesses to external data memory that use 16-  
bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups  
emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX  
@Ri), port 2 emits the contents of the P2 SFR. Some Port 2 pins (P2.0 to P2.5) receive  
the high order address bits during EPROM programming and verification:  
P3.0-P3.7  
10-17  
11,  
13-19  
5,  
7-13  
I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that  
have 1s written to them are pulled high by the internal pull-ups and can be used as  
inputs. As inputs, Port 3 pins that are externally pulled low will source current because  
of the internal pull-ups. Some Port 3 pins (P3.4 to P3.5) receive the high order address  
bits during EPROM programming and verification.  
Port 3 also serves the special features of the 80C51 family, as listed below.  
10  
11  
12  
13  
11  
13  
14  
15  
5
7
8
9
I
O
I
RXD (P3.0): Serial input port  
TXD (P3.1): Serial output port  
INT0 (P3.2): External interrupt 0  
I
INT1 (P3.3): External interrupt 1  
7
4188A–8051–10/02  
Pin Number  
Mnemonic  
DIL  
14  
15  
16  
17  
9
LCC  
16  
VQFP 1.4  
Type  
Name And Function  
10  
11  
12  
13  
4
I
I
T0 (P3.4): Timer 0 external input  
T1 (P3.5): Timer 1 external input  
WR (P3.6): External data memory write strobe  
RD (P3.7): External data memory read strobe  
17  
18  
O
O
I
19  
Reset  
10  
Reset: A high on this pin for two machine cycles while the oscillator is running, resets  
the device. An internal diffused resistor to VSS permits a power-on reset using only an  
external capacitor to VCC. If the hardware watchdog reaches its time-out, the reset pin  
becomes an output during the time the internal reset is activated.  
ALE/PROG  
30  
33  
27  
O (I)  
Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the  
address during an access to external memory. In normal operation, ALE is emitted at a  
constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for  
external timing or clocking. Note that one ALE pulse is skipped during each access to  
external data memory. This pin is also the program pulse input (PROG) during EPROM  
programming. ALE can be disabled by setting SFR’s AUXR.0 bit. With this bit set, ALE  
will be inactive during internal fetches.  
PSEN  
29  
31  
32  
35  
26  
29  
O
Program Store ENable: The read strobe to external program memory. When  
executing code from the external program memory, PSEN is activated twice each  
machine cycle, except that two PSEN activations are skipped during each access to  
external data memory. PSEN is not activated during fetches from internal program  
memory.  
EA/VPP  
I
External Access Enable/Programming Supply Voltage: EA must be externally held  
low to enable the device to fetch code from external program memory locations 0000H  
and 3FFFH (RB) or 7FFFH (RC), or FFFFH (RD). If EA is held high, the device  
executes from internal program memory unless the program counter contains an  
address greater than 3FFFH (RB) or 7FFFH (RC) EA must be held low for ROMless  
devices. This pin also receives the 12.75V programming supply voltage (VPP) during  
EPROM programming. If security level 1 is programmed, EA will be internally latched  
on Reset.  
XTAL1  
XTAL2  
19  
18  
21  
20  
15  
14  
I
Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock  
generator circuits.  
O
Crystal 2: Output from the inverting oscillator amplifier  
Pin Description for 64/68 Port 4 and Port 5 are 8-bit bidirectional I/O ports with internal pull-ups. Pins that have 1s  
written to them are pulled high by the internal pull ups and can be used as inputs.  
pin Packages  
As inputs, pins that are externally pulled low will source current because of the internal  
pull-ups.  
Refer to the previous pin description for other pins.  
8
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Table 2. 64/68 Pin Packages Configuration  
Pin  
PLCC68  
51  
17  
15  
14  
12  
11  
9
SQUARE VQFP64 1.4  
VSS  
VCC  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P3.0  
P3.1  
9/40  
8
6
5
3
2
64  
61  
60  
59  
10  
12  
13  
14  
16  
18  
19  
20  
43  
44  
45  
47  
48  
50  
53  
54  
25  
28  
6
5
3
19  
21  
22  
23  
25  
27  
28  
29  
54  
55  
56  
58  
59  
61  
64  
65  
34  
39  
9
4188A–8051–10/02  
Pin  
PLCC68  
40  
41  
42  
43  
45  
47  
30  
68  
67  
2
SQUARE VQFP64 1.4  
P3.2  
29  
30  
31  
32  
34  
36  
21  
56  
55  
58  
38  
37  
11  
15  
17  
33  
35  
39  
42  
46  
49  
51  
52  
62  
63  
1
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
RESET  
ALE/PROG  
PSEN  
EA/VPP  
XTAL1  
XTAL2  
P4.0  
49  
48  
20  
24  
26  
44  
46  
50  
53  
57  
60  
62  
63  
7
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
8
P5.5  
10  
13  
16  
P5.6  
4
P5.7  
7
10  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
TS80C51Rx2 Enhanced  
Features  
In comparison to the original 80C52, the TS8xC51Rx2 implements some new features,  
which are:  
The X2 option.  
The Dual Data Pointer.  
The extended RAM.  
The Programmable Counter Array (PCA).  
The Watchdog.  
The 4 level interrupt priority system.  
The power-off flag.  
The ONCE mode.  
The ALE disabling.  
Some enhanced features are also located in the UART and the timer 2.  
X2 Feature  
The TS80C51Rx2 core needs only 6 clock periods per machine cycle. This feature  
called ”X2” provides the following advantages:  
Divides frequency crystals by 2 (cheaper crystals) while keeping same CPU power.  
Saves power consumption while keeping same CPU power (oscillator power  
saving).  
Saves power consumption by dividing dynamically operating frequency by 2 in  
operating and idle modes.  
Increases CPU power by 2 while keeping same crystal frequency.  
In order to keep the original C51 compatibility, a divider by 2 is inserted between the  
XTAL1 signal and the main clock input of the core (phase generator). This divider may  
be disabled by software.  
Description  
The clock for the whole circuit and peripheral is first divided by two before being used by  
the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1  
input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic  
ratio between 40 to 60%. Figure 1 shows the clock generation block diagram. X2 bit is  
validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD  
mode. Figure 2 shows the mode switching waveforms.  
Figure 1. Clock Generation Diagram  
XTAL1:2  
2
state machine: 6 clock cycles.  
CPU control  
XTAL1  
0
1
FXTAL  
FOSC  
X2  
CKCON reg  
11  
4188A–8051–10/02  
Figure 2. Mode Switching Waveforms  
XTAL1  
XTAL1:2  
X2 bit  
CPU clock  
STD Mode  
X2 Mode  
STD Mode  
The X2 bit in the CKCON register (Table 3) allows to switch from 12 clock cycles per  
instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated  
(STD mode). Setting this bit activates the X2 feature (X2 mode).  
Note:  
In order to prevent any incorrect operation while operating in X2 mode, user must be  
aware that all peripherals using clock frequency as time reference (UART, timers, PCA...)  
will have their time reference divided by two. For example a free running timer generating  
an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800  
baud rate will have 9600 baud rate.  
Table 3. CKCON Register  
CKCON - Clock Control Register (8Fh)  
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
X2  
Bit  
Bit Number Mnemonic Description  
Reserved  
7
6
5
4
3
2
1
-
-
-
-
-
-
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
CPU and peripheral clock bit  
0
X2  
Clear to select 12 clock periods per machine cycle (STD mode, FOSC=FXTAL/2).  
Set to select 6 clock periods per machine cycle (X2 mode, FOSC=FXTAL).  
Reset Value = XXXX XXX0b  
Not bit addressable  
For further details on the X2 feature, please refer to ANM072 available on the web  
(http://www.atmel.com)  
12  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Dual Data Pointer  
Register  
The additional data pointer can be used to speed up code execution and reduce code  
size in a number of ways.  
The dual DPTR structure is a way by which the chip will specify the address of an exter-  
nal data memory location. There are two 16-bit DPTR registers that address the external  
memory, and a single bit called DPS = AUXR1/bit0 (Table 4) that allows the program  
code to switch between them (Refer to Figure 3).  
Figure 3. Use of Dual Pointer  
External Data Memory  
7
0
DPS  
DPTR1  
DPTR0  
AUXR1(A2H)  
DPH(83H) DPL(82H)  
Table 4. AUXR1: Auxiliary Register 1  
AUXR1  
Address 0A2H  
-
-
-
-
GF3  
-
-
DPS  
Reset value  
Function  
X
X
X
X
0
X
X
0
Symbol  
-
Not implemented, reserved for future use (1)  
Data Pointer Selection.  
DPS  
DPS  
Operating Mode  
DPTR0 Selected  
DPTR1 Selected  
0
1
GF3  
This bit is a general purpose user flag(2)  
.
1.  
2.  
User software should not write 1s to reserved bits. These bits may be used in future 8051  
family products to invoke new feature. In that case, the reset value of the new bit will  
be 0, and its active value will be 1. The value read from a reserved bit is  
indeterminate.  
GF3 will not be available on first version of the RC devices.  
13  
4188A–8051–10/02  
Application  
Software can take advantage of the additional data pointers to both increase speed and  
reduce code size, for example, block operations (copy, compare, search ...) are well  
served by using one data pointer as a ’source’ pointer and the other one as a "destina-  
tion" pointer.  
ASSEMBLY LANGUAGE  
; Block move using dual data pointers  
; Destroys DPTR0, DPTR1, A and PSW  
; note: DPS exits opposite of entry state  
; unless an extra INC AUXR1 is added  
;
00A2 AUXR1 EQU 0A2H  
;
0000 909000MOV DPTR,#SOURCE ; address of SOURCE  
0003 05A2 INC AUXR1 ; switch data pointers  
0005 90A000 MOV DPTR,#DEST ; address of DEST  
0008 LOOP:  
0008 05A2 INC AUXR1 ; switch data pointers  
000A E0 MOVX A,@DPTR ; get a byte from SOURCE  
000B A3 INC DPTR ; increment SOURCE address  
000C 05A2 INC AUXR1 ; switch data pointers  
000E F0 MOVX @DPTR,A ; write the byte to DEST  
000F A3 INC DPTR ; increment DEST address  
0010 70F6JNZ LOOP ; check for 0 terminator  
0012 05A2 INC AUXR1 ; (optional) restore DPS  
INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1  
SFR. However, note that the INC instruction does not directly force the DPS bit to a par-  
ticular state, but simply toggles it. In simple routines, such as the block move example,  
only the fact that DPS is toggled in the proper sequence matters, not its actual value. In  
other words, the block move routine works the same whether DPS is '0' or '1' on entry.  
Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in  
the opposite state.  
14  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Expanded RAM (XRAM)  
The TS80C51Rx2 provide additional Bytes of ramdom access memory (RAM) space for  
increased data parameter handling and high level language usage.  
RA2, RB2 and RC2 devices have 256 bytes of expanded RAM, from 00H to FFH in  
external data space; RD2 devices have 768 bytes of expanded RAM, from 00H to 2FFH  
in external data space.  
The TS80C51Rx2 has internal data memory that is mapped into four separate  
segments.  
The four segments are:  
1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly  
addressable.  
2. The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable  
only.  
3. The Special Function Registers, SFRs, (addresses 80H to FFH) are directly  
addressable only.  
4. The expanded RAM bytes are indirectly accessed by MOVX instructions, and  
with the EXTRAM bit cleared in the AUXR register. (See Table 5.)  
The Lower 128 bytes can be accessed by either direct or indirect addressing. The Upper  
128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy  
the same address space as the SFR. That means they have the same address, but are  
physically separate from SFR space.  
When an instruction accesses an internal location above address 7FH, the CPU knows  
whether the access is to the upper 128 bytes of data RAM or to SFR space by the  
addressing mode used in the instruction.  
Instructions that use direct addressing access SFR space. For example: MOV  
0A0H, # data, accesses the SFR at location 0A0H (which is P2).  
Instructions that use indirect addressing access the Upper 128 bytes of data RAM.  
For example: MOV @R0, # data where R0 contains 0A0H, accesses the data byte  
at address 0A0H, rather than P2 (whose address is 0A0H).  
The 256 or 768 XRAM bytes can be accessed by indirect addressing, with EXTRAM  
bit cleared and MOVX instructions. This part of memory which is physically located  
on-chip, logically occupies the first 256 or 768 bytes of external data memory.  
With EXTRAM = 0, the XRAM is indirectly addressed, using the MOVX instruction in  
combination with any of the registers R0, R1 of the selected bank or DPTR. An  
access to XRAM will not affect ports P0, P2, P3.6 (WR) and P3.7 (RD). For  
example, with EXTRAM = 0, MOVX @R0, # data where R0 contains 0A0H,  
accesses the XRAM at address 0A0H rather than external memory. An access to  
external data memory locations higher than FFH (i.e. 0100H to FFFFH) (higher than  
2FFH (i.e. 0300H to FFFFH for RD devices) will be performed with the MOVX DPTR  
instructions in the same way as in the standard 80C51, so with P0 and P2 as  
data/address busses, and P3.6 and P3.7 as write and read timing signals. Refer to  
Figure 4. For RD devices, accesses to expanded RAM from 100H to 2FFH can only  
be done thanks to the use of DPTR.  
With EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard  
80C51. MOVX @ Ri will provide an eight-bit address multiplexed with data on Port0  
and any output port pins can be used to output higher order address bits. This is to  
provide the external paging capability. MOVX @DPTR will generate a sixteen-bit  
address. Port2 outputs the high-order eight address bits (the contents of DPH) while  
Port0 multiplexes the low-order eight address bits (DPL) with data. MOVX @ Ri and  
15  
4188A–8051–10/02  
MOVX @DPTR will generate either read or write signals on P3.6 (WR) and P3.7  
(RD).  
The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and  
upper RAM) internal data memory. The stack may not be located in the XRAM.  
Figure 4. Internal and External Data Memory Address  
FF(RA, RB, RC)/2FF (RD)  
FF  
FF  
FFFF  
Upper  
128 bytes  
Internal  
Special  
Function  
External  
Data  
Memory  
Register  
Ram  
direct accesses  
indirect accesses  
80  
80  
XRAM  
256 bytes  
Lower  
128 bytes  
Internal  
Ram  
direct or indirect  
accesses  
0100 (RA, RB, RC) or 0300 (RD)  
0000  
00  
00  
Table 5. Auxiliary Register AUXR  
AUXR  
Address 08EH  
Reset value  
Function  
-
-
-
-
-
-
EXTRAM  
AO  
X
X
X
X
X
X
0
0
Symbol  
-
Not implemented, reserved for future use. (1)  
Disable/Enable ALE  
AO  
AO  
0
Operating Mode  
ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 if X2  
mode is used)  
1
ALE is active only during a MOVX or MOVC instruction  
EXTRAM  
Internal/External RAM (00H-FFH) access using MOVX @ Ri/ @ DPTR  
EXTRAM  
Operating Mode  
0
1
Internal XRAM access using MOVX @ Ri/ @ DPTR  
External data memory access  
1.  
