TSX88915TCRD/T70 [ATMEL]

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29;
TSX88915TCRD/T70
型号: TSX88915TCRD/T70
厂家: ATMEL    ATMEL
描述:

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29

驱动 逻辑集成电路
文件: 总20页 (文件大小:168K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS88915T  
LOW SKEW CMOS PLL CLOCK DRIVER  
3-State 70 and 100 MHz Versions  
DESCRIPTION  
The TS88915T Clock Driver utilizes a phazed–locked loop  
(PLL) technology to lock its low skew outputs’ frequency and  
phase onto an input reference clock. It is designed to provide  
clock distribution for high performance microprocessors such  
as TS68040, TSPC603E,TSPC603P,TSPC603R, PCI bridge,  
RAM’s, MMU’s...  
MAIN FEATURES  
H Vcc = 5V 5 %  
H MILITARY TEMPERATURE RANGE  
H TS68040 FULL COMPATIBLE  
H FIVE LOW SKEW OUTPUTS  
Five Outputs (Q0-Q4) with Output–to–Output skew < 500  
ps each being phase end frequency locked to the SYNC  
input.  
R Suffix  
PGA 29  
Ceramic Pin grid array  
H ADDITIONAL OUTPUTS  
Three additional outputs are available :  
– The 2X_Q output runs twice the system ”Q” frequency.  
– The Q/2 output runs at 1/2 the system ”Q” frequency.  
– The Q5 output is inverted (180° phase shift).  
H TWO SELECTABLE CLOCK INPUTS  
– Two selectable CLOCK inputs are available for test or  
redundancy purposes.  
Test Mode pin (PLL_EN) provided for low frequency test-  
ing.  
– All outputs can go into high impedance (3-state) for board  
test purpose.  
H INPUT FREQUENCY RANGE FROM 5MHz to 2X_Q  
FMAX  
H THREE INPUT/OUTPUT RATIOS  
Input/Output phase–locked frequency ratios of 1:2, 1:1 and  
2:1 are available.  
H LOW PART-TO-PART SKEW  
The phase variation from part–to–part between the SYNC  
andFEEDBACKinputsislessthan550ps(derivedfromthe  
W suffix  
LDCC 28  
Leaded Ceramic Chip Carrier  
tPD specification, which defines the part-to-part skew).  
H CMOS AND TTL COMPATIBLE  
– All outputs can drive either CMOS or TTL inputs.  
– All inputs are TTL-level compatible.  
H LOCK Indicator (LOCK) indicated a phase–locked  
state.  
SCREENING / QUALITY  
This product is manufactured :  
H based upon the generic flow of MIL–STD–883.  
H or according to TCS standard.  
April 1999  
1/20  
TS88915T  
SUMMARY  
4. ELECTRICAL CHARACTERISTICS . . . . . . . . . . . 7  
A. GENERAL DESCRIPTION . . . . . . . . . . . . . . 3  
1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2. PIN ASSIGNMENTS . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2.1. 29-Lead Pin Grid Array (PGA) . . . . . . . . . . . . 4  
4.1. General requirements . . . . . . . . . . . . . . . . . . . 7  
4.2. Static characteristics . . . . . . . . . . . . . . . . . . . . 7  
4.2.1. DC electrical characteristics . . . . . . . . 7  
4.2.2. Capacitance and power specifications 8  
2.2. 28-Lead Ceramic Leaded Chip Carrier  
(LDCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
4.3. Dynamic characteristics . . . . . . . . . . . . . . . . . 8  
4.3.1. Frequency applications . . . . . . . . . . . 8  
4.3.2. SYNC input timing requirements . . . 8  
4.3.3. AC characteristics . . . . . . . . . . . . . . . . 8  
3. SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . 5  
B. DETAILED SPECIFICATIONS . . . . . . . . . . . 6  
1. SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2. APPLICABLE DOCUMENTS . . . . . . . . . . . . . . . . . 6  
3. REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
5. APPLICATION INFORMATION . . . . . . . . . . . . . . 11  
5.1. General AC specification notes . . . . . . . . . . 11  
5.2. Timing notes . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.3 Notes concerning loop filter and board layout  
issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.4. TS88915T system level testing functionality17  
6. PREPARATION FOR DELIVERY . . . . . . . . . . . . . 17  
6.1. Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.2. Certificate of compliance . . . . . . . . . . . . . . . . 17  
7. HANDLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
8. PACKAGE MECHANICAL DATA . . . . . . . . . . . . 18  
9. ORDERING INFORMATION . . . . . . . . . . . . . . . . . 19  
3.2. Design and construction . . . . . . . . . . . . . . . . . 6  
3.2.1. Terminal connections . . . . . . . . . . . . . 6  
3.2.2. Lead material and finish . . . . . . . . . . . 6  
3.2.3. Package . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.3. Electrical characteristics . . . . . . . . . . . . . . . . . 6  
3.4. Mechanical and environment . . . . . . . . . . . . . 7  
3.5. Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2/20  
TS88915T  
A. GENERAL DESCRIPTION  
1. INTRODUCTION  
The TS88915T is a CMOS PLL Clock Driver using phase–locked loop (PLL) technology. The PLL allows the high current, low skew  
outputs to lock onto a single input and distribute it with essentially zero delay to multiple components on a board. The PLL also allows  
the TS88915T to multiply a low frequency input clock and distribute it locally at a higher (2X) system frequency. Multiple 88915’s can  
lock onto a single reference clock, which is ideal for applications when a central system clock must be distributed synchronously to  
multiple boards (see Figure 12).  
Figure 1 shows TS88915T block diagram.  
