TSXPC740AVGU8LH [ATMEL]

RISC Microprocessor, 32-Bit, 200MHz, CMOS, CBGA255, 21 X 21 MM, 3 MM HEIGHT, 1.27 MM PITCH, CERAMIC, BGA-255;
TSXPC740AVGU8LH
型号: TSXPC740AVGU8LH
厂家: ATMEL    ATMEL
描述:

RISC Microprocessor, 32-Bit, 200MHz, CMOS, CBGA255, 21 X 21 MM, 3 MM HEIGHT, 1.27 MM PITCH, CERAMIC, BGA-255

时钟 ATM 异步传输模式 外围集成电路
文件: 总44页 (文件大小:870K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
12.4 SPECint95, 8.4 SPECfp95 at 266 MHz (TSPC750A) with 1 MB L2 at 133 MHz  
11.5 SPECint95, 6.9 SPECfp95 at 266 MHz (TSPC740A)  
488 MIPS at 266 MHz  
Selectable Bus Clock (11 CPU Bus Dividers up to 8x)  
PD Typical 4.2 W at 200 MHz, Full Operating Conditions  
Nap, Doze and Sleep Modes for Power Savings  
Superscalar (3 Instructions per Clock Cycle)  
4-GByte Direct Addressing Range  
64-bit Data and 32-bit Address Bus Interface  
32 KB Instruction and Data Cache  
Six Independent Execution Units and Two Register Files  
Write-back and Write-through Operations  
fint max = 266 MHz  
PowerPC  
750A/740A RISC  
Microprocessor  
Family PID8t-  
750A/740A  
fbus max = 83.3 MHz  
Compatible CMOS Input / TTL Output  
Description  
The TSPC750A and TSPC740A microprocessor (after named 750A/740A) are low-  
power implementations of the PowerPC Reduced Instruction Set Computer (RISC)  
architecture.  
Specification  
The 750A/740A microprocessors’ designs are superscalar, capable of issuing three  
instructions per clock cycle into six independent execution units.  
TSPC750A/740A  
The 740A/750A microprocessors use a 2.6/3.3V CMOS process technology and  
maintain full interface compatibility with TTL devices.  
The 750A/740A provide four software controllable power-saving modes and a thermal  
assist unit management.  
The 750A/740A microprocessors have separate 32K byte, physically-addressed  
instruction and data caches and differ only in that the 750A features a dedicated L2  
cache interface with L2 on-chip tags.  
Both are software and bus-compatible with the PowerPC 603and PowerPC 604™  
families, and are fully JTAG compliant.  
The TSPC740A microprocessor is pin compatible with the TSPC603e family.  
GS suffix  
G suffix  
CI-CBGA255 and CI-CBGA360  
CBGA255 and CBGA360  
Ceramic Ball Grid Array  
Ceramic Ball Grid Array  
with Solder Column Interposer (SCI)  
Rev. 2128A–HIREL–01/02  
Screening  
This product is manufactured in full compliance with:  
CBGA upscreenings based upon ATMEL-Grenoble standards  
Full military temperature range (Tc = -55°C,+125°C)  
Industrial temperature range (Tc = -40°C, +110°C)  
CI-CGA versions of TSPC740A and TSPC750A (planned)  
Simplified Block  
Diagram  
The TSPC750A is targeted for low power systems and supports the following power  
management features — doze, nap, sleep, and dynamic power management. The  
TSPC750A consists of a processor core and an internal L2 Tag combined with a dedi-  
cated L2 cache interface and a 60x bus.  
Figure 1. TSPC750A Block Diagram  
Contor l Unit  
BHT/BTIC  
Instruction Fetch  
Branch Unit  
Completion  
32K ICache  
System Unit  
Dispatch  
GPRs  
FPRs  
FXU1  
FXU2  
LSU  
FPU  
Rename  
Buffers  
Rename  
Buffers  
L2 Cache  
BIU  
32K DCache  
L2Tags  
60x BIU  
2
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
General Parameters  
The general parameters of the 750A/740A are the following:  
Technology  
Die Size  
0.29 mm CMOS, five-layer metal  
7.56 mm x 8.79 mm (67 mm2)  
6.35 million  
Transistor Count  
Logic Design  
Packages L2  
Fully-static  
740A: Surface mount 255 ceramic ball grid array (CBGA) and column interposer ceramic grid  
array CI-CGA without L2interface  
750A: Surface mount 360 ceramic ball grid array (CBGA) and column interposer ceramic grid  
array CI-CGA with L2 interface  
Core Power Supply  
I/O Power Supply  
2.6V ± 100 mV  
3.3V ± 5% VDC  
Features  
Except L2 cache interface that is not supported by the PowerPC version, the major fea-  
tures implemented in the PowerPC 750A architecture are as follows:  
Level 2 (L2) Cache Interface  
(not implemented on  
TSPC740A)  
Internal L2 cache controller and 4K-entry tags; external data SRAMs  
256K, 512K, and 1-Mbyte 2-way set associative L2 cache support  
Copy-back or write-through data cache (on a page basis, or for all L2)  
64-byte (256K/512K) and 128-byte (1-Mbyte) sectored line size  
Supports flow-through (reg-buf) synchronous burst SRAMs, pipelined (reg-reg)  
synchronous burst SRAMs, and pipelined (reg-reg) late-write synchronous burst  
SRAMs  
Core-to-L2 frequency divisors of ÷1, ÷1.5, ÷2, ÷2.5, and ÷3 supported  
Branch Processing Unit  
Four instructions fetched per clock  
One branch processed per cycle (plus resolving 2 speculations)  
Up to 1 speculative stream in execution, 1 additional speculative stream in fetch  
512-entry branch history table (BHT) for dynamic prediction  
64-entry, 4-way set associative branch target instruction cache (BTIC) to minimize  
branch delay slots  
Dispatch Unit  
Full hardware detection of dependencies (resolved in the execution units)  
Dispatch two instructions to six independent units (system, branch, load/store, fixed-  
point unit 1, fixed-point unit 2, or floating-point)  
Serialization control (predispatch, postdispatch, execution serialization)  
Load/Store Unit  
One cycle load or store cache access (byte, half-word, word, double-word)  
Effective address generation  
Hits under misses (one outstanding miss)  
Single-cycle misaligned access within double word boundary  
Alignment, zero padding, sign extend for integer register file  
Floating-point internal format conversion (alignment, normalization)  
Sequencing for load/store multiples and string operations  
Store gathering  
Cache and TLB instructions  
3
2128A–HIREL–01/02  
Big- and little-endian byte addressing supported  
Misaligned little-endian support in hardware  
Fixed-point Units  
Fixed-point unit 1 (FXU1)-multiply, divide, shift, rotate, arithmetic, logical  
Fixed-point unit 2 (FXU2)-shift, rotate, arithmetic, logical  
Single-cycle arithmetic, shift, rotate, logical  
Multiply and divide support (multi-cycle)  
Early out multiply  
Bus Interface  
Compatible with 60x processor interface  
32-bit address bus  
64-bit data bus  
Bus-to-core frequency multipliers of 3x, 3.5x, 4x, 4.5x, 5x, 5.5x, 6x, 6.5x, 7x, 7.5x,  
8x supported  
Decode  
Register file access  
Forwarding control  
Partial instruction decode  
Floating-point Unit  
Support for IEEE-754 standard single- and double-precision floating-point arithmetic  
3 cycle latency, 1 cycle throughput, single-precision multiply-add  
3 cycle latency, 1 cycle throughput, double-precision add  
4 cycle latency, 2 cycle throughput, double-precision multiply-add  
Hardware support for divide  
Hardware support for denormalized numbers  
Time deterministic non-IEEE mode  
System Unit  
Executes CR logical instructions and miscellaneous system instructions  
Special register transfer instructions  
Cache Structure  
32K, 32-byte line, 8-way set associative instruction cache  
32K, 32-byte line, 8-way set associative data cache  
Single-cycle cache access  
Pseudo-LRU replacement  
Copy-back or write-through data cache (on a page per page basis)  
Supports all PowerPC memory coherency modes  
Non-blocking instruction and data cache (one outstanding miss under hits)  
No snooping of instruction cache  
Memory Management Unit  
128 entry, 2-way set associative instruction TLB  
128 entry, 2-way set associative data TLB  
Hardware reload for TLBs  
4 instruction BATs and 4 data BATs  
Virtual memory support for up to 4 hexabytes (252) of virtual memory  
Real memory support for up to 4 gigabytes (232) of physical memory  
4
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Testability  
LSSD scan design  
JTAG interface  
Integrated Power  
Management  
Low-power 2.6/3.3V design  
Three static power saving modes: doze, nap, and sleep  
Automatic dynamic power reduction when internal functional units are idle  
Integrated Thermal  
Management Assist Unit  
On-chip thermal sensor and control logic  
Thermal Management Interrupt for software regulation of junction temperature.  
Reliability and Serviceability  
Parity checking on 60x and L2 cache buses  
Pin Assignments  
TSPC740A Package  
The pinout of the TSPC740A, 255 CBGA and CI-CGA packages as viewed from the top  
surface.  
5
2128A–HIREL–01/02  
Figure 2. Pinout of TSPC740A, CBGA and CI-CGA Packages as Viewed from the Top Surface  
1 2  
3
4
5 6 7 8 9 10 1112 13 14 1516  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Not to Scale  