User software should not write 1s to reserved bits. These bits may be used in future 8051  
family products to invoke new features. In that case, the reset or inactive value of the  
new bit will be 0, and its active value will be 1. The value read from a reserved bit is  
indeterminate.  
16  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Timer 2  
The timer 2 in the TS80C51RX2 is compatible with the timer 2 in the 80C52.  
It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2  
and TL2, connected in cascade. It is controlled by T2CON register (See Table 6) and  
T2MOD register (See Table 7). Timer 2 operation is similar to Timer 0 and Timer 1. C/T2  
selects FOSC/12 (timer operation) or external pin T2 (counter operation) as the timer  
clock input. Setting TR2 allows TL2 to be incremented by the selected input.  
Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These  
modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON), as  
described in the Atmel 8-bit Microcontroller Hardware description.  
Refer to the Atmel 8-bit Microcontroller Hardware description for the description of Cap-  
ture and Baud Rate Generator Modes.  
In TS80C51RX2 Timer 2 includes the following enhancements:  
Auto-reload mode with up or down counter  
Programmable clock-output  
Auto-reload Mode  
The auto-reload mode configures timer 2 as a 16-bit timer or event counter with auto-  
matic reload. If DCEN bit in T2MOD is cleared, timer 2 behaves as in 80C52 (refer to the  
Atmel 8-bit Microcontroller Hardware description). If DCEN bit is set, timer 2 acts as an  
Up/down timer/counter as shown in Figure 5. In this mode the T2EX pin controls the  
direction of count.  
When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the  
TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value  
in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.  
When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the  
timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers.  
The underflow sets TF2 flag and reloads FFFFh into the timer registers.  
The EXF2 bit toggles when timer 2 overflows or underflows according to the the direc-  
tion of the count. EXF2 does not generate any interrupt. This bit can be used to provide  
17-bit resolution.  
17  
4188A–8051–10/02  
Figure 5. Auto-reload Mode Up/Down Counter (DCEN = 1)  
(:6 in X2 mode)  
:12  
0
1
XTAL1  
FOSC  
FXTAL  
T2  
TR2  
C/T2  
T2CONreg  
T2CONreg  
T2EX:  
if DCEN=1, 1=UP  
(DOWN COUNTING RELOAD VALUE)  
FFh  
(8-bit)  
FFh  
(8-bit)  
if DCEN=1, 0=DOWN  
if DCEN = 0, up  
counting  
T2CONreg  
TOGGLE  
EXF2  
TL2  
(8-bit)  
TH2  
(8-bit)  
TIMER 2  
INTERRUPT  
TF2  
T2CONreg  
RCAP2L  
(8-bit)  
RCAP2H  
(8-bit)  
(UP COUNTING RELOAD VALUE)  
Programmable Clock-Output  
In the clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock gen-  
erator (See Figure 6) . The input clock increments TL2 at frequency FOSC/2. The timer  
repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H  
and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer 2 overflows do  
not generate interrupts. The formula gives the clock-out frequency as a function of the  
system oscillator frequency and the value in the RCAP2H and RCAP2L registers:  
F
osc  
-------------------------------------------------------------------------------------------  
Clock OutFrequency =  
4 × (65536 RCAP2H RCAP2L)  
For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz  
(FOSC/216) to 4 MHz (FOSC/4). The generated clock signal is brought out to T2 pin (P1.0).  
Timer 2 is programmed for the clock-out mode as follows:  
Set T2OE bit in T2MOD register.  
Clear C/T2 bit in T2CON register.  
Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L  
registers.  
Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the  
reload value or a different one depending on the application.  
To start the timer, set TR2 run control bit in T2CON register.  
18  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
It is possible to use timer 2 as a baud rate generator and a clock generator simulta-  
neously. For this configuration, the baud rates and clock frequencies are not  
independent since both functions use the values in the RCAP2H and RCAP2L registers.  
Figure 6. Clock-Out Mode C/T2 = 0  
:2  
XTAL1  
(:1 in X2 mode)  
TR2  
T2CON reg  
TH2  
(8-bit)  
TL2  
(8-bit)  
OVERFLOW  
RCAP2H  
(8-bit)  
RCAP2L  
(8-bit)  
Toggle  
T2  
Q
D
T2OE  
T2MOD reg  
TIMER 2  
INTERRUPT  
T2EX  
EXF2  
T2CON reg  
EXEN2  
T2CON reg  
19  
4188A–8051–10/02  
Table 6. T2CON Register  
T2CON - Timer 2 Control Register (C8h)  
7
6
5
4
3
2
1
0
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2#  
CP/RL2#  
Bit  
Bit  
Number Mnemonic Description  
Timer 2 overflow Flag  
7
TF2  
Must be cleared by software.  
Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.  
Timer 2 External Flag  
Set when a capture or a reload is caused by a negative transition on T2EX pin if  
EXEN2=1.  
6
EXF2  
When set, causes the CPU to vector to timer 2 interrupt routine when timer 2  
interrupt is enabled.  
Must be cleared by software. EXF2 doesn’t cause an interrupt in Up/down counter  
mode (DCEN = 1)  
Receive Clock bit  
5
4
RCLK  
TCLK  
Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3.  
Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.  
Transmit Clock bit  
Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3.  
Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.  
Timer 2 External Enable bit  
Clear to ignore events on T2EX pin for timer 2 operation.  
Set to cause a capture or reload when a negative transition on T2EX pin is  
detected, if timer 2 is not used to clock the serial port.  
3
2
1
EXEN2  
TR2  
Timer 2 Run control bit  
Clear to turn off timer 2.  
Set to turn on timer 2.  
Timer/Counter 2 select bit  
Clear for timer operation (input from internal clock system: FOSC).  
Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0  
for clock out mode.  
C/T2#  
Timer 2 Capture/Reload bit  
If RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to auto-reload on  
timer 2 overflow.  
Clear to auto-reload on timer 2 overflows or negative transitions on T2EX pin if  
EXEN2=1.  
0
CP/RL2#  
Set to capture on negative transitions on T2EX pin if EXEN2=1.  
Reset Value = 0000 0000b  
Bit addressable  
20  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Table 7. T2MOD Register  
T2MOD - Timer 2 Mode Control Register (C9h)  
7
6
5
4
3
-
2
-
1
0
-
-
-
-
T2OE  
DCEN  
Bit  
Bit  
Number  
Mnemonic  
Description  
Reserved  
7
6
5
4
3
2
-
-
-
-
-
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Timer 2 Output Enable bit  
1
0
T2OE  
DCEN  
Clear to program P1.0/T2 as clock input or I/O port.  
Set to program P1.0/T2 as clock output.  
Down Counter Enable bit  
Clear to disable timer 2 as up/down counter.  
Set to enable timer 2 as up/down counter.  
Reset Value = XXXX XX00b  
Not bit addressable  
21  
4188A–8051–10/02  
Programmable Counter  
Array PCA  
The PCA provides more timing capabilities with less CPU intervention than the standard  
timer/counters. Its advantages include reduced software overhead and improved accu-  
racy. The PCA consists of a dedicated timer/counter which serves as the time base for  
an array of five compare/capture modules. Its clock input can be programmed to count  
any one of the following signals:  
Oscillator frequency ÷ 12 (÷ 6 in X2 mode)  
Oscillator frequency ÷ 4 (÷ 2 in X2 mode)  
Timer 0 overflow  
External input on ECI (P1.2)  
Each compare/capture modules can be programmed in any one of the following modes:  
rising and/or falling edge capture,  
software timer,  
high-speed output, or  
pulse width modulator.  
Module 4 can also be programmed as a watchdog timer (See Section "PCA Watchdog  
Timer", page 31).  
When the compare/capture modules are programmed in the capture mode, software  
timer, or high speed output mode, an interrupt can be generated when the module exe-  
cutes its function. All five modules plus the PCA timer overflow share one interrupt  
vector.  
The PCA timer/counter and compare/capture modules share Port 1 for external I/O.  
These pins are listed below. If the port is not used for the PCA, it can still be used for  
standard I/O.  
PCA component  
16-bit Counter  
16-bit Module 0  
16-bit Module 1  
16-bit Module 2  
16-bit Module 3  
16-bit Module 4  
External I/O Pin  
P1.2 / ECI  
P1.3 / CEX0  
P1.4 / CEX1  
P1.5 / CEX2  
P1.6 / CEX3  
P1.7 / CEX4  
The PCA timer is a common time base for all five modules (See Figure 7). The timer  
count source is determined from the CPS1 and CPS0 bits in the CMOD SFR (See  
Table 8) and can be programmed to run at:  
1/12 the oscillator frequency. (Or 1/6 in X2 Mode)  
1/4 the oscillator frequency. (Or 1/2 in X2 Mode)  
The Timer 0 overflow  
The input on the ECI pin (P1.2)  
22  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Figure 7. PCA Timer/Counter  
To PCA  
modules  
Fosc /12  
Fosc / 4  
T0 OVF  
P1.2  
overflow  
It  
CH  
CL  
16 bit up/down counter  
CMOD  
CIDL  
CF  
CPS1 CPS0 ECF  
WDTE  
CR  
0xD9  
Idle  
CCON  
0xD8  
CCF4 CCF3 CCF2 CCF1 CCF0  
Table 8. CMOD: PCA Counter Mode Register  
CMOD  
Address 0D9H  
Reset value  
Function  
CIDL WDTE  
-
-
-
CPS1 CPS0  
ECF  
0
0
X
X
X
0
0
0
Symbol  
CIDL  
Counter Idle control: CIDL = 0 programs the PCA Counter to continue functioning during  
idle Mode. CIDL = 1 programs it to be gated off during idle.  
Watchdog Timer Enable: WDTE = 0 disables Watchdog Timer function on PCA Module 4.  
WDTE = 1 enables it.  
WDTE  
-
Not implemented, reserved for future use. (1)  
PCA Count Pulse Select bit 1.  
CPS1  
CPS0  
PCA Count Pulse Select bit 0.  
CPS  
1
CPS  
0
Selected PCA input. (2)  
0
0
1
1
0
1
0
1
Internal clock fosc/12 ( Or fosc/6 in X2 Mode).  
Internal clock fosc/4 ( Or fosc/2 in X2 Mode).  
Timer 0 Overflow  
External clock at ECI/P1.2 pin (max rate = fosc/ 8)  
PCA Enable Counter Overflow interrupt: ECF = 1 enables CF bit in CCON to generate an  
interrupt. ECF = 0 disables that function of CF.  
ECF  
1.  
User software should not write 1s to reserved bits. These bits may be used in future 8051  
family products to invoke new features. In that case, the reset or inactive value of the  
new bit will be 0, and its active value will be 1. The value read from a reserved bit is  
indeterminate.  
2.  
fosc = oscillator frequency  
23  
4188A–8051–10/02  
The CMOD SFR includes three additional bits associated with the PCA (See Figure 7  
and Table 8).  
The CIDL bit which allows the PCA to stop during idle mode.  
The WDTE bit which enables or disables the watchdog function on module 4.  
The ECF bit which when set causes an interrupt and the PCA overflow flag CF (in  
the CCON SFR) to be set when the PCA timer overflows.  
The CCON SFR contains the run control bit for the PCA and the flags for the PCA timer  
(CF) and each module (Refer to Table 9).  
Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by  
clearing this bit.  
Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an  
interrupt will be generated if the ECF bit in the CMOD register is set. The CF bit can  
only be cleared by software.  
Bits 0 through 4 are the flags for the modules (bit 0 for module 0, bit 1 for module 1,  
etc.) and are set by hardware when either a match or a capture occurs. These flags  
also can only be cleared by software.  
Table 9. CCON: PCA Counter Control Register  
CCON  
Address 0D8H  
Reset value  
Function  
PCA Counter Overflow flag. Set by hardware when the counter rolls over. CF flags  
CF  
CR  
-
CCF4 CCF3 CCF2 CCF1 CCF0  
0
0
X
0
0
0
0
0
Symbol  
CF  
an interrupt if bit ECF in CMOD is set. CF may be set by either hardware or software but  
can only be cleared by software.  
PCA Counter Run control bit. Set by software to turn the PCA counter on. Must be cleared  
by software to turn the PCA counter off.  
CR  
-
Not implemented, reserved for future use. (1)  
PCA Module 4 interrupt flag. Set by hardware when a match or capture occurs. Must be  
cleared by software.  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
PCA Module 3 interrupt flag. Set by hardware when a match or capture occurs. Must be  
cleared by software.  
PCA Module 2 interrupt flag. Set by hardware when a match or capture occurs. Must be  
cleared by software.  
PCA Module 1 interrupt flag. Set by hardware when a match or capture occurs. Must be  
cleared by software.  
PCA Module 0 interrupt flag. Set by hardware when a match or capture occurs. Must be  
cleared by software.  
1.  
User software should not write 1s to reserved bits. These bits may be used in future 8051  
family products to invoke new features. In that case, the reset or inactive value of the  
new bit will be 0, and its active value will be 1. The value read from a reserved bit is  
indeterminate.  
The watchdog timer function is implemented in module 4 (See Figure 10).  
24  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
The PCA interrupt system is shown in Figure 8.  
Figure 8. PCA Interrupt System  
CCON  
CF  
CR  
CCF4 CCF3 CCF2 CCF1 CCF0  
0xD8  
PCA Timer/Counter  
Module 0  
Module 1  
Module 2  
Module 3  
To Interrupt  
priority decoder  
Module 4  
CMOD.0  
IE.6  
EC  
IE.7  
EA  
CCAPMn.0  
ECCFn  
ECF  
PCA Modules: each one of the five compare/capture modules has six possible func-  
tions. It can perform:  
16-bit Capture, positive-edge triggered,  
16-bit Capture, negative-edge triggered,  
16-bit Capture, both positive and negative-edge triggered,  
16-bit Software Timer,  
16-bit High Speed Output,  
8-bit Pulse Width Modulator.  
In addition, module 4 can be used as a Watchdog Timer.  
Each module in the PCA has a special function register associated with it. These regis-  
ters are: CCAPM0 for module 0, CCAPM1 for module 1, etc. (See Table 10). The  
registers contain the bits that control the mode that each module will operate in.  
The ECCF bit (CCAPMn.0 where n=0, 1, 2, 3, or 4 depending on the module)  
enables the CCF flag in the CCON SFR to generate an interrupt when a match or  
compare occurs in the associated module.  
PWM (CCAPMn.1) enables the pulse width modulation mode.  
The TOG bit (CCAPMn.2) when set causes the CEX output associated with the  
module to toggle when there is a match between the PCA counter and the module's  
capture/compare register.  
The match bit MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON  
register to be set when there is a match between the PCA counter and the module's  
capture/compare register.  
The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5) determine the edge  
that a capture input will be active on. The CAPN bit enables the negative edge, and  
the CAPP bit enables the positive edge. If both bits are set both edges will be  
enabled and a capture will occur for either transition.  
25  
4188A–8051–10/02  
The last bit in the register ECOM (CCAPMn.6) when set enables the comparator  
function.  
Table 11 shows the CCAPMn settings for the various PCA functions.  
.
Table 10. CCAPMn: PCA Modules Compare/Capture Control Registers  
CCAPM0=0DAH  
CCAPM1=0DBH  
CCAPM2=0DCH  
CCAPM3=0DDH  
CCAPM4=0DEH  
CCAPMn Address  
n = 0 - 4  
-
ECOMn  
0
CAPPn  
0
CAPNn  
0
MATn  
0
TOGn  
0
PWMm  
0
ECCFn  
0
Reset value  
X
Symbol  
Function  
Not implemented, reserved for future use. (1)  
-
ECOMn  
CAPPn  
CAPNn  
Enable Comparator. ECOMn = 1 enables the comparator function.  
Capture Positive, CAPPn = 1 enables positive edge capture.  
Capture Negative, CAPNn = 1 enables negative edge capture.  
Match. When MATn = 1, a match of the PCA counter with this module's compare/capture register causes the CCFn bit in CCON  
to be set, flagging an interrupt.  
MATn  
TOGn  
Toggle. When TOGn = 1, a match of the PCA counter with this module's compare/capture register causes the CEXn pin to  
toggle.  
PWMn  
ECCFn  
Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width modulated output.  
Enable CCF interrupt. Enables compare/capture flag CCFn in the CCON register to generate an interrupt.  
1.  
User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new fea-  
tures. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a  
reserved bit is indeterminate.  
26  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Table 11. PCA Module Modes (CCAPMn Registers)  
ECOMn CAPPn CAPNn MATn  
TOGn PWMm ECCFn Module Function  
0
0
1
0
0
0
0
0
0
0
0
0
No Operation  
16-bit capture by a positive-edge  
trigger on CEXn  
X
X
16-bit capture by a negative trigger  
on CEXn  
X
X
1
0
1
0
1
1
0
0
0
1
0
0
0
0
0
0
X
X
X
16-bit capture by a transition on  
CEXn  
16-bit Software Timer / Compare  
mode.  
1
1
1
0
0
0
0
0
0
1
0
1
1
0
0
1
0
X
0
16-bit High Speed Output  
8-bit PWM  
X
X
Watchdog Timer (module 4 only)  
There are two additional registers associated with each of the PCA modules. They are  
CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a  
capture occurs or a compare should occur. When a module is used in the PWM mode  
these registers are used to control the duty cycle of the output (See Table 12 &  
Table 13)  
Table 12. CCAPnH: PCA Modules Capture/Compare Registers High  
CCAP0H=0FAH  
CCAPnH  
Address  
n = 0 - 4  
CCAP1H=0FBH  
CCAP2H=0FCH  
CCAP3H=0FDH  
CCAP4H=0FEH  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset value  
Table 13. CCAPnL: PCA Modules Capture/Compare Registers Low  
CCAP0L=0EAH  
CCAPnL  
Address  
n = 0 - 4  
CCAP1L=0EBH  
CCAP2L=0ECH  
CCAP3L=0EDH  
CCAP4L=0EEH  
7
0
6
0
5
0
4
0
3
0
2
1
0
0
Reset value  
0
0
27  
4188A–8051–10/02  
Table 14. CH: PCA Counter High  
CH  
Address 0F9H  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset value  
0
Table 15. CL: PCA Counter Low  
CL  
Address 0E9H  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset value  
PCA Capture Mode  
To use one of the PCA modules in the capture mode either one or both of the CCAPM  
bits CAPN and CAPP for that module must be set. The external CEX input for the mod-  
ule (on port 1) is sampled for a transition. When a valid transition occurs the PCA  
hardware loads the value of the PCA counter registers (CH and CL) into the module's  
capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON  
SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated  
(Refer to Figure 9).  
Figure 9. PCA Capture Mode  
CCON  
CCF4 CCF3 CCF2 CCF1 CCF0  
CF  
CR  
0xD8  
PCA IT  
PCA Counter/Timer  
Cex.n  
CH  
CL  
Capture  
CCAPnH  
CCAPnL  
CCAPMn, n= 0 to 4  
0xDA to 0xDE  
ECOMnCAPPn CAPNn MATn TOGn PWMn ECCFn  
28  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
16-bit Software Timer/  
Compare Mode  
The PCA modules can be used as software timers by setting both the ECOM and MAT  
bits in the modules CCAPMn register. The PCA timer will be compared to the module's  
capture registers and when a match occurs an interrupt will occur if the CCFn (CCON  
SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set (See Figure 10).  
Figure 10. PCA Compare Mode and PCA Watchdog Timer  
CCON  
0xD8  
CCF4  
CF  
CCF3 CCF2 CCF1 CCF0  
CR  
Write to  
CCAPnL Reset  
PCA IT  
Write to  
CCAPnH  
CCAPnH  
CCAPnL  
Enable  
1
0
Match  
16 bit comparator  
RESET *  
CH  
CL  
PCA counter/timer  
CCAPMn, n = 0 to 4  
0xDA to 0xDE  
ECOMnCAPPn CAPNn MATn TOGn PWMn ECCFn  
CMOD  
0xD9  
CIDL  
CPS1 CPS0 ECF  
WDTE  
* Only for Module 4  
Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value,  
otherwise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.  
Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn’t  
occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this  
reason, user software should write CCAPnL first, and then CCAPnH. Of course, the  
ECOM bit can still be controlled by accessing to CCAPMn register.  
29  
4188A–8051–10/02  
High Speed Output Mode  
In this mode the CEX output (on port 1) associated with the PCA module will toggle  
each time a match occurs between the PCA counter and the module's capture registers.  
To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR  
must be set (See Figure 11).  
A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.  
Figure 11. PCA High Speed Output Mode  
CCON  
0xD8  
CF  
CR  
CCF4 CCF3 CCF2 CCF1 CCF0  
Write to  
CCAPnL  
Reset  
PCA IT  
Write to  
CCAPnH  
CCAPnH  
CCAPnL  
0
Enable  
1
Match  
16 bit comparator  
CEXn  
CH  
CL  
PCA counter/timer  
CCAPMn, n = 0 to 4  
0xDA to 0xDE  
ECOMnCAPPn CAPNn MATn TOGn PWMn ECCFn  
Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value,  
otherwise an unwanted match could happen.  
Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn’t  
occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this  
reason, user software should write CCAPnL first, and then CCAPnH. Of course, the  
ECOM bit can still be controlled by accessing to CCAPMn register.  
30  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Pulse Width Modulator Mode  
All of the PCA modules can be used as PWM outputs. Figure 12 shows the PWM func-  
tion. The frequency of the output depends on the source for the PCA timer. All of the  
modules will have the same frequency of output because they all share the PCA timer.  
The duty cycle of each module is independently variable using the module's capture  
register CCAPLn. When the value of the PCA CL SFR is less than the value in the mod-  
ule's CCAPLn SFR the output will be low, when it is equal to or greater than the output  
will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in  
CCAPHn. This allows updating the PWM without glitches. The PWM and ECOM bits in  
the module's CCAPMn register must be set to enable the PWM mode.  
Figure 12. PCA PWM Mode  
CCAPnH  
Overflow  
CCAPnL  
“0”  
CEXn  
Enable  
<
8 bit comparator  
Š
“1”  
CL  
PCA counter/timer  
CCAPMn, n= 0 to 4  
0xDA to 0xDE  
ECOMnCAPPn CAPNn MATn TOGn PWMn ECCFn  
PCA Watchdog Timer  
An on-board watchdog timer is available with the PCA to improve the reliability of the  
system without increasing chip count. Watchdog timers are useful for systems that are  
susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only  
PCA module that can be programmed as a watchdog. However, this module can still be  
used for other modes if the watchdog is not needed. Figure 10 shows a diagram of how  
the watchdog works. The user pre-loads a 16-bit value in the compare registers. Just  
like the other compare modes, this 16-bit value is compared to the PCA timer value. If a  
match is allowed to occur, an internal reset will be generated. This will not cause the  
RST pin to be driven high.  
In order to hold off the reset, the user has three options:  
1. Periodically change the compare value so it will never match the PCA timer,  
2. periodically change the PCA timer value so it will never match the compare  
values, or  
3. Disable the watchdog by clearing the WDTE bit before a match occurs and then  
re-enable it.  
The first two options are more reliable because the watchdog timer is never disabled as  
in option #3. If the program counter ever goes astray, a match will eventually occur and  
cause an internal reset. The second option is also not recommended if other PCA mod-  
ules are being used. Remember, the PCA timer is the time base for all modules;  
31  
4188A–8051–10/02  
changing the time base for other modules would not be a good idea. Thus, in most appli-  
cations the first solution is the best option.  
This watchdog timer won’t generate a reset out on the reset pin.  
32  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
TS80C51Rx2 Serial I/O  
Port  
The serial I/O port in the TS80C51Rx2 is compatible with the serial I/O port in the  
80C52.  
It provides both synchronous and asynchronous communication modes. It operates as  
an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex  
modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simul-  
taneously and at different baud rates  
Serial I/O port includes the following enhancements:  
Framing error detection  
Automatic address recognition  
Framing Error Detection  
Framing bit error detection is provided for the three asynchronous modes (modes 1, 2  
and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON regis-  
ter (See Figure 13).  
Figure 13. Framing Error Block Diagram  
SM0/FE SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
SCON (98h)  
Set FE bit if stop bit is 0 (framing error) (SMOD0 = 1)  
SM0 to UART mode control (SMOD = 0)  
PCON (87h)  
SMOD1SMOD0  
-
POF GF1  
GF0  
PD  
IDL  
To UART framing error control  
When this feature is enabled, the receiver checks each incoming data frame for a valid  
stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous  
transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in  
SCON register (See Table 18.) bit is set.  
Software may examine FE bit after each reception to check for data errors. Once set,  
only software or a reset can clear FE bit. Subsequently received frames with valid stop  
bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the  
last data bit (See Figure 14 and Figure 15).  
Figure 14. UART Timings in Mode 1  
RXD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Start  
bit  
Data byte  
Stop  
bit  
RI  
SMOD0=X  
FE  
SMOD0=1  
33  
4188A–8051–10/02  
Figure 15. UART Timings in Modes 2 and 3  
RXD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
Start  
bit  
Data byte  
Ninth Stop  
bit  
bit  
RI  
SMOD0=0  
RI  
SMOD0=1  
FE  
SMOD0=1  
Automatic Address  
Recognition  
The automatic address recognition feature is enabled when the multiprocessor commu-  
nication feature is enabled (SM2 bit in SCON register is set).  
Implemented in hardware, automatic address recognition enhances the multiprocessor  
communication feature by allowing the serial port to examine the address of each  
incoming command frame. Only when the serial port recognizes its own address, the  
receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU  
is not interrupted by command frames addressed to other devices.  
If desired, you may enable the automatic address recognition feature in mode 1. In this  
configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the  
received command frame address matches the device’s address and is terminated by a  
valid stop bit.  
To support automatic address recognition, a device is identified by a given address and  
a broadcast address.  
Note:  
The multiprocessor communication and automatic address recognition features cannot  
be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).  
Given Address  
Each device has an individual address that is specified in SADDR register; the SADEN  
register is a mask byte that contains don’t-care bits (defined by zeros) to form the  
device’s given address. The don’t-care bits provide the flexibility to address one or more  
slaves at a time. The following example illustrates how a given address is formed.  
To address a device by its individual address, the SADEN mask byte must be 1111  
1111b.  
For example:  
SADDR0101 0110b  
SADEN1111 1100b  
Given0101 01XXb  
The following is an example of how to use given addresses to address different slaves:  
Slave A:SADDR1111 0001b  
SADEN1111 1010b  
Given1111 0X0Xb  
Slave B:SADDR1111 0011b  
SADEN1111 1001b  
Given1111 0XX1b  
Slave C:SADDR1111 0010b  
SADEN1111 1101b  
Given1111 00X1b  
34  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
The SADEN byte is selected so that each slave may be addressed separately.  
For slave A, bit 0 (the LSB) is a don’t-care bit; for slaves B and C, bit 0 is a 1. To com-  
municate with slave A only, the master must send an address where bit 0 is clear (e.g.  
1111 0000b).  
For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don’t care bit. To communicate with  
slaves B and C, but not slave A, the master must send an address with bits 0 and 1 both  
set (e.g. 1111 0011b).  
To communicate with slaves A, B and C, the master must send an address with bit 0  
set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b).  
Broadcast Address  
A broadcast address is formed from the logical OR of the SADDR and SADEN registers  
with zeros defined as don’t-care bits, e.g.:  
SADDR0101 0110b  
SADEN1111 1100b  
Broadcast =SADDR OR SADEN1111 111Xb  
The use of don’t-care bits provides flexibility in defining the broadcast address, however  
in most applications, a broadcast address is FFh. The following is an example of using  
broadcast addresses:  
Slave A:SADDR1111 0001b  
SADEN1111 1010b  
Broadcast1111 1X11b,  
Slave B:SADDR1111 0011b  
SADEN1111 1001b  
Broadcast1111 1X11B,  
Slave C:SADDR=1111 0010b  
SADEN1111 1101b  
Broadcast1111 1111b  
For slaves A and B, bit 2 is a don’t care bit; for slave C, bit 2 is set. To communicate with  
all of the slaves, the master must send an address FFh. To communicate with slaves A  
and B, but not slave C, the master can send and address FBh.  
35  
4188A–8051–10/02  
Reset Addresses  
On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and  
broadcast addresses are XXXX XXXXb (all don’t-care bits). This ensures that the serial  
port will reply to any address, and so, that it is backwards compatible with the 80C51  
microcontrollers that do not support automatic address recognition.  
Table 16. SADEN - Slave Address Mask Register (B9h)  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000b  
Not bit addressable  
Table 17. SADDR - Slave Address Register (A9h)  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000b  
Not bit addressable  
Table 18. SCON Register  
SCON - Serial Control Register (98h)  
7
6
5
4
3
2
1
0
FE/SM0  
SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
36  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Bit  
Bit  
Number  
Mnemonic Description  
Framing Error bit (SMOD0=1)  
Clear to reset the error state, not cleared by a valid stop bit.  
Set by hardware when an invalid stop bit is detected.  
7
FE  
SMOD0 must be set to enable access to the FE bit  
Serial port Mode bit 0  
Refer to SM1 for serial port mode selection.  
SM0  
SMOD0 must be cleared to enable access to the SM0 bit  
Serial port Mode bit 1  
SM0 SM1  
Mode Description  
Baud Rate  
0
0
1
1
0
1
0
1
0
1
2
3
Shift Register FXTAL/12 (/6 in X2 mode)  
6
5
SM1  
SM2  
8-bit UART  
9-bit UART  
9-bit UART  
Variable  
XTAL/64 or FXTAL/32 (/32, /16 in X2 mode)  
Variable  
F
Serial port Mode 2 bit / Multiprocessor Communication Enable bit  
Clear to disable multiprocessor communication feature.  