FEEDBACK  
LOCK  
SYNC[0]  
0
VOLTAGE  
CONTROLLED  
OSCILLATOR  
PHASE/FREQ.  
DETECTOR  
CHARGE PUMP/  
LOOP FILTER  
M
U
X
SYNC[1]  
1
EXT. REC NETWORK  
(RC1 pin)  
REF_SEL  
0
1
2X_Q  
Q0  
PLL_EN  
MUX  
D
Q
Q
(+1)  
(+2)  
CP  
1
0
R
M
U
X
DIVIDE  
BY TWO  
D
Q1  
Q2  
Q
Q
CP  
R
R
FREQ_SEL  
OE/RST  
D
Q
Q
CP  
D
Q3  
Q4  
Q
Q
CP  
R
R
R
R
D
Q
Q
CP  
D
Q
Q
Q5  
CP  
D
Q/2  
Q
Q
CP  
Figure 1 : TS88915T Block Diagram  
(All versions)  
3/20  
TS88915T  
2. PIN ASSIGNMENTS  
2.1. 29-Lead Pin Grid Array (PGA)  
F
E
D
C
B
A
Q0  
VCC  
Q1  
F/SL  
GND  
P/EN  
GNDA  
VCCA  
SYC0  
SYC1  
GND  
LOCK  
TS88915T  
(BOTTOM VIEW)  
RC1  
GND  
Q3  
Q2  
R/SL  
VCC  
FDBK  
RST  
Q5  
VCC  
Q/2  
GND  
VCC  
2
GND  
3
Q4  
4
Q*2  
5
NC  
1
6
Figure 2 : 29-Lead PGA (Bottom View)  
2.2. 28-Lead Ceramic Leaded Chip Carrier (LDCC)  
OE/RST VCC  
Q5  
GND  
1
Q4  
28  
VCC  
27  
2X_Q  
26  
4
3
2
FEEDBACK  
REF_SEL  
Q/2  
5
6
25  
24  
GND  
SYNC[0]  
VCC (AN)  
RC1  
Q3  
7
8
23  
22  
VCC  
TS88915T  
(TOP VIEW)  
9
Q2  
21  
20  
GND (AN)  
SYNC[1]  
GND  
LOCK  
10  
11  
19  
12  
13  
14  
15  
16  
Q1  
17  
18  
FREQ_SEL GND  
Q0  
VCC  
GND PLL_EN  
Figure 3 : 28–Lead LDCC (Top View)  
4/20  
TS88915T  
3. SIGNAL DESCRIPTION  
Pin Name  
SYNC[0]  
SYNC[1]  
REF_SEL  
FREQ_SEL  
FEEDBACK  
RC1  
Num  
I/O  
Signal function  
1
1
1
1
1
1
5
1
1
1
1
1
1
11  
Input  
Reference clock input  
Reference clock input  
Input  
Input  
Chooses reference between SYNC[0] and SYNC[1]  
Doubles VCO internal frequency  
Input  
Input  
Feedback input to phase detector  
Input for external RC network  
Input  
Q(0–4)  
Output  
Output  
Output  
Output  
Output  
Input  
Clock output (locked to SYNC)  
Q5  
Inverse of clock output  
2x_Q  
2 x clock output (Q) frequency (synchronous)  
Q/2  
Clock output (Q) frequency B 2 (synchronous)  
LOCK  
Indicates phase lock has been achieved (high when locked)  
Output Enable / Asynchronous reset (active low)  
Disables phase–lock for low frequency testing  
OE/RST  
PLL_EN  
VCC, GND  
Input  
Power  
Power and Ground pins  
Pins 8 and 10 are ”analog” supply pins for internal PLL only  
Table 1 : Signal index  
5/20  
TS88915T  
B. DETAILED SPECIFICATIONS  
1. SCOPE  
This drawing describes the specific requirements for the clock driver TS88915T, in compliance with MIL-STD-883 class B or TCS  
standard screening.  
2. APPLICABLE DOCUMENTS  
1) MIL-STD-883 : Test methods and procedures for electronics.  
2) MIL-PRF-38535 appendix A : General specifications for microcircuits.  
3. REQUIREMENTS  
3.1. General  
The microcircuits are in accordance with the applicable documents and as specified herein.  
3.2. Design and construction  
3.2.1. Terminal connections  
Depending on the package, the terminal connections shall be as shown in Figure 2 and Figure 3 (§ A. GENERAL DESCRIPTION).  
3.2.2. Lead material and finish  
Lead material and finish shall be as specified in MIL-STD-1835 (see § 8).  
3.2.3. Package  
The macrocircuits are packaged in hermetically sealed ceramic packages which are conform to case outlines of MIL-STD-1835, but  
see § 8  
The precise case outlines are described at the end of the specification (§ 8) and into MIL-STD-1835.  
3.3. Absolute maximum ratings  
Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum  
levels may degrade performance and affect reliability.  
Parameter  
Symbol  
Min  
–0.5  
–0.5  
–65  
Max  
Unit  
V
Supply voltage  
Input voltage  
V
CC  
6.0  
V
in  
V
+ 0.5  
V
CC  
Storage temperature range  
T
stg  
+150  
500  
°C  
Power dissipation  
PGA Package  
P
D
mW  
LDCC package  
Thermal resistance Junction–Case  
PGA29  
LDCC28  
Q
7
7
°C/W  
JC  
Note : Functional operating conditions are given in AC and DC electrical specifications. Stresses beyond the absolute maximums  
listed may affect device reliability or cause permanent damage to the device.  
Caution:inputvoltagemustnotbegreaterthanthesupplyvoltagebymorethan2.5Vatalltimesincludingduringpower-on  
reset.  
Table 2 : Absolute maximum rating for the TS88915T  
6/20  
TS88915T  
3.4. Mechanical and environment  
The microcircuits shall meet all environmental requirements of either MIL-STD-883 for class B devices or for TCS standard scree-  
ning.  
3.5. Marking  
The document where are defined the marking are identified in the related reference documents. Each microcircuit are legible and  
permanently marked with the following information as minimum :  
– Thomson logo  
– Manufacturer’s part number  
– Class B identification  
– Date–code of inspection lot  
– ESD identifier if available  
– Country of manufacturing  
4. ELECTRICAL CHARACTERISTICS  
4.1. General requirements  
All static and dynamic electrical characteristics specified for inspection purposes and the relevant measurement conditions aregiven  
below:  
Table Static Electrical Characteristics for the electrical variants  
Table Dynamic Electrical Characteristics for TS88915T (70MHz and 100MHz versions)  
4.2. Static characteristics  
4.2.1. DC electrical characteristics  
(Voltages Referenced to GND) Tc= –55°C to +125°C for 70 MHz and 100 MHz version ; VCC= 5.0 V " 5 %  
Symbol  
Parameter  
Minimum High-Level Input Voltage  
Maximum Low–Level Input Voltage  
Minimum High–Level Output Voltage  
Test Conditions  
Vout = 0.1 V or VCC – 0.1 V  
Vout = 0.1 V or VCC – 0.1 V  
Limits  
2.0  
Unit  
V
VIH  
VIL  
0.8  
V
VOH  
Vin = VIH or VIL, IOH = -36 mA 1, VCCmin  
VCCmax  
4.01  
4.51  
V
VOL  
Maximum Low–Level Output Voltage  
Vin = VIH or VIL, IOL = 36 mA 1  
0.44 4  
0.50 5  
0.20  
V
Vin = VIH or VIL, IOL = 15 mA 6  
VI = VCC or GND, VCCmax  
VI = VCC - 2.1 V, VCCmax  
Iin  
ICCT  
ICC  
IOZ  
Maximum Input Leakage Current  
Maximum ICC/Input  
$1.0  
2.0 2  
1.0  
mA  
mA  
mA  
mA  
Maximum Quiescent Supply Current (per package) VI = VCC or GND, VCCmax  
Maximum 3–State Leakage Current VI = VIH or VIL,VO=VCC or GND, VCCmax  
$50  
Note 1 : IOL and IOH are 12 mA and -12 mA respectively for the LOCK output.  
Note 2 : The PLL_EN input pin is not guaranteed to meet this specification.  
Note 3 : Maximum test duration is 2.0 ms, one output loaded at a time.  
Note 4 : Specification value for static tests at 25°C and at minimum rated operating temperature.  
Note 5 : Specification value for static tests at maximum rated operating temperature.  
Note 6 : Specifications values which can be used for compability with the Power PC.  
7/20  
TS88915T  
4.2.2. Capacitance and power specifications  
Symbol  
CIN  
Parameter  
Typical values  
Unit  
pF  
Conditions  
VCC = 5.0 V  
VCC = 5.0 V  
Input Capacitance  
10  
40  
CPD  
Power Dissipation Capacitance  
pF  
PD1  
Power Dissipation @ 50 MHz with 50W Thevenin Termina-  
tion  
23mW/Output  
184mW/Device  
mW  
VCC = 5.0 V  
T = 25°C  
PD2  
Power Dissipation @ 50 MHz with 50W Parallel Termination  
to GND  
57mW/Output  
456mW/Device  
mW  
VCC = 5.0 V  
T = 25°C  
Note : PD1 and PD2 mW/Output are for a ’Q’ output.  
4.3. Dynamic characteristics (Tc=-55° C to +125° C, VCC = 5.0 V $ 5%)  
4.3.1. Frequency specifications  
Guaranteed Minimum  
Symbol  
Parameter  
Unit  
88915T–70  
88915T–100  
1
fmax  
Maximum Operating Frequency (2X_Q Output)  
70  
35  
100  
50  
MHz  
MHz  
Maximum Operating Frequency (Q0–Q4, Q5 Out-  
puts)  
Note 1 : Maximum Operating Frequency is guaranteed with the part in a phase–locked condition, and all outputs loaded with 50 W  
terminated to VCC/2.  
4.3.2. SYNC input timing requirements  
Minimum  
88915T–70 88915T–100  
Symbol  
Parameter  
Maximum Unit  
tRISE/FALL, SYNC Inputs Rise/Fall Time, SYNC Inputs  
From 0.8 to 2.0 V  
3.0  
ns  
ns  
tCYCLE, SYNC Inputs  
Input Clock Period, SYNC Inputs  
Input Duty Cycle, SYNC Inputs  
28.5 1  
20.0 1  
200 2  
Duty Cycle SYNC  
Inputs  
50 % $ 25 %  
Note 1 : These tCYCLE minimum values are valid when ’Q’ output is fed back and connected to the FEEDBACK pin.  
Note 2 : Informationin Table 1 and in Note 3 of the AC specification notes describe this specification and its limits dependingon what  
output is fed back, and if FREQ_SEL is high or low.  