View  
Substrate  
Die  
Encapsulant  
CBGA255  
Not to scale  
View  
SubstrateAssembly  
Encapsulant  
Die  
CI-CGA255  
TSPC750A Package  
The pinout of the TSPC750A, 360 CBGA and CI-CGA packages as viewed from the top  
surface.  
6
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Figure 3. Pinout of TSPC750A, CBGA and CI-BGA Packages as Viewed from the Top Surface  
Pin A1 index  
1 2  
3
4
5 6 7 8 9 10 111213141516 171819  
TSXP750AVGU 12LH  
GND  
A
B
C
D
E
F
VDD  
0VDD  
L20VDD  
G
H
J
K
L
M
N
P
R
T
0VDD  
L20VDD  
VDD  
U
V
W
GND  
S23670W002  
Not to Scale  
View  
SubstrateAssembly  
Encapsulant  
CBGA360  
Die  
Not to scale  
SubstrateAssembly  
Encapsulant  
Die  
CI-CGA360  
Pinout Listings  
Table 1. Pinout Listing for the TSPC740A, 255 CBGA and CI-CGA Packages  
Signal Name  
Pin Number  
Active  
I/O  
A[0-31]  
C16, E4, D13, F2, D14, G1, D15, E2, D16, D4, E13, G2, E15, H1, E16, H2,  
F13, J1, F14, J2, F15, H3, F16, F4, G13, K1, G15, K2, H16, M1, J15, P1  
High  
I/O  
AACK  
ABB  
L2  
Low  
Low  
High  
Low  
Input  
I/O  
K4  
AP[0-3]  
ARTRY  
C1, B4, B3, B2  
J4  
I/O  
I/O  
7
2128A–HIREL–01/02  
Table 1. Pinout Listing for the TSPC740A, 255 CBGA and CI-CGA Packages (Continued)  
Signal Name  
AVDD  
Pin Number  
Active  
-
I/O  
-
A10  
L1  
BG  
Low  
Low  
Low  
Low  
Low  
-
Input  
Output  
Output  
Input  
Output  
Output  
I/O  
BR  
B6  
CI  
E1  
CKSTP_IN  
CKSTP_OUT  
CLK_OUT  
DBB  
D8  
A6  
D7  
J14  
N1  
H15  
G4  
Low  
Low  
Low  
Low  
High  
DBG  
Input  
Input  
Input  
I/O  
DBDIS  
DBWO  
DH[0-31]  
P14, T16, R15, T15, R13, R12, P11, N11, R11, T12, T11, R10, P9, N9,  
T10, R9, T9, P8, N8, R8, T8, N7, R7, T7, P6, N6, R6, T6, R5, N5, T5, T4  
DL[0-31]  
K13, K15, K16, L16, L15, L13, L14, M16, M15, M13, N16, N15, N13, N14,  
P16, P15, R16, R14, T14, N10, P13, N12, T13, P3, N3, N4, R3, T1, T2,  
P4, T3, R4  
High  
I/O  
DP[0-7]  
DRTRY  
GBL  
M2, L3, N2, L4, R1, P2, M4, R2  
High  
Low  
Low  
-
I/O  
Input  
I/O  
-
G16  
F1  
GND  
C5, C12, E3, E6, E8, E9, E11, E14, F5, F7, F10, F12, G6, G8, G9, G11,  
H5, H7, H10, H12, J5, J7, J10, J12, K6, K8, K9, K11, L5, L7, L10, L12, M3,  
M6, M8, M9, M11, M14, P5, P12  
HRESET  
A7  
Low  
Low  
High  
High  
Low  
Low  
-
Input  
Input  
Input  
Input  
Input  
Input  
-
INT  
B15  
L1_TSTCLK(1)  
L2_TSTCLK(1)  
LSSD_MODE(1)  
MCP  
D11  
D12  
B10  
C13  
NC (No-Connect)  
OVDD  
B7, B8, C3, C6, C8, D5, D6, H4, J16, A4, A5, A2, A3, B1, B5  
C7, E5, E7, E10, E12, G3, G5, G12, G14, K3, K5, K12, K14, M5, M7, M10,  
M12, P7, P10  
-
-
PLL_CFG[0-3]  
QACK  
A8, B9, A9, D9  
High  
Low  
Low  
Low  
Low  
Low  
-
Input  
Input  
D3  
J3  
QREQ  
Output  
Output  
Input  
RSRV  
D1  
A16  
B14  
C9  
SMI  
SRESET  
SYSCLK  
Input  
Input  
8
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Table 1. Pinout Listing for the TSPC740A, 255 CBGA and CI-CGA Packages (Continued)  
Signal Name  
TA  
Pin Number  
Active  
Low  
High  
Low  
High  
High  
High  
Low  
Low  
High  
Low  
Low  
High  
High  
Low  
-
I/O  
Input  
Input  
I/O  
H14  
TBEN  
TBST  
TCK  
C2  
A14  
C11  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
I/O  
TDI  
A11  
TDO  
A12  
TEA  
H13  
TLBISYNC  
TMS  
C4  
B11  
TRST  
TS  
C10  
J13  
TSIZ[0-2]  
TT[0-4]  
WT  
A13, D10, B12  
B13, A15, B16, C14, C15  
D2  
Output  
I/O  
Output  
-
VDD 2  
F6, F8, F9, F11, G7, G10, H6, H8, H9, H11, J6, J8, J9, J11, K7, K10, L6,  
L8, L9, L11  
VOLTDET 3  
F3  
High  
Output  
Notes: 1. These are test signals for factory use only and must be pulled up to OVDD for normal machine operation.  
2. OVDD inputs supply power to the I/O drivers and VDD inputs supply power to the processor core.  
3. Internally tied to GND in the TSPC740A CBGA package to indicate to the power supply that a low-voltage processor is  
present. This signal is not a power supply input.  
Table 2. Pinout Listing for the TSPC750A, 360 CBGA and CI-CGA Packages  
Signal Name  
Pin Number  
Active  
I/O  
A[0-31]  
A13, D2, H11, C1, B13, F2, C13, E5, D13, G7, F12, G3, G6, H2, E2, L3,  
G5, L4, G4, J4, H7, E1, G2, F3, J7, M3, H3, J2, J6, K3, K2, L2  
High  
I/O  
AACK  
ABB  
N3  
Low  
Low  
High  
Low  
-
Input  
I/O  
L7  
AP[0-3]  
ARTRY  
AVDD  
BG  
C4, C5, C6, C7  
I/O  
L6  
A8  
H1  
E7  
D7  
C2  
B8  
E3  
K5  
I/O  
-
Low  
Low  
High  
Low  
High  
-
Input  
Output  
Output  
Output  
Input  
Output  
I/O  
BR  
CKSTP_OUT  
CI  
CKSTP_IN  
CLKOUT  
DBB  
Low  
9
2128A–HIREL–01/02  
Table 2. Pinout Listing for the TSPC750A, 360 CBGA and CI-CGA Packages (Continued)  
Signal Name  
DBDIS  
Pin Number  
Active  
Low  
I/O  
Input  
Input  
Input  
I/O  
G1  
K1  
D1  
DBG  
Low  
DBWO  
Low  
DH[0-31]  
W12, W11, V11, T9, W10, U9, U10, M11, M9, P8, W7, P9, W9, R10, W6,  
V7, V6, U8, V9, T7, U7, R7, U6, W5, U5, W4, P7, V5, V4, W3, U4, R5  
High  
DL[0-31]  
M6, P3, N4, N5, R3, M7, T2, N6, U2, N7, P11, V13, U12, P12, T13, W13,  
U13, V10, W8, T11, U11, V12, V8, T1, P1, V1, U1, N1, R2, V3, U3, W2  
High  
I/O  
DP[0-7]  
DRTRY  
GBL  
L1, P2, M2, V2, M1, N2, T3, R1  
High  
Low  
Low  
-
I/O  
Input  
I/O  
-
H6  
B1  
GND  
D10, D14, D16, D4, D6, E12, E8, F4, F6, F10, F14, F16, G9, G11, H5, H8,  
H10, H12, H15, J9, J11, K4, K6, K8, K10, K12, K14, K16, L9, L11, M5, M8,  
M10, M12, M15, N9, N11, P4, P6, P10, P14, P16, R8, R12, T4, T6, T10,  
T14, T16  
HRESET  
B6  
Low  
Low  
High  
High  
Input  
Input  
INT  
C11  
F8  
L1_TSTCLK(1)  
Input  
L2ADDR[0-16]  
L17, L18, L19, M19, K18, K17, K15, J19, J18, J17, J16, H18, H17, J14,  
J13, H19, G18  
Output  
L2AVDD  
L13  
P17  
N15  
L16  
-
-
L2CE  
Low  
Low  
Low  
High  
Output  
Output  
Output  
I/O  
L2CLKOUTA  
L2CLKOUTB  
L2DATA[0-63]  
U14, R13, W14, W15, V15, U15, W16, V16, W17, V17, U17, W18, V18,  
U18, V19, U19, T18, T17, R19, R18, R17, R15, P19, P18, P13, N14, N13,  
N19, N17, M17, M13, M18, H13, G19, G16, G15, G14, G13, F19, F18,  
F13, E19, E18, E17, E15, D19, D18, D17, C18, C17, B19, B18, B17, A18,  
A17, A16, B16, C16, A14, A15, C15, B14, C14, E13  
L2DP[0-7]  
L2OVDD  
V14, U16, T19, N18, H14, F17, C19, B15  
High  
-
I/O  
-
D15, E14, E16, H16, J15, L15, M16, P15, R14, R16, T15, F15  
L2SYNC_IN  
L2SYNC_OUT  
L2_TSTCLK(1)  
L2WE  
L14  
High  
High  
High  
Low  
High  
Low  
Low  
-
Input  
Output  
Input  
Output  
Output  
Input  
Input  
-
M14  
F7  
N16  
L2ZZ  
G17  
LSSD_MODE(1)  
F9  
MCP  
B11  
NC (No-Connect)  
OVDD  
B3, B4, B5, A19, W19, W1, K9, K11(4), K19(4)  
D5, D8, D12, E4, E6, E9, E11, F5, H4, J5, L5, M4, P5, R4, R6, R9, R11,  
T5, T8, T12  
-
-
10  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Table 2. Pinout Listing for the TSPC750A, 360 CBGA and CI-CGA Packages (Continued)  
Signal Name  
PLL_CFG[0-3]  
QACK  
QREQ  
RSRV  
Pin Number  
Active  
High  
Low  
Low  
Low  
Low  
Low  
-
I/O  
Input  
Input  
Output  
Output  
Input  
Input  
Input  
Input  
Input  
I/O  
A4, A5, A6, A7  
B2  
J3  
D3  
SMI  
A12  
SRESET  
SYSCLK  
TA  
E10  
H9  
F1  
Low  
High  
Low  
High  
High  
High  
Low  
Low  
High  
Low  
Low  
High  
High  
Low  
-
TBEN  
A2  
TBST  
A11  
TCK  
B10  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
I/O  
TDI  
B7  
TDO  
D9  
TEA  
J1  
TLBISYNC  
TMS  
A3  
C8  
TRST  
A10  
TS  
K7  
TSIZ[0-2]  
TT[0-4]  
WT  
A9, B9, C9  
Output  
I/O  
C10, D11, B12, C12, F11  
C3  
Output  
-
VDD (2)  
VOLTDET (3)  
G8, G10, G12, J8, J10, J12, L8, L10, L12, N8, N10, N12  
K13  
High  
Output  
Notes: 1. These are test signals for factory use only and must be pulled up to OVDD for normal machine operation.  
2. OVDD inputs supply power to the I/O drivers and VDD inputs supply power to the processor core.  
3. Internally tied to L2OVDD in the TSPC750A packages ATMEL-Grenoble to indicate the power present at the L2 cache inter-  
face. This signal is not a power supply input. Caution: this is different from the TSPC740A packages.  
4. These pins are reserved for potential future use as additional L2 address pins.  
11  
2128A–HIREL–01/02  
Signal Description  
Figure 4. TSPC750A Microprocessor Signal Groups  
L2V  
Not supported in the TSPC740A  
DD  
L2AV  
DD  
BR  
L2ADDR 16±0  
17  
1
BG  
L2DATA 0±63  
L2DP 0±7  
ADDRESS  
ARBITRATION  
L2 CACHE  
ADDRESS/  
DATA  
1
1
64  
8
ABB  
ADDRESS  
START  
TS  
L2CE  
1
1
L2WE  
L2 CACHE  
CLOCK/CONTROL  
1
2
L2CLK±OUT A±B  
L2SYNC_OUT  
A[0-31]  
AP[0-3]  
32  
4
1
1
ADDRESS  
BUS  
L2SYNC_IN  
L2ZZ  
TT[0-4]  
TBST  
INT  
SMI  
5
1
1
1
INTERRUPTS  
RESET  
TS1Z[0-2]  
GBL  
MCP  
3
1
SRESET  
HRESET  
1
1
1
1
1
TRANSFER  
ATTRIBUTE  
WT  
CI  
CKSTP_IN  
1
1
CKSTP_OUT  
TSPC750A  
RSRV  
TBEN  
1
1
1
PROCESSOR  
STATUS  
CONTROL  
TLBISYNC  
QREQ  
AACK  
1
1
1
1
ADDRESS  
TERMINATION  
ARTRY  
QACK  
DBG  
SYSCLK,  
PLL_CFG 0±3  
1
1
1
1
4
1
DBWO  
CLOCK  
CONTROL  
DATA  
ARBITRATION  
CLK_OUT  
DBB  
D 0±63  
DP 0±7  
64  
8
DATA  
TRANSFER  
JTAG:COP  
TEST INTERFACE  
5
3
Factory Test  
DBDIS  
1
TA  
DRTRY  
1
1
1
DATA  
TERMINATION  
TEA  
(I:O)  
V
V
AV  
DD  
DD DD  
12  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Scope  
This drawing describes the specific requirements for the microprocessor TSPC750A, in  
compliance with ATMEL-Grenoble standard screening.  
Applicable  
Documents  
1. MIL-STD-883: Test methods and procedures for electronics.  
2. MIL-PRF-38535 appendix A: General specifications for microcircuits.  
Requirements  
General  
The microcircuits are in accordance with the applicable documents and as specified  
herein.  
Design and Construction  
Terminal Connections  
Depending on the package, the terminal connections shall be is shown in Table 1, Table  
2 and Figure 4.  
Absolute Maximum  
Rating  
Table 3. Absolute Maximum Ratings  
Characteristic  
Symbol  
VDD  
Value  
Unit  
V
Core Supply Voltage  
-0.3 to 2.75 (4)  
-0.3 to 2.75 (4)  
-0.3 to 2.75 (4)  
-0.3 to 3.6 (3.5)  
-0.3 to 3.6 (3.5)  
-0.3 to 3.6 (2)  
-55 to 150  
PLL Supply Voltage  
AVDD  
L2AVDD  
OVDD  
L2OVDD  
VIN  
V
L2 DLL Supply Voltage  
60x Bus Supply Voltage  
L2 Bus Supply Voltage  
Input Voltage  
V
V
V
V
Storage Temperature Range  
TSTG  
°C  
Notes: 1. Functional and tested operating conditions are given in Table 4. Absolute maximum ratings are stress ratings only, and func-  
tional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause  
permanent damage to the device.  
2. Caution: VIN must not exceed OVDD by more than 0.3V at any time including during power-on reset.  
3. Caution: OVDD must not exceed VDD/AVDD by more than 1.2V at any time including during power-on reset.  
4. Caution: VDD/AVDD must not exceed OVDD by more than 0.4V at any time including during power-on reset.  
5. Caution: VIN may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 5.  
13  
2128A–HIREL–01/02  
Figure 5 shows the allowable undershoot and overshoot voltage on the TSPC750A and  
TSPC 740A.  
Figure 5. Overshoot/Undershoot Voltage  
4 V  
(L2) OV  
+ 5%  
DD  
(L2) OV  
DD  
V
IH  
V
IL  
Gnd  
Gnd ± 0.3V  
Gnd ± 1.0V  
Not to exceed 10%  
of t  
SYSCLK  
Recommended  
Operating Conditions  
Table 4. Recommended Operating Conditions  
Characteristic  
Symbol  
Value  
Unit  
V
Core Supply Voltage  
PLL Supply Voltage  
L2 DLL Supply Voltage  
60x Bus Supply Voltage  
L2 Bus Supply Voltage  
Input Voltage  
VDD  
AVDD  
L2AVDD  
OVDD  
L2OVDD  
VIN  
2.5 to 2.7  
2.5 to 2.7  
V
2.5 to 2.7  
V
3.135 to 3.465  
3.135 to 3.465  
GND to OVDD  
-55 to +125  
V
V
V
Junction Temperature  
Tj  
°C  
Note:  
1. These are the recommended and tested operating conditions. Proper device operation outside of these conditions is not  
guaranteed.  
14  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Thermal Characteristics  
Table 5. Package Thermal Characteristics  
Characteristic  
Symbol  
Value  
Rating  
CBGA and CI-CGA packages thermal resistance, junction-to-case thermal resistance  
(typical)  
θJC  
0.03  
°C/W  
CBGA package thermal resistance, die junction-to-lead thermal resistance (typical)  
CI-CGA package thermal resistance, die junction-to-lead thermal resistance (typical)  
θJB  
θJB  
3.8  
4
°C/W  
°C/W  
The board designer can choose between several types of heat sinks to place on the  
TSPC750A. There are several commercially-available heat sinks for the TSPC750A  
provided by the following vendors:  
For the exposed-die packaging technology, shown in Table 5, the intrinsic conduction  
thermal resistance paths are as follows:  
The die junction-to-case (or top-of-die for exposed silicon) thermal resistance  
The die junction-to-ball thermal resistance  
Figure 6 depicts the primary heat transfer path for a package with an attached heat sink  
mounted to a printed-circuit board.  
Heat generated on the active side of the chip is conducted through the silicon, then  
through the heat sink attach material (or thermal interface material), and finally to the  
heat sink where it is removed by forced-air convection.  
Since the silicon thermal resistance is quite small, for a first-order analysis, the tempera-  
ture drop in the silicon may be neglected. Thus, the heat sink attach material and the  
heat sink conduction/convective thermal resistances are the dominant terms.  
Figure 6. C4 Package with Heat Sink Mounted to a Printed-Circuit Board  
ExternalResistance Radiation Convection  
Heat Sink  
ThermalInterfaceMaterial  
Die/Package  
Die Junction  
InternalResistance  
Package/Leads  
Printed±CircuitBoard  
Radiation  
Convection  
ExternalResistance  
(Note the internal versus external package resistance)  
Thermal Management  
Assistance  
The TSPC750A incorporates a thermal management assist unit (TAU) composed of a  
thermal sensor, digital-to-analog converter, comparator, control logic, and dedicated  
special-purpose registers (SPRs). Specifications for the thermal sensor portion of the  
TAU are found in Table 6. More information on the use of this feature is given in the  
MPC750A RISC Microprocessor User’s manual.  
15  
2128A–HIREL–01/02  
Table 6. Thermal Sensor Specifications  
DD = AVDD = L2AVDD = 2.6 VDC ± 100 mV, OVDD = L2OVDD = 3.3 ± 5% VDC, GND = 0 VDC, 0 Tj < +125°C  
V
Num  
Characteristic  
Min  
0
Max  
Unit  
°C  
Notes  
1
2
3
Temperature Range  
Comparator Settling Time  
Resolution  
127  
1
2
3
20  
4
-
-
µs  
°C  
Notes: 1. The temperature is the junction temperature of the die. The thermal assist unit’s raw output does not indicate an absolute  
temperature, but it must be interpreted by software to derive the absolute junction temperature. For information about the  
use and calibration of the TAU, see the Motorola application note AN1800/D “programming the thermal Assist Unit in the  
MPC750A Microprocessor. This specification reflects the temperature span supported by design.  
2. The comparator settling time value must be converted into the number of CPU clocks that need to be written into the  
THRM3 SPR.  
3. Guaranteed by design and characterization.  
Thermal Management  
Information  
This section provides thermal management information for the ceramic ball grid array  
(CBGA) package for air-cooled applications. Proper thermal control design is primarily  
dependent upon the system-level design the heat sink, airflow and thermal interface  
material. To reduce the die-junction temperature, heat sinks may be attached to the  
package by several methods-adhesive, spring clip to holes in the printed circuit board or  
package, and mounting clip and screw assembly; see Figure 7. This spring force should  
not exceed 5.5 pounds of force.  
Figure 7. Package Exploded Cross-Sectional View with Several Heat Sink Options  
CBGAPackage  
Heat Sink  
Heat Sink  
Clip  
Adhesive  
or  
Thermal Interface Material  
Printed ± Circuit Board  
Option  
Ultimately, the final selection of an appropriate heat sink depends on many factors, such  
as thermal performance at a given air velocity, spatial volume, mass, attachment  
method, assembly, and cost.  
16  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Adhesives and Thermal  
Interface Materials  
Figure 8. Thermal Performance of Select Thermal Interface Material  
Silicone Sheet (0.006 inch)  
Bare Joint  
2
Floroether Oil Sheet (0.007 inch)  
Graphite/Oil Sheet (0.005 inch)  
Synthetic Grease  
1.5  
1
0.5  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
Contact Pressure (psi)  
A thermal interface material is recommended at the package lid-to-heat sink interface to  
minimize the thermal contact resistance. For those applications where the heat sink is  
attached by spring clip mechanism, Figure 8 shows the thermal performance of three  
thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint,  
and a joint with thermal grease as a function of contact pressure. As shown, the perfor-  
mance of these thermal interface materials improves with increasing contact pressure.  
The use of thermal grease significantly reduces the interface thermal resistance. That is,  
the bare joint results in a thermal resistance approximately 7 times greater than the ther-  
mal grease joint.  
Heat sinks are attached to the package by means of a spring clip to holes in the printed-  
circuit board (see Figure 7). This spring force should not exceed 5.5 pounds of force.  
Therefore, the synthetic grease offers the best thermal performance, considering the  
low interface pressure.  
The board designer can choose between several types of thermal interface. Heat sink  
adhesive materials should be selected based upon high conductivity, yet adequate  
mechanical strength to meet equipment shock/vibration requirements.  
17  
2128A–HIREL–01/02  
Heat Sink Selection Example  
For preliminary heat sink sizing, the die-junction temperature can be expressed as  
follows:  
Tj = Ta + Tr + (θjc + θint + θsa) * Pd  
Where:  
Tj is the die-junction temperature  
Ta is the inlet cabinet ambient temperature  
Tr is the air temperature rise within the computer cabinet  
θjc is the junction-to-case thermal resistance  
θint is the adhesive or interface material thermal resistance  
θsa is the heat sink base-to-ambient thermal resistance  
Pd is the power dissipated by the device  
During operation the die-junction temperatures (Tj) should be maintained less than the  
value specified in Table 4. The temperature of the air cooling the component greatly  
depends upon the ambient inlet air temperature and the air temperature rise within the  
electronic cabinet. An electronic cabinet inlet-air temperature (Ta) may range from 30 to  
40°C. The air temperature rise within a cabinet (Tr) may be in the range of 5 to 10°C.  
The thermal resistance of the thermal interface material (θint) is typically about 1°C/W.  
Assuming a Ta of 30°C, a Tr of 5°C, a CBGA package θjc = 2.2, and a power consump-  
tion (Pd) of 4.5 watts, the following expression for Tj is obtained:  
Die-junction temperature: Tj = 30°C + 5°C + (2.2°C/W + 1.0°C/W + θsa) * 4.5 W  
For a Thermalloy heat sink #2328B, the heat sink-to-ambient thermal resistance (θsa)  
versus airflow velocity is shown in Figure 9.  
Figure 9. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity  
8
Thermalloy #2328B Pin±fin Heat Sink  
7
(25 x 28 x 15 mm)  
6
5
4
3
2
1
0.5  
1
1.5  
2
2.5  
3
3.5  
Approach AirVelocity(m/s)  
18  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Assuming an air velocity of 0.5 m/s, we have an effective Rsa of 7°C/W, thus  
Tj = 30°C + 5°C + (2.2°C/W +1.0°C/W + 7°C/W) * 4.5 W,  
resulting in a die-junction temperature of approximately 81°C which is well within the  
maximum operating temperature of the component.  
Other heat sinks offered by Chip Coolers, IERC, Thermalloy, Wakefield Engineering,  
and Aavid Engineering offer different heat sink-to-ambient thermal resistances, and may  
or may not need air flow.  
Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances  
are a common figure-of-merit used for comparing the thermal performance of various  
microelectronic packaging technologies, one should exercise caution when only using  
this metric in determining thermal management because no single parameter can ade-  
quately describe three-dimensional heat flow. The final die-junction operating  
temperature, is not only a function of the component-level thermal resistance, but the  
system-level design and its operating conditions. In addition to the component’s power  
consumption, a number of factors affect the final operating die-junction temperature-air-  
flow, board population (local heat flux of adjacent components), heat sink efficiency,  
heat sink attach, heat sink placement, next-level interconnect technology, system air  
temperature rise, altitude, etc.  
Due to the complexity and the many variations of system-level boundary conditions for  
today’s microelectronic equipment, the combined effects of the heat transfer mecha-  
nisms (radiation, convection and conduction) may vary widely. For these reasons, we  
recommend using conjugate heat transfer models for the board, as well as, system-level  
designs. To expedite system-level thermal analysis, several “compact” thermal-package  
models are available within FLOTHERM®. These are available upon request.  
Power Consideration  
Power Management  
The TSPC750A provides four power modes, selectable by setting the appropriate con-  
trol bits in the MSR and HIDO registers. The four power modes are as follows:  
Full-power: This is the default power state of the TSPC750A. The TSPC750A is fully  
powered and the internal functional units are operating at the full processor clock  
speed. If the dynamic power management mode is enabled, functional units that are  
idle will automatically enter a low-power state without affecting performance,  
software execution, or external hardware.  
Doze: All the functional units of the TSPC750A are disabled except for the time  
base/decrementer registers and the bus snooping logic. When the processor is in  
doze mode, an external asynchronous interrupt, a system management interrupt, a  
decrementer exception, a hard or soft reset, or machine check brings the  
TSPC750A into the full-power state. The TSPC750A in doze mode maintains the  
PLL in a fully powered state and locked to the system external clock input  
(SYSCLK) so a transition to the full-power state takes only a few processor clock  
cycles.  
Nap: The nap mode further reduces power consumption by disabling bus snooping,  
leaving only the time base register and the PLL in a powered state. The TSPC750A  
returns to the full-power state upon receipt of an external asynchronous interrupt, a  
system management interrupt, a decrementer exception, a hard or soft reset, or a  
machine check input (MCP). A return to full-power state from a nap state takes only  
a few processor clock cycles. When the processor is in nap mode, if QACK is  
negated, the processor is put in doze mode to support snooping.  
19  
2128A–HIREL–01/02  
Sleep: Sleep mode minimizes power consumption by disabling all internal functional  
units, after which external system logic may disable the PPL and SUSCLK.  
Returning the TSPC750A to the full-power state requires the enabling of the PPL  
and SYSCLK, followed by the assertion of an external asynchronous interrupt, a  
system management interrupt, a hard or soft reset, or a machine check input (MCP)  
signal after the time required to relock the PPL.  
Power Dissipation  
Table 7. Power Consumption  
V
DD = AVDD = L2AVDD = 2.6 VDC ± 100 mV, OVDD = L2OVDD = 3.3 ± 5% VDC, GND = 0 VDC, -55 Tj < 125°C  
Processor (CPU) Frequency  
200 MHz  
233 MHz  
266 MHz  
Unit  
Notes  
Full-On Mode  
Typical  
4.2  
6.0  
5.0  
7.0  
5.7  
7.9  
W
W
1, 3, 4  
1, 2, 4  
Maximum  
Doze Mode  
Maximum  
1.6  
250  
300  
1.8  
250  
300  
2.1  
250  
300  
W
1, 2  
1, 2  
1, 2  
Nap Mode  
Maximum  
mW  
mW  
Sleep Mode  
Maximum  
Sleep Mode—PLL and DLL Disabled  
Typical  
30  
60  
50  
50  
mW  
mW  
1, 3  
1, 2  
Maximum  
100  
100  
Notes: 1. These values apply for all valid 60x bus and L2 bus ratios. The values do not include I/O Supply Power (OVDD and L2OVDD  
)
or PLL/DLL supply power (AVDD and L2AVDD). OVDD and L2OVDD power is system dependent, but is typically <10% of VDD  
power. Worst case power consumption for AVDD = 15 mw and L2AVDD = 15 mW.  
2. Maximum power is measured at VDD = 2.7V  
3. Typical power is an average value measured at VDD = AVDD = L2AVDD = 2.6V, OVDD = L2OVDD = 3.3V in a system executing  
typical applications and benchmark sequences.  
4. Full-On mode is measured using worst-case instruction sequence.  
Electrical  
Characteristics  
Static Characteristics  
Table 8. DC Electrical Specifications  
V
DD = AVDD = L2AVDD = 2.6 VDC ± 100 mV, OVDD = L2OVDD = 3.3 ± 5% VDC, GND = 0 VDC, -55 Tj < 125°C  
Characteristic  
Symbol  
VIH  
Min  
2
Max  
3.465  
0.8  
Unit  
V
Notes  
Input High Voltage (all inputs except SYSCLK)  
Input Low Voltage (all inputs except SYSCLK)  
SYSCLK Input High Voltage  
1,2  
VIL  
GND  
2.4  
V
CVIH  
3.465  
V
1
20  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Table 8. DC Electrical Specifications  
DD = AVDD = L2AVDD = 2.6 VDC ± 100 mV, OVDD = L2OVDD = 3.3 ± 5% VDC, GND = 0 VDC, -55 Tj < 125°C  
V
Characteristic  
Symbol  
CVIL  
Iin  
Min  
Max  
0.4  
30  
Unit  
V
Notes  
SYSCLK Input Low Voltage  
GND  
Input Leakage Current, VIN = OVDD  
Hi-Z (off-state) Leakage Current, VIN = OVDD  
Output High Voltage, IOH = -6 mA  
Output Low Voltage, IOL = 6 mA  
Capacitance, VIN = 0V, f = 1 MHz  
-
µA  
µA  
V
1, 2  
ITSI  
-
2.4  
-
30  
1, 2,4  
VOH  
VOL  
Cin  
-
0.4  
5.0  
V
-
pF  
2, 3  
Notes: 1. For 60x bus signals, the reference is OVDD while L2OVDD is the reference for the L2 bus signals.  
2. Excludes test signals (LSSD_MODE, L1_TSTCLK, L2_TSTCLK) and IEEE 1149.1 boundary scan (JTAG) signals.  
3. Capacitance is periodically sampled rather than 100% tested.  
4. The leakage is measured for nominal OVDD and VDD, or both OVDD and VDD must vary in the same direction (for example,  
both OVDD and VDD vary by either +5% or -5%).  
Dynamic Characteristics After fabrication, parts are sorted by maximum processor core frequency as shown in  
“Clock AC Specifications” and tested for conformance to the AC specifications for that  
frequency. These specifications are for 200, 233, and 266 MHz processor core frequen-  
cies. The processor core frequency is determined by the bus (SYSCLK) frequency and  
the settings of the PLL_CFG[0-3] signals. Parts are sold by maximum processor core  
frequency.  
Clock AC Specifications  
Table 9 provides the clock AC timing specifications as defined in Figure 9.  
Table 9. Clock AC Timing Specifications  
VDD = AVDD = L2AVDD = 2.6 VDC ± 100 mV, OVDD = L2OVDD = 3.3 ± 5% VDC, GND = 0 VDC, -55 Tj < 125°C  
200 MHz  
233 MHz  
266 MHz  
Num  
Characteristic  
Min  
Max  
200  
400  
83.3  
40  
Min  
Max  
233  
466  
83.3  
40  
Min  
Max  
266  
533  
83.3  
40  
Unit  
MHz  
MHz  
MHz  
ns  
Notes  
Processor Frequency  
VCO Frequency  
150  
300  
25  
12  
-
150  
300  
25  
12  
-
150  
300  
25  
12  
-
SYSCLK Frequency  
1
1
SYSCLK Cycle Time  
SYSCLK Rise and Fall Time  
SYSCLK Duty Cycle Measured at 1.4V  
SYSCLK Jitter  
2, 3  
4
2
2
2
ns  
2
3
4
5
40  
-
60  
40  
-
60  
40  
-
60  
%
±150  
100  
±150  
100  
±150  
100  
ps  
Internal PLL Relock Time  
-
-
-
µs  
Notes: 1. Caution: The SYSCLK frequency and PLL_CFG[0-3] settings must be chosen such that the resulting SYSCLK (bus) fre-  
quency, CPU (core) frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum operating  
frequencies. Refer to the PLL_CFG[0-3] signal description in “PLL Configuration,” for valid PLL_CFG[0-3] settings  
2. Rise and fall times for the SYSCLK input are measured from 0.4 to 2.4V.  
3. Timing is guaranteed by design and characterization.  
4. The total input jitter (short term and long term combined) must be under ±150 ps.  
5. Relock timing is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required for  
PLL lock after a stable VDD and SYSCLK are reached during the power-on reset sequence. This specification also applies  
when the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that HRESET must be held  
asserted for a minimum of 255 bus clocks after the PLL-relock time during the power-on reset sequence.  
21  
2128A–HIREL–01/02  
Figure 10 provides the SYSCLK input timing diagram.  
Figure 10. SYSCLK Input Timing Diagram  
1
2
3
4
4
CVIH  
VM  
VM  
VM  
SYSCLK  
CVIL  
VM = Midpoint Voltage (1.4V)  
60x Bus Input AC  
Specifications  
Table 10 provides the 60x bus input AC timing specifications for the TSPC750A as  
defined in Figure 11 and Figure 12. Input timing specifications for the L2 bus are pro-  
vided in L2 Bus Input AC Specifications.  
Table 10. 60x Bus Input AC Timing Specifications(1)  
VDD =AVDD = L2AVDD = 2.6 VDC ± 100 mV, OVDD = L2OVDD = 3.3 ± 5% VDC, GND = 0 VDC, -55 Tj < 125°C  
200, 233, 266 MHz  
Num  
Characteristic  
Min  
Max  
Unit  
Notes  
Address/Data/Transfer Attribute Inputs Valid to SYSCLK (Input  
Setup)  
10a  
2.5  
-
ns  
2
10b  
10c  
All Other Inputs Valid to SYSCLK (Input Setup)  
3.0  
8
-
-
ns  
3
Mode select input setup to HRESET (DRTRY, TLBISYNC)  
tsysclk  
4, 5, 6, 7  
SYSCLK to Address/Data/Transfer Attribute Inputs Invalid  
(Input Hold)  
11a  
1.0  
-
ns  
2
11b  
11c  
SYSCLK to All Other Inputs Invalid (Input Hold)  
1.0  
0
-
-
ns  
ns  
3
HRESET to mode select input hold (DRTRY, TLBISYNC)  
4, 6, 7  
Notes: 1. All input specifications are measured from the TTL level (0.8 to 2.0V) of the signal in question to the 1.4V of the rising edge  
of the input SYSCLK. Input and output timings are measured at the pin.  
2. Address/Data/Transfer Attribute inputs are composed of the following — A[0-31], AP[0-3], TT[0-4], TBST, TSIZ[0-2], GBL,  
DH[0-31], DL[0-31], DP[0-7].  
3. All other signal inputs are composed of the following-TS, ABB, DBB, ARTRY, BG, AACK, DBG, DBWO, TA, DRTRY, TEA,  
DBDIS, HRESET, SRESET, INT, SMI, MCP, TBEN, QACK, TLBISYNC.  
4. The setup and hold time is with respect to the rising edge of HRESET (see Figure 12).  
5. tsysclk is the period of the external clock (SYSCLK) in nanoseconds (ns). The numbers given in the table must be multiplied  
by the period of SYSCLK to compute the actual time duration (in nanoseconds) of the parameter in question.  
6. Guaranteed by design and characterization.  
7. This specification is for configuration mode select only. Also note that the HRESET must be held asserted for a minimum of  
255 bus clocks after the PLL re-lock time during the power-on reset sequence.  
22  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Figure 11 provides the input timing diagram for the TSPC750A.  
Figure 11. Input Timing Diagram  
SYSCLK  
VM  
10a  
10b  
11a  
11b  
ALL INPUTS  
VM = Midpoint Voltage (1.4V)  
Figure 12 provides the mode select input timing diagram for the TSPC750A.  
Figure 12. Mode Select Input Timing Diagram  
VIH  
HRESET  
10c  
11  
c
MODE PINS  
VIH = 2.0V  
60x Bus Output AC  
Specifications  
Table 11 provides the 60x bus output AC timing specifications for the TSPC750A as  
defined in Figure 13. Output timing specifications for the L2 bus are provided in L2 Bus  
Output AC Specifications.  
Table 11. 60x Bus Output AC Timing Specifications (1)  
VDD = AVDD = L2AVDD = 2.6 VDC ± 100 mV, OVDD = L2OVDD = 3.3 ± 5% VDC, GND = 0 VDC, -55 Tj < 125°C, CL = 50 pF(2)  
200, 233, 266 MHz  
Num  
12  
Characteristic  
Min  
0.5  
-
Max  
-
Unit  
ns  
Notes  
SYSCLK to Output Driven (Output Enable Time)  
SYSCLK to Output Valid (TS, ABB, ARTRY, DBB)  
13  
6.5  
ns  
5
5
SYSCLK to all other Outputs Valid (all except TS, ABB, ARTRY,  
DBB)  
14  
-
6.5  
ns  
15  
16  
17  
18  
SYSCLK to Output Invalid (Output Hold)  
1.0  
-
ns  
ns  
3
SYSCLK to Output High Impedance (all except ABB, ARTRY, DBB)  
SYSCLK to ABB, DBB High Impedance after precharge  
SYSCLK to ARTRY High Impedance before precharge  
-
-
-
6.0  
1.0  
5.5  
8
4, 6, 8  
8
tsysclk  
ns  
23  
2128A–HIREL–01/02  
Table 11. 60x Bus Output AC Timing Specifications (Continued)(1)  
VDD = AVDD = L2AVDD = 2.6 VDC ± 100 mV, OVDD = L2OVDD = 3.3 ± 5% VDC, GND = 0 VDC, -55 Tj < 125°C, CL = 50 pF(2)  
200, 233, 266 MHz  
Num  
Characteristic  
Min  
Max  
Unit  
Notes  
0.2*tsysclk  
+1.0  
19  
SYSCLK to ARTRY Precharge Enable  
-
ns  
3, 4, 7  
20  
21  
Maximum Delay to ARTRY Precharge  
-
-
1
2
tsysclk  
tsysclk  
4, 7  
SYSCLK to ARTRY High Impedance After Precharge  
4, 7, 8  
Notes: 1. All output specifications are measured from the 1.4V of the rising edge of SYSCLK to TTL level (0.8 V or 2.0 V) of the signal  
in question. Both input and output timing are measured at the pin.  
2. All maximum timing specifications assume CL = 50 pF.  
3. This minimum parameter assumes CL = 0 pF.  
4. tsysclk is the period of the external bus clock (SYSCLK) in nanoseconds (ns). The numbers given in the table must be multi-  
plied by the period of SYSCLK to compute the actual time duration of the parameter in question.  
5. Output signal transitions from GND to 2.0V or OVDD to 0.8V.  
6. Nominal precharge width for ABB and DBB is 0.5 tsysclk  
.
7. Nominal precharge width for ARTRY is 1.0 tsysclk  
8. Guaranteed by design and characterization.  
.
Figure 13. Output Timing Diagram  
VM  
VM  
VM  
SYSCLK  
14  
15  
16  
12  
ALL OUTPUTS  
(Except TS, ABB,  
ARTRY, DBB)  
15  
16  
13  
13  
TS  
17  
ABB, DBB  
ARTRY  
21  
20  
19  
18  
VM = Midpoint Voltage (1.4V)  
24  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
L2 Clock AC Specifications  
Table 12. L2CLK Output AC Timing Specifications  
V
DD = AVDD = L2AVDD = 2.6 VDC ± 100 mV, OVDD = L2OVDD = 3.3 ± 5% VDC, GND = 0 VDC,-55 Tj < 125°C  
Num  
Characteristic  
Min  
80  
Max  
133  
Unit  
MHz  
ns  
Notes  
L2CLK Frequency  
L2CLK Cycle Time  
L2CLK Duty Cycle  
L2CLK Jitter  
1, 5  
22  
23  
7.5  
12.5  
50  
%
2
3
4
±150  
-
ps  
Internal DLL-relock Time  
640  
L2CLK  
Notes: 1. L2CLK outputs are L2CLK_OUTA, L2CLK_OUTB and L2SYNC_OUT pins. The L2 cache interface supports higher frequen-  
cies when appropriate load conditions have been considered. The L2 I/O drivers have been designed to support a 133 MHz  
L2 bus loaded with 4 off-the-shelf pipelined synchronous burst SRAMs. Running the L2 bus beyond 133 MHz requires tightly  
coupled customized SRAMs or a multi-chip module (MCM) implementation. The L2CLK frequency to core frequency set-  
tings must be chosen such that the resulting L2CLK frequency and core frequency do not exceed their respective maximum  
or minimum operating frequencies. L2CLK_OUTA and L2CLK_OUTB must have equal loading.  
2. The nominal duty cycle of the L2CLK is 50% measured at midpoint voltage.  
3. The total input jitter (short term and long term combined) must be under ±150 ps.  
4. The DLL re-lock time is specified in terms of L2CLKs. The number in the table must be multiplied by the period of L2CLK to  
compute the actual time duration in nanoseconds. Re-lock timing is guaranteed by design and characterization.  
5. The L2CR[L2SL] bit should be set for L2CLK frequencies less than 110 MHz.  
25  
2128A–HIREL–01/02  
The L2CLK_OUT timing diagram is shown in Figure 14.  
Figure 14. L2CLK_OUT Output Timing Diagram  
22  
L2 Single±Ended Clock Mode  
L2CLK_OUTA  
23  
VM  
VM  
VM  
VM  
VM  
VM  
VM  
VM  
VM  
L2CLK_OUTB  
L2SYNC_OUT  
(L2OVdd/2)  
VM = Midpoint Voltage  
22  
L2 Differential Clock Mode  
23  
L2OVdd  
L2CLK_OUTB  
VM  
VM  
VM  
VM  
VM  
VM  
L2CLK_OUTA  
GND  
L2SYNC_OUT  
VM = Midpoint Voltage  
(L2OVdd/2)  
Table 13 shows the L2 bus input timing diagrams for the TSPC750A.  
Figure 15. L2 Bus Input Timing Diagrams  
29  
30  
L2SYNC_IN  
VM  
24  
25  
ALL INPUTS  
VM = Midpoint Voltage (1.4V)  
26  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
L2 Bus Input AC  
Specifications  
The L2 bus input interface AC timing specifications are found in Table 13.  
Table 13. L2 Bus Input Interface AC Timing Specifications, see note (1)  
VDD = AVDD = L2AVDD = 2.6 VDC ± 100 mV, OVDD = L2OVDD = 3.3 ± 5% VDC, GND = 0 VDC, -55 Tj < 125°C  
Processor Frequency  
200-266 MHz  
Num  
29, 30  
24  
Characteristic  
Min  
-
Max  
1.0  
-
Unit  
ns  
Notes  
L2SYNC_IN rise and fall time  
Data and parity input setup to L2SYNC_IN  
L2SYNC_IN to data and parity input hold  
2
2.0  
0.5  
ns  
25  
_
ns  
Notes: 1. All input specifications are measured from the TTL level (0.8V or 2.0V) of the signal in question to the midpoint voltage of the  
rising edge of the input L2SYNC_IN. Input timings are measured at the pins (see Figure 15).  
2. Rise and fall times for the L2SYNC_IN input are measured from 0.4 to 2.4V.  
L2 Bus Output AC  
Specifications  
Table 14 provides the L2 bus output interface AC timing specifications for the  
TSPC750A as defined in Figure 16.  
Table 14. L2 Bus Output Interface AC Timing Specifications see note (1)  
VDD = AVDD = L2AVDD = 2.6 VDC ± 100 mV, OVDD = L2OVDD = 3.3 ± 5% VDC, GND = 0 VDC, -55 Tj < 125°C, CL = 20 pF  
see note (3)  
L2CR[14-15] is equivalent to:  
00(2)  
Max  
01  
10  
11  
Num  
26  
Characteristic  
Min  
Min  
Max  
5.5  
-
Min  
Max  
5.7  
-
Min  
Max  
Unit  
ns  
Notes  
L2SYNC_IN to output valid  
L2SYNC_IN to output hold  
L2SYNC_IN to high impedance  
-
0.5  
-
5.0  
-
-
1.0  
-
-
1,2  
-
-
1,5  
-
6
-
27  
ns  
4
28  
4.0  
4.5  
4.7  
5
ns  
Notes: 1. All outputs are measured from the midpoint voltage of the rising edge of L2SYNC_IN to the TTL level (0.8V or 2.0V) of the  
signal in question. The output timings are measured at the pins.  
2. The outputs are valid for both single-ended and differential L2CLK modes. For flow-THRU and pipelined reg-reg synchro-  
nous burst RAMs, L2CR[14-15] = 00 is recommended. For pipelined delay-write synchronous burst SRAMs, L2CR[14-15] =  
01 is recommended.  
3. All maximum timing specifications assume CL = 20 pF.  
4. This measurement assumes CL = 5 pF.  
5. Reserved for future use.  
27  
2128A–HIREL–01/02  
Figure 16 shows the L2 bus output timing diagrams for the TSPC750A.  
Figure 16. L2 Bus Output Timing Diagrams  
VM  
VM  
L2SYNC_IN  
26  
27  
ALL OUTPUTS  
L2DATA BUS  
28  
VM = Midpoint Voltage(1.4V)  
IEEE 1149.1 AC Timing  
Specifications  
Table 15 provides the IEEE 1149.1 (JTAG) AC timing specifications as defined in Figure  
17, Figure 18, Figure 19, and Figure 20.  
Table 15. JTAG AC Timing Specifications (Independent of SYSCLK)  
DD = AVDD = L2AVDD = 2.6 VDC ± 100 mV, OVDD = L2OVDD = 3.3 ± 5% VDC, GND = 0 VDC, -55 Tj < 125°C, CL = 50 pF  
V
Num  
Characteristic  
Min  
0
Max  
Unit  
MHz  
ns  
Notes  
TCK Frequency Of Operation  
TCK Cycle Time  
33.3  
1
30  
15  
0
-
-
2
TCK Clock Pulse Width Measured at 1.4V  
TCK Rise and Fall Times  
ns  
3
2
ns  
4
Specification Obsolete, Intentionally Omitted  
TRST Assert Time  
5
25  
4
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
6
Boundary-scan Input Data Setup Time  
Boundary-scan Input Data Hold Time  
TCK to Output Data Valid  
7
15  
4
-
2
8
20  
19  
-
3
9
TCK to Output High Impedance  
TMS, TDI Data Setup Time  
TMS, TDI Data Hold Time  
3
3, 4  
10  
11  
12  
13  
0
12  
4
-
TCK to TDO Data Valid  
12  
9
TCK to TDO High Impedance  
3
4
Notes: 1. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.  
2. Non-JTAG signal input timing with respect to TCK.  
3. Non-JTAG signal output timing with respect to TCK.  
4. Guaranteed by design and characterization.  
28  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Figure 17 provides the JTAG clock input timing diagram.  
Figure 17. JTAG Clock Input Timing Diagram  
1
2
2
VM  
VM  
VM  
TCK  
3
3
VM = Midpoint Voltage  
Figure 18 provides the TRST timing diagram.  
Figure 18. TRST Timing Diagram  
TRST  
5
Figure 19 provides the boundary-scan timing diagram.  
Figure 19. Boundary-Scan Timing Diagram  
TCK  
6
7
INPUT DATA VALID  
DATA INPUTS  
8
DATA OUTPUTS  
OUTPUT DATA VALID  
9
DATA OUTPUTS  
8
DATA OUTPUTS  
OUTPUT DATA VALID  
29  
2128A–HIREL–01/02  
Figure 20 provides the test access port timing diagram.  
Figure 20. Test Access Port Timing Diagram  
TCK  
10  
11  
TDI, TMS  
INPUT DATA VALID  
12  
TDO  
OUTPUT DATA VALID  
13  
TDO  
12  
TDO  
OUTPUT DATA VALID  
Preparation for  
Delivery  
Packaging  
Microcircuits are prepared for delivery in accordance with MIL-PRF-38535.  
Certificate of Compliance ATMEL-Grenoble offers a certificate of compliances with each shipment of parts, affirm-  
ing the products are in compliance either with MIL-PRF-883 and guaranteeing the  
parameters not tested at temperature extremes for the entire temperature range.  
Handling  
MOS devices must be handled with certain precautions to avoid damage due to accu-  
mulation of static charge. Input protection devices have been designed in the chip to  
minimize the effect of static buildup. However, the following handling practices are  
recommended:  
a) Devices should be handled on benches with conductive and grounded surfaces.  
b) Ground test equipment, tools and operator.  
c) Do not handle devices by the leads.  
d) Store devices in conductive foam or carriers.  
e) Avoid use of plastic, rubber, or silk in MOS areas.  
f) Maintain relative humidity above 50 percent if practical.  
g) For CI-CGA packages, use specific tray to take care of the highest height of the  
package compared with the regular CBGA.  
30  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Clock Relationships  
Choice  
The TSPC750A’s PLL is configured by the PLL_CFG[0-3] signals. For a given SYSCLK  
(bus) frequency, the PLL configuration signals set the internal CPU and VCO frequency  
of operation. The PLL configuration for the TSPC750A is shown in Table 16 for nominal  
frequencies. Table 17 provides sample core-to-L2 frequencies.  
Table 16. TSPC750A Microprocessor PLL Configuration  
Sample Bus-to-Core Frequency in MHz (VCO Frequency in MHz)  
Bus-to-  
Core  
Multiplier  
Core-to  
VCO  
Multiplier  
Bus  
33.3  
MHz  
Bus  
66.6  
MHz  
Bus  
83.3  
MHz  
Bus  
100  
MHz  
PLL_CFG  
[0-3]  
Bus 25  
MHz  
Bus 40  
MHz  
Bus 50  
MHz  
Bus 75  
MHz  
150  
(300)  
200  
(400)  
225  
(450)  
250  
(500)  
1000  
1110  
1010  
0111  
1011  
1001  
1101  
0101  
0010  
0001  
1100  
3x  
3.5x  
4x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
175  
(350)  
233  
(466)  
262  
(525)  
160  
(320)  
200  
(400)  
266  
(533)  
150  
(300)  
180  
(360)  
225  
(450)  
4.5x  
5x  
166  
(333)  
200  
(400)  
250  
(500)  
183  
(366)  
220  
(440)  
5.5x  
6x  
150  
(300)  
200  
(400)  
240  
(480)  
162  
(325)  
216  
(433)  
260  
(520)  
6.5x  
7x  
175  
(350)  
233  
(466)  
187  
(375)  
250  
(500)  
7.5x  
8x  
200  
(400)  
266  
(533)  
0011  
1111  
PLL off/bypass  
PLL off  
PLL off, SYSCLK clocks core circuitry directly, 1x bus-to-core implied  
PLL off, no core clocking occurs  
Notes: 1. PLL_CFG[0—3] settings not listed are reserved.  
2. The sample bus-to-core frequencies shown are for reference only. Some PLL configurations may select bus, core, or VCO  
frequencies which are not useful, not supported, or not tested for by the TSPC750A; see “Clock AC Specifications,” for valid  
SYSCLK and VCO frequencies.  
3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL is disabled, and the bus mode  
is set for 1:1 mode operation. This mode is intended for factory use only.  
Note: The AC timing specifications given in this document do not apply in PLL-bypass mode.  
4. In clock-off mode, no clocking occurs inside the TSPC750A regardless of the SYSCLK input.  
31  
2128A–HIREL–01/02  
Table 17. Sample Core-to-L2 Frequencies  
Core Frequency in MHz  
÷1  
200  
208  
210  
220  
225  
233.3  
240  
266  
÷1.5  
133.3  
138.6  
140  
÷2  
100  
÷2.5  
80  
÷3  
200  
208.3  
210  
-
104  
83.3  
84  
-
105  
-
220  
146.6  
150  
110  
88  
-
-
225  
112.5  
116.6  
120  
90  
233.3  
240  
155.5  
160  
93.3  
96  
-
80  
88.6  
266  
177.3  
133  
106.4  
Note:  
1. The core and L2 frequencies are for reference only. Some configurations may select core or L2 frequencies which are not  
useful, not supported, or not tested for by the TSPC750A; see “L2 Clock AC Specifications,” for valid L2CLK frequencies.  
The L2CR[L2SL] bit should be set for L2CLK frequencies less than 110 MHz.  
System Design  
Information  
PLL Power Supply  
Filtering  
The AVDD and L2AVDD power signals are provided on the TSPC750A to provide power  
to the clock generation phase-locked loop and L2 cache delay-locked loop respectively.  
To ensure stability of the internal clock, the power supplied to the AVDD input signal  
should be filtered using a circuit similar to the one shown in Figure 21. The circuit should  
be placed as close as possible to the AVDD pin to ensure it filters out as much noise as  
possible. An identical but separate circuit should be placed as close as possible to the  
L2AVDD pin.  
Figure 21. PLL Power Supply Filter Circuit  
10  
V
)
AV  
(or L2AV  
DD  
DD  
DD  
10 µF  
0.1 µF  
GND  
Decoupling  
Recommendations  
Due to the TSPC750A’s dynamic power management feature, large address and data  
buses, and high operating frequencies, the TSPC750A can generate transient power  
surges and high frequency noise in its power supply, especially while driving large  
capacitive loads. This noise must be prevented from reaching other components in the  
TSPC750A system, and the TSPC750A itself requires a clean, tightly regulated source  
of power. Therefore, it is recommended that the system designer place at least one  
decoupling capacitor at each VDD and OVDD pin (and L2OVDD for the 360 CBGA) of the  
TSPC750A. It is also recommended that these decoupling capacitors receive their  
power from separate VDD, OVDD, and GND power planes in the PCB, utilizing short  
traces to minimize inductance.  
32  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
These capacitors should vary in value from 220 pF to 10 µF to provide both high- and  
low-frequency filtering, and should be placed as close as possible to their associated  
VDD or OVDD pins. Suggested values for the VDD pins-220 pF (ceramic), 0.01 µF  
(ceramic), and 0.1 µF (ceramic). Suggested values for the OVDD pins — 0.01 µF  
(ceramic), 0.1 µF (ceramic), and 10 µF (tantalum). Only SMT (surface mount technol-  
ogy) capacitors should be used to minimize lead inductance.  
In addition, it is recommended that there be several bulk storage capacitors distributed  
around the PCB, feeding the VDD and OVDD planes, to enable quick recharging of the  
smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent  
series resistance) rating to ensure the quick response time necessary. They should also  
be connected to the power and ground planes through two vias to minimize inductance.  
Suggested bulk capacitors-100 µF (AVX TPS tantalum) or 330 µF (AVX TPS tantalum).  
Connection  
Recommendations  
To ensure reliable operation, it is highly recommended to connect unused inputs to an  
appropriate signal level. Unused active low inputs should be tied to VDD. Unused active  
high inputs should be connected to GND. All NC (no-connect) signals must remain  
unconnected.  
Power and ground connections must be made to all external VDD, OVDD, and GND pins  
of the TSPC750A.  
External clock routing should ensure that the rising-edge of the L2 clock is coincident at  
the CLK input of all SRAMs and at the L2SYNC_IN input of the TSPC750A. The  
L2CLKOUTA network could be used only, or the L2CLKOUTB network could also be  
used depending on the loading, frequency, and number of SRAMs.  
Output Buffer DC  
Impedance  
The TSPC750A 60x and L2 I/O drivers were characterized over process, voltage, and  
temperature. To measure Z0, an external resistor is connected to the chip pad, either to  
OVDD or OGND. Then, the value of such resistor is varied until the pad voltage is  
OVDD/2; see Figure 22.  
The output impedance is actually the average of two components, the resistances of the  
pull-up and pull-down devices. When Data is held low, SW1 is closed (SW2 is open),  
and RN is trimmed until Pad = OVDD/2. RN then becomes the resistance of the pull-down  
devices. When Data is held high, SW2 is closed (SW1 is open), and RP is trimmed until  
Pad = OVDD/2. RP then becomes the resistance of the pull-up devices. With a properly  
designed driver RP and RN are close to each other in value. Then Z0 = (RP + RN)/2.  
33  
2128A–HIREL–01/02  
Figure 22. Driver Impedance Measurement  
OV  
DD  
RN  
SW1  
SW2  
Pad  
RP  
Data  
OGND  
Table 18 summarizes the signal impedance results. The driver impedance values were  
derived by simulation at 65°C. As the process varies, the output impedance will be  
reduced by several ohms.  
Table 18. Impedance Characteristics  
V
DD = 2.6V, OVDD = 3.3V, Tj = 65°C  
Process  
60x  
L2  
Symbol  
Unit  
TYP  
43  
38  
Z0  
Ohms  
Pull-up Resistor  
Requirements  
The TSPC750A requires high-resistive (weak: 10K) pull-up resistors on several control  
signals of the bus interface to maintain the control signals in the negated state after they  
have been actively negated and released by the TSPC750A or other bus masters.  
These signals are TS, ABB, DBB, and ARTRY.  
In addition, the TSPC750A has one open-drain style output that requires a pull-up resis-  
tors (weak or stronger: 4.7K- 10K) if it is used by the system. This signal is  
CKSTP_OUT.  
During inactive periods on the bus, the address and transfer attributes on the bus are  
not driven by any master and may float in the high-impedance state for relatively long  
periods of time. Since the TSPC750A must continually monitor these signals for snoop-  
ing, this float condition may cause excessive power draw by the input receivers on the  
TSPC750A or by other receivers in the system. It is recommended that these signals be  
pulled up through weak (10K) pull-up resistors or restored in some manner by the sys-  
tem. The snooped address and transfer attribute inputs are A[0-31], AP[0-3], TT[0-4],  
TBST, and GBL.  
34  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
The data bus input receivers are normally turned off when no read operation is in  
progress and do not require pull-up resistors on the data bus. Other data bus receivers  
in the system, however, may require pull-ups, or that those signals be otherwise driven  
by the system during inactive periods. The data bus signals are DH[0-31], DL[0-31],  
DP[0-7].  
If address or data parity is not used by the system, and the respective parity checking is  
disabled through HID0, the input receivers for those pins are disabled, and those pins  
do not require pull-up resistors and should be left unconnected by the system. If all par-  
ity generation is disabled through HID0, then all parity checking should also be disabled  
through HID0, and all parity pins may be left unconnected by the system.  
No pull-up resistors are normally required for the L2 interface.  
Definitions  
Datasheet status  
Validity  
Objective specification  
This datasheet contains target and goal specification for  
discussion with customer and application validation.  
Before design phase.  
Target specification  
This datasheet contains target or goal specification for  
product development.  
Valid during the design phase.  
Preliminary specification site  
Preliminary specification β site  
This datasheet contains preliminary data. Additional data  
may be published later; could include simulation result.  
Valid before characterization  
phase.  
This datasheet contains also characterization results.  
Valid before the  
industrialization phase.  
Product specification  
This datasheet contains final product specification.  
Valid for production purpose.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the  
limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at  
any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values  
for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
Life Support  
Applications  
These products are not designed for use in life support appliances, devices, or systems  
where malfunction of these products can reasonably be expected to result in personal  
injury. ATMEL-Grenoble customers using or selling these products for use in such appli-  
cations do so at their own risk and agree to fully indemnify ATMEL-Grenoble for any  
damages resulting from such improper use or sale.  
35  
2128A–HIREL–01/02  
Package Mechanical  
Data  
Parameters for the  
TSPC740A  
The package parameters are as provided in the following list. The package types are 21  
x 21 mm, 255-lead CBGA and CI-CGA.  
Package outline — 21 x 21 mm  
Interconnects — 255 (16 x 16 ball array - 1)  
Pitch — 1.27 mm (50 mil)  
Minimum module height — 2.45 mm (CBGA), 3,45 mm (CI-CGA)  
Maximum module height — 3.00 mm (CBGA), 4.00 mm (CI-CGA  
Ball or column diameter — 0.89 mm (35 mil)  
Mechanical Dimensions of the Figure 23 provides the mechanical dimensions and bottom surface nomenclature of the  
TSPC740A CBGA Package TSPC740A, 255 CBGA package.  
36  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Figure 23. Mechanical Dimensions and Bottom Surface Nomenclature of TSPC740A (CBGA)  
2X  
0.2  
E
A
A1 CORNER  
T
T
NOTES:  
A. DIMENSIONINGAND TOLERANCING  
PER ASME Y14.5M, 1994.  
B
P
B. DIMENSIONSINMILLIMETERS.  
C. TOP SIDE A1 CORNER INDEX IS A  
METALIZED FEATURE WITH VARIOUS  
SHAPES. BOTTOM SIDE A1 CORNER IS  
DESIGNATED WITH A BALL MISSING  
FROM THE ARRAY.  
2X  
0.2  
N
F
MILLIMETERS  
MIN  
21.000 BSC  
1.10  
INCHES  
MAX  
0.827 BSC  
DIM  
A
MAX  
MIN  
M
1
3
5
6
7
8 9 1011 12 13 141516  
T
R
P
N
M
L
K
J
H
G
F
0.043  
0.035  
A1  
B
0.9  
21.000 BSC  
0.827 BSC  
K
A1  
2.45  
3.000 0.096  
0.118  
0.037  
C
D
H
0.820 0.930 0.032  
C
E
D
C
B
A
G
H
1.270 BSC  
0.050 BSC  
0.790 0.990 0.031  
0.039  
0.635 BSC  
2.00  
0.025 BSC  
K
M
N
P
G
K
0.074  
0.327 0.335  
0.354 0.362  
255X  
D
8.3  
9.0  
8.5  
9.2  
0.3  
T
E F  
T
0.15  
37  
2128A–HIREL–01/02  
Mechanical Dimensions of the Figure 24 provides the mechanical dimensions and bottom surface nomenclature of  
TSPC740A CI-CGA Package TSPC740A, 255 CI-CGA package.  
Figure 24. Mechanical Dimensions and Bottom Surface Nomenclature of TSPC740A (CI-CGA)  
38  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Parameters for the  
TSPC750A  
The package parameters are as provided in the following list. The package type is 25 x  
25 mm, 360-lead CBGA and CI-CGA.  
Package outline — 25 x 25 mm  
Interconnects — 360 (19 x 19 ball array - 1)  
Pitch — 1.27 mm (50 mil)  
Minimum module height — 2.65 mm (CBGA), 3,65 mm (CI-CGA)  
Maximum module height — 3.20 mm (CBGA), 4,20 mm (CI-CGA)  
Ball or column diameter — 0.89 mm (35 mil)  
39  
2128A–HIREL–01/02  
Mechanical Dimensions of the Figure 25 provides the mechanical dimensions and bottom surface nomenclature of the  
TSPC750A CBGA Package TSPC750A, 360 CBGA package.  
Figure 25. Mechanical Dimensions and Bottom Surface Nomenclature of the TSPC750A  
2X  
0.2  
A
E
A1 CORNER  
NOTES:  
A. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
T
E3  
0.2  
T
B. DIMENSIONSINMILLIMETERS.  
C. TOP SIDE A1 CORNER INDEX IS A  
METALIZED FEATURE WITH VARIOUS  
SHAPES. BOTTOM SIDE A1 CORNER IS  
DESIGNATED WITH A BALL MISSING  
FROM THE ARRAY.  
P2  
D. TOP SIDE CAPACITOR ASSEMBLY AREAS  
ARE CONNECTED TO POWER PLANES  
BUT NOT USED  
B
P
MILLIMETERS  
MIN  
INCHES  
MAX  
MIN  
DIM  
A
MAX  
2X  
25.000 BSC  
0.984 BSC  
0.052  
0.2  
N
1.3  
1.1  
A1  
0.043  
M
F
0.984 BSC  
25.000 BSC  
D3  
B
N2  
2.65  
3.2  
0.104 0.126  
C
D
171819  
1
2
3
4
5
6
7
8
910 11 12 13 14 15 16  
W
V
U
0.820 0.930  
1.270 BSC  
0.032  
0.037  
T
R
P
N
M
L
G
H
0.050 BSC  
A1  
0.790 0.990 0.031 0.039  
H
C
K
J
H
G
F
E
D
C
B
A
0.635 BSC  
2.00  
0.025 BSC  
0.079  
K
M
N
P
K
0.335  
0.362  
8.3  
8.5  
9.2  
0.327  
0.354  
9.0  
2.75  
3
0.108  
0.118  
D3  
E3  
N2  
P2  
K
G
D
360X  
12,5  
14.3  
0.492  
0.563  
0.3 T E F  
T
0.15  
40  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
Mechanical Dimensions of the Figure 26 provides the mechanical dimensions and bottom surface nomenclature of  
TSPC750A CI-CGA Package  
TSPC750A, 360 CI-CGA package  
Figure 26. Mechanical Dimensions and Bottom Surface Nomenclature of TSPC750A (CI-CGA)  
41  
2128A–HIREL–01/02  
Ordering Information  
L
PC750A M  
G
U/T  
B
x
TS (X)  
(1)  
Revision Level  
E: Rev. 2.2 obsolete  
H: Rev 3.1  
Prefix  
Prototype  
Type  
Bus divider  
(to be confirmed)  
L: Any valid PLL configuration  
Temperature Range: T  
M: -55, +125°C  
V: -40 C, +110°C  
C
Max internal processor speed  
8: 200 MHz  
Package  
10: 233 MHz  
G: CBGA  
12: 266 MHz  
GS: CI_CGA  
(1)  
Screening Level  
_: Standard  
B/Q: MIL-STD-883, Class Q  
B/T: According to MIL-STD-883  
U: Upscreening  
U/T: Upscreening + burn-in  
Note:  
1. For availability of different versions, contact your Atmel sales office.  
42  
TSPC750A/740A  
2128A–HIREL–01/02  
TSPC750A/740A  
43  
2128A–HIREL–01/02  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
Atmel Corporate  
Atmel Heilbronn  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 436-4270  
FAX 1(408) 436-4314  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
Europe  
Atmel SarL  
Microcontrollers  
Route des Arsenaux 41  
Casa Postale 80  
CH-1705 Fribourg  
Switzerland  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
Atmel Corporate  
Atmel Colorado Springs  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 436-4270  
FAX 1(408) 436-4314  
FAX 1(719) 540-1759  
Atmel Nantes  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Atmel Grenoble  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
Asia  
Atmel Asia, Ltd.  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Atmel Rousset  
Zone Industrielle  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
Atmel Japan K.K.  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Atmel Colorado Springs  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
FAX 1(719) 540-1759  
Atmel Smart Card ICs  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
© Atmel Corporation 2002.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty  
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors  
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does  
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted  
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical  
components in life support devices or systems.  
ATMEL® is the registered trademarks of Atmel.  
PowerPC® is the registered trademark of IBM Company.  
Other terms and product names may be the trademarks of others.  
2128A–HIREL–01/02  
0M  

相关型号:

TSXPC750ACCIP200CE

RISC Microprocessor, 32-Bit, 200MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750ACCIP200DE

RISC Microprocessor, 32-Bit, 200MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750ACCIP233CE

RISC Microprocessor, 32-Bit, 233MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750ACCIP233DE

RISC Microprocessor, 32-Bit, 233MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750ACCIP233EE

RISC Microprocessor, 32-Bit, 233MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750ACCIP266EE

RISC Microprocessor, 32-Bit, 266MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750ACCIP300CE

RISC Microprocessor, 32-Bit, 300MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750ACCIP300DE

RISC Microprocessor, 32-Bit, 300MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750ACCIP300EE

RISC Microprocessor, 32-Bit, 300MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750ACVIP200CE

RISC Microprocessor, 32-Bit, 200MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750ACVIP200DE

RISC Microprocessor, 32-Bit, 200MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750ACVIP200EE

RISC Microprocessor, 32-Bit, 200MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL