U2510B-M [ATMEL]

All-Band AM/FM Receiver and Audio Amplifier; 全波段AM / FM接收器和音频放大器
U2510B-M
型号: U2510B-M
厂家: ATMEL    ATMEL
描述:

All-Band AM/FM Receiver and Audio Amplifier
全波段AM / FM接收器和音频放大器

消费电路 商用集成电路 接收器集成电路 音频放大器 光电二极管 异步传输模式 PC ATM
文件: 总15页 (文件大小:265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
U2510B  
All-Band AM/FM Receiver and Audio Amplifier  
Description  
The U2510B is an integrated bipolar one-chip AM/FM receiver, an AF amplifier and a mode switch for AM, FM  
radio circuit. It contains an FM front end with and tape. This circuit is designed for clock radios and  
preamplifier, FM IF and demodulator, a complete AM portable radio-cassette recorders.  
FD eSautpuerrieorsFM strong signal behavior by using RF AGC  
D DC mode control: AM, FM and tape  
D Wide supply-voltage range and low quiescent current  
D High AF output power: 1 W  
D Soft mute and HCC for decreasing interstation noise  
in FM mode  
D Electronic volume control  
D Excellent AFC performance (level controlled, both  
polarities available)  
D Electronic AF bandwidth control (treble and high cut)  
D Output stage for headphone and speaker drive  
D Level indicator (LED drive) for AM and FM  
Block Diagram  
(Replaceable)  
FM RF  
tank  
FM osc.  
tank  
IF BPE  
FM ant.  
VS  
9
8
7
6
14 16  
2
26  
28  
AFC  
27  
3
12  
FM  
front end  
FM RF  
BPE  
FM IF  
amp.  
FM  
discr.  
Power  
amp.  
AFC  
control  
AGC  
11  
10  
5
FM  
AGC  
25  
23  
AM IF  
amp. and  
detect.  
AM  
front end  
AM  
ant.  
24  
4
IF  
AGC  
IF  
AF preamp.  
Volume  
Mute  
RF AGC  
AM osc.  
tank  
AM  
AGC  
Level  
indic.  
AM/FM  
Voltage stab.  
and  
mode control  
VRef  
HCC  
15  
21  
13  
20  
19  
1
22  
18  
S2  
VS  
AFC mode  
AM  
LED  
VS  
Tape  
FM  
Treble  
Vol  
13912  
Figure 1. Block diagram  
Rev. A3, 23-Feb-01  
1 (15)  
U2510B  
Order Information  
Extended Type Number  
U2510B-M  
Package  
SDIP28  
SDIP28  
Remarks  
V < 6 V supply voltage  
U2510B-M__T  
S
Pin  
5
Symbol  
AMOsc  
Function  
Pin Description  
AM oscillator tank circuit input, recommended  
load impedance approximately 2.5 kW  
6
7
FM–AFC AFC diode connection, coupling capacitor  
AF-GND  
Mute  
1
2
3
4
5
6
7
8
9
28  
(C ) determines the AFC characteristic  
19  
(holding range and slope)  
FM-discr  
AFout  
FMOsc  
FM oscillator tank circuit input, recommended  
27  
26  
load impedance approximately 3 kW  
8
9
V
Ref  
Regulated voltage output (2.4 V)  
CF  
V
S
FMtank  
FM RF tank circuit connection, recommended  
load impedance approximately 3 kW  
10  
11  
AMtank  
AM RF tank circuit connection, recommended  
Ripple in  
Vol ctrl in  
AMOsc  
25  
24  
load impedance approximately 20 kW  
FM-AGC FM AGC voltage output, time constant (C ).  
20  
Loading this pin by a resistor (to GND) will  
increase the FM AGC threshold, grounding  
this pin will switch off the FM AGC function  
AFin  
12  
FMin  
FM RF input (common-base preamplifier  
transistor), recommended (RF) source  
impedance approximately 100 W  
AM/FM detect  
FM-AFC  
FMOsc  
23  
22  
V
13  
14  
FE-GND  
FM front-end ground  
AGC/AFC  
AM/FM  
IFout  
AM/FM IF output  
(collector output of the IF preamplifier)  
V
Ref  
AFC switch  
IF-GND  
21  
20  
19  
18  
15  
Mode ctrl Mode control input:  
switch  
Pin  
open  
Ground  
| Function  