Set to enable multiprocessor communication feature in mode 2 and 3, and  
eventually mode 1. This bit should be cleared in mode 0.  
Reception Enable bit  
4
3
REN  
TB8  
Clear to disable serial reception.  
Set to enable serial reception.  
Transmitter Bit 8 / Ninth bit to transmit in modes 2 and 3  
Clear to transmit a logic 0 in the 9th bit.  
Set to transmit a logic 1 in the 9th bit.  
Receiver Bit 8 / Ninth bit received in modes 2 and 3  
Cleared by hardware if 9th bit received is a logic 0.  
Set by hardware if 9th bit received is a logic 1.  
2
RB8  
In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.  
Transmit Interrupt flag  
Clear to acknowledge interrupt.  
Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of  
the stop bit in the other modes.  
1
0
TI  
RI  
Receive Interrupt flag  
Clear to acknowledge interrupt.  
Set by hardware at the end of the 8th bit time in mode 0, see Figure 14. and  
Figure 15. in the other modes.  
Reset Value = 0000 0000b  
Bit addressable  
37  
4188A–8051–10/02  
Table 19. PCON Register  
PCON - Power Control Register (87h)  
7
6
5
-
4
3
2
1
0
SMOD1  
SMOD0  
POF  
GF1  
GF0  
PD  
IDL  
Bit  
Bit  
Number Mnemonic Description  
Serial port Mode bit 1  
Set to select double baud rate in mode 1, 2 or 3.  
7
6
5
SMOD1  
Serial port Mode bit 0  
SMOD0 Clear to select SM0 bit in SCON register.  
Set to to select FE bit in SCON register.  
Reserved  
-
The value read from this bit is indeterminate. Do not set this bit.  
Power-Off Flag  
Clear to recognize next reset type.  
Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by  
software.  
4
POF  
General purpose Flag  
3
2
1
0
GF1  
GF0  
PD  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
General purpose Flag  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
Power-Down mode bit  
Cleared by hardware when reset occurs.  
Set to enter power-down mode.  
Idle mode bit  
Clear by hardware when interrupt or reset occurs.  
Set to enter idle mode.  
IDL  
Reset Value = 00X1 0000b  
Not bit addressable  
Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset  
doesn’t affect the value of this bit.  
38  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Interrupt System  
The TS80C51Rx2 has a total of 7 interrupt vectors: two external interrupts (INT0 and  
INT1), three timer interrupts (timers 0, 1 and 2), the serial port interrupt and the PCA glo-  
bal interrupt. These interrupts are shown in Figure 16.  
WARNING: Note that in the first version of RC devices, the PCA interrupt is in the lowest  
priority. Thus the order in INT0, TF0, INT1, TF1, RI or TI, TF2 or EXF2, PCA.  
Figure 16. Interrupt Control System  
High priority  
IPH, IP  
interrupt  
3
INT0  
IE0  
0
3
0
3
0
3
TF0  
Interrupt  
polling  
INT1  
IE1  
sequence, decreasing from  
high to low priority  
TF1  
0
3
PCA IT  
0
3
0
RI  
TI  
3
TF2  
EXF2  
0
Low priority  
interrupt  
Individual Enable  
Global Disable  
Each of the interrupt sources can be individually enabled or disabled by setting or clear-  
ing a bit in the Interrupt Enable register (See Table 21.Table 22.). This register also  
contains a global disable bit, which must be cleared to disable all interrupts at once.  
Each interrupt source can also be individually programmed to one out of four priority lev-  
els by setting or clearing a bit in the Interrupt Priority register (See Table 22.) and in the  
Interrupt Priority High register (See Table 23.). shows the bit values and priority levels  
associated with each combination.  
The PCA interrupt vector is located at address 0033H. All other vector addresses are  
the same as standard C52 devices.  
39  
4188A–8051–10/02  
Table 20. Priority Level Bit Values  
IPH.x  
IP.x  
0
Interrupt Level Priority  
0
0
1
1
0 (Lowest)  
1
1
2
0
1
3 (Highest)  
A low-priority interrupt can be interrupted by a high priority interrupt, but not by another  
low-priority interrupt. A high-priority interrupt can’t be interrupted by any other interrupt  
source.  
If two interrupt requests of different priority levels are received simultaneously, the  
request of higher priority level is serviced. If interrupt requests of the same priority level  
are received simultaneously, an internal polling sequence determines which request is  
serviced. Thus within each priority level there is a second priority structure determined  
by the polling sequence.  
Table 21. IE Register  
IE - Interrupt Enable Register (A8h)  
7
6
5
4
3
2
1
0
EA  
EC  
ET2  
ES  
ET1  
EX1  
ET0  
EX0  
Bit  
Bit  
Number  
Mnemonic  
Description  
Enable All interrupt bit  
Clear to disable all interrupts.  
Set to enable all interrupts.  
7
EA  
If EA=1, each interrupt source is individually enabled or disabled by setting  
or clearing its own interrupt enable bit.  
PCA interrupt enable bit  
Clear to disable . Set to enable.  
6
5
EC  
Timer 2 overflow interrupt Enable bit  
Clear to disable timer 2 overflow interrupt.  
Set to enable timer 2 overflow interrupt.  
ET2  
Serial port Enable bit  
4
3
2
1
0
ES  
Clear to disable serial port interrupt.  
Set to enable serial port interrupt.  
Timer 1 overflow interrupt Enable bit  
Clear to disable timer 1 overflow interrupt.  
Set to enable timer 1 overflow interrupt.  
ET1  
EX1  
ET0  
EX0  
External interrupt 1 Enable bit  
Clear to disable external interrupt 1.  
Set to enable external interrupt 1.  
Timer 0 overflow interrupt Enable bit  
Clear to disable timer 0 overflow interrupt.  
Set to enable timer 0 overflow interrupt.  
External interrupt 0 Enable bit  
Clear to disable external interrupt 0.  
Set to enable external interrupt 0.  
Reset Value = 0000 0000b  
Bit addressable  
40  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Table 22. IP Register  
IP - Interrupt Priority Register (B8h)  
7
-
6
5
4
3
2
1
0
PPC  
PT2  
PS  
PT1  
PX1  
PT0  
PX0  
Bit  
Number  
Bit Mnemonic Description  
Reserved  
7
6
5
4
3
2
1
0
-
The value read from this bit is indeterminate. Do not set this bit.  
PCA interrupt priority bit  
Refer to PPCH for priority level.  
PPC  
PT2  
PS  
Timer 2 overflow interrupt Priority bit  
Refer to PT2H for priority level.  
Serial port Priority bit  
Refer to PSH for priority level.  
Timer 1 overflow interrupt Priority bit  
Refer to PT1H for priority level.  
PT1  
PX1  
PT0  
PX0  
External interrupt 1 Priority bit  
Refer to PX1H for priority level.  
Timer 0 overflow interrupt Priority bit  
Refer to PT0H for priority level.  
External interrupt 0 Priority bit  
Refer to PX0H for priority level.  
Reset Value = X000 0000b  
Bit addressable  
41  
4188A–8051–10/02  
Table 23. IPH Register  
IPH - Interrupt Priority High Register (B7h)  
7
-
6
5
4
3
2
1
0
PPCH  
PT2H  
PSH  
PT1H  
PX1H  
PT0H  
PX0H  
Bit  
Bit  
Number  
Mnemonic  
Description  
Reserved  
7
-
The value read from this bit is indeterminate. Do not set this bit.  
PCA interrupt priority bit high.  
PPCH  
PPC  
Priority Level  
Lowest  
0
0
1
1
0
1
0
1
6
PPCH  
Highest  
Timer 2 overflow interrupt Priority High bit  
PT2H  
PT2  
0
Priority Level  
Lowest  
0
0
1
1
5
4
3
2
1
0
PT2H  
PSH  
1
0
1
Highest  
Serial port Priority High bit  
PSH  
PS  
0
1
0
1
Priority Level  
Lowest  
0
0
1
1
Highest  
Timer 1 overflow interrupt Priority High bit  
PT1H  
PT1  
0
Priority Level  
Lowest  
0
0
1
1
PT1H  
PX1H  
PT0H  
PX0H  
1
0
1
Highest  
External interrupt 1 Priority High bit  
PX1H  
PX1  
0
Priority Level  
Lowest  
0
0
1
1
1
0
1
Highest  
Timer 0 overflow interrupt Priority High bit  
PT0H  
PT0  
0
Priority Level  
Lowest  
0
0
1
1
1
0
1
Highest  
External interrupt 0 Priority High bit  
PX0H  
PX0  
0
Priority Level  
Lowest  
0
0
1
1
1
0
1
Highest  
Reset Value = X000 0000b  
Not bit addressable  
42  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Idle Mode  
An instruction that sets PCON.0 causes that to be the last instruction executed before  
going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the  
CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is pre-  
served in its entirety: the Stack Pointer, Program Counter, Program Status Word,  
Accumulator and all other registers maintain their data during Idle. The port pins hold  
the logical states they had at the time Idle was activated. ALE and PSEN hold at logic  
high levels.  
There are two ways to terminate the Idle. Activation of any enabled interrupt will cause  
PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be ser-  
viced, and following RETI the next instruction to be executed will be the one following  
the instruction that put the device into idle.  
The flag bits GF0 and GF1 can be used to give an indication if an interrupt occured dur-  
ing normal operation or during an Idle. For example, an instruction that activates Idle  
can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt  
service routine can examine the flag bits.  
The other way of terminating the Idle mode is with a hardware reset. Since the clock  
oscillator is still running, the hardware reset needs to be held active for only two  
machine cycles (24 oscillator periods) to complete the reset.  
Power-down Mode  
To save maximum power, a power-down mode can be invoked by software (Refer to  
Table 19, PCON register).  
In power-down mode, the oscillator is stopped and the instruction that invoked power-  
down mode is the last instruction executed. The internal RAM and SFRs retain their  
value until the power-down mode is terminated. VCC can be lowered to save further  
power. Either a hardware reset or an external interrupt can cause an exit from power-  
down. To properly terminate power-down, the reset or external interrupt should not be  
executed before VCC is restored to its normal operating level and must be held active  
long enough for the oscillator to restart and stabilize.  
Only external interrupts INT0 and INT1 are useful to exit from power-down. For that,  
interrupt must be enabled and configured as level or edge sensitive interrupt input.  
Holding the pin low restarts the oscillator but bringing the pin high completes the exit as  
detailed in Figure 17. When both interrupts are enabled, the oscillator restarts as soon  
as one of the two inputs is held low and power down exit will be completed when the first  
input will be released. In this case the higher priority interrupt service routine is exe-  
cuted.  
Once the interrupt is serviced, the next instruction to be executed after RETI will be the  
one following the instruction that put TS80C51Rx2 into power-down mode.  
Figure 17. Power-Down Exit Waveform  
INT0  
INT1  
XTAL1  
Active phase  
Power-down phase Oscillator restart phase  
Active phase  
43  
4188A–8051–10/02  
Exit from power-down by reset redefines all the SFRs, exit from power-down by external  
interrupt does no affect the SFRs.  
Exit from power-down by either reset or external interrupt does not affect the internal  
RAM content.  
Note:  
If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence  
is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and  
idle mode is not entered.  
Table 24. The state of ports during idle and power-down mode  
Program  
Mode  
Idle  
Memory  
Internal  
External  
ALE  
PSEN  
PORT0  
Port Data*  
Floating  
PORT1  
PORT2  
Port Data  
Address  
PORT3  
1
1
1
1
Port Data  
Port Data  
Port Data  
Port Data  
Idle  
Power-  
down  
Internal  
External  
0
0
0
0
Port Data*  
Floating  
Port Data  
Port Data  
Port Data  
Port Data  
Port Data  
Port Data  
Power-  
down  
* Port 0 can force a "zero" level. A "one" will leave port floating.  
44  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Hardware Watchdog  
Timer  
The WDT is intended as a recovery method in situations where the CPU may be sub-  
jected to software upset. The WDT consists of a 14-bit counter and the WatchDog Timer  
ReSeT (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable  
the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location  
0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator  
is running and there is no way to disable the WDT except through reset (either hardware  
reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH  
pulse at the RST-pin.  
Using the WDT  
To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR  
location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH  
and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it  
reaches 16383 (3FFFH) and this will reset the device. When WDT is enabled, it will  
increment every machine cycle while the oscillator is running. This means the user must  
reset the WDT at least every 16383 machine cycle. To reset the WDT the user must  
write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter  
cannot be read or written. When WDT overflows, it will generate an output RESET pulse  
at the RST-pin. The RESET pulse duration is 96 x TOSC , where TOSC = 1/FOSC . To  
make the best use of the WDT, it should be serviced in those sections of code that will  
periodically be executed within the time required to prevent a WDT reset.  
To have a more powerful WDT, a 27 counter has been added to extend the Time-out  
capability, ranking from 16ms to 2s @ FOSC = 12MHz. To manage this feature, refer to  
WDTPRG register description, Table 26 (SFR0A7h).  
Table 25. WDTRST Register  
WDTRST Address (0A6h)  
7
6
5
4
3
2
1
Reset value  
X
X
X
X
X
X
X
Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in  
sequence.  
Table 26. WDTPRG Register  
WDTPRG Address (0A7h)  
7
6
5
4
3
2
1
0
T4  
T3  
T2  
T1  
T0  
S2  
S1  
S0  
Bit  
Bit  
Number Mnemonic Description  
7
6
5
4
3
2
1
0
T4  
T3  
T2  
T1  
T0  
S2  
S1  
S0  
Reserved  
Do not try to set or clear this bit.  
WDT Time-out select bit 2  
WDT Time-out select bit 1  
WDT Time-out select bit 0  
45  
4188A–8051–10/02  
Bit  
Bit  
Number Mnemonic Description  
S2 S1 S0  
Selected Time-out  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
(214 - 1) machine cycles, 16.3 ms @ 12 MHz  
(215 - 1) machine cycles, 32.7 ms @ 12 MHz  
(216 - 1) machine cycles, 65.5 ms @ 12 MHz  
(217 - 1) machine cycles, 131 ms @ 12 MHz  
(218 - 1) machine cycles, 262 ms @ 12 MHz  
(219 - 1) machine cycles, 542 ms @ 12 MHz  
(220 - 1) machine cycles, 1.05 s @ 12 MHz  
(221 - 1) machine cycles, 2.09 s @ 12 MHz  
Reset value XXXX X000  
WDT during Power-down and In Power-down mode the oscillator stops, which means the WDT also stops. While in  
Idle  
Power-down mode the user does not need to service the WDT. There are 2 methods of  
exiting Power-down mode: by a hardware reset or via a level activated external interrupt  
which is enabled prior to entering Power-down mode. When Power-down is exited with  
hardware reset, servicing the WDT should occur as it normally should whenever the  
TS80C51Rx2 is reset. Exiting Power-down with an interrupt is significantly different. The  
interrupt is held low long enough for the oscillator to stabilize. When the interrupt is  
brought high, the interrupt is serviced. To prevent the WDT from resetting the device  
while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high.  
It is suggested that the WDT be reset during the interrupt service routine.  
To ensure that the WDT does not overflow within a few states of exiting of powerdown, it  
is best to reset the WDT just before entering powerdown.  
In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the  
TS80C51Rx2 while in Idle mode, the user should always set up a timer that will periodi-  
cally exit Idle, service the WDT, and re-enter Idle mode.  
46  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
ONCETM Mode (ON Chip  
Emulation)  
The ONCE mode facilitates testing and debugging of systems using TS8xC51Rx2 with-  
out removing the circuit from the board. The ONCE mode is invoked by driving certain  
pins of the TS80C51Rx2; the following sequence must be exercised:  
Pull ALE low while the device is in reset (RST high) and PSEN is high.  
Hold ALE low as RST is deactivated.  
While the TS80C51Rx2 is in ONCE mode, an emulator or test CPU can be used to drive  
the circuit Table 26. shows the status of the port pins during ONCE mode.  
Normal operation is restored when normal reset is applied.  
Table 27. External Pin Status during ONCE Mode  
ALE  
PSEN  
Port 0  
Port 1  
Port 2  
Port 3  
XTAL1/2  
Weak pull-  
up  
Weak pull-  
up  
Weak pull-  
up  
Weak pull-  
up  
Weak pull-  
up  
Float  
Active  
47  
4188A–8051–10/02  
Power-Off Flag  
The power-off flag allows the user to distinguish between a “cold start” reset and a  
“warm start” reset.  
A cold start reset is the one induced by VCC switch-on. A warm start reset occurs while  
VCC is still applied to the device and could be generated for example by an exit from  
power-down.  
The power-off flag (POF) is located in PCON register (See Table 28). POF is set by  
hardware when VCC rises from 0 to its nominal voltage. The POF can be set or cleared  
by software allowing the user to determine the type of reset.  
The POF value is only relevant with a Vcc range from 4.5V to 5.5V. For lower Vcc value,  
reading POF bit will return indeterminate value.  
Table 28. PCON Register  
PCON - Power Control Register (87h)  
7
6
5
4
3
2
1
0
SMOD1  
SMOD0  
-
POF  
GF1  
GF0  
PD  
IDL  
Bit  
Bit  
Number  
Mnemonic  
Description  
Serial port Mode bit 1  
Set to select double baud rate in mode 1, 2 or 3.  
7
6
5
SMOD1  
SMOD0  
-
Serial port Mode bit 0  
Clear to select SM0 bit in SCON register.  
Set to to select FE bit in SCON register.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Power-Off Flag  
Clear to recognize next reset type.  
Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set  
by software.  
4
POF  
General purpose Flag  
3
2
1
0
GF1  
GF0  
PD  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
General purpose Flag  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
Power-Down mode bit  
Cleared by hardware when reset occurs.  
Set to enter power-down mode.  
Idle mode bit  
Clear by hardware when interrupt or reset occurs.  
Set to enter idle mode.  
IDL  
Reset Value = 00X1 0000b  
Not bit addressable  
48  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Reduced EMI Mode  
The ALE signal is used to demultiplex address and data buses on port 0 when used with  
external program or data memory. Nevertheless, during internal code execution, ALE  
signal is still generated. In order to reduce EMI, ALE signal can be disabled by setting  
AO bit.  
The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no  
longer output but remains active during MOVX and MOVC instructions and external  
fetches. During ALE disabling, ALE pin is weakly pulled high.  
Table 29. AUXR Register  
AUXR - Auxiliary Register (8Eh)  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
EXTRAM  
AO  
Bit  
Bit  
Number  
Mnemonic Description  
Reserved  
7
6
5
4
3
2
1
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
-
The value read from this bit is indeterminate. Do not set this bit.  
EXTRAM bit  
See Table 5.  
EXTRAM  
ALE Output bit  
0
AO  
Clear to restore ALE operation during internal fetches.  
Set to disable ALE operation during internal fetches.  
Reset Value = XXXX XX00b  
Not bit addressable  
49  
4188A–8051–10/02  
TS83C51RB2/RC2/RD2 ROM  
ROM Structure  
The TS83C51RB2/RC2/RD2 ROM memory is divided in three different arrays:  
the code array:16/32/64 Kbytes.  
the encryption array:64 bytes.  
the signature array:4 bytes.  
ROM Lock System  
The program Lock system, when programmed, protects the on-chip program against  
software piracy.  
Encryption Array  
Within the ROM array are 64 bytes of encryption array that are initially unprogrammed  
(all FF’s). Every time a byte is addressed during program verify, 6 address lines are  
used to select a byte of the encryption array. This byte is then exclusive-NOR’ed  
(XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the  
encryption array in the unprogrammed state, will return the code in its original, unmodi-  
fied form.  
When using the encryption array, one important factor needs to be considered. If a byte  
has the value FFh, verifying the byte will produce the encryption byte value. If a large  
block (>64 bytes) of code is left unprogrammed, a verification routine will display the  
content of the encryption array. For this reason all the unused code bytes should be pro-  
grammed with random values. This will ensure program protection.  
Program Lock Bits  
The lock bits when programmed according to Table 30. will provide different level of pro-  
tection for the on-chip code and data.  
Table 30. Program Lock bits  
Program Lock Bits  
Security  
level  
LB1  
LB2  
LB3  
Protection Description  
No program lock features enabled. Code verify will still be  
encrypted by the encryption array if programmed. MOVC  
instruction executed from external program memory returns  
non encrypted data.  
1
U
U
U
MOVC instruction executed from external program memory are  
disabled from fetching code bytes from internal memory, EA is  
sampled and latched on reset.  
2
3
P
U
U
P
U
U
Same as level 1+ Verify disable.  
This security level is only available for 51RDX2 devices.  
U: unprogrammed  
P: programmed  
Signature bytes  
Verify Algorithm  
The TS83C51RB2/RC2/RD2 contains 4 factory programmed signatures bytes. To read  
these bytes, perform the process described in section 8.3.  
Refer to Section “Verify algorithm”.  
50  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
TS87C51RB2/RC2/RD2 EPROM  
EPROM Structure  
The TS87C51RB2/RC2/RD2 EPROM is divided in two different arrays:  
the code array:16/32/64 Kbytes.  
the encryption array:64 bytes.  
In addition a third non programmable array is implemented:  
the signature array: 4 bytes.  
EPROM Lock System  
The program Lock system, when programmed, protects the on-chip program against  
software piracy.  
Encryption Array  
Within the EPROM array are 64 bytes of encryption array that are initially unpro-  
grammed (all FF’s). Every time a byte is addressed during program verify, 6 address  
lines are used to select a byte of the encryption array. This byte is then exclusive-  
NOR’ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm,  
with the encryption array in the unprogrammed state, will return the code in its original,  
unmodified form.  
When using the encryption array, one important factor needs to be considered. If a byte  
has the value FFh, verifying the byte will produce the encryption byte value. If a large  
block (>64 bytes) of code is left unprogrammed, a verification routine will display the  
content of the encryption array. For this reason all the unused code bytes should be pro-  
grammed with random values. This will ensure program protection.  
Program Lock Bits  
The three lock bits, when programmed according to Table 31., will provide different level  
of protection for the on-chip code and data.  
Table 31. Program Lock bits  
Program Lock Bits  
Security  
level  
LB1  
LB2  
LB3  
Protection Description  
No program lock features enabled. Code verify will still be  
encrypted by the encryption array if programmed. MOVC  
instruction executed from external program memory returns non  
encrypted data.  
1
U
U
U
MOVC instruction executed from external program memory are  
disabled from fetching code bytes from internal memory, EA is  
sampled and latched on reset, and further programming of the  
EPROM is disabled.  
2
P
U
U
3
4
U
U
P
U
U
P
Same as 2, also verify is disabled.  
Same as 3, also external execution is disabled.  
U: unprogrammed,  
P: programmed  
WARNING: Security level 2 and 3 should only be programmed after EPROM and Core  
verification.  
Signature bytes  
The TS87C51RB2/RC2/RD2 contains 4 factory programmed signatures bytes. To read  
these bytes, perform the process described in Section “Signature bytes”.  
51  
4188A–8051–10/02  
EPROM Programming  
Set-up Modes  
In order to program and verify the EPROM or to read the signature bytes, the  
TS87C51RB2/RC2/RD2 is placed in specific set-up modes (See Figure 18.).  
Control and program signals must be held at the levels indicated in Table 32.  
Definition of Terms  
Address Lines:P1.0-P1.7, P2.0-P2.5, P3.4, P3.5 respectively for A0-A15 (P2.5 (A13)  
for RB, P3.4 (A14) for RC, P3.5 (A15) for RD)  
Data Lines:P0.0-P0.7 for D0-D7  
Control Signals:RST, PSEN, P2.6, P2.7, P3.3, P3.6, P3.7.  
Program Signals:ALE/PROG, EA/VPP.  
Table 32. EPROM Set-Up Modes  
ALE/P EA/VP  
Mode  
RST  
PSEN  
ROG  
P
P2.6  
P2.7  
P3.3  
P3.6  
P3.7  
12.75  
V
Program Code data  
1
0
0
1
1
1
1
Verify Code data  
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
0
0
1
1
1
0
1
0
1
1
1
1
0
0
1
0
1
1
1
0
1
0
0
Program Encryption  
Array Address 0-3Fh  
12.75  
V
1
Read Signature Bytes  
Program Lock bit 1  
Program Lock bit 2  
Program Lock bit 3  
1
1
12.75  
V
1
1
0
12.75  
V
12.75  
V
52  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Figure 18. Set-Up Modes Configuration  
+5V  
EA/VPP  
VCC  
PROGRAM SIGNALS*  
ALE/PROG  
P0.0-P0.7  
D0-D7  
RST  
PSEN  
P2.6  
P2.7  
P3.3  
P3.6  
P3.7  
P1.0-P1.7  
A0-A7  
CONTROL SIGNALS*  
A8-A15  
P2.0-P2.5  
P3.4-P3.5  
4 to 6 MHz  
XTAL1  
VSS  
GND  
* See Table 31. for proper value on these inputs  
Programming Algorithm  
The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and  
decreases the number of pulses applied during byte programming from 25 to 1.  
To program the TS87C51RB2/RC2/RD2 the following sequence must be exercised:  
Step 1: Activate the combination of control signals.  
Step 2: Input the valid address on the address lines.  
Step 3: Input the appropriate data on the data lines.  
Step 4: Raise EA/VPP from VCC to VPP (typical 12.75V).  
Step 5: Pulse ALE/PROG once.  
Step 6: Lower EA/VPP from VPP to VCC  
Repeat step 2 through 6 changing the address and data for the entire array or until the  
end of the object file is reached (See Figure 19).  
Verify algorithm  
Code array verify must be done after each byte or block of bytes is programmed. In  
either case, a complete verify of the programmed array will ensure reliable programming  
of the TS87C51RB2/RC2/RD2.  
P 2.7 is used to enable data output.  
To verify the TS87C51RB2/RC2/RD2 code the following sequence must be exercised:  
Step 1: Activate the combination of program and control signals.  
Step 2: Input the valid address on the address lines.  
Step 3: Read data on the data lines.  
Repeat step 2 through 3 changing the address for the entire array verification (See Fig-  
ure 19.)  
The encryption array cannot be directly verified. Verification of the encryption array is  
done by observing that the code array is well encrypted.  
53  
4188A–8051–10/02  
Figure 19. Programming and Verification Signal’s Waveform  
Programming Cycle  
Read/Verify Cycle  
Data Out  
A0-A12  
D0-D7  
Data In  
100µs  
ALE/PROG  
EA/VPP  
12.75V  
5V  
0V  
Control signals  
EPROM Erasure  
(Windowed Packages  
Only)  
Erasing the EPROM erases the code array, the encryption array and the lock bits return-  
ing the parts to full functionality.  
Erasure leaves all the EPROM cells in a 1’s state (FF).  
Erasure Characteristics  
The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an  
integrated dose at least 15 W-sec/cm2. Exposing the EPROM to an ultraviolet lamp of  
12,000 µW/cm2 rating for 30 minutes, at a distance of about 25 mm, should be sufficient.  
An exposure of 1 hour is recommended with most of standard erasers.  
Erasure of the EPROM begins to occur when the chip is exposed to light with wave-  
length shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have  
wavelengths in this range, exposure to these light sources over an extended time (about  
1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent  
erasure. If an application subjects the device to this type of exposure, it is suggested  
that an opaque label be placed over the window.  
Signature Bytes  
The TS83/87C51RB2/RC2/RD2 has four signature bytes in location 30h, 31h, 60h and  
61h. To read these bytes follow the procedure for EPROM verify but activate the control  
lines provided in Table 31. for Read Signature Bytes. Table 33. shows the content of the  
signature byte for the TS87C51RB2/RC2/RD2.  
Table 33. Signature Bytes Content  
Location  
30h  
Contents  
58h  
Comment  
Manufacturer Code: Atmel  
Family Code: C51 X2  
31h  
57h  
60h  
7Ch  
Product name: TS83C51RD2  
Product name: TS87C51RD2  
Product name: TS83C51RC2  
Product name: TS87C51RC2  
Product name: TS83C51RB2  
Product name: TS87C51RB2  
Product revision number  
60h  
FCh  
37h  
60h  
60h  
B7h  
60h  
3Bh  
60h  
BBh  
FFh  
61h  
54  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
55  
4188A–8051–10/02  
Electrical Characteristics  
Absolute Maximum Ratings  
*NOTICE:  
Stresses at or above those listed under “ Abso-  
lute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only  
and functional operation of the device at these or  
any other conditions above those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Ambiant Temperature Under Bias:  
C = commercial......................................................0°C to 70°C  
I = industrial ........................................................-40°C to 85°C  
Storage Temperature .................................... -65°C to + 150°C  
Voltage on VCC to VSS ........................................-0.5 V to + 7 V  
Voltage on Any Pin to VSS........................-0.5 V to VCC + 0.5 V  
Power Dissipation .............................................................. 1 W  
Power dissipation is based on the maximum  
allowable die temperature and the thermal resis-  
tance of the package.  
Power Consumption  
Measurement  
Since the introduction of the first C51 devices, every manufacturer made operating Icc  
measurements under reset, which made sense for the designs were the CPU was run-  
ning under reset. In Atmel new devices, the CPU is no more active during reset, so the  
power consumption is very low but is not really representative of what will happen in the  
customer system. That’s why, while keeping measurements under Reset, Atmel pre-  
sents a new way to measure the operating Icc:  
Using an internal test ROM, the following code is executed:  
Label:  
SJMP Label (80 FE)  
Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not  
connected and XTAL1 is driven by the clock.  
This is much more representative of the real operating Icc.  
DC Parameters for  
Standard Voltage  
TA = 0°C to +70°C; VSS = 0 V; VCC = 5 V ± 10%; F = 0 to 40 MHz.  
TA = -40°C to +85°C; VSS = 0 V; VCC = 5 V ± 10%; F = 0 to 40 MHz.  
Table 34. DC Parameters in Standard Voltage  
Symbol Parameter  
Min  
Typ  
Max  
Unit Test Conditions  
0.2 VCC  
0.1  
-
VIL  
Input Low Voltage  
-0.5  
V
Input High Voltage except XTAL1,  
RST  
0.2 VCC  
0.9  
+
VIH  
V
CC + 0.5  
V
V
VIH1  
Input High Voltage, XTAL1, RST  
0.7 VCC  
VCC + 0.5  
0.3  
0.45  
1.0  
V
V
V
IOL = 100 µA(4)  
IOL = 1.6 mA(4)  
IOL = 3.5 mA(4)  
Output Low Voltage, ports 1, 2, 3,  
4, 5(6)  
VOL  
0.3  
0.45  
1.0  
V
V
V
IOL = 200 µA(4)  
IOL = 3.2 mA(4)  
IOL = 7.0 mA(4)  
VOL1 Output Low Voltage, port 0 (6)  
VOL2 Output Low Voltage, ALE, PSEN  
0.3  
0.45  
1.0  
V
V
V
IOL = 100 µA(4)  
IOL = 1.6 mA(4)  
IOL = 3.5 mA(4)  
56  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Table 34. DC Parameters in Standard Voltage  
Symbol Parameter  
Min  
Typ  
Max  
Unit Test Conditions  
I
OH = -10 µA  
OH = -30 µA  
V
CC - 0.3  
CC - 0.7  
V
V
V
I
Output High Voltage, ports 1, 2, 3,  
4, 5  
VOH  
V
IOH = -60 µA  
VCC = 5 V ± 10%  
VCC - 1.5  
IOH = -200 µA  
IOH = -3.2 mA  
IOH = -7.0 mA  
VCC = 5 V ± 10%  
V
CC - 0.3  
V
V
V
VOH1 Output High Voltage, port 0  
VCC - 0.7  
VCC - 1.5  
IOH = -100 µA  
IOH = -1.6 mA  
IOH = -3.5 mA  
VCC = 5 V ± 10%  
VCC - 0.3  
VCC - 0.7  
VCC - 1.5  
V
V
V
VOH2 Output High Voltage,ALE, PSEN  
RRST RST Pulldown Resistor  
(5)  
50  
90  
200  
-50  
kΩ  
Logical 0 Input Current ports 1, 2,  
IIL  
µA Vin = 0.45 V  
3, 4, 5  
0.45 V < Vin <  
VCC  
ILI  
Input Leakage Current  
± 10  
-650  
10  
µA  
Logical 1 to 0 Transition Current,  
ports 1, 2, 3, 4, 5  
ITL  
µA Vin = 2.0 V  
Fc = 1 MHz  
pF  
CIO  
Capacitance of I/O Buffer  
Power-down Current  
TA = 25°C  
2.0 V < VCC < 5.5  
IPD  
20(5)  
50  
µA  
V(3)  
1 + 0.4  
Freq  
(MHz)  
@12MHz  
5.8  
ICC  
under Power Supply Current Maximum  
values, X1 mode: (7)  
V
CC = 5.5 V(1)  
RESE  
T
mA  
mA  
@16MHz  
7.4  
3 + 0.6  
Freq  
ICC  
(MHz)  
@12MHz  
10.2  
Power Supply Current Maximum  
operati  
ng  
values, X1 mode: (7)  
V
CC = 5.5 V(8)  
@16MHz  
12.6  
0.25+0.3  
Freq  
(MHz)  
ICC  
Power Supply Current Maximum  
values, X1 mode: (7)  
@12MHz  
3.9  
V
CC = 5.5 V(2)  
idle  
mA  
@16MHz  
5.1  
57  
4188A–8051–10/02  
DC Parameters for Low Voltage  
TA = 0°C to +70°C; VSS = 0 V; VCC = 2.7 V to 5.5 V ± 10%; F = 0 to 30 MHz.  
TA = -40°C to +85°C; VSS = 0 V; VCC = 2.7 V to 5.5 V ± 10%; F = 0 to 30 MHz.  
Table 35. DC Parameters for Low Voltage  
Symbol Parameter  
Min  
Typ  
Max  
Unit Test Conditions  
0.2 VCC  
0.1  
-
VIL  
Input Low Voltage  
-0.5  
V
Input High Voltage except XTAL1,  
RST  
0.2 VCC  
0.9  
+
VIH  
VIH1  
VOL  
VCC + 0.5  
VCC + 0.5  
0.45  
V
V
Input High Voltage, XTAL1, RST  
0.7 VCC  
Output Low Voltage, ports 1, 2, 3,  
4, 5 (6)  
V
V
V
V
IOL = 0.8 mA(4)  
IOL = 1.6 mA(4)  
IOH = -10 µA  
IOH = -40 µA  
Output Low Voltage, port 0, ALE,  
VOL1  
VOH  
VOH1  
IIL  
0.45  
(6)  
PSEN  
Output High Voltage, ports 1, 2, 3,  
4, 5  
0.9 VCC  
0.9 VCC  
Output High Voltage, port 0, ALE,  
PSEN  
Logical 0 Input Current ports 1, 2,  
3, 4, 5  
-50  
µA Vin = 0.45 V  
0.45 V < Vin <  
VCC  
ILI  
Input Leakage Current  
± 10  
µA  
Logical 1 to 0 Transition Current,  
ports 1, 2, 3, 4, 5  
ITL  
-650  
200  
10  
µA Vin = 2.0 V  
kΩ  
(5)  
RRST RST Pulldown Resistor  
50  
90  
Fc = 1 MHz  
pF  
CIO  
Capacitance of I/O Buffer  
TA = 25°C  
V
CC = 2.0 V to 5.5  
(5)  
(5)  
20  
10  
50  
30  
V(3)  
IPD  
Power-down Current  
µA  
µA  
VCC = 2.0 V to 3.3  
V(3)  
Power-down Current (Only for  
TS87C51RD2 S287-xxx Very Low  
power)  
2.0 V < VCC < 3.6  
V(3)  
IPD  
2 (5)  
15  
1 + 0.2  
Freq  
ICC  
(MHz)  
@12MHz  
3.4  
Power Supply Current Maximum  
values, X1 mode: (7)  
under  
RESET  
V
CC = 3.3 V(1)  
mA  
@16MHz  
4.2  
1 + 0.3  
Freq  
ICC  
(MHz)  
@12MHz  
4.6  
Power Supply Current Maximum  
values, X1 mode: (7)  
operati  
ng  
V
CC = 3.3 V(8)  
mA  
@16MHz  
5.8  
58  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Table 35. DC Parameters for Low Voltage  
Symbol Parameter  
Min  
Typ  
Max  
Unit Test Conditions  
0.15 Freq  
(MHz) +  
0.2  
ICC  
Power Supply Current Maximum  
values, X1 mode: (7)  
@12MHz  
2
idle  
mA VCC = 3.3 V(2)  
@16MHz  
2.6  
Notes: 1. ICC under reset is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns (see Figure 24.), VIL  
=
V
V
SS + 0.5 V,  
IH = VCC - 0.5V; XTAL2 N.C.; EA = RST = Port 0 = VCC. ICC would be slightly higher if a crystal oscillator used..  
2. Idle ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VCC  
0.5 V; XTAL2 N.C; Port 0 = VCC; EA = RST = VSS (see Figure 22.).  
-
3. Power-down ICC is measured with all output pins disconnected; EA = VSS, PORT 0 = VCC; XTAL2 NC.; RST = VSS (see Fig-  
ure 23.).  
4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLs of ALE and Ports 1  
and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0  
transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed  
0.45V with maxi VOL peak 0.6V. A Schmitt Trigger use is not necessary.  
5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and  
5V.  
6. Under steady state (non-transient) conditions, IOL must be externally limited as follows:  
Maximum IOL per port pin: 10 mA  
Maximum IOL per 8-bit port:  
Port 0: 26 mA  
Ports 1, 2, 3 and 4 and 5 when available: 15 mA  
Maximum total IOL for all output pins: 71 mA  
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater  
than the listed test conditions.  
7. For other values, please contact your sales office.  
8. Operating ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns (see Figure 24.), VIL  
=
V
V
SS + 0.5 V,  
IH = VCC - 0.5V; XTAL2 N.C.; EA = Port 0 = VCC; RST = VSS. The internal ROM runs the code 80 FE (label: SJMP label). ICC  
would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is  
the worst case.  
Figure 20. ICC Test Condition, under reset  
VCC  
ICC  
VCC  
VCC  
P0  
VCC  
RST  
EA  
XTAL2  
XTAL1  
(NC)  
CLOCK  
SIGNAL  
VSS  
All other pins are disconnected.  
59  
4188A–8051–10/02  
Figure 21. Operating ICC Test Condition  
VCC  
ICC  
VCC  
VCC  
P0  
EA  
Reset = Vss after a high pulse  
during at least 24 clock cycles  
RST  
XTAL2  
XTAL1  
(NC)  
CLOCK  
SIGNAL  
All other pins are disconnected.  
VSS  
Figure 22. ICC Test Condition, Idle Mode  
VCC  
ICC  
VCC  
P0  
VCC  
Reset = Vss after a high pulse  
during at least 24 clock cycles  
RST  
EA  
XTAL2  
XTAL1  
VSS  
(NC)  
CLOCK  
SIGNAL  
All other pins are disconnected.  
Figure 23. ICC Test Condition, Power-Down Mode  
VCC  
ICC  
VCC  
VCC  
P0  
EA  
Reset = Vss after a high pulse  
during at least 24 clock cycles  
RST  
(NC)  
XTAL2  
XTAL1  
VSS  
All other pins are disconnected.  
60  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Figure 24. Clock Signal Waveform for ICC Tests in Active and Idle Modes  
VCC-0.5V  
0.7VCC  
0.2VCC-0.1  
0.45V  
TCHCL  
TCLCH  
TCLCH = TCHCL = 5ns.  
AC Parameters  
Explanation of the AC  
Symbols  
Each timing symbol has 5 characters. The first character is always a “T” (stands for  
time). The other characters, depending on their positions, stand for the name of a signal  
or the logical status of that signal. The following is a list of all the characters and what  
they stand for.  
Example:TAVLL = Time for Address Valid to ALE Low.  
T
LLPL = Time for ALE Low to PSEN Low.  
TA = 0 to +70°C (commercial temperature range); VSS = 0 V; VCC = 5 V ± ±10%; -M and -  
V ranges.  
TA = -40°C to +85°C (industrial temperature range); VSS = 0 V; VCC = 5 V ± 10%; -M and  
-V ranges.  
TA = 0 to +70°C (commercial temperature range); VSS = 0 V; 2.7 V < VCC < 5.5 V; -L  
range.  
TA = -40°C to +85°C (industrial temperature range); VSS = 0 V; 2.7 V < VCC < 5.5 V; -L  
range.  
Table 36. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3,  
and ALE and PSEN signals. Timings will be guaranteed if these capacitances are  
respected. Higher capacitance values can be used, but timings will then be degraded.  
Table 36. Load Capacitance versus speed range, in pF  
-M  
-V  
50  
50  
30  
-L  
Port 0  
100  
80  
100  
80  
Port 1, 2, 3  
ALE / PSEN  
100  
100  
Table 38., Table 39. and Table 42. give the description of each AC symbols.  
Table 39., Table 41. and Table 43. give for each range the AC parameter.  
Table 40., Table 42. and Table 44. give the frequency derating formula of the AC param-  
eter. To calculate each AC symbols, take the x value corresponding to the speed grade  
you need (-M, -V or -L) and replace this value in the formula. Values of the frequency  
must be limited to the corresponding speed grade:  
Table 37. Max frequency for derating formula regarding the speed grade  
-M X1 mode -M X2 mode -V X1 mode -V X2 mode  
-L X1 mode -L X2 mode  
Freq (MHz)  
T (ns)  
40  
25  
20  
50  
40  
25  
30  
30  
20  
50  
33.3  
33.3  
61  
4188A–8051–10/02  
Example:  
TLLIV in X2 mode for a -V part at 20 MHz (T = 1/20E6 = 50 ns):  
x= 22 (Table 40.)  
T= 50ns  
TLLIV= 2T - x = 2 x 50 - 22 = 78ns  
External Program Memory  
Characteristics  
Table 38. Symbol Description  
Symbol  
T
Parameter  
Oscillator clock period  
ALE pulse width  
TLHLL  
TAVLL  
TLLAX  
TLLIV  
TLLPL  
TPLPH  
TPLIV  
TPXIX  
TPXIZ  
TPXAV  
TAVIV  
TPLAZ  
Address Valid to ALE  
Address Hold After ALE  
ALE to Valid Instruction In  
ALE to PSEN  
PSEN Pulse Width  
PSEN to Valid Instruction In  
Input Instruction Hold After PSEN  
Input Instruction FloatAfter PSEN  
PSEN to Address Valid  
Address to Valid Instruction In  
PSEN Low to Address Float  
62  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Table 39. AC Parameters for Fix Clock  
-V  
-V  
-L  
-L  
X2 mode  
30 MHz  
standard  
mode  
X2 mode  
20 MHz  
standard  
mode  
-M  
40 MHz  
30 MHz  
Units  
60 MHz  
equiv.  
40 MHz  
equiv.  
Speed  
Symbol  
T
40 MHz  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
33  
Max  
25  
40  
10  
10  
33  
25  
4
25  
42  
12  
12  
50  
35  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TLHLL  
TAVLL  
TLLAX  
TLLIV  
52  
13  
4
5
13  
70  
35  
45  
25  
78  
50  
65  
30  
98  
55  
TLLPL  
TPLPH  
TPLIV  
TPXIX  
TPXIZ  
TAVIV  
TPLAZ  
15  
55  
9
17  
60  
10  
50  
18  
75  
35  
0
0
0
0
0
18  
85  
10  
12  
53  
10  
20  
95  
10  
10  
80  
10  
18  
122  
10  
Table 40. AC Parameters for a Variable Clock: derating formula  
Standard  
Symbol  
TLHLL  
TAVLL  
TLLAX  
TLLIV  
Type  
Min  
Clock  
2 T - x  
T - x  
T - x  
4 T - x  
T - x  
3 T - x  
3 T - x  
x
X2 Clock  
T - x  
-M  
10  
15  
15  
30  
10  
20  
40  
0
-V  
8
-L  
Units  
ns  
15  
20  
20  
35  
15  
25  
45  
0
Min  
0.5 T - x  
0.5 T - x  
2 T - x  
0.5 T - x  
1.5 T - x  
1.5 T - x  
x
13  
13  
22  
8
ns  
Min  
ns  
Max  
Min  
ns  
TLLPL  
TPLPH  
TPLIV  
TPXIX  
TPXIZ  
TAVIV  
ns  
Min  
15  
25  
0
ns  
Max  
Min  
ns  
ns  
Max  
Max  
Max  
T - x  
5 T - x  
x
0.5 T - x  
2.5 T - x  
x
7
5
15  
45  
10  
ns  
40  
10  
30  
10  
ns  
TPLAZ  
ns  
63  
4188A–8051–10/02  
External Program Memory  
Read Cycle  
Figure 25. External Program Memory Read Cycle  
12 TCLCL  
TLHLL  
TLLIV  
TLLPL  
ALE  
TPLPH  
PSEN  
TPXAV  
TPXIZ  
TLLAX  
TAVLL  
TPLIV  
TPLAZ  
TPXIX  
INSTR IN  
PORT 0  
PORT 2  
INSTR IN  
A0-A7  
A0-A7  
INSTR IN  
TAVIV  
ADDRESS A8-A15  
ADDRESS  
OR SFR-P2  
ADDRESS A8-A15  
External Data Memory  
Characteristics  
Symbol  
Parameter  
TRLRH  
TWLWH  
TRLDV  
TRHDX  
TRHDZ  
TLLDV  
TAVDV  
TLLWL  
TAVWL  
TQVWX  
TQVWH  
TWHQX  
TRLAZ  
TWHLH  
RD Pulse Width  
WR Pulse Width  
RD to Valid Data In  
Data Hold After RD  
Data Float After RD  
ALE to Valid Data In  
Address to Valid Data In  
ALE to WR or RD  
Address to WR or RD  
Data Valid to WR Transition  
Data set-up to WR High  
Data Hold After WR  
RD Low to Address Float  
RD or WR High to ALE high  
64  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Table 41. AC Parameters for a Fix Clock  
-V  
-L  
-L  
-V  
X2 mode  
30 MHz  
X2 mode  
20 MHz  
standard  
mode  
standard  
mode 40  
MHz  
Speed  
-M  
30 MHz  
Units  
60 MHz  
equiv.  
40 MHz  
equiv.  
40 MHz  
Symbol  
TRLRH  
TWLWH  
TRLDV  
TRHDX  
TRHDZ  
TLLDV  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
175  
175  
Max  
130  
130  
85  
85  
135  
135  
125  
125  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100  
60  
102  
95  
137  
0
0
0
0
0
30  
18  
98  
35  
165  
175  
95  
25  
42  
160  
165  
100  
155  
160  
105  
222  
235  
130  
TAVDV  
TLLWL  
100  
70  
50  
75  
30  
47  
7
55  
80  
45  
70  
5
70  
103  
13  
TAVWL  
TQVWX  
TQVWH  
TWHQX  
TRLAZ  
TWHLH  
10  
15  
160  
15  
107  
9
165  
17  
155  
10  
213  
18  
0
0
0
0
0
10  
40  
7
27  
15  
35  
5
45  
13  
53  
65  
4188A–8051–10/02  
Table 42. AC Parameters for a Variable Clock: derating formula  
Standard  
Symbol  
TRLRH  
TWLWH  
TRLDV  
TRHDX  
TRHDZ  
TLLDV  
Type  
Min  
Min  
Max  
Min  
Max  
Max  
Max  
Min  
Max  
Min  
Min  
Min  
Min  
Max  
Min  
Max  
Clock  
6 T - x  
6 T - x  
5 T - x  
x
X2 Clock  
3 T - x  
3 T - x  
2.5 T - x  
x
-M  
20  
20  
25  
0
-V  
15  
15  
23  
0
-L  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
25  
25  
30  
0
2 T - x  
8 T - x  
9 T - x  
3 T - x  
3 T + x  
4 T - x  
T - x  
T - x  
20  
40  
60  
25  
25  
25  
15  
15  
10  
0
15  
35  
50  
20  
20  
20  
10  
10  
8
25  
45  
65  
30  
30  
30  
20  
20  
15  
0
4T -x  
TAVDV  
TLLWL  
4.5 T - x  
1.5 T - x  
1.5 T + x  
2 T - x  
0.5 T - x  
3.5 T - x  
0.5 T - x  
x
TLLWL  
TAVWL  
TQVWX  
TQVWH  
TWHQX  
TRLAZ  
TWHLH  
TWHLH  
7 T - x  
T - x  
x
0
T - x  
0.5 T - x  
0.5 T + x  
15  
15  
10  
10  
20  
20  
T + x  
External Data Memory Write  
Cycle  
Figure 26. External Data Memory Write Cycle  
TWHLH  
ALE  
PSEN  
WR  
TLLWL  
TWLWH  
TQVWX  
TWHQX  
TLLAX  
A0-A7  
TQVWH  
DATA OUT  
PORT 0  
TAVWL  
ADDRESS  
OR SFR-P2  
PORT 2  
ADDRESS A8-A15 OR SFR P2  
External Data Memory Read  
Cycle  
66  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Figure 27. External Data Memory Read Cycle  
TWHLH  
TLLDV  
ALE  
PSEN  
RD  
TLLWL  
TRLRH  
TRLDV  
TRHDZ  
TAVDV  
TLLAX  
TRHDX  
DATA IN  
PORT 0  
PORT 2  
A0-A7  
TRLAZ  
TAVWL  
ADDRESS  
OR SFR-P2  
ADDRESS A8-A15 OR SFR P2  
Serial Port Timing - Shift  
Register Mode  
Symbol  
Parameter  
TXLXL  
TQVHX  
TXHQX  
TXHDX  
TXHDV  
Serial port clock cycle time  
Output data set-up to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
Table 43. AC Parameters for a Fix Clock  
-V  
-L  
-L  
-V  
X2 mode  
30 MHz  
X2 mode  
20 MHz  
standard  
mode  
standard  
mode 40  
MHz  
-M  
30 MHz  
60 MHz  
equiv.  
40 MHz  
equiv.  
Speed  
Symbol  
TXLXL  
40 MHz  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
300  
200  
30  
200  
117  
13  
300  
200  
30  
300  
200  
30  
400  
283  
47  
ns  
ns  
ns  
ns  
ns  
TQVHX  
TXHQX  
TXHDX  
TXHDV  
0
0
0
0
0
117  
34  
117  
117  
200  
67  
4188A–8051–10/02  
Table 44. AC Parameters for a Variable Clock: derating formula  
Standard  
Symbol  
TXLXL  
Type  
Min  
Min  
Min  
Min  
Max  
Clock  
X2 Clock  
6 T  
-M  
-V  
-L  
Units  
ns  
12 T  
TQVHX  
TXHQX  
TXHDX  
TXHDV  
10 T - x  
2 T - x  
x
5 T - x  
T - x  
50  
20  
0
50  
20  
0
50  
20  
0
ns  
ns  
x
ns  
10 T - x  
5 T- x  
133  
133  
133  
ns  
Shift Register Timing  
Waveforms  
Figure 28. Shift Register Timing Waveforms  
0
1
2
3
4
5
6
7
8
INSTRUCTION  
ALE  
TXLXL  
CLOCK  
TXHQX  
1
TQVXH  
0
2
3
4
5
6
7
OUTPUT DATA  
TXHDX  
VALID  
SET TI  
TXHDV  
WRITE to SBUF  
INPUT DATA  
VA L ID  
VALID  
VALID  
VA L ID  
VA LID  
VA L ID  
VA LID  
SET RI  
CLEAR RI  
68  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
EPROM Programming and  
Verification Characteristics  
TA = 21°C to 27°C; VSS = 0V; VCC = 5V ± 10% while programming. VCC = operating  
Symbol  
VPP  
Parameter  
Min  
Max  
13  
75  
6
Units  
V
Programming Supply Voltage  
Programming Supply Current  
Oscillator Frquency  
12.5  
IPP  
mA  
1/TCLCL  
TAVGL  
TGHAX  
TDVGL  
TGHDX  
TEHSH  
TSHGL  
TGHSL  
TGLGH  
TAVQV  
TELQV  
TEHQZ  
4
MHz  
Address Setup to PROG Low  
Adress Hold after PROG  
Data Setup to PROG Low  
Data Hold after PROG  
(Enable) High to VPP  
48 TCLCL  
48 TCLCL  
48 TCLCL  
48 TCLCL  
48 TCLCL  
10  
VPP Setup to PROG Low  
VPP Hold after PROG  
PROG Width  
µs  
µs  
µs  
10  
90  
110  
Address to Valid Data  
ENABLE Low to Data Valid  
Data Float after ENABLE  
48 TCLCL  
48 TCLCL  
48 TCLCL  
0
range while verifying  
EPROM Programming and  
Verification Waveforms  
Figure 29. EPROM Programming and Verification Waveforms  
PROGRAMMING  
VERIFICATION  
ADDRESS  
TAVQV  
P1.0-P1.7  
ADDRESS  
P2.0-P2.5  
P3.4-P3.5*  
DATA OUT  
P0  
DATA IN  
TGHDX  
TGHAX  
TDVGL  
TAVGL  
ALE/PROG  
EA/VPP  
TSHGL  
TGHSL  
TGLGH  
VPP  
VCC  
VCC  
TELQV  
TEHSH  
TEHQZ  
CONTROL  
SIGNALS  
(ENABLE)  
* 8KB: up to P2.4, 16KB: up to P2.5, 32KB: up to P3.4, 64KB: up to P3.5  
69  
4188A–8051–10/02  
External Clock Drive  
Characteristics (XTAL1)  
Symbol  
TCLCL  
Parameter  
Oscillator Period  
High Time  
Low Time  
Min  
25  
5
Max  
Units  
ns  
TCHCX  
TCLCX  
TCLCH  
TCHCL  
ns  
5
ns  
Rise Time  
5
5
ns  
Fall Time  
ns  
TCHCX/TCLCX Cyclic ratio in X2 mode  
40  
60  
%
External Clock Drive  
Waveforms  
Figure 30. External Clock Drive Waveforms  
VCC-0.5 V  
0.7VCC  
0.2VCC-0.1 V  
TCHCL  
0.45 V  
TCHCX  
TCLCH  
TCLCX  
TCLCL  
AC Testing Input/Output  
Waveforms  
Figure 31. AC Testing Input/Output Waveforms  
V
CC-0.5 V  
0.45 V  
0.2VCC+0.9  
0.2VCC-0.1  
INPUT/OUTPUT  
AC inputs during testing are driven at VCC - 0.5 for a logic “1” and 0.45V for a logic “0”.  
Timing measurement are made at VIH min for a logic “1” and VIL max for a logic “0”.  
Float Waveforms  
Figure 32. Float Waveforms  
FLOAT  
VOH-0.1 V  
VOL+0.1 V  
VLOAD  
VLOAD+0.1 V  
VLOAD-0.1 V  
For timing purposes a port pin is no longer floating when a 100 mV change from load  
voltage occurs and begins to float when a 100 mV change from the loaded VOH/VOL level  
occurs. IOL/IOH ≥ ± 20mA.  
70  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Clock Waveforms  
Valid in normal clock mode. In X2 mode XTAL2 signal must be changed to XTAL2  
divided by two.  
Figure 33. Clock Waveforms  
STATE1  
P1P2  
STATE2  
P1P2  
STATE3  
P1P2  
STATE4  
P1P2  
STATE4  
P1P2  
STATE5  
P1P2  
STATE6  
P1P2  
STATE5  
P1P2  
INTERNAL  
CLOCK  
XTAL2  
ALE  
THESE SIGNALS ARE NOT ACTIVATED DURING THE  
EXECUTION OF A MOVX INSTRUCTION  
EXTERNAL PROGRAM MEMORY FETCH  
PSEN  
PCL OUT  
PCL OUT  
PCL OUT  
DATA  
P0  
DATA  
DATA  
SAMPLED  
FLOAT  
SAMPLED  
FLOAT  
SAMPLED  
FLOAT  
INDICATES ADDRESS TRANSITIONS  
P2 (EXT)  
READ CYCLE  
RD  
PCL OUT (IF PROGRAM  
MEMORY IS EXTERNAL)  
P0  
P2  
DPL OR Rt OUT  
FLOAT  
INDICATES DPH OR P2 SFR TO PCH TRANSITION  
WRITE CYCLE  
WR  
PCL OUT (EVEN IF PROGRAM  
MEMORY IS INTERNAL)  
P0  
DPL OR Rt OUT  
DATA OUT  
INDICATES DPH OR P2 SFR TO PCH TRANSITION  
PCL OUT (IF PROGRAM  
MEMORY IS EXTERNAL)  
P2  
PORT OPERATION  
OLD DATA  
P0 PINS SAMPLED  
NEW DATA  
P0 PINS SAMPLED  
RXD SAMPLED  
MOV DEST P0  
P1, P2, P3 PINS SAMPLED  
RXD SAMPLED  
P1, P2, P3 PINS SAMPLED  
MOV DEST PORT (P1, P2, P3)  
(INCLUDES INT0, INT1, TO, T1)  
SERIAL PORT SHIFT CLOCK  
TXD (MODE 0)  
This diagram indicates when signals are clocked internally. The time it takes the signals  
to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is  
dependent on variables such as temperature and pin loading. Propagation also varies  
from output to output and component. Typically though (TA=25°C fully loaded) RD and  
WR propagation delays are approximately 50ns. The other signals are typically 85 ns.  
Propagation delays are incorporated in the AC specifications.  
71  
4188A–8051–10/02  
Ordering Information  
Part-number  
Memory size  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Supply Voltage Temperature Range  
Max Frequency  
Package  
Packing  
Stick  
Stick  
Tray  
TS80C51RA2-MCA  
TS80C51RA2-MCB  
TS80C51RA2-MCE  
TS80C51RA2-MIA  
TS80C51RA2-MIB  
TS80C51RA2-MIE  
TS80C51RA2-LCA  
TS80C51RA2-LCB  
TS80C51RA2-LCE  
TS80C51RA2-LIA  
TS80C51RA2-LIB  
TS80C51RA2-LIE  
TS80C51RA2-VCA  
TS80C51RA2-VCB  
TS80C51RA2-VCE  
TS80C51RA2-VIA  
TS80C51RA2-VIB  
TS80C51RA2-VIE  
5V  
Commercial  
Commercial  
Commercial  
Industrial  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
5V  
5V  
5V  
Stick  
Stick  
Tray  
5V  
Industrial  
5V  
Industrial  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
5V  
Commercial  
Commercial  
Commercial  
Industrial  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Industrial  
Industrial  
Commercial  
Commercial  
Commercial  
Industrial  
Stick  
Stick  
Tray  
5V  
5V  
5V  
Stick  
Stick  
Tray  
5V  
Industrial  
5V  
Industrial  
TS80C51RD2-MCA  
TS80C51RD2-MCB  
TS80C51RD2-MCE  
TS80C51RD2-MCL  
TS80C51RD2-MCM  
TS80C51RD2-MIA  
TS80C51RD2-MIB  
TS80C51RD2-MIE  
TS80C51RD2-MIL  
TS80C51RD2-MIM  
TS80C51RD2-LCA  
TS80C51RD2-LCB  
TS80C51RD2-LCE  
TS80C51RD2-LCL  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
5V  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
40 MHz (20 MHz X2) PLCC68  
40 MHz (20 MHz X2) VQFP64  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
40 MHz (20 MHz X2) PLCC68  
40 MHz (20 MHz X2) VQFP64  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PLCC68  
Stick  
Stick  
Tray  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
5V  
5V  
5V  
5V  
5V  
5V  
Industrial  
5V  
Industrial  
5V  
Industrial  
5V  
Industrial  
3-5V  
3-5V  
3-5V  
3-5V  
Commercial  
Commercial  
Commercial  
Commercial  
72  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Part-number  
Memory size  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Romless  
Supply Voltage Temperature Range  
Max Frequency  
Package  
Packing  
Tray  
TS80C51RD2-LCM  
TS80C51RD2-LIA  
TS80C51RD2-LIB  
TS80C51RD2-LIE  
TS80C51RD2-LIL  
TS80C51RD2-LIM  
TS80C51RD2-VCA  
TS80C51RD2-VCB  
TS80C51RD2-VCE  
TS80C51RD2-VCL  
TS80C51RD2-VCM  
TS80C51RD2-VIA  
TS80C51RD2-VIB  
TS80C51RD2-VIE  
TS80C51RD2-VIL  
TS80C51RD2-VIM  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
5V  
Commercial  
Industrial  
30 MHz (20 MHz X2) VQFP64  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PLCC68  
30 MHz (20 MHz X2) VQFP64  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
40 MHz (30 MHz X2) PLCC68  
40 MHz (30 MHz X2) VQFP64  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
40 MHz (30 MHz X2) PLCC68  
40 MHz (30 MHz X2) VQFP64  
Stick  
Stick  
Tray  
Industrial  
Industrial  
Industrial  
Stick  
Tray  
Industrial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
Stick  
Stick  
Tray  
5V  
5V  
5V  
Stick  
Tray  
5V  
5V  
Stick  
Stick  
Tray  
5V  
Industrial  
5V  
Industrial  
5V  
Industrial  
Stick  
Tray  
5V  
Industrial  
TS87C51RB2-MCA  
TS87C51RB2-MCB  
TS87C51RB2-MCE  
TS87C51RB2-MIA  
TS87C51RB2-MIB  
TS87C51RB2-MIE  
TS87C51RB2-LCA  
TS87C51RB2-LCB  
TS87C51RB2-LCE  
TS87C51RB2-LIA  
TS87C51RB2-LIB  
TS87C51RB2-LIE  
TS87C51RB2-VCA  
TS87C51RB2-VCB  
TS87C51RB2-VCE  
TS87C51RB2-VIA  
TS87C51RB2-VIB  
TS87C51RB2-VIE  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
OTP 16k Bytes  
5V  
Commercial  
Commercial  
Commercial  
Industrial  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
5V  
5V  
5V  
5V  
Industrial  
5V  
Industrial  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
5V  
Commercial  
Commercial  
Commercial  
Industrial  
Industrial  
Industrial  
Commercial  
Commercial  
Commercial  
Industrial  
5V  
5V  
5V  
5V  
Industrial  
5V  
Industrial  
73  
4188A–8051–10/02  
Part-number  
Memory size  
Supply Voltage Temperature Range  
Max Frequency  
Package  
Packing  
TS87C51RC2-MCA  
TS87C51RC2-MCB  
TS87C51RC2-MCE  
TS87C51RC2-MIA  
TS87C51RC2-MIB  
TS87C51RC2-MIE  
TS87C51RC2-LCA  
TS87C51RC2-LCB  
TS87C51RC2-LCE  
TS87C51RC2-LIA  
TS87C51RC2-LIB  
TS87C51RC2-LIE  
TS87C51RC2-VCA  
TS87C51RC2-VCB  
TS87C51RC2-VCE  
TS87C51RC2-VIA  
TS87C51RC2-VIB  
TS87C51RC2-VIE  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
OTP 32k Bytes  
5V  
Commercial  
Commercial  
Commercial  
Industrial  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
5V  
5V  
5V  
5V  
Industrial  
5V  
Industrial  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
5V  
Commercial  
Commercial  
Commercial  
Industrial  
Industrial  
Industrial  
Commercial  
Commercial  
Commercial  
Industrial  
5V  
5V  
5V  
5V  
Industrial  
5V  
Industrial  
TS87C51RD2-MCA  
TS87C51RD2-MCB  
TS87C51RD2-MCE  
TS87C51RD2-MCL  
TS87C51RD2-MCM  
TS87C51RD2-MIA  
TS87C51RD2-MIB  
TS87C51RD2-MIE  
TS87C51RD2-MIL  
TS87C51RD2-MIM  
TS87C51RD2-LCA  
TS87C51RD2-LCB  
TS87C51RD2-LCE  
TS87C51RD2-LCL  
TS87C51RD2-LCM  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
5V  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
40 MHz (20 MHz X2) PLCC68  
40 MHz (20 MHz X2) VQFP64  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
40 MHz (20 MHz X2) PLCC68  
40 MHz (20 MHz X2) VQFP64  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PLCC68  
30 MHz (20 MHz X2) VQFP64  
Stick  
Stick  
Tray  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Tray  
5V  
5V  
5V  
5V  
5V  
5V  
Industrial  
5V  
Industrial  
5V  
Industrial  
5V  
Industrial  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
74  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Part-number  
Memory size  
Supply Voltage Temperature Range  
Max Frequency  
Package  
Packing  
Stick  
Stick  
Tray  
TS87C51RD2S287-MCA OTP 64k Bytes  
3-5V low power  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PLCC68  
30 MHz (20 MHz X2) VQFP64  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PLCC68  
30 MHz (20 MHz X2) VQFP64  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
40 MHz (30 MHz X2) PLCC68  
40 MHz (30 MHz X2) VQFP64  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
40 MHz (30 MHz X2) PLCC68  
40 MHz (30 MHz X2) VQFP64  
TS87C51RD2S287-KCB  
TS87C51RD2S287-KCE  
TS87C51RD2S287-KCL  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
3-5V low power  
3-5V low power  
3-5V low power  
Stick  
Tray  
TS87C51RD2S287-KCM OTP 64k Bytes  
3-5V low power  
TS87C51RD2-LIA  
TS87C51RD2-LIB  
TS87C51RD2-LIE  
TS87C51RD2-LIL  
TS87C51RD2-LIM  
TS87C51RD2-VCA  
TS87C51RD2-VCB  
TS87C51RD2-VCE  
TS87C51RD2-VCL  
TS87C51RD2-VCM  
TS87C51RD2-VIA  
TS87C51RD2-VIB  
TS87C51RD2-VIE  
TS87C51RD2-VIL  
TS87C51RD2-VIM  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
OTP 64k Bytes  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
5V  
Stick  
Stick  
Tray  
Industrial  
Industrial  
Industrial  
Stick  
Tray  
Industrial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
Stick  
Stick  
Tray  
5V  
5V  
5V  
Stick  
Tray  
5V  
5V  
Stick  
Stick  
Tray  
5V  
Industrial  
5V  
Industrial  
5V  
Industrial  
Stick  
Tray  
5V  
Industrial  
TS83C51RB2-MCA  
TS83C51RB2-MCB  
TS83C51RB2-MCE  
TS83C51RB2-MIA  
TS83C51RB2-MIB  
TS83C51RB2-MIE  
TS83C51RB2-LCA  
TS83C51RB2-LCB  
TS83C51RB2-LCE  
TS83C51RB2-LIA  
TS83C51RB2-LIB  
TS83C51RB2-LIE  
TS83C51RB2-VCA  
TS83C51RB2-VCB  
ROM 16k Bytes  
ROM 16k Bytes  
ROM 16k Bytes  
ROM 16k Bytes  
ROM 16k Bytes  
ROM 16k Bytes  
ROM 16k Bytes  
ROM 16k Bytes  
ROM 16k Bytes  
ROM 16k Bytes  
ROM 16k Bytes  
ROM 16k Bytes  
ROM 16k Bytes  
ROM 16k Bytes  
5V  
Commercial  
Commercial  
Commercial  
Industrial  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
5V  
5V  
5V  
5V  
Industrial  
5V  
Industrial  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
5V  
Commercial  
Commercial  
Commercial  
Industrial  
Industrial  
Industrial  
Commercial  
Commercial  
5V  
75  
4188A–8051–10/02  
Part-number  
Memory size  
Supply Voltage Temperature Range  
Max Frequency  
Package  
Packing  
Tray  
TS83C51RB2-VCE  
TS83C51RB2-VIA  
TS83C51RB2-VIB  
TS83C51RB2-VIE  
ROM 16k Bytes  
ROM 16k Bytes  
ROM 16k Bytes  
ROM 16k Bytes  
5V  
5V  
5V  
5V  
Commercial  
Industrial  
Industrial  
Industrial  
40 MHz (30 MHz X2) VQFP44  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
Stick  
Stick  
Tray  
TS83C51RC2-MCA  
TS83C51RC2-MCB  
TS83C51RC2-MCE  
TS83C51RC2-MIA  
TS83C51RC2-MIB  
TS83C51RC2-MIE  
TS83C51RC2-LCA  
TS83C51RC2-LCB  
TS83C51RC2-LCE  
TS83C51RC2-LIA  
TS83C51RC2-LIB  
TS83C51RC2-LIE  
TS83C51RC2-VCA  
TS83C51RC2-VCB  
TS83C51RC2-VCE  
TS83C51RC2-VIA  
TS83C51RC2-VIB  
TS83C51RC2-VIE  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
ROM 32k Bytes  
5V  
Commercial  
Commercial  
Commercial  
Industrial  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Stick  
Tray  
5V  
5V  
5V  
5V  
Industrial  
5V  
Industrial  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
5V  
Commercial  
Commercial  
Commercial  
Industrial  
Industrial  
Industrial  
Commercial  
Commercial  
Commercial  
Industrial  
5V  
5V  
5V  
5V  
Industrial  
5V  
Industrial  
TS83C51RD2-MCA  
TS83C51RD2-MCB  
TS83C51RD2-MCE  
TS83C51RD2-MCL  
TS83C51RD2-MCM  
TS83C51RD2-MIA  
TS83C51RD2-MIB  
TS83C51RD2-MIE  
TS83C51RD2-MIL  
TS83C51RD2-MIM  
TS83C51RD2-LCA  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
5V  
5V  
5V  
5V  
5V  
5V  
5V  
5V  
5V  
5V  
3-5V  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
40 MHz (20 MHz X2) PLCC68  
40 MHz (20 MHz X2) VQFP64  
40 MHz (20 MHz X2) PDIL40  
40 MHz (20 MHz X2) PLCC44  
40 MHz (20 MHz X2) VQFP44  
40 MHz (20 MHz X2) PLCC68  
40 MHz (20 MHz X2) VQFP64  
30 MHz (20 MHz X2) PDIL40  
Stick  
Stick  
Tray  
Stick  
Tray  
Stick  
Stick  
Tray  
Stick  
Tray  
Stick  
Industrial  
Industrial  
Industrial  
Industrial  
Commercial  
76  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
Part-number  
Memory size  
Supply Voltage Temperature Range  
Max Frequency  
Package  
Packing  
Stick  
Tray  
TS83C51RD2-LCB  
TS83C51RD2-LCE  
TS83C51RD2-LCL  
TS83C51RD2-LCM  
TS83C51RD2-LIA  
TS83C51RD2-LIB  
TS83C51RD2-LIE  
TS83C51RD2-LIL  
TS83C51RD2-LIM  
TS83C51RD2-VCA  
TS83C51RD2-VCB  
TS83C51RD2-VCE  
TS83C51RD2-VCL  
TS83C51RD2-VCM  
TS83C51RD2-VIA  
TS83C51RD2-VIB  
TS83C51RD2-VIE  
TS83C51RD2-VIL  
TS83C51RD2-VIM  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
ROM 64k Bytes  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
3-5V  
5V  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PLCC68  
30 MHz (20 MHz X2) VQFP64  
30 MHz (20 MHz X2) PDIL40  
30 MHz (20 MHz X2) PLCC44  
30 MHz (20 MHz X2) VQFP44  
30 MHz (20 MHz X2) PLCC68  
30 MHz (20 MHz X2) VQFP64  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
40 MHz (30 MHz X2) PLCC68  
40 MHz (30 MHz X2) VQFP64  
40 MHz (30 MHz X2) PDIL40  
40 MHz (30 MHz X2) PLCC44  
40 MHz (30 MHz X2) VQFP44  
40 MHz (30 MHz X2) PLCC68  
40 MHz (30 MHz X2) VQFP64  
Stick  
Tray  
Stick  
Stick  
Tray  
Industrial  
Industrial  
Industrial  
Stick  
Tray  
Industrial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
Stick  
Stick  
Tray  
5V  
5V  
5V  
Stick  
Tray  
5V  
5V  
Stick  
Stick  
Tray  
5V  
Industrial  
5V  
Industrial  
5V  
Industrial  
Stick  
Tray  
5V  
Industrial  
77  
4188A–8051–10/02  
Package Drawings  
PLCC44  
78  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
PDIL40  
79  
4188A–8051–10/02  
VQFP44  
80  
TS8xC51Rx2  
4188A–8051–10/02  
TS8xC51Rx2  
VQFP64  
81  
4188A–8051–10/02  
PLCC68  
82  
TS8xC51Rx2  
4188A–8051–10/02  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
Europe  
Microcontrollers  
Atmel Sarl  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
FAX 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Data-  
com  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
FAX 1(719) 540-1759  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
© Atmel Corporation 2002.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty  
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors  
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does  
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted  
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical  
components in life support devices or systems.  
ATMEL® is a registered trademark of Atmel.  
Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
4188A–8051–10/02  
/xM  

相关型号:

TS83C51RB2-MIEB

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TS83C51RB2-MIED

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TS83C51RB2-VCA

High Performance 8-bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS83C51RB2-VCA

High Performance 8-bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TS83C51RB2-VCB

High Performance 8-bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS83C51RB2-VCB

High Performance 8-bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TS83C51RB2-VCBR

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TS83C51RB2-VCE

High Performance 8-bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TS83C51RB2-VCE

High Performance 8-bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TS83C51RB2-VCEB

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TS83C51RB2-VCED

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TS83C51RB2-VIA

High Performance 8-bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL