TSXPC750ADVIP266DE [ATMEL]

RISC Microprocessor, 32-Bit, 266MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288;
TSXPC750ADVIP266DE
型号: TSXPC750ADVIP266DE
厂家: ATMEL    ATMEL
描述:

RISC Microprocessor, 32-Bit, 266MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288

PC
文件: 总17页 (文件大小:209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSPC750IP  
Processor and Cache Module  
DESCRIPTION  
The Processor and Cache Module (PCM) is a 17 x 17 pin grid  
array (PGA) circuit assembly which combines a PowerPCt  
microprocessor and SRAM components into a CPU subsys-  
tem. The PCM provides a standard mechanical, electrical, and  
functional interface which can be socketed on a computer sys-  
tem board and allows many combinations of processors and  
optional components to be easily interchanged. This docu-  
ment describes the general characteristics for a module con-  
sisting of a single PowerPCt microprocessor and two SRAM  
devices for L2 cache. The PCM packaging and PGA signal  
definition also accomodates single processors without SRAM,  
and multiple processors.  
The PCM consists of an epoxy–glass (FR4) substrate which  
adapts a processor in a ceramic ball grid array (CBGA) pac-  
kage with 50 mil spacing to a 288–pin PGA with 100 mil spac-  
ing that can be easily socketed and hence, easily upgraded.  
The FR4 substrate can be extended beyond the area of the 17  
x 17 pin grid array to provide an interconnect area for SRAM  
components configured as closely coupled L2 cache. The  
resulting PCM provides numerous flexible configurations of  
processor and cache for various price/performance system  
designs.  
FR4 PCM on PGA 288 Interposer  
I
N
T
60x Address  
L2 Addr  
L2–Cache  
Memory  
Chips  
60x Data  
TSPC750  
L2 Data  
E
R
P
O
S
E
R
60x Control  
L2 Control  
Processor  
PLL_CFG  
P
I
N
S
General  
Support  
Circuits  
VID  
PID  
Simplified Block Diagram  
1/17  
April 1999  
TSPC750IP  
1. PIN ASSIGNEMENT  
Figure 1(inpartA)showsthepinoutofthePCMasviewedfromthetopsurface. PartBshowsthesideprofileofthemoduletoindicate  
the direction of the top surface view.  
Part A  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
17  
16  
15  
14  
13  
12  
11  
10  
09  
08  
07  
06  
05  
04  
03  
02  
01  
Not to Scale  
Part B  
CBGA Substrate  
Microprocessor Die  
View  
TQFP Packaged SRAM  
FR4 PCM  
Figure 117 x 17 PGA Processor + Cache Module  
2/17  
TSPC750IP  
2. PINOUT LISTING  
Table 1 provides the pinout listing for the 17 x 17 PGA PCM. This pinout is the superset of all 17 x 17 PCMs and should be followed for  
maximum interchangeability between modules; however, particular implementations may not connect all signals between the PGA  
pins and the PowerPC microprocessor. See the individual part number specifications for specific pinouts by part number.  
Table 1. Pinout Listing for the 17 x 17 PGA Module  
Signal Name  
A[0–31]  
Pin Number  
Active  
High  
I/O  
I/O  
F13, E1, D17, F3, E16,F1, E17, G5, F15, G4, G13, G3,  
F17, G2, G14, G1, G15, H1, G16, H3, G17, J1, H13, H5,  
H15, J2, H17, J3, J13, L1, K13, M1  
AACK  
K3  
Low  
Low  
High  
Low  
Low  
Low  
High  
Low  
Low  
Low  
Low  
Low  
Input  
I/O  
ABB  
L3  
AP[0–3]  
APE  
E6, C4, C5, A4  
I/O  
C8  
Output  
Input  
I/O  
ARRAY_WR 2  
ARTRY  
AVDD  
A8  
K5  
A11  
J5  
Input  
Input  
Input  
Output  
Output  
Output  
Output  
Input  
Output  
Output  
I/O  
BG  
BG2  
E13  
E8  
BR  
BR2  
A17  
E2  
CI  
CLK_OUT  
CKSTP_IN  
CKSTP_OUT  
CSE0–CSE1 1  
DBB  
A6  
C9  
Low  
Low  
High  
Low  
Low  
Low  
Low  
Low  
High  
E9  
E7, B5  
L17  
J15  
K1  
DBDIS  
DBG  
Input  
Input  
Input  
Input  
I/O  
DBG2  
R15  
J4  
DBWO  
DH[0–31]  
P13, N12, T15, U15, R13, U14, N10,P11, T11, U11, R10,  
U10, U9, T9, N9,P9, R9, U8, R8, U7, N8, P7, T7,U6, R7,  
R6, N7, U5, T5, U4, R5,U3  
DL[0–31]  
L16, K15, M17, L14, N17, M15, N16, L13, M13, N15, P17,  
R17, N14, P15, R16, U16, R14, N11, T13, R12, U13, R11,  
U12, N3, P3, N4, R2, T1, T3, R4, P5, N6  
High  
I/O  
3/17  
TSPC750IP  
Table 1. Pinout Listing for the 17 x 17 PGA Module (cont’d)  
Pin Number  
Signal Name  
Active  
High  
Low  
I/O  
I/O  
DP[0–7]  
DPE  
L4, N1, M3, N2, P1, L5, R1, M5  
B7  
Output  
Input  
Input  
I/O  
DRTRY  
DRVMOD[0–1]  
GBL  
J17  
E3, D3  
F5  
Low  
Low  
GND  
B4, B8, B10, B14, D2, D6, D12, D16,F4, F6, F8, F10, F12, Low  
F14, G7, G9, G11, H2, H6, H8, H10, H12, H16, J7, J9, J11,  
K2, K6, K8, K10, K12, K16, L7, L9, L11, M4, M6, M8, M10,  
M12, M14, P2, P6, P12, P16, T4, T8, T10, T14  
Input  
HALTED  
HRESET  
INT  
D9  
High  
Low  
Low  
Low  
Low  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
B9  
E14  
U17  
D11  
B11  
A7  
INT2  
LSSD_MODE 2  
L1_TSTCLK 2  
L2_INT  
High  
L2_TSTCLK2  
MCP  
E10  
D15  
D7  
Low  
High  
NAP_RUN  
NC 5  
N13  
OVDD 3  
B2, B6, B12, B16, D4, D8, D10, D14, F2, F9, F16, H4,  
H14, J6, J12, K4, K14, M2, M9, M16, P4, P8, P10, P14,  
T2, T6, T12, T16  
High  
Input  
PID[0–2]  
PLL_CFG[0–3]  
QACK  
U1, U2, R3  
High  
High  
Low  
Low  
Low  
I/O  
A9, A10, A13, C11  
Input  
Input  
Output  
Output  
Input  
I/O  
E5  
N5  
D5  
A3  
C1  
L2  
QREQ  
RSRV  
SCLK  
SDATA  
SHD  
Low  
Low  
I/O  
SMI  
B17  
Input  
4/17  
TSPC750IP  
Table 1. Pinout Listing for the 17 x 17 PGA Module (cont’d)  
Pin Number  
Signal Name  
SRESET  
Active  
Low  
I/O  
Input  
D13  
SYSCLK  
SYSCLK2  
TA  
C10  
Input  
Input  
Input  
Input  
I/O  
T17  
J16  
Low  
High  
Low  
High  
TBEN  
TBST  
E4  
E12  
TC[0–2] 4  
TCK  
C6, A5, C7  
Output  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
I/O  
C12  
TDI  
B13  
High  
High  
Low  
Low  
High  
Low  
High  
Low  
High  
High  
TDO  
A14  
TEA  
J14  
TLBISYNC  
TMS  
C15  
C13  
TRST  
TSIZ[0–2]  
TS  
A12  
E11, A15, B15  
L15  
I/O  
TT[0–4]  
VDD 3  
A16, C14, C16, C17, E15  
I/O  
F7, F11, G6, G8, G10, G12, H7, H9, H11, J8, J10, K7, K9,  
K11, L6, L8, L10, L12, M7, M11  
Input  
VID[0–4]  
WT  
B1, C2, A2, B3, C3  
High  
Low  
Low  
Input  
D1  
Output  
Output  
XATS 1  
K17  
Notes:  
1. Not recommended for new designs.  
2. These are test signals for factory use only and must be pulled up to Vdd for normal machine operation.  
3. OVdd inputs supply power to the I/O drivers and Vdd inputs supply power to the processor core.  
4. TC2 defined for PowerPC 604 –class processors only.  
5. These signals are undefined and must be left disconnected.  
Many of the PCM signals have the same definition and timing as that of the attached processor. The actual signals present vary  
depending upon the type of the PowerPC microprocessor used; refer to the corresponding processor hardware specifications for  
details.  
The PCM implements several signals that are not part of the PowerPC 60x bus specification, nor of any particular PowerPC proces-  
sor. These pins are unique to the PCM and are used to set operational parameters or indicate the features the PCM provides. Table 2  
describes the functions of the signals provided for identification or configuration of the PCM.  
5/17  
TSPC750IP  
Table 2. PCM Unique/Redefined Pins  
Pin Name  
Definitions  
Notes  
VID[4–0]  
The VID pins encode the voltage encoding as  
described in Section 5.6. , “Voltage Encoding.”  
Note the little–endian bit ordering, used for  
compatibility with industry standard parts.  
These pins must be pulled up by the power  
controller for proper operation. The pullups must be  
wired to a voltage level which is stable while the  
power controller ramps up after power up.  
Many power controllers include internal pullups to  
handle this.  
PID[0–2]  
PLL[0–3]  
The PID pins carry the presence detect codes as  
described in Section 5.7. , “Presence Detect.”  
These pins must be pulled up by the system with  
1K to 10K pullup resistors.  
Specified PLL setting to use.  
These PLL pins may be connected to VDD or  
ground on the PCM if a PLL–encoded PCM is  
ordered; otherwise, the motherboard may control  
the CPU’s PLL pins directly as usual with PowerPC  
CPUs.  
SYSCLK2 Clock for second processor. Same timing as  
SYSCLK for PowerPC CPUs.  
Unused signal—Reserved for future function; signal  
should remain disconnected  
INT2  
Interrupt for second processor. Same timing as INT Unused signal—Reserved for future function; signal  
for PowerPC CPUs.  
should remain disconnected  
BR2  
Bus request for second processor. Same timing as  
BR for PowerPC CPUs.  
Unused signal—Reserved for future function; signal  
should remain disconnected  
BG2  
Bus grant for second processor. Same timing as BG Unused signal—Reserved for future function; signal  
for PowerPC CPUs.  
should remain disconnected  
DBG2  
SCLK  
SDATA  
Data Bus grant for second processor. Same timing  
as DBG for PowerPC CPUs.  
Unused signal—Reserved for future function; signal  
should remain disconnected  
I2C serial clock input  
Connected when EEPROM presence detect mode  
is implemented.  
I2C command input/ data output  
Connected when EEPROM presence detect mode  
is implemented.  
6/17  
TSPC750IP  
3. GENERAL PARAMETERS  
The following list provides a summary of the general parameters of the PCM with a PC750 processor and 256 Kbytes, 512 Kbytes, or  
1 Mbyte of SRAM:  
Technology  
See General Parameters of individual components.  
See General Parameters of individual components.  
See General Parameters of individual components.  
17 x 17 pin grid array  
Die Size  
Transistor Count  
Package  
Core Power Supply  
Generally 2.6 + 5% V dc but refer to the part number specifications  
for a specific part for accurate information  
I/O Power Supply  
3.3 + 5% V dc  
4. ELECTRICAL AND THERMAL CHARACTERISTICS  
The AC and DC electrical specifications for the PCM are identical to the electrical specifications for the attached microprocessor  
unless otherwise specified in the part number specifications for a particular module.  
The thermal characteristics for the PCM are generally the composite of the thermal characteristics for the attached microprocessor  
and SRAMs. The variety of processor and SRAM speeds possible dictate that thermal characteristics are unique to a particular mod-  
ule and therefore are described in its associated part number specifications.  
5. SYSTEM DESIGN INFORMATION  
Refer to the device–specific user’s manuals and hardware specifications for system design information about the processor and  
SRAM attached to the module. This section provides descriptions of functionality and electrical or thermal design recommendations  
unique to the PCM.  
5.1. PLL Configuration  
The system utilizing the PCM is expected to configure the processor PLL by the PLL_CFG[0–3] signals appropriate to the attached  
processor. For a given SYSCLK (bus) frequency, the PLL configuration signals set the internal CPU and VCO frequency of operation.  
Refer to the system design information of the appropriate processor’s hardware specifications for appropriate PLL settings. It is pos-  
sible during manufacture to fix the settings of PLL_CFG[0–3] via jumpers on the substrate to one particular combination that will be  
independent of the signals asserted by the system on the pins; if this is done for a particular part number, it will be noted in the part  
number specifications for that specific part.  
The interface between the processor and the SRAMs on the module will operate at CPU–to–L2 frequency divisors of B1, B1.5, B2,  
B2.5, and B3. These ratios will have to be programmed into the L2 cache control registers on the processor by the operating system  
and the L2 cache enabled before the SRAM will be functional on the module. See the part number specifications for the CPU–to–L2  
frequency divisor(s) supported on a particular part.  
7/17  
TSPC750IP  
5.2. PLL Power Supply Filtering  
The AVdd power signal provides power to the clock generation phase–locked loop. To ensure stability of the internal clock, the power  
supplied to the AVdd input signal of the microprocessor should be as electrically quiet as possible. For maximum effectiveness the  
filter circuit of Figure 2 which is normally recommended for inclusion in the system design has been included on the PCM itself.  
10Ω  
Vdd  
AVdd (or L2AVdd)  
10µF  
0.1µF  
GND  
Figure 2. PLL Power Supply Filter Circuit  
The PCM resistors are used to program the connection between the external signals and the microprocessor PLL supply as shown in  
Figure 3. If required, the system can provide additional power supply filteringfortheAVdd signal, shown in Figure 2, to thePCM AVdd  
signal. The PCM provides AVdd power supply filtering as shown in Figure 3.  
10Ω  
Internal AVdd  
Internal L2AVDD  
External Vdd  
External AVdd  
10µF  
0.1µF  
0.1µF  
NC  
GND  
Figure 3. PCM PLL Power Supply Filter Circuit  
5.3. Decoupling Recommandations  
The microprocessor and cache on the PCM can generate transient power surges and high frequency noise in its power supply, espe-  
cially while driving large capacitive loads. This noise must be prevented from reaching other components in the system, and the  
moduleitself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer placeat least  
one decoupling capacitor at each Vdd and OVdd pin of the module. It is also recommended that these decoupling capacitors receive  
their power from separate Vdd, OVdd, and GND power planes in the PCB, utilizing short traces to minimize inductance.  
The module will provide some bulk decoupling and high frequency decoupling capacitors on the module itself to improve the overall  
system noise immunity.  
5.4. Connection Recommandations  
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low  
inputs should be tied to Vdd. Unused active high inputs should be connected to GND. All NC (no–connect) signals must remain  
unconnected.  
Power and ground connections must be made to all external Vdd, OVdd, and GND pins of the PCM.  
5.5. Socketing  
The PCM is specifically designed for the flexibility of a socket. The PGA footprint is compatible with the widely available Socket #3  
footprint popular in the PC industry. Several vendors provide this socket, including Amp Incorporated (part number: 916668–1).  
8/17  
TSPC750IP  
5.6. Voltage Encoding  
The core operating voltage (Vdd and AVdd) for PowerPC processors has varied with semiconductor process technology. Within a  
narrow range determined by the process technology, Motorola has specified non–standard core voltages for some processors in  
device–specific part number specifications.  
The PCM provides additional pins to communicate the attached processor’s preferred core voltage. The desired voltage setting is  
encoded on the VID[4–0] signals. This 5–bit bus encodes various voltage settings which match existing industry standards. In most  
systems these signals are connected directly to a Voltage Regulator Module (VRM) or to an on–board power supply which accepts  
the VID encoded voltage setting.  
The encoding for the VID voltage levels supported by the PCM are shown in Table 3.  
Table 3. Voltage Encoding  
VID[4–0] Output  
01111  
Voltage (V)  
1.30 V  
1.35 V  
1.40 V  
1.45 V  
1.50 V  
1.55 V  
1.60 V  
1.65 V  
1.70 V  
1.75 V  
1.80 V  
1.85 V  
1.90 V  
1.95 V  
2.00 V  
2.05 V  
VID[4–0] Output  
10000  
10001  
10010  
10011  
Voltage (V)  
3.50 V  
3.40 V  
3.30 V  
3.20 V  
3.10 V  
3.00 V  
2.90 V  
2.80 V  
2.70 V  
2.60 V  
2.50 V  
2.40 V  
2.30 V  
2.20 V  
2.10 V  
No CPU  
01110  
01101  
01100  
01011  
10100  
10101  
10110  
01010  
01001  
01000  
00111  
10111  
11000  
11001  
11010  
11011  
00110  
00101  
00100  
00011  
11100  
00010  
00001  
00000  
11101  
11110  
11111  
Note: The bit numbering shown here is little–endian due to pre–existing  
standards. This differs from most other PowerPC bus numbering  
conventions.  
The PCM encodes the voltage setting by selectively installing 0–ohm resistors on the VID bus. The regulator must have internal  
pullups to properly encode the settings (this is true of all known 5–bit encoded switching controllers).  
9/17  
TSPC750IP  
5.7. Presence Detect  
The PCM provides a means of self–identification (called presence detection after the method(s) used to identify memory and cache  
modules). Themoduleimplementsathree–wiresolutionwhichcombinestheinexpensiveparallelencodingofSingleIn–lineMemory  
Modules (SIMMs) with the more flexible serial solution found on Dual In–line Memory Modules (DIMMs). Figure 4 shows the architec-  
ture of the presence detection:  
VCC VCC VCC  
PCM  
PID0  
PID1  
PID2  
SCLK  
I2C  
SDATA  
Figure 4. CPU Present Detect Hardware  
Note that either the pull–down resistors are installed, or the I2C EEPROM, but not both.  
For the simplest case, the three presence detect pins encode seven specific configurations of processor or processor/cache com-  
binations, with one reserved for identification of the serial EEPROM method. The motherboard requires pullups on the parallel lines  
(1K to 10K ohms), and the PCM selectively pulls down the PID lines to create the PID encoding.  
The possible combinations of processor and cache with all the attendant settings are too numerous to directly encode in the three bits  
allotted, so predefined configurations are assigned an identifier. Additionally, the table used will be associated with the processor  
attached (determined by reading the processor PVR). Together, the processor ID register and PID bits are used to determine the  
most difficult cache settings, with the remainder handled by software, as shown in Table 4.  
Table 4. Processor Presence Detect (PPD) Information  
Parameter  
Determined by  
Cache size  
PPD encoding  
PPD encoding  
PPD encoding  
Software  
Processor core/cache bus clock ratio  
Cache type  
Cache enable  
Cache parity  
Software, or always off  
Software, or always copyback  
Always 0.5 ns  
Cache write–through/copyback  
Cache output hold  
Cache clock type  
If late–write: differential  
If pipelined: single–ended  
10/17  
TSPC750IP  
Table 5 shows example settings for an PC750–based PCM with cache:  
Table 5. PC750 Presence Detect Table  
Cache/Core  
Ratio  
Example Module  
CPU/Cache  
PID[0–2]  
SRAM Type  
Hold (ns)  
Size  
SRAM Speed  
0 0 0  
0 0 1  
3:2  
Late–write  
Pipelined  
0.5  
1 M  
300/200  
200  
2:1  
0.5  
512 K  
300/150  
266/133  
233/117  
150  
133  
117  
0 1 0  
2:1  
Pipelined  
0.5  
1 M  
300/150  
266/133  
233/117  
200/100  
150  
133  
117  
100  
0 1 1  
1 0 0  
5:2  
5:2  
Pipelined  
Pipelined  
0.5  
0.5  
512 K  
1 M  
300/120  
266/106  
233/ 93  
120  
117  
100  
300/120  
266/106  
233/ 93  
120  
117  
100  
1 0 1  
1 1 0  
1 1 1  
3:1  
Pipelined  
Pipelined  
0.5  
0.5  
512 K  
1 M  
300/100  
266/ 88  
100  
90  
3:1  
300/100  
266/88  
100  
90  
No Module ID  
This indicates the presence of a serial  
EEPROM or non–cache PCM.  
Note that there are various cache speeds for each entry. The processor does not need to know the actual speed of its cache, only the  
proper ratio of core:cache, in order to properly configure the cache controller. If the cache speed is of interest, the bus frequency and  
PLL settings must be determined via software.  
Foreachnewprocessorwithcacheasimilartablewillbecreated. IfaPCMneedsaparticularcombinationthatwasnotpre–definedin  
this table, then a serial presence detect EEPROM will be used. A serial EEPROM is detected when all ones are sensed on the PID  
lines. To determine the system configuration, software will have to read the data from the EEPROM, as shown in Figure 4.  
Either software or an I2C controller may be used to address EEPROM #2 (the address of the presence detect EEPROM) and load the  
configuration data.  
11/17  
TSPC750IP  
5.7.1.Presence Detect EEPROM Format  
The data within presence detect EEPROM memory generally follows JEDEC DIMM outline and reuses the same data formats. The  
format is not JEDEC approved, and will not be since it cannot be shared with DIMM memory presence detect lines.  
The format of the data is based upon the following criteria:  
The Software Presence Detect (SPD) describes the PCM but does not tell the software what register bits to use  
(interfaces change over time).  
Minimize software impact by re–using memory SPD data formats. This also implies that little–endian multi–byte  
ordering is retained.  
Keep the block/length structure so that I2C readers can be re–used.  
The first few bytes should not be all ones, so that the I2C EEPROM reader routine can easily detect the  
presence/absence of data.  
Table 6 shows the PCM SPD format.  
Table 6. PCM SPD Data Format  
Byte  
Field  
Description  
Range of Values  
64, 128, 255  
Example  
0
NO  
Number of bytes written into  
EEPROM  
80  
1
2
SIZE  
TYPE  
WIDTH  
VID  
Total number blocks of SPD RAM 4, 8, 16  
08  
00  
Module type  
CPU  
5, 6  
7
Data width of module  
1–65536  
3.3V  
80, 00  
12  
Voltage level of module  
(Mirrors VID encoding)  
2.5V  
1A  
01  
02  
03  
00  
00  
8
SIGLEV  
Signaling level  
1:LVTTL  
2:SSTL  
3:GTL  
9
TAU0  
TAU calibration, 0 °C  
–128..127  
–128..127  
10  
TAU100  
TAU calibration, 100 °C  
11–15  
16  
Reserved for other general information  
Cache type 0:None  
CTYPE  
00  
01  
02  
03  
1:Flow–through  
2:Pipelined  
3:Late–write  
12/17  
TSPC750IP  
17, 18  
CSIZE  
Cache size LSB, MSB (K)  
0
00, 00  
00, 02  
00, 04  
00, 08  
00, 00  
B4, 00  
C8, 00  
00  
512K  
1M  
2M  
19, 20  
CSPEED  
Cache speed LSB, MSB (MHz)  
0
180  
200  
21  
22  
CCLOCK  
CHOLD  
Cache clock type  
Cache output hold  
0:Single–ended  
1:Differential  
0.0 ns  
0.5 ns  
1.0 ns  
1.5 ns  
01  
00  
05  
10  
15  
23–31  
32  
Reserved for other cache information  
CPUS  
CPU count  
0–n  
01  
33  
SPEED  
CPU speed LSB, MSB (MHz)  
66  
42, 00  
C8, 00  
4D, 01  
42, 00  
64, 00  
200  
333  
66  
34, 35  
BUSSPD  
Bus speed LSB, MSB (MHz)  
100  
36–63  
64–67  
68–90  
Reserved for other CPU information  
Manufacturers ID  
MANUF  
CPUID  
Stock name  
Part marking  
“MOT“  
CPU ID  
“MPC603RRX3  
66LARX”  
91–127  
Manufacturers data  
Unused  
TBD  
FF  
FF  
128–nnn  
13/17  
TSPC750IP  
The first eight bytes are fairly similar to the DIMM SPDs in the hope that it will enable the EEPROM access software to retrieve a  
block from either SPD with minimal effort. Thereafter, the formats diverge but should allow the re–use of existing DIMM data  
conversion routines (for example, the format for output hold).  
The fields of the EEPROM are described in detail as follows:  
NO  
This field contains the total number of bytes written during manufacture. This field is retained for  
compatibility with existing SPD standards.  
SIZE  
This field contains the number of 16–byte blocks available in the EEPROM. A value of 0x10 indicates the  
EEPROM is 16 x 16 = 256 bytes long. This field is retained for compatibility with existing SPD standards.  
TYPE  
WIDTH  
VID  
The type encoding field is zero to indicate that it is not a memory DIMM. This field is retained for  
compatibility with existing SPD standards.  
This field describes the width of the module. The value is the width of the PCM, either 0x0080 (64–bit) or  
0x0100 (128–bit). This field is retained for compatibility with existing SPD standards.  
The VID field contains a copy of the encoding presented to the motherboard via the VID pins. Refer to the  
VRM table for the encoded values.  
SIGLEV  
The SIGLEV field contains an encoded description of the PCM interface level; see Table 7.  
Table 7. PCM Interface Level  
Interface Level  
LVTTL  
Code  
01  
SSTL  
GTL  
02  
03  
TAU  
This field describes the calibration factors necessary to temperature compensate a thermal assist unit  
(TAU), such as found on PC750 processors. The current TAU units have a high relative accuracy, but an  
absolute accuracy of "12°C. With the appropriate compensation factors stored in EEPROM, the  
TAU–handling software can determine the temperature to the specified accuracy.  
The parameters describe the numerical offset applied at 0°C and 100°C. The software can elect to adjust  
the temperature over the described interval for greatest accuracy (using linear interpolation), or apply only  
the 100°C factor for faster compensation (with less accuracy).  
CTYPE  
The CTYPE field contains an encoding which indicates the type of cache attached to the processor  
dedicated L2 interface, if any. If zero is present, indicating no cache, none of the other cache parameters  
have any meaning; see Table 8.  
Table 8. CTYPE Field Encoding  
CTYPE  
Cache Type  
0
1
2
3
None  
Flow–through  
Pipelined  
Late–write  
14/17  
TSPC750IP  
CSIZE  
The CSIZE field contains the size of the cache, in kilobytes.  
CSPEED  
CCLOCK  
The CSPEED field contains the speed of the cache, in megahertz.  
The CCLOCK field is used to configure the L2 clock signals as single–ended (0 value) or differential (1  
value).  
CHOLD  
The CHOLD field contains the hold time needed for the cache memories, encoded in the pseudo–BCD  
method used for SPD data values. The lower nibble ranges from 0..9, and describes fractions of  
nanoseconds. The upper range is from 0..15, and is in nanoseconds. The lower nibble may be used as–is,  
or simply to round up the upper nibble, as needed.  
CPUS  
The CPUS field contains the number of CPUs present on the PCM.  
SPEED  
BUSSPD  
MANUF  
The SPEED field contains the maximum specified core operating speed of the CPU(s), in megahertz.  
The BUSSPD field contains the maximum specified bus operating speed of the CPU(s), in megahertz.  
The MANUF field contains the stock ticker symbol of the manufacturer of the CPU. The encoding method  
is ASCII; unused bytes are filled with zero.  
CPUID  
The CPUID field contains the literal ASCII name (part ordering number) of the CPU(s) installed. For  
example, a 300 MHz PowerPC 603e would be encoded as MPC603RRX300LA. Unused bytes are filled  
with zeroes.  
15/17  
TSPC750IP  
6. PACKAGE MECHANICAL DATA  
The package parameters are as provided in the following list. The package consists of a 288–lead pin grid array (PGA) on the  
bottom of a 1.75 x 2.5 inch glass–epoxy (FR4) substrate with a PowerPC microprocessor in a ceramic ball grid array (CBGA)  
package and two fast static RAMs (FSRAMs) in ceramic quad flat pack (CQFP) or plastic ball grid array (PBGA) packages attached  
on the top. The package parameters for the PGA PCM are:  
B
D
(D4)  
2X (D5)  
NOTES:  
(E4)  
a. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5M, 1994.  
b. DIMENSIONS IN INCHES.  
2X (E5)  
2X (E7)  
c. TOP SIDE A1 CORNER INDEX IS A SILK  
SCREENED FEATURE WITH VARIOUS  
SHAPES. BOTTOM SIDE A1 CORNER IS  
DESIGNATED WITH A PIN MISSING FROM  
THE ARRAY  
E
(E3)  
d. DIMENSIONS D1 AND E1 ARE LESS THAN  
(E6)  
OR EQUAL TO D AND E.  
e. MINIMUM HANDLING CLEARANCE  
BETWEEN PACKAGE EDGE AND PASSIVE  
COMPONENTS IS 0.020.  
(D6)  
(D3)  
(D7)  
A1  
CORNER  
C
A
TOP VIEW  
Inches  
MIN  
DIM  
A
MAX  
0.420  
0.190  
0.065  
0.115  
0.063  
0.098  
0.132  
0.020  
2.550  
D1  
0.390  
0.170  
A1  
A2  
A3  
A4  
A5  
A6  
b
A B C D  
E F G H J K L M N P R T U  
1
2
3
4
5
6
7
8
9
0.090  
0.055  
(E2)  
E1  
0.0980  
0.016  
2.480  
10  
11  
12  
13  
14  
15  
16  
17  
D
D1  
D2  
D3  
D4  
D5  
D6  
D7  
e
See Note 4  
1.600 REF  
0.984 REF  
0.870 REF  
0.787 BSC  
0.532 REF  
0.560 REF  
0.100 BSC  
16X  
e
A1  
A2  
A3  
(D2)  
BOTTOM VIEW  
288X  
b
A B C  
0.010 A  
A4  
A5  
A6  
A
E
1.740  
1.780  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
See Note 4  
1.600 REF  
0.984 REF  
0.630 BSC  
0.551 BSC  
0.532 REF  
0.420 REF  
SIDE VIEW  
Figure 5. Mechanical Dimensions and Bottom Surface Nomenclature of the PCM  
16/17  
TSPC750IP  
7. ORDERING INFORMATION  
This section provides the part numbering nomenclature for the PCM. Note that the individual part numbers correspond to a  
particular PowerPC microprocessor at a maximum core frequency and a certain size of SRAM. Often the ratio of core to L2  
frequency is called out in the part number also because this ratio and the maximum core frequency set the maximum frequency of  
the attached SRAM.  
M
TS (X) PC750A F  
C E  
IP  
233  
(1)  
TCS prefix  
Prototype  
Revision Level  
Part Identifier  
(2)  
Part Modifier  
(2)  
Application Modifier  
C
D
E
F
:
:
:
:
750 with 256K pipeline burst  
750 with 1M pipeline burst  
750 with 1 M late write flow–through  
750 with 512K pipeline burst  
C
D
E
: 2:1 core:L2  
: 5:1 core:L2  
: 3:1 core:L2  
(2)  
Max Internal Processor Speed  
Temperature range : T  
A
200 : 200 MHz  
233 : 233 MHz  
266 : 266MHz  
300 : 300MHz  
C
V
:
:
0, 70 °C  
–40, +85 °C  
(2)  
Package Code  
IP  
: PGA FR4 PCM  
(1) THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES  
(2) For availability of the different versions, contact your TCS sale office  
Information furnished is believed to be accurate and reliable. However THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES  
assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of THOM-  
SON-CSF SEMICONDUCTEURS SPECIFIQUES. Specifications mentioned in this publication are subject to change without notice.  
This publication supersedes and replaces all information previously supplied. THOMSON-CSF SEMICONDUCTEURS SPECIFI-  
QUES products are not authorized for use as critical components in life support devices or systems without express written approval  
from THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES. 1999 THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES -  
Printed in France - All rights reserved.  
This product is manufactured by THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES - 38521 SAINT-EGREVE - FRANCE.  
For further information please contact : THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES - Route Départementale 128 -  
B.P. 46 - 91401 ORSAY Cedex - FRANCE - Phone +33 (0)1 69 33 00 00 - Fax +33 (0)1 69 33 03 21 -  
E-mail : lafrique@tcs.thomson–csf.com.  
8.  
17/17  

相关型号:

TSXPC750ADVIP300CE

RISC Microprocessor, 32-Bit, 300MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750AECIP233CE

RISC Microprocessor, 32-Bit, 233MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750AECIP233DE

RISC Microprocessor, 32-Bit, 233MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750AECIP266CE

RISC Microprocessor, 32-Bit, 266MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750AECIP266DE

RISC Microprocessor, 32-Bit, 266MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750AECIP300DE

RISC Microprocessor, 32-Bit, 300MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750AEVIP200CE

RISC Microprocessor, 32-Bit, 200MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750AEVIP233CE

RISC Microprocessor, 32-Bit, 233MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750AEVIP233DE

RISC Microprocessor, 32-Bit, 233MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750AEVIP233EE

RISC Microprocessor, 32-Bit, 233MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750AEVIP266EE

RISC Microprocessor, 32-Bit, 266MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL

TSXPC750AEVIP300CE

RISC Microprocessor, 32-Bit, 300MHz, CMOS, 2.54 MM PITCH, PCM, PGA-288
ATMEL