| FM  
| AM  
FMtank  
AMtank  
V (R = 10 kW) | Tape  
S
4
16  
17  
18  
19  
AM-IFin  
FM-IFin  
AM IF input, input impedance = 3.1 kW  
FM IF input, input impedance = 330 W  
Treble control voltage input  
LED drive  
10  
11  
12  
V
Treble in  
LED drive Level indicator output  
(open-collector output, LED drive)  
IF ground  
V
FM-AGC  
FMin  
Treble in  
20  
IF-GND  
FM-IFin  
AM-IFin  
17  
16  
15  
21 AFC switch AFC function control input:  
Pin  
open  
Ground  
| Function  
| AFC off  
FE-GND  
13  
14  
| f  
OSC  
| f  
OSC  
> f  
in  
< f  
in  
V
S
22  
23  
V
AGC/AFC voltage, time constant adjust (C ),  
AM/FM  
IFout  
Mode ctrl  
switch  
AGC/AFC  
10  
input impedance approximately 42 kW  
14812  
AM/FM  
detect  
AM/FM detector output, the load capacitor  
(C ) in conjunction with the detector output  
11  
Figure 2. Pinning  
resistance (7.5 kW) determines the (FM)  
deemphasis as well as the (modulation)  
frequency response of the AM detector  
Pin  
1
Symbol  
Mute  
Function  
24  
25  
AFin  
Audio amplifier input, input resistance  
approximately 100 kW, coupling capacitor  
(C ) determines the low frequency response  
9
Mute voltage output, time constant (C ),  
mute depth and threshold adjustable by load  
23  
resistance (R )  
3
Ripple in  
Ripple filter connection. Load capacitance  
2
3
FM-discr  
CF  
FM discriminator filter connection, ceramic  
resonator or equivalent LC-circuit  
(C ) determines the frequency response of the  
12  
supply-voltage ripple rejection  
Audio negative feedback input. Blocking  
26  
27  
28  
V
S
Supply voltage input  
capacitor (C ) determines the audio amplifiers  
8
low-end cut-off frequency  
AFout  
Audio amplifier output  
4
Vol ctrl in Input for volume control voltage  
AF-GND  
Ground of the audio power stage  
2 (15)  
Rev. A3, 23-Feb-01  
U2510B  
Terminal Voltages  
Test circuit: V = 0  
in  
Voltage/V  
FM TAPE AM  
Pin  
Symbol  
V = 3 V  
S
V = 6 V  
S
AM  
FM TAPE  
1
Mute voltage (R = 0)  
V
1
V
2
V
3
V
4
V
5
V
6
V
7
V
8
V
9
1.6  
1.0  
1.2  
2.4  
1.6  
1.0  
2.6  
2.4  
3
2
FM discriminator  
3
Negative feedback  
1.2  
2.4  
2.4  
1.2  
2.4  
2.6  
2.4  
2.4  
2.6  
2.4  
4
Volume control input (S = A)  
4
5
AM oscillator  
FM AFC  
6
1.9  
2.4  
2.4  
2.4  
1.9  
2.4  
2.4  
2.4  
2.4  
0
7
FM oscillator  
8
V
Ref  
2.4  
2.4  
2.4  
2.4  
2.4  
9
FM RF tank  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
AM input  
V
10  
V
11  
V
12  
V
13  
V
14  
V
15  
V
16  
V
17  
V
18  
V
19  
V
20  
V
21  
V
22  
V
23  
V
24  
V
25  
V
26  
V
27  
V
28  
2.4  
FM AGC  
0
FM input  
1.4  
1.4  
Front end ground  
AM/FM IF output  
Mode control switch  
AM IF input  
FM IF input  
2.9  
0
2.7  
5.9  
0
5.7  
2.9  
5.7  
0
0
0.7  
2.4  
0.7  
2.4  
Treble control input (S = A)  
2.4  
2.4  
2.4  
2.4  
5
LED  
IF ground  
0
0
0
1.2  
0
0
0
1.2  
AFC switch (S = off)  
1.2  
1.5  
1.5  
1.5  
2.7  
3.0  
1.2  
0
1.2  
1.2  
1.2  
1.5  
2.7  
3.0  
1.2  
0
1.2  
1.5  
1.5  
1.5  
5.3  
6.0  
2.6  
0
1.2  
1.2  
1.2  
1.5  
5.3  
6.0  
2.6  
0
3
AGC (AM)/AFC (FM)  
Detector output  
AF input  
1.5  
2.7  
3.0  
1.2  
0
1.5  
5.3  
6.0  
2.6  
0
Ripple filter  
Supply voltage  
AF output  
AF ground  
Rev. A3, 23-Feb-01  
3 (15)  
U2510B  
Absolute Maximum Ratings  
Parameters  
Supply voltage  
Symbol  
Value  
13  
Unit  
V
V
S
Power dissipation  
Ambient temperature range  
P
900  
–20 to +75  
mW  
°C  
tot  
T
amb  
Electrical Characteristics  
V = 6 V, T  
= 25°C, test circuit (figure 16), unless otherwise specified  
S
amb  
Parameters  
Test Conditions / Pins  
Symbol  
Min.  
2.5  
Typ.  
Max.  
9 *  
Unit  
Supply voltage range  
V
V
V
V
S
Oscillator stop voltage  
Operating temperature range  
Supply quiescent current  
2.2  
S
T
–20  
+75  
°C  
V = V = V = 0;  
i1  
i2  
4
AM (S = AM)  
I
I
I
4.0  
6.5  
2.2  
mA  
mA  
mA  
2
S
S
S
FM (S = FM)  
2
TAPE (S = Tape)  
2
Regulated voltage  
Pin 8  
V
Ref  
2.4  
V
Audio amplifier V (Pin 24), test point: V (Pin 27) f = 1 kHz  
i3  
o
AF measuring range: 30 Hz to 20 kHz, S = Tape, S = A, S = A  
2
4
5
Input resistance  
Pin 24  
R
100  
kW  
j
Closed loop voltage gain  
GV = 20 log (V /V )  
af1 o i3  
V = 10 mV  
i3  
GV  
40  
dB  
af1  
Output voltage  
V = 100 mV, S = B  
V
o
0.7  
3
mV  
i3  
4
High–end cut-off frequency  
f (–3 dB)  
S = B  
5
f
f
13  
0.8  
kHz  
kHz  
c
c
c
Supply-voltage rejection ratio SVRR = 20 log (V /V )  
hum  
o
V
hum  
= 200 mV,  
f
= 200 Hz, S = B  
SVRR  
32  
dB  
hum  
4
Noise voltage  
S = B, V = 0  
V
n
300  
1000  
mV  
4
i3  
AF output power  
THD = 10 %, R = 8 W  
L
V = 4.5 V  
P
o
P
o
P
o
225  
420  
1000  
mW  
mW  
mW  
S
V = 6.0 V  
400  
S
V = 9.0 V  
S
Distortion  
P = 50 mW, R = 8 W  
d
0.6  
%
o
L
FM section, V = 60 dBmV, f = 98 MHz, f = 1 kHz, dev. = " 22.5 kHz, f = 10.7 MHz,  
i2  
i2  
m
iIF  
AF measuring range: 300 Hz to 20 kHz, S = FM, S = A, S = B, test point: V (Pin 23)  
2
1
6
D
FM front-end voltage gain  
GV = 20 log (V / V )  
FM iIF i2  
S = B, V = 40 dbmV  
GV  
FM  
30  
85  
dB  
mV  
kW  
1
i2  
Recovered audio voltage  
Detector output resistance  
Detector output distortion  
Pin 23  
Pin 23  
VD  
af  
R
7.5  
Do  
dev. = " 75 kHz  
V = 60 dBmV  
THD  
THD  
0.5  
0.8  
%
%
i2  
V = 105 dBmV  
i2  
*
U2510B-M__T: max. 6 V  
4 (15)  
Rev. A3, 23-Feb-01  
U2510B  
Electrical Characteristics (continued)  
V = 6 V, T  
= 25°C, test circuit (figure 16), unless otherwise specified  
S
amb  
Parameters  
AM rejection ratio  
RF sensitivity  
Test Conditions / Pins  
m = 30%  
Symbol  
AM  
Min.  
Typ.  
25  
Max.  
Unit  
dB  
RR  
(S+N)/N = 26 dB  
(S+N)/N = 46 dB  
V
9
22  
dBmV  
dBmV  
i2  
V
i2  
Limiting threshold (-3 dB)  
Mute voltage  
V
i2  
3
dBmV  
Test point: Mute  
V = 0  
V = 60 dBmV  
i2  
V
mute  
V
mute  
1.8  
0.4  
V
V
i2  
Mute depth  
Referred to V at V = 0  
0 i2  
S = A  
S = C  
6
MD  
MD  
26  
20  
dB  
dB  
6
AFC holding range  
f
> f , S = A, S = A  
OSC in 3 6  
V
10 dBmV  
FHR  
FHR  
FHR  
no AFC  
" 180  
" 220  
i2  
x
V = 20 dBmV  
kHz  
kHz  
i2  
V = 80 dBmV  
i2  
LED current  
I
5.5  
mA  
mV  
LED  
Oscillator voltage  
eZ  
= 2.5 kW  
Pin 7  
V
180  
load  
OSC  
AM section V = 60 dBmV, f = 1.6 MHz, f = 1 kHz, m = 30%, f = 455 kHz,  
i1  
i1  
m
iIF  
AF measuring range: 300 Hz to 20 kHz, (S = AM, S = B, test point: V )  
2
1
D
AM front end voltage gain  
GV = 20 log (V /V )  
GV  
AM  
25  
dB  
AM  
iIF i1  
V = 20 dBmV, S = A  
i1  
1
Recovered audio voltage  
Detector output resistance  
Detector output distortion  
V
70  
mV  
D af1  
Pin 23  
R
7.5  
kW  
Do  
V = 60 dBmV  
V = 105 dBmV  
i1  
THD  
THD  
1
3
%
%
i1  
RF sensitivity  
(S+N)/N= 10 dB  
(S+N)/N= 26 dB  
(S+N)/N= 46 dB  
V
0
16  
35  
dBmV  
dBmV  
dBmV  
i1  
V
i1  
V
i1  
AGC figure of merit referred  
V = 105 dBmV, voltage  
i1  
to V  
drop (V ) = –10 dB  
FOM  
100  
3.1  
5.5  
160  
dB  
kW  
mA  
mV  
D af  
D af  
IF input resistance  
LED current  
Pin 16  
Pin 5  
Z
i
I
LED  
Oscillator voltage  
V
OSC  
Rev. A3, 23-Feb-01  
5 (15)  
U2510B  
10  
10000  
1000  
100  
T
amb  
=25°C  
FM  
8
6
AM  
R =4W  
L
4
2
f=1kHz  
d=10%  
Tape  
8W  
16W  
32W  
T
=25°C  
amb  
0
10  
12  
50  
2
4
6
8
10  
0
10  
V ( V )  
S
V ( V )  
9510396  
95 10397  
95 10398  
9510399  
S
Figure 3. Quiescent current  
Figure 6. AF section: Max. output power  
40  
50  
40  
without  
treble control  
f=200Hz  
f=100Hz  
32  
24  
16  
30  
with treble control  
20  
10  
0
V
=200mV  
V =5mV  
hum  
i
V =6V  
V =6V  
S
S
R =8W  
R =8W  
L
L
T
amb  
=25°C  
T
=25°C  
amb  
100  
12  
2
4
6
8
10  
0.01  
0.1  
1
10  
f ( kHz )  
V ( V )  
S
95 10400  
Figure 4. AF section  
Figure 7. AF section: Supply-voltage rejection ratio  
10  
8
2.0  
f=1kHz  
=25°C  
V =6V  
S
T
T
amb  
=25°C  
amb  
1.6  
1.2  
0.8  
R =∞  
3
6
V =3V  
S
V =6V  
S
V =9V  
S
100kW  
68kW  
R =32W  
L
R =8W  
L
R =8W  
L
4
2
0
0.4  
0
10000  
120  
1
10  
100  
1000  
–20  
0
20 40  
60  
80  
100  
P ( mW )  
o
V ( dBmV )  
i
95 10403  
Figure 5. AF section: Distortion  
Figure 8. FM section: Mute voltage  
6 (15)  
Rev. A3, 23-Feb-01  
U2510B  
0
–20  
–40  
–60  
6
5
4
3
2
AM  
S+N(m=80%)  
S+N(m=30%)  
I
LED  
FM  
V =6V  
S
f =1.6MHz  
i1  
N
f =1kHz  
AF  
T
amb  
=25°C  
–80  
V =6V  
S
1
0
T
=25°C  
amb  
d(m=80%)  
d(m=30%)  
–100  
120  
120  
–20 20  
0
40 60 80  
100  
0
20  
40  
60  
80  
100  
V ( dBmV )  
i
V ( dBmV )  
i
95 10404  
95 10407  
Figure 9. AM section: Demodulator output level  
Figure 11. AM/FM level indicator current  
0
2.0  
V =6V  
S
V =10mV  
i3  
f
f
T
=1MHz  
=10kHz  
AF  
AF  
1.2  
0.8  
–20  
–40  
=25°C  
amb  
Treble Voltage V  
8
V =6V  
S
–60  
–80  
0.4  
0
f =1.6MHz  
i1  
T
amb  
=25°C  
Treble Voltage = 0  
2.5  
120  
0
0.5  
1
1.5  
V ( V )  
2
20  
0
20 40  
60  
80 100  
V ( dBmV )  
i
95 10406  
95 10408  
4
Figure 10. Volume control range characteristics  
Figure 12. AM section: AGC voltage (at Pin 22)  
Rev. A3, 23-Feb-01  
7 (15)  
U2510B  
0
S+N(Df="75kHz)  
V = 6 V  
S
–20  
–40  
–60  
f
f
= 98 MHz  
S+N(Df="22.5kHz)  
i2  
= 1 kHz  
AF  
T
amb  
= 25°C  
AM(m=30%)  
–80  
d(Df="75kHz)  
N
d(Df="22.5kHz)  
–100  
80  
100 120  
–20  
0
20  
40  
60  
V ( dBmV )  
i
95 10401  
Figure 13. FM section: Demodulator output level  
0
R =0  
3
S+N  
68kW  
–20  
V = 6 V  
R = 8 W  
L
S
AM  
100kW  
P = 50 mW at  
o
–40  
–60  
V
= 60 dBmV  
i2  
f
f
= 98 MHz  
i2  
= 1 kHz  
AF  
Df = "22.5 kHz  
m
T
= 30%  
AM  
N
d
= 25°C  
amb  
–80  
–100  
120  
100  
–20  
0
20  
40 60  
V ( dBmV )  
80  
95 10402  
i
Figure 14. FM section: Audio output level  
S+N  
0
–20  
–40  
N
P = 50 mW at  
o
d
V
= 60 dBmV  
i1  
–60  
–80  
R = 8 W  
L
f
f
= 98 MHz  
= 1 kHz  
i1  
AF  
m = 80%  
= 25°C  
T
amb  
–100  
–20  
120  
0
20  
40  
60 80  
100  
V ( dBmV )  
i
95 10405  
Figure 15. AM section: Audio output level  
8 (15)  
Rev. A3, 23-Feb-01  
U2510B  
Test Circuit  
R5  
150  
T2  
C2  
C3  
C4  
C5  
B
B
C24  
A
A
R6  
LA  
43 pF 22 pF  
18 pF  
22 pF  
Vi1  
L1 L2  
S4  
S5  
R4  
2.2 kΩ  
(50 Ω)  
100 Ω  
150 µH  
100 nF  
C25  
R7  
T4  
C7 C6  
R3  
Vi2  
150 k  
R8  
(50 Ω)  
75 Ω  
10 nF  
C25  
C19  
5.6 pF  
4.7 µF 22 nF  
C23  
50 Ω  
100  
pF  
68 nF  
C
B
C20  
S6  
Vmute  
A
C8  
4.7 µF  
C24  
18 pF  
22 nF  
AM IFT  
T1  
14  
13  
16  
12  
17  
11  
10  
19  
9
8
7
6
5
4
3
2
1
455 kHz  
CF1  
U2510B  
15  
20  
23  
25  
26  
18  
21  
22  
24  
27  
28  
CF2  
C22  
C9  
S1  
B
A
B
A
A
10.7 MHz  
R1  
S3  
B
off  
10 nF  
LED  
10 nF  
D1  
C15  
390 Ω  
220 µF  
R2  
Tape  
S2  
ViIF  
C14  
100 nF  
C10  
10 µF  
C11  
10 nF  
C12  
C13  
FM  
AM  
R9  
3 kΩ  
10 kΩ  
RL  
10 µF 470 µF  
C21  
8
/
2 W  
10 nF  
ILED  
VD  
Vi3  
VS  
Vo  
GND  
13913  
Figure 16. Test circuit  
Application  
General  
The U2510B is a bipolar monolithic IC for use in radio One of the general advantages of using the U2510B is the  
sets, for example, headphone receivers, radio recorders fact that all receiver functions (including the options) are  
and clock radios. The IC contains all AM, FM, AF and integrated and tested on a system level. Therefore, two  
switching function blocks necessary to construct these additional cost-savings are achieved by:  
kinds of radio receivers using only few components  
1. Shorter development time through less technical  
around the IC. In the design, special efforts were made to  
get good performance for all AM bands (short and long  
wave).  
problems and  
2. Higher reproductivity and low reject level in the set  
production line.  
The implementation of enhanced functions (options)  
makes it possible to improve the radio’s performance and  
to produce radios with interesting features. In this case  
few (external) parts have to be changed or added. By  
using all or some of the options offered by the U2510B  
different types or classes of radios can be designed to the  
customers requirements with the same IC.  
Another advantage, due to the technology of the  
U2510B, is the wide operating voltage range, espe-  
cially the upper limit (13 V). This feature allows the  
use of soft power supply for line powered radios  
which can also reduce the set’s total cost.  
Rev. A3, 23-Feb-01  
9 (15)  
U2510B  
Option e) improves the tuning behavior substantially. The  
special design of the on-chip AFC function means that  
common disadvantages such as asymmetrical slope,  
(chip-) temperature effects and unlimited holding range  
are avoided. As mentioned in the “Pinning Description  
Table”, the AFC slope has to be inverted when the local  
oscillator (LO) frequency has to be below the receiving  
frequency. This can be achieved by connecting Pin 21 to  
the potential of Pin 8. In addition to the options described  
above, the following proposals are implemented in the  
circuit diagram (figure 18), too:  
Circuit Example  
Figure 17 shows a circuit diagram for low end AM/AF  
radios using the U2510B. Figure 18 shows a circuit  
diagram of AM/AF radio for higher class designs using all  
possible options of the U2510B. The layout of the PC  
board, shown in figure 19, is suitable for both the circuit  
example shown in figure 17 and the circuit example  
shown in figure 18. The associated coil, varicon and filter  
specifications are listed in the table: COIL DATA and  
SPECIAL COMPONENT PARTS. The circuit diagram  
(figure 18), has the following options compared to the  
circuit diagram (figure 17) (the additional parts, which  
have to be provided, are listed in parentheses):  
D An FM IFT is applied. This improves the channel  
selectivity and minimizes substantially the spurious  
responses caused by the FM ceramic filter (CF ). With  
2
a) Soft mute and high cut control in FM mode (1 cap.)  
the choice of the winding ratio of this IFT, the FM  
front end gain can be matched to other values if neces-  
sary.  
b) Electronic treble control in AM, FM and TAPE mode  
(1 pot.)  
c) On-chip mode control for TAPE application  
d) RF AGC in FM mode (1 capacitor)  
D In the FM RF input section, the low cost antenna filter  
(L , C ) is replaced by a special band pass filter  
5
15  
(PFWE8). Such a BPF protects the FM front end  
against the out-off-band interference signals (TV  
channels, etc.) which could disturb the FM reception.  
e) AFC, adjustable to the correct polarity and slope  
(1 cap.)  
f) Tuning indication using LED as an indicator  
(1 LED, 1 cap.)  
Design Hints  
Option a) reduces the interstation noise by the two  
functions: soft mute and HCC. Both are controlled by the  
mute voltage (Pin 1). The soft mute reduces the loudness  
only, while the HCC reduces the high-end audio cut-off  
frequency of the audio preamplifier, when the signal level  
falls below a given threshold. This signal level threshold  
as well as the mute depth can be reduced by adding a  
The value of the power supply blocking capacitor C  
13  
should not be below 470 mF. In addition, this capacitor  
should be placed near Pin 26. This will help to avoid  
unacceptable noise generated by noise-radiation from the  
audio amplifier via the bar-antenna. In designs, where the  
supply voltage goes below 2.5 V, the value of the blocking  
capacitor (C ) should be chosen as 47 mF or even higher.  
7
resistor (R ) or by increasing the FM front–end gain.  
3
To achieve a high rejection of short wave reception in  
medium wave operation, the LO amplitude at Pin 5  
should not exceed approximately 200 mV. This LO  
amplitude depends on the LO transformer’s Q and its  
turns ratio. For the LO transformer type described in the  
Option b) allows the treble control for all operating modes  
without the need of an additional capacitor. This concept  
leads to a smooth and correct treble control behavior  
which is an improvement compared to the controlled RC  
network normally used.  
“Coil Data Table”, a resistor R (2.2 kW for example) in  
4
parallel to the secondary side of the AM LO transformer  
Option c) is very useful for application in radio  
cassette-recorders, for instance. In TAPE mode, the  
AM/FM receiver blocks are completely switched off and  
the signal from the tape recorder can be fed to the audio  
amplifiers input directly. This saves quiescent current  
and makes the TAPE switching easy. However, to  
minimize switching noise by the mode switch, the  
following switch sequence should be chosen: AM, FM,  
TAPE.  
T is recommended. To minimize feedback effects in the  
2
RF/IF part in FM mode, the capacitor C should be placed  
6
as near to Pins 8 and 20 as possible.  
As shown in the application circuit diagrams (figures 17  
and 18), in FM mode ceramic filter devices are used for  
channel selection (CF ) while for FM, demodulation in  
2
LC-discriminator circuit (T , C , C ) is used instead of  
4
24 25  
a ceramic discriminator device.  
Option d) improves the strong signal behavior by Such an LC discriminator circuit can be easily matched  
protecting the FM mixer against overload. This is to the FM IF selectivity block by its alignment. The zero-  
provided by the integrated broad-band-width RF AGC. If crossing of the discriminator can be detected at the  
necessary, the AGC threshold can be decreased by a demodulator output (Pin 23). The zero-crossing voltage  
resistor, loading Pin 11 to GND (not shown).  
is equal to half of the regulated voltage at Pin 8.  
10 (15)  
Rev. A3, 23-Feb-01  
U2510B  
The alignment of the LC-discriminator circuit should be In general, ceramic discriminator devices can be used,  
done with little or no effect on the AFC function. This can too. In this case, the effect of unavoidable spreads in the  
be realized by:  
frequency characteristics of these case ceramic devices in  
conjunction with the IC characteristic has to be consid-  
switching Pin 21 to open-circuit  
connecting Pin 1 to a voltage source of 2 V ered. For example, mismatches of the characteristics  
using a low signal level for alignment.  
between selectivity block and FM discriminator will lead  
to an increased signal-to-noise ratio at low signal level as  
well as to a higher demodulation distortion level or to an  
asymmetrical AFC.  
Application Circuits  
Antenna  
FM AM  
T2  
L3  
C2  
C3  
C4  
C5  
Volume  
P1  
C16  
2 pF  
27 pF  
6 pF  
22 pF  
50 kΩ  
L1 L2  
33 pF  
C18  
C17  
33 pF  
33 pF  
L4  
T4  
C7 C6  
C25  
100 pF  
4.7 µF 22 nF  
C8  
C24  
18 pF  
4.7 µF  
AM IFT  
T1  
14  
15  
13  
16  
12  
17  
11  
18  
10  
9
8
7
6
5
4
3
2
1
455 kHz  
CF1  
U2510B  
19  
20  
23  
25  
26  
21  
22  
24  
27  
28  
CF2  
C9  
10.7 MHz  
C15  
S1  
R1  
10 nF  
220 µF  
390 Ω  
100 nF  
C14  
VS  
Z = 8 Ω  
C10  
4.7 µF  
C11  
10 nF  
C12  
C13  
S2  
AM  
4.7 µF 470 µF  
FM  
13915  
Figure 17. Application circuit (low cost)  
Rev. A3, 23-Feb-01  
11 (15)  
U2510B  
Antenna  
FM  
AM  
Volume  
Treble  
T2  
C3  
L3  
C2  
C4  
C5  
P1  
P2  
2 pF  
27 pF  
6 pF  
22 pF  
50 kΩ  
50 kΩ  
L1 L2  
R4  
BPF 1  
2.2 kΩ  
T4  
C25  
C7 C6  
100 pF  
C23  
22 nF  
4.7 µF  
68 nF  
(R3)  
C20  
22 pF  
11  
C19  
5.6 pF  
C8  
4.7 µF  
C24  
18 pF  
Mute  
Adj.  
AM IFT  
14  
15  
13  
16  
12  
17  
10  
9
8
7
6
5
4
3
2
1
T1  
455 kHz  
CF1  
U2510B  
AM IFT  
T3  
19  
20  
23  
25  
26  
18  
21  
22  
24  
27  
28  
CF2  
C22  
C9  
10.7 MHz  
C15  
220 µF  
S1  
100 pF  
10 nF  
LED  
22 nF  
100 nF  
C14  
D1  
R2  
VS  
S2  
AM  
Tape  
FM  
10 k  
C10  
10 µF  
C11  
10 nF  
C12  
C13  
C21  
10 nF  
4.7 µF 470 µF  
13914  
IN Tape  
Figure 18. Application circuit (upgraded) R2 only if VS > 8 V  
Figure 19. PC-board  
12 (15)  
Rev. A3, 23-Feb-01  
U2510B  
Coil Data and Special Component Part  
Part  
Stage  
L or C  
between  
Q between  
0
Wire diameter/mm  
Terminal No.  
Type  
Manufacturer  
0
Number of turns  
T
T
AM IFT  
180 pF  
1 to 3  
90  
1 to 3  
0.07  
1 to 2  
111  
0.07  
2 to 3  
35  
0.07  
4 to 6  
7
7MC-7789N  
Toko  
21K7-H5  
Mitsumi  
1
2
AM OSC  
270 mH  
1 to 3  
125  
1 to 3  
0.06  
1 to 3  
107  
0.06  
4 to 6  
29  
7TRS-8441  
Toko  
L-5K7-H5  
Mitsumi  
T
T
L
L
L
FM IFT  
(optional)  
100 pF  
1 to 3  
0.09  
1 to 2  
3
0.09  
2 to 3  
7
0.09  
4 to 6  
2
mat.:  
7P A119 AC  
Toko  
3
4
1
2
4
FM discrimi-  
nator  
100 pF  
1 to 3  
0.09  
1 to 3  
10  
mat.:  
7P A119 AC  
Toko  
FM RF  
air coil  
4 mm diam.  
0.62  
3.75  
0.62  
FM OSC  
air coil  
4 mm diam.  
3.75  
0.62  
FM antenna  
air coil  
4 mm diam.  
4.75  
L
AM bar antenna  
(optional)  
L: 630 mH  
total turns : 96  
tap: 19  
3
BPF1  
PFWE8 (88 to 108 MHz)  
Soshin Electric Co.  
CF  
CF  
CF  
SFU-455B  
BFCFL-455  
Murata  
Toko  
1
2
3
SFE10.7MA5  
CFSK 107M1  
Murata  
Toko  
(optional)  
CDA10.7MC1  
Murata  
Toko  
C
Variable capacitor  
HD22124  
AM/FM  
1
4 mm  
3 mm  
80 mm  
3
2
4
4
18 mm  
6
C1  
Pin 10 Pin 8  
Coil, bottom view  
Air coil  
AM bar antenna  
13931  
Figure 20.  
Rev. A3, 23-Feb-01  
13 (15)  
U2510B  
Package Information  
Package SDIP28  
Dimensions in mm  
27.5  
27.1  
10.26  
10.06  
4.8  
4.2  
0.9  
3.3  
8.7  
8.5  
0.35  
0.25  
0.53  
0.43  
12.2  
11.0  
23.114  
1.778  
technical drawings  
according to DIN  
specifications  
1
13044  
14 (15)  
Rev. A3, 23-Feb-01  
U2510B  
Ozone Depleting Substances Policy Statement  
It is the policy of Atmel Germany GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems  
with respect to their impact on the health and safety of our employees and the public, as well as their impact on  
the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as  
ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid  
their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these  
substances.  
Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed  
in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances  
and do not contain such substances.  
We reserve the right to make changes to improve technical design and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each customer  
application by the customer. Should the buyer use Atmel Wireless & Microcontrollers products for any unintended  
or unauthorized application, the buyer shall indemnify Atmel Wireless & Microcontrollers against all claims,  
costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death  
associated with such unintended or unauthorized use.  
Data sheets can also be retrieved from the Internet:  
http://www.atmel–wm.com  
Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423  
Rev. A3, 23-Feb-01  
15 (15)  

相关型号:

U2510B-M-T

Audio Single Chip Receiver, AM/FM, Bipolar, PDIP28, SDIP-28
ATMEL

U2510B-MT

All-Band AM/FM Receiver and Audio Amplifier
ATMEL

U2514B

AM/FM Receiver for Digital Tuning with FM-Stereo Decoder
TEMIC

U2514B-AFN

AM/FM Receiver for Digital Tuning with FM-Stereo Decoder
TEMIC

U2514B-AFNG3

AM/FM Receiver for Digital Tuning with FM-Stereo Decoder
TEMIC

U2514B-FN

Consumer Circuit, PDSO28,
TEMIC

U2514B-M

Audio Single Chip Receiver, AM/FM, Bipolar, PDIP28, DIP-28
TEMIC

U2514B-MFN

Audio Single Chip Receiver, AM/FM, Bipolar, PDSO28, SSO-28
TEMIC

U2514B-MFNG3

Audio Single Chip Receiver, AM/FM, Bipolar, PDSO28
MICROCHIP

U2514B-MFNG3

Audio Single Chip Receiver, AM/FM, Bipolar, PDSO28, SSO-28
TEMIC

U2531B

Monolithic Integrated Circuit
ETC

U2532B

IR Transmitter and Receiver
TEMIC