8/20  
TS88915T  
Conditions  
4.3.3. AC characteristics (Tc=-55° C to +125° C, VCC = 5.0 V $ 5%, Load = 50W terminated to VCC/2)  
Symbol  
Parameter  
Min  
Max  
Unit  
tRISE/FALL  
Outputs  
Rise/Fall Time, All Outputs  
(Between 0.2VCC and 0.8VCC)  
1.0  
2.5  
ns  
into a 50W Load  
Terminated to  
VCC/2  
(1)  
tRISE/FALL  
Rise/Fall Time into a 20 PF Load, with  
Termination specified in Note 2  
0.5  
1.6  
ns  
ns  
tRISE:0.8V – 2.0V  
tFALL:2.0V – 0.8V  
2X_Q Output  
(1)  
(1)  
tPULSE WIDTH  
(Q0–Q4, Q5,  
Q/2)  
Output Pulse Width: Q0, Q1, Q2, Q3,  
Q4, Q5, Q/2 @ VCC/2  
0.5tCYCLE - 0.5 2 0.5tCYCLE + 0.5 2  
into a 50W Load  
Terminated to  
VCC/2  
tPULSE WIDTH  
(2X_Q Output)  
Output Pulse Width:  
2X_Q @ 1.5V  
40 MHz 0.5tCYCLE - 1.5 2 0.5tCYCLE + 1.5 2  
50 MHz  
66 MHz  
ns  
Must use  
0.5tCYCLE - 1.0  
0.5tCYCLE - 0.5  
0.5tCYCLE - 0.5  
0.5tCYCLE + 1.0  
0.5tCYCLE + 0.5  
0.5tCYCLE + 0.5  
termination  
specified in Note2  
100 MHz  
(1)  
tPULSE WIDTH  
Output Pulse Width:  
2X_Q @ VCC/2  
40–49 MHz 0.5tCYCLE - 1.5 2 0.5tCYCLE + 1.5 2  
ns  
ns  
into a 50W Load  
Terminated to  
VCC/2  
(2X_Q Output)  
50–65 MHz  
66–100 MHz  
0.5tCYCLE - 1.0  
0.5tCYCLE - 0.5  
0.5tCYCLE + 1.0  
0.5tCYCLE + 0.5  
(1, 3)  
tPD  
SYNC Input to Feedback Delay  
(Measured at SYNC0 or 1 and  
(With 1MW from RC1 to An VCC  
)
See Note 4 and  
Figure 6 for  
detailed  
SYNC Feedback  
FEEDBACK input pins)  
70 MHz  
–1.05  
–1.05  
–0.40  
–0.30  
explanation  
100 MHz  
(With 1MW from RC1 to An GND)  
+1.25  
+3.25  
500  
(1, 4)  
tSKEWr  
Output–to–Output Skew between Out-  
See puts Q0–Q4, Q/2 (Rising edges only)  
ps  
ps  
ps  
All Outputs into a  
matched 50W  
load Terminated  
to VCC/2  
(Rising)  
Note 5  
(1, 4)  
tSKEWf  
Output–to–Output Skew between Out-  
puts Q0–Q4 (Falling edges only)  
750  
750  
All Outputs into a  
matched 50W  
load Terminated  
to VCC/2  
(Falling)  
(1, 4)  
tSKEWall  
(Falling)  
Output–to–Output Skew 2X_Q, Q/2,  
Q0–Q4 Rising, Q5 Falling  
All Outputs into a  
matched 50W  
load Terminated  
to VCC/2  
(5)  
tLOCK  
Time required to acquire Phase–Lock  
from time SYNC inputs signal is  
received  
1.0  
3.0  
3.0  
10  
14  
14  
ms  
ns  
ns  
Also time to lock  
indicator High  
tPZL  
Output Enable Time OE/RST to 2X_Q,  
Q0–Q4, Q5 and Q/2  
Measured with  
the PLL_EN pin  
Low  
tPHZ, tPLZ  
Output Disable Time OE/RST to 2X_Q,  
Q0–Q4, Q5 and Q/2  
Measured with  
the PLL_EN pin  
Low  
Note 1 : These specification are not tested, they are guaranteed by statistical characterization. See General AC specification Note 1  
.
Note 2 : tCYCLE in this specification is 1/Frequency at which the particular output is running.  
Note 3 : The TPD specification’s min/max values may shift closer to zero of a larger pull up resistor is used.  
Note 4 : Under equally loaded conditions and at a fixed temperature and voltage.  
9/20  
TS88915T  
Note 5 : With VCC fully powered-on, and an output properly connected to the FEEDBACK pin. tLOCK maximum is with C1 = 0.1 mF,  
tLOCK minimum is with C1 = 0.01 mF.  
SYNC INPUT  
(SYNC[1] or  
SYNC[0])  
t
SYNC INPUT  
CYCLE  
t
PD  
FEEDBACK  
INPUT  
Q/2 OUTPUT  
t
t
t
t
t
SKEWr  
SKEWall  
SKEWf  
SKEWr  
SKEWf  
Q0–Q4  
OUTPUTS  
t
’Q’ OUTPUTS  
CYCLE  
Q5 OUTPUT  
2X_Q OUTPUT  
Figure 4 : Output/Input switching waveforms and timing diagrams  
(These waveforms represent the hook-up configuration of Figure 8)  
10/20  
TS88915T  
5. APPLICATION INFORMATION  
5.1. General AC specification notes  
1. Several specifications can only be measured when th TS88915T is in phase–locked operation. TS88915T units were  
fabricated with key transistor properties intentionally varied to create a 14 cell designed experimental matrix.  
2. These two specs (tRISE/FALL and tPULSE WIDTH 2X_Q output) guarantee that the TS88915T meets the 33MHz TS68040  
P–Clock input specification (at 66MHz). For these two specs to be guaranteed by TCS, the termination scheme shown  
below in Figure 5 must be used.  
Z0 (CLOCK TRACE)  
TS88915  
2X_Q  
Output  
TS68040  
P–Clock  
Input  
Rs  
Rp  
Rp=1.5Z0  
Rs=Z0–7W  
Figure 5 : TS68040 P–Clock input termination scheme  
3 To meet the 25 MHz TS68040 P–clock input specification (2 x Q tpulse width at 50 Mhz) FREQ–SEL must be low. This  
configuration improve the accuracy of the 88915T duty cycle.  
4. The wiring diagrams and explanations in Figure 8, 9 and 10 demonstrate the input and output frequency relationships for  
three possible feedback configurations. The allowable SYNC input range for each case is also indicated. There are two  
allowableSYNC frequency ranges, depending whether FREQ_SEL is high or low. Although not shown, it is possible to feed  
back the Q5 output, thus creating a 180° phase shift between the SYNC input and the ”Q” outputs. Table 3 below  
summarizes the allowable SYNC frequency range for each possible configuration.  
FREQ_SEL  
Level  
FEEDBACK  
Output  
Allowable SYNC Input  
Frequency Range (MHz)  
Corresponding VCO  
Frequency Range  
Phase Relation-  
ships of the ”Q”  
Outputs to Rising  
SYNC Edge  
HIGH  
HIGH  
HIGH  
HIGH  
Q/2  
any ”Q” (Q0–Q4)  
Q5  
5 to (2X_Q FMAX Spec)/4  
20 to (2X_Q FMAX Spec)  
0°  
0°  
10 to (2X_Q FMAX Spec)/2 20 to (2X_Q FMAX Spec)  
10 to (2X_Q FMAX Spec)/2 20 to (2X_Q FMAX Spec)  
180°  
0°  
2X_Q  
20 to (2X_Q FMAX Spec)  
20 to (2X_Q FMAX Spec)  
LOW  
LOW  
LOW  
LOW  
Q/2  
any ”Q” (Q0–Q4)  
Q5  
2.5 to (2X_Q FMAX Spec)/8 20 to (2X_Q FMAX Spec)  
0°  
0°  
5 to (2X_Q FMAX Spec)/4  
5 to (2X_Q FMAX Spec)/4  
20 to (2X_Q FMAX Spec)  
20 to (2X_Q FMAX Spec)  
180°  
0°  
2X_Q  
10 to (2X_Q FMAX Spec)/2 20 to (2X_Q FMAX Spec)  
Table 3 : Allowable SYNC input frequency range for different feedback configurations  
11/20  
TS88915T  
5. A 1 MW resistor tied to either Analog VCC or Analog GND as shown in Figure 5 is required to ensure no jitter is present on the  
TS88915T outputs. This technique causes a phase offset between the SYNC input and the output connected to the  
FEEDBACK input, measuredattheinputpins. TheTPD spec describes howthisoffsetvarieswithprocess, temperatureand  
voltage. Thespecswerearrivedatbymeasuringthephaserelationshipforthe14lotsdescribedinNote1whilethepartwas  
in phase–locked operation. The actual measurements were made with 10MHz SYNC input (1.0ns edge rate from 0.8V –  
2.0V) with the Q/2 output fed back. The phase measurements were made at 1.5V. The Q/2 output was terminated at the  
FEEDBACK input with 100W to VCC and 100W to GND.  
RC1  
EXTERNAL LOOP  
FILTER  
RC1  
1MW  
330W  
R2  
C1  
REFERENCE  
RESISTOR  
R2  
C1  
330W  
0.1mF  
0.1mF  
1MW  
REFERENCE  
RESISTOR  
ANALOG GND  
With the 1MW resistor tied in this fashion, the t specification  
measured at the input pins is:  
PD  
With the 1MW resistor tied in this fashion, the t specification  
measured at the input pins is:  
PD  
t
= –0.775ns $ 0.275ns  
PD  
t
= 2.25ns $ 1.0ns  
PD  
3.0V  
3.0V  
–0.775ns OFFSET  
SYNC INPUT  
SYNC INPUT  
2.25ns OFFSET  
5.0V  
5.0V  
FEEDBACK OUTPUT  
FEEDBACK OUTPUT  
Figure 6 : Depiction of the fixed SYNC to Feedback offset (tPD) which is  
present when a 1MW resistor is tied to VCC or GND  
6. The tSKEWr specification guarantees that the rising edges of outputs Q/2, Q0, Q1, Q2, Q3 and Q4 will always fall within a  
500ps window within one part. However, if the relative position of each output within this window is not specified, the 500ps  
window must be added to each side of the tPD specification limits to calculate the total part–to–part skew. For this reason the  
absolutedistributionoftheseoutputsareprovidedinTable4. Whentakingtheskewdata, Q0wasusedasareference, soall  
measurements are relative to this output. The information in Table 4 is derived from measurements taken from the 14  
process lots described in Note 1, over the temperature and voltage range.  
(ps)  
+
(ps)  
Output  
Q0  
Q1  
Q2  
Q3  
Q4  
Q/2  
2X_Q  
0
0
40  
275  
255  
–34  
250  
–35  
–72  
–44  
–40  
–274  
–16  
–633  
Table 4 : Relative position of outputs Q/2, Q0–Q4, 2X_Q,  
within the 500ps tSKEWr spec window  
12/20  
TS88915T  
7. Calculation of Total Output-to-Output skew between multiple parts (Part-to-Part Skew)  
By combining the tPD specification and the information in Note 5, the worst case Output-to-Output skew between multiple  
TS88915’s connected in parallel can be calculated. This calculation assumes that all parts have a common SYNC input  
clock with equal delay that input signal to each part. This skew value is valid at the TS88915 output pins only (equally  
loaded), it does not include PCB trace delays due to varying loads.  
With a 1 MW resistor tied to analog VCC as shown in Note 4, the tPD spec. limits between SYNC and the Q/2 output  
(connected to the FEEDBACK pin) are –1.05ns and –0.5ns. To calculate the skew of any given output between two or more  
parts, the absolute value of the distribution of that output given in Table 4 must be subtracted and added to the lower and  
upper tPD spec limits respectively. For output Q2, [276–(–44)] = 320ps is the absolute value of the distribution. Therefore  
[–1.050.32]=1.37nsisthelower tPDlimit,and[–0.5+0.32]=0.18nsistheupperlimit. Thereforetheworstcaseskewof  
output Q2 between any number of part is [(–1.37)–(–0.18)] = 1.19ns. Q2 has the worst case skew distribution of any output,  
so 1.2ns is the absolute worst case Output-to-Output skew between multiple parts.  
8. Note 4 explains that the tPD specification was measured and is guaranteed for the configuration of the Q/2 output connected  
to the FEEDBACK pin and the SYNC input running at 10MHz. The fixed offset (tPD) as described above has some  
dependence on the input frequency and what frequency the VCO is running. The graphs of Figure 6 demonstrate this  
dependence.  
The data presented in Figure 6 is from devices representing process extremes, and the measurements were also taken at  
the voltage extremes (VCC = 5.25V and 4.75V). Therefore the data in Figure 6 is a realistic representation of the variation of  
tPD  
.
–0.50  
–0.75  
–0.50  
–1.00  
tPD  
SYNC to  
FEEDBACK  
(ns)  
tPD  
SYNC to  
FEEDBACK  
(ns)  
–1.00  
–1.25  
–1.50  
–1.50  
–2.00  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
2.5 5.0 7.5 10 12.5 15 17.5 20 22.5 25 27.5  
SYNC INPUT FREQUENCY (MHz)  
SYNC INPUT FREQUENCY (MHz)  
tPD versus Frequency for Q/2 output fed back,  
including process and voltage variation @ 25°C  
(with 1MW resistor tied to analog VCC)  
tPD versus Frequency for Q4 output fed back,  
including process and voltage variation @ 25°C  
(with 1MW resistor tied to analog VCC)  
3.5  
3.0  
2.5  
3.5  
3.0  
2.5  
2.0  
tPD  
SYNC to  
FEEDBACK  
(ns)  
tPD  
SYNC to  
FEEDBACK  
2.0  
(ns)  
1.5  
1.0  
0.5  
1.5  
1.0  
0.5  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
0
5
10  
15  
20  
25  
SYNC INPUT FREQUENCY (MHz)  
SYNC INPUT FREQUENCY (MHz)  
tPD versus Frequency for Q/2 output fed back,  
including process and voltage variation @ 25°C  
(with 1MW resistor tied to analog GND)  
tPD versus Frequency for Q4 output fed back,  
including process and voltage variation @ 25°C  
(with 1MW resistor tied to analog GND)  
Figure 7 :  
9. The Lock indicator pin (LOCK) will reliably indicate a phase–locked condition at SYNC input frequencies down to 10MHz. At  
frequencies below 10MHz, the frequency of correction pulses going into the phase detector from the SYNC and  
FEEDBACK pins may not be sufficient to allow the lock indicator circuitry to accurately predict a phase–locked condition.  
The TS88915T is guaranteed to provide stable phase–locked operation down to the appropriate minimum input frequency  
given in Table 3, even though the LOCK pin may be low at frequencies below 10MHz.  
13/20  
TS88915T  
5.2. Timing notes  
1. The TS88915T aligns rising edges of the FEEDBACK input and the SYNC input, therefore the SYNC input does not require  
a 50% duty cycle.  
2. All skew specs are measured between VCC/2 crossing point of the appropriate output edges. All skews are specified as  
’windows’, not as a " deviation around a center point.  
3. If a ”Q” output is connected to the FEEDBACK input (this situation is not shown), the ”Q” output frequency would match the  
SYNC input frequency, the 2X_Q output would run twice the SYNC frequency, and the Q/2 output would run at half the  
SYNC frequency.  
See Figures 7, 8 and 9 below.  
1:2 Input to ”Q” Output Frequency Relationship  
100MHz SIGNAL  
25MHz FEEDBACK SIGNAL  
In this application, the Q/2 output is connected to  
HIGH  
the FEEDBACK input. The internal PLL will line up  
Q5  
RST  
Q4  
2X_Q  
Q/2  
the positive edges of Q/2 and SYNC, thus the Q/2  
frequency will equal the SYNC frequency. The ”Q”  
outputs (Q0–Q4, Q5) will always run at 2X the Q/2  
frequency, and the 2X_Q output will run at 4X the  
Q/2 frequency.  
FEEDBACK  
LOW  
REF_SEL  
SYNC[0]  
CRYSTAL  
OSC.  
25MHz INPUT  
Q3  
Q2  
50 MHz  
”Q”  
CLOCK  
ANALOG Vcc  
RC1  
EXTERNAL  
LOOP  
FILTER  
OUTPUTS  
Allowable Input Frequency Range:  
ANALOG GND  
5 MHz to (2X_Q FMAX Spec)/4 (for FREQ_SEL HIGH)  
2.5 MHz to (2X_Q FMAX Spec)/8 (for FREQ_SEL LOW)  
FQ_SEL  
HIGH  
Q0  
Q1  
PLL_EN  
HIGH  
Note: If the OE/RST input is active, a pull-up or pull-down resis-  
tor isn’t necessary at the FEEDBACK pin so it won’t when the  
fed back output goes into 3-state.  
Figure 8 : Wiring diagram and frequency relationship with Q/2 output fed back  
1:1 Input to ”Q” Output Frequency Relationship  
100MHz SIGNAL  
50MHz FEEDBACK SIGNAL  
HIGH  
In this application, the Q4 output is connected to  
the FEEDBACK input. The internal PLL will line up  
the positive edges of Q4 and SYNC, thus the Q4  
frequency (and the rest of the ”Q” outputs) will  
equal the SYNC frequency. The Q/2 output will  
always run at 1/2 the ”Q” frequency, and the 2X_Q  
output will run 2X the ”Q” frequency.  
Q5  
RST  
Q4  
2X_Q  
25MHz  
SIGNAL  
FEEDBACK  
Q/2  
Q3  
Q2  
LOW  
REF_SEL  
SYNC[0]  
CRYSTAL  
OSC.  
50MHz INPUT  
50 MHz  
”Q”  
CLOCK  
ANALOG Vcc  
RC1  
EXTERNAL  
LOOP  
FILTER  
OUTPUTS  
Allowable Input Frequency Range:  
ANALOG GND  
10 MHz to (2X_Q FMAX Spec)/2 (for FREQ_SEL HIGH)  
5 MHz to (2X_Q FMAX Spec)/4 (for FREQ_SEL LOW)  
FQ_SEL  
HIGH  
Q0  
Q1  
PLL_EN  
HIGH  
Figure 9 : Wiring diagram and frequency relationship with Q4 output fed back  
14/20  
TS88915T  
2:1 Input to ”Q” Output Frequency Relationship  
100MHz FEEDBACK SIGNAL  
HIGH  
In this application, the 2X_Q output is connected  
to the FEEDBACK input. The internal PLL will line  
up the positive edges of 2X_Q and SYNC, thus the  
2X_Q frequency will equal the SYNC frequency.  
The Q/2 output will always run at 1/4 the ”Q” fre-  
quency, and the ”Q” outputs will run at 1/2 the  
2X_Q frequency.  
Q5  
RST  
Q4  
2X_Q  
Q/2  
25MHz  
SIGNAL  
FEEDBACK  
LOW  
REF_SEL  
SYNC[0]  
100MHz INPUT  
CRYSTAL  
OSC.  
Q3  
Q2  
50 MHz  
”Q”  
CLOCK  
ANALOG Vcc  
RC1  
EXTERNAL  
LOOP  
FILTER  
OUTPUTS  
Allowable Input Frequency Range:  
ANALOG GND  
20MHz to (2X_Q FMAX Spec) (for FREQ_SEL HIGH)  
10MHz to (2X_Q FMAX Spec)/2 (for FREQ_SEL LOW)  
FQ_SEL  
HIGH  
Q0  
Q1  
PLL_EN  
HIGH  
Figure 10 : Wiring diagram and frequency relationship with 2X_Q output fed back  
5.3. Notes concerning Loop Filter and Board Layout issues  
1. Figure 10 shows a loop filter and analog isolation scheme which will be effective in most applications. The following  
guidelines should be followed to ensure stable and jitter–free operation:  
1a. All loop filter and analog isolation components should be tied as close to the package as possible. Stray current passing  
through the parasitics of long traces can cause undesirable voltage transients at the RC1 pin.  
1b. The 47W resistors, the 10mF low frequency bypass capacitor, and the 0.1mF high frequency bypass capacitor form a wide  
bandwidth filter that will minimize the 88915T’s sensitivity to voltage transients from the system digital VCC supply and  
ground planes. This filter will typically ensure that a 100mV step deviation on the digital VCC supply will cause no more than  
100ps phase deviation on the 88915T outputs. a 250mV step deviation on VCC using the recommended filter values should  
cause no more than a 250ps phase deviation; if a 25mF bypass capacitor is used (instead of 1mF) a 250mV VCC step should  
cause no more than a 100ps phase deviation.  
IfgoodbypasstechniquesareusedonaboarddesignnearcomponentswhichmaycausedigitalVCC andgroundnoise, the  
above described VCC step deviations should not occur at the 88915T’s digital VCC supply. The purpose of the bypass  
filtering scheme shown in Figure 10 is to give the 88915T additional protection from the power supply and ground plane  
transients that can occur in a high frequency, high speed digital system.  
1c. There are no special requirements set forth for the loop filter resistors (1MW and330W). The loop filter capacitor (0.1mF) can  
be a ceramic chip capacitor, the same as a standard bypass capacitor.  
1d. The 1MW reference resistor injects current into the internal charge pump of the PLL, causing a fixed offset between the  
outputs and the SYNC input. This also prevents excessive jitter caused by inherent PLL dead–band. If the VCO (2X_Q  
output) is running above 40MHz, the 1MW resistor provides the correct amount of current injection into the charge pump  
(2–3mA). For the70and100MHzversions, iftheVCOisrunningbelow40MHz, a1.5MW resistorshouldbeused(insteadof  
1MW).  
2. In addition to the bypass capacitors used in the analog filter of Figure 10, there should be a 0.1mF bypass capacitor between  
each of the other (digital) four VCC pins and the board ground plane. This will reduce output switching noise caused by the  
88915T outputs, in addition to reducing potential for noise in the ’analog’ section of the chip. These bypass capacitors  
should also be tied as close to the package as possible.  
15/20  
TS88915T  
BOARD Vcc  
47W  
ANALOG Vcc  
RC1  
8
1MW  
ANALOG LOOP FILTER/VCO  
SECTION OF THE TS88915T  
(NOT DRAWN TO SCALE)  
0.1mF HIGH  
FREQ  
BYPASS  
330W  
10mF LOW  
FREQ BYPASS  
9
ANALOG GND  
10  
47W  
A SEPARATE ANALOG POWER SUPPLY IS NOT NECESSARY AND  
SHOULD NOT BE USED. FOLLOWING THESE PRESCRIBED GUIDE-  
LINES IS ALL THAT IS NECESSARY TO USE THE TS88915T IN A NOR-  
MAL DIGITAL ENVIRONMENT.  
BOARD GND  
Figure 11 : Recommended loop filter and analog isolation scheme for the TS88915T  
CPU  
CARD  
CMMU CMMU  
TS88915T  
PLL  
CLOCK  
@ f  
2f  
CMMU  
CPU  
CMMU CMMU  
CMMU CMMU  
SYSTEM  
CLOCK  
SOURCE  
CPU  
CARD  
TS88915T  
PLL  
2f  
CMMU  
CPU  
DISTRIBUTE  
CLOCK @ f  
CMMU CMMU  
CLOCK @ 2f  
AT POINT OF USE  
TS88915T  
PLL  
MEMORY  
CONTROL  
2f  
MEMORY  
CARDS  
CLOCK @ 2f  
AT POINT OF USE  
Figure 12 : Representation of a potential Multi–Processing application utilizing the TS88915T  
for frequency multiplication and low Board-to-Board skew  
16/20  
TS88915T  
5.4. TS88915T System level testing functionality  
3-State functionality has been added to the TS88915T to ease system board testing. Bringing the OE/RST pin low will put all outputs  
(except for LOCK) into a high impedance state. As long as the PLL_EN pin is low, the Q0–Q4, Q5 and Q/2 outputs will remain in the  
low state after the OE/RST until a falling SYNC edge is seen. The 2X_Q output will be the inverse of the SYNC signal in this mode. If  
the 3–state functionality will be used, a pull–up or a pull–down resistor must be tied to the FEEDBACK input pin to prevent it from  
floating when the feedback output goes into high impedance.  
WiththePLL_ENpinlowtheselectedSYNCsignalisgateddirectlyintothesignalclockdistributionnetwork, bypassinganddisabling  
the VCO. In this mode the outputs are directly driven by the SYNC input (per the block diagram). This mode can also be used for low  
frequency board testing.  
Note: If the outputs are put into 3-state during normal PLL operation, the loop will be broken and phase-lock will be lost. It will take a  
maximum of 10ms (tLOCK spec) to regain phase-lock after the OE/RST pin goes back high.  
6. PREPARATION FOR DELIVERY  
6.1. Packaging  
Microcircuits are prepared for delivery in accordance with MIL-PRF-38535.  
6.2. Certificate of compliance  
TCSoffersacertificateofcomplianceswitheachshipmentofparts, affirmingtheproductsareincomplianceeitherwithMIL-STD-883  
and guarantying the parameters not tested at temperature extremes for the entire temperature range.  
7. HANDLING  
MOS devices must be handled with certain precautions to avoid damage due to accumulation of static charge. Input protection devi-  
ces have been designed in the chip to minimize the effect of this static buildup. However, the following handling practices are recom-  
mended :  
a) Devices should be handled on benches with conductive and grounded surfaces.  
b) Ground test equipment, tools and operator.  
c) Do not handle devices by the leads.  
d) Store devices in conductive foam or carriers.  
e) Avoid use of plastic, rubber, or silk in MOS areas.  
f) Maintain relative humidity above 50 percent if practical.  
17/20  
TS88915T  
8. PACKAGE MECHANICAL DATA  
8.1. 29-pins PGA  
(TOP VIEW)  
C
INCHES  
MILLIMETERS  
E
DIM  
A
MIN  
MAX  
0.606  
0.107  
0.19  
MIN  
15.087  
MAX  
15.392  
2.72  
0.594  
G
C
D
0.17  
0.045  
0.045  
4.32  
4.83  
F
E
0.055  
0.055  
1.143  
1.143  
1.397  
1.397  
F
G
0.100 BSC  
2.54 BSC  
H
0.017  
0.019  
0.43  
0.48  
A
(BOTTOM VIEW)  
1
6
D
A
8.2. 28–pins LDCC  
Note : This package is pin compatible with civil PLCC  
(TOP VIEW)  
(BOTTOM VIEW)  
18/20  
TS88915T  
9. ORDERING INFORMATION  
TS(X)/ TS 88915T  
M R B / T 70  
Maximum Output Frequency :  
Prototype prefix  
70 : 70 MHz  
(1)  
TCS prefix  
100 : 100 MHz  
Type  
(2)  
Screening level  
__ :Standard  
:
Temperature range : Tc  
M : -55, +125°C  
V : -40, +85°C  
C : 0, +70°C  
B/T :according to MIL-STD-883  
D/T : Burn-in  
Package :  
R : PGA  
W : LDCC  
(1) THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES  
(2) For availability of the different versions, contact your TCS sales office  
19/20  
TS88915T  
Information furnished is believed to be accurate and reliable. However THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES  
assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of THOM-  
SON-CSF SEMICONDUCTEURS SPECIFIQUES. Specifications mentioned in this publication are subject to change without notice.  
This publication supersedes and replaces all information previously supplied. THOMSON-CSF SEMICONDUCTEURS SPECIFI-  
QUES products are not authorized for use as critical components in life support devices or systems without express written approval  
from THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES. 1999 THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES -  
Printed in France - All rights reserved.  
This product is manufactured by THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES - 38521 SAINT-EGREVE - FRANCE.  
For further information please contact : THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES - Route Départementale 128 -  
B.P. 46 - 91401 ORSAY Cedex - FRANCE - Phone +33 (0)1 69 33 00 00 - Fax +33 (0)1 69 33 03 21 - E-mail : lafrique@tcs.thomson.fr  
10.  
20/20  

相关型号:

TSX88915TCW70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TCWD/T100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TCWD/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TMR100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TMR70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TMRB/T100

暂无描述
ATMEL

TSX88915TMRB/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TMRD/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TMW100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TMW70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TMWB/T100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TMWD/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL