U4065B-AFL [ATMEL]

FM Receiver IC; FM接收器IC
U4065B-AFL
型号: U4065B-AFL
厂家: ATMEL    ATMEL
描述:

FM Receiver IC
FM接收器IC

消费电路 调谐器集成电路 商用集成电路 放大器 光电二极管 异步传输模式 ATM
文件: 总34页 (文件大小:350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
On-chip Control Functions are Available for System Gain Adjust  
(dB Linear versus DC Current)  
Low Noise LO Design  
ESD Protected  
Benefits  
FM Receiver IC  
U4065B  
All Front-end Functions of a High-performance FM Receiver Except the RF  
Preamplifier are Integrated  
Improved Dynamic Range by High Current Double-balanced Mixer Design and a New  
AGC Conception with 3 Loops On-chip  
Improved Blocking and Intermod Behavior Due to a Unique “Interference” Sensor  
Controlling the AGC  
Easy Cascading of 3 IF Filters (Ceramic) Enabled by Two On-chip IF Preamplifiers  
Description  
The IC U4065B is a bipolar integrated FM front-end circuit. It contains a mixer, an  
oscillator, two IF preamplifiers and an unique interference sensor. The device is  
designed for high-performance car radio and home receiver applications.  
Rev. 4807A–AUDR–05/04  
Figure 1. Block Diagram  
VS  
VS  
IF gain adjust  
ANT  
IF BPF  
IF tank  
IF BPF  
IF output  
IF BPF  
19  
18  
5
3
20  
7
21 4  
RF tank  
16  
14  
2
PIN  
Mixer  
IF 1  
IF 2  
ATT  
AGC  
wide band  
and IF  
13  
AGC adjust  
(wide band)  
RF  
Interference  
mixer  
RF tank  
NC  
12  
VREF = 4 V  
IF and  
LO tank  
detector  
23  
24  
17  
Voltage  
Local  
oscillator  
regulator  
6
+
9
11  
1
8
22  
10  
VS  
Interference  
IF BPF  
LO output  
VTUNE  
VS  
AGC level  
2
U4065B  
4807A–AUDR–05/04  
U4065B  
Pin Configuration  
Figure 2. Pinning SO24  
1
2
3
4
5
6
7
8
9
24 LOB  
23 LOE  
LOBUFF  
GND1  
22  
21  
20  
GND5  
IF2OUT  
GAINIF1  
IF2IN  
IF1IN  
GND4  
MIXOUT2  
MIXOUT1  
19  
18  
17  
VS  
IF1OUT  
VREF  
GND2  
IMIFIN  
16  
MIXIN2  
10  
11  
15  
14  
AGCOUT  
MIXIN1  
GND3  
IMMIXOUT  
NC 12  
13  
AGCWB  
3
4807A–AUDR–05/04  
Pin Description  
Pin  
Symbol  
Function  
1
LOBUFF  
GND1  
Buffered local oscillator output  
Ground of the second IF amplifier  
Output of the second IF amplifier  
Gain control of the first IF amplifier  
Input of the second IF amplifier  
Supply voltage  
2
3
IF2OUT  
GAINIF1  
IF2IN  
4
5
6
VS  
7
IF1OUT  
GND2  
Output of the first IF amplifier  
Ground  
8
9
IMIFIN  
AGCOUT  
IMMIXOUT  
NC  
Input of the amplifier for the IM sensor  
Output of the automatic gain control  
Output of the intermodulation mixer  
Not connected  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
AGCWB  
GND3  
Threshold adjustment of the wideband AGC  
Mixer ground  
MIXIN1  
MIXIN2  
VREF  
Input 1 of the double-balanced mixer  
Input 2 of the double-balanced mixer  
Reference voltage output  
Mixer output 1  
MIXOUT1  
MIXOUT2  
GND4  
Mixer output 2  
Ground of the first IF amplifier  
Input of the first IF amplifier  
Oscillator ground  
IF1IN  
GND5  
LOE  
Local oscillator (emitter)  
Local oscillator (base)  
LOB  
4
U4065B  
4807A–AUDR–05/04  
U4065B  
LOBUFF  
Figure 3. Buffered Local Oscillator Output  
+
23  
50  
1
ESD  
1 V  
The buffered local oscillator used for output, drives the FM input of the PLL circuit (for  
example, U428xBM family). The typical parallel output resistance at 100 MHz is 70 ,  
the parallel output capacitance is about 10 pF. When using an external load of 500 /10  
pF, the oscillator swing is about 100 mV. The second harmonic of the oscillator fre-  
quency is less than -15 dBc.  
GND1  
Figure 4. Ground of the Second IF Amplifier  
8
ESD  
2
There is no internal connection to the other ground pins.  
IF2OUT  
Figure 5. Output of the Second IF Amplifier  
3
ESD  
VS  
VREF  
The parallel output capacitance to ground is about 7 pF. The external load resistance  
must be connected to VS. The DC current into the pin is typically 3 mA.  
Note:  
The supply voltage VS has to be protected against IF distortion.  
5
4807A–AUDR–05/04  
GAINIF1  
Figure 6. Gain Control of the First IF Amplifier  
17 VREF  
2 k  
ESD  
4
The gain of the first IF amplifier can be adjusted by a resistor to ground. This is useful,  
for example, to compensate for the insertion loss tolerances of the ceramic BPFs. It  
must be ensured that the output current of the pin does not exceed 150 µA in any case.  
Linear increasing in the current out of GAINIF1 results in a linear dB increase of the gain  
(0.15 dB/µA).  
I4 = 0, thus, G = Gmin = 2 dB  
I4 = 140 µA, thus, G = Gmax = 22 dB  
IF2IN  
Figure 7. Input of the Second IF Amplifier  
VREF  
5
ESD  
The parallel input resistance is 330 . The parallel input capacitance is about 12 pF. No  
DC current is allowed. To avoid overload of this stage, an internal detector watches the  
input level and causes current at the AGCOUT pin.  
6
U4065B  
4807A–AUDR–05/04  
U4065B  
IF1OUT  
Figure 8. Output of the First IF Amplifier  
VS  
ESD  
330  
7
The parallel output resistance is 330 which allows the use of standard ceramic BPF.  
The parallel output capacitance is about 7 pF. The DC voltage at the pin is 0.5 V less  
than VS.  
IMIFIN  
Figure 9. Input of the IF Amplifier for the IM Sensor  
9
ESD  
The parallel input resistance is 330 . The amplifier is extremely sensitive to AC signals.  
An IF signal with a few hundred µV at this pin will cause current at the AGC output.  
Therefore, attention needs to be paid when connecting the standard ceramic filter  
between IMOUT and this pin. The reference point of the filter has to be free of any AC  
signal, no DC current shall appear at this pin.  
7
4807A–AUDR–05/04  
AGCOUT  
Figure 10. Output of the Automatic Gain Control  
10  
1k  
ESD  
1 V  
The AGC output is an open collector output. The current of the pin diode is this current  
multiplied by the current gain of the external PNP transistor. The DC voltage at the pin  
may vary from 2 V to VS, therefore, this pin can easily be used as an indicator of the  
AGC regulation state.  
IMMIXOUT  
Figure 11. Output of the Intermodulation Mixer  
VS  
ESD  
300  
11  
1 V  
The parallel output resistance is 330 which allows the use of standard ceramic BPF  
without any further matching network. It must be ensured that the ground pin of the filter  
is free of AC signals.  
AGCWB  
Figure 12. Threshold Adjustment of the Wideband AGC  
VREF  
35k  
32k  
ESD  
13  
The threshold of the wideband AGC can be adjusted by an external resistor to ground.  
The setting range is 10 dB. For minimum blocking, this pin is connected to ground. To  
set the threshold to lower levels, the resistance should have a value of up to a few hun-  
dred k.  
8
U4065B  
4807A–AUDR–05/04  
U4065B  
MIXIN1  
MIXIN2  
VREF  
Figure 13. Input 1 of the Double-balanced Mixer  
VREF  
2.5k  
15  
ESD  
The parallel input resistance is 1.2 k. The parallel input capacitance is about 9 pF.  
When using the mixer in an unbalanced way, this pin needs to be grounded for RF sig-  
nals by an external capacitance of a few nF. DC current is not allowed.  
Figure 14. Input 2 of the Double-balanced Mixer  
VREF  
2.5k  
16  
ESD  
The parallel input resistance is 1.6 k. The parallel input capacitance is about 7 pF. The  
double sideband noise figure of the unbalanced mixer is about 7 dB. If using the mixer in  
balanced mode, the noise figure will be reduced by about 0.8 dB.  
Figure 15. Reference Voltage Output  
VS  
200  
4.6 V  
17  
ESD  
The internal temperature-compensated reference voltage is 3.9 V and it is used as bias  
voltage for most blocks. Therefore, the electrical characteristics of the U4065B are  
mainly independent of the supply voltage. The internal output resistance of the refer-  
ence voltage is less than 10 . To avoid internal coupling across this pin, external  
capacitors are required. The maximum output current is IREF = 5 mA.  
9
4807A–AUDR–05/04  
MIXOUT1, MIXOUT2  
Figure 16. Mixer Output 1, 2  
19  
18  
ESD  
The mixer output is an open collector of a bipolar transistor. The minimum voltage at  
these pins is 5 V (VS - voltage swing). The DC current into these pins is typically 9 mA.  
Good LO and RF suppression at the mixer output can be achieved by symmetrical load  
conditions at the pins MIXOUT1 and MIXOUT2.  
IF1IN  
Figure 17. Input of the First IF Amplifier  
21  
VREF  
330  
ESD  
The typical input resistance is 330 . The DC voltage is almost identical to the reference  
voltage. DC current must be avoided at this pin.  
10  
U4065B  
4807A–AUDR–05/04  
U4065B  
LOE  
Figure 18. Emitter of the Local Oscillator  
23  
ESD  
An external capacitor is connected between LOE and ground. The ground pin of this  
capacitor must be connected to pin GND5, the chip-internal ground of the local  
oscillator.  
LOB  
Figure 19. Base of the Local Oscillator  
24  
ESD  
The tank of the local oscillator is connected at pin LOB. The ground pin of this tank  
needs to be connected to pin GND5, the chip-internal ground of the local oscillator’s  
pin 24. The resonant resistance of the tank should be about 250 . Minimum Q of the  
unloaded tank is 50.  
11  
4807A–AUDR–05/04  
Functional Description  
The U4065B FM-frontend IC is the dedicated solution for high-end car radios. A new  
design philosophy enables to build up tuners with superior behavior. This philosophy is  
based on the fact that the sensitivity of state of the art designs is at the physical border  
and cannot be enhanced any more. On the other hand, the spectral power density in the  
FM-band increases. An improvement of reception can only be achieved by increasing  
the dynamic range of the receiver. This description is to give the designer an introduc-  
tion to get familiar with this new product and its philosophy.  
The Signal Path  
The U4065B offers the complete signal path of an FM-frontend IC including a highly lin-  
ear mixer and two IF preamplifiers. The mixer is a double-balanced, high-current Gilbert  
Cell. A high transit frequency of the internal transistors enables the use of the emitter  
grounded circuit with its favorable noise behavior. The full balanced output offers LO  
carrier reduction.  
The first IF preamplifier has a dB-linear gain adjustment by DC means. Thus, different  
ceramic filter losses can be compensated and the overall tuner gain can be adapted to  
the individual requirements. The low noise design suppresses post stage noise in the  
signal path. Input and output resistance is 330 to support standard ceramic filters. This  
is achieved without feedback, which would cause different input impedances when vary-  
ing the output impedance.  
The second IF preamplifier enables the use of three ceramic filters with real 330 input-  
and output termination. Feedthrough of signals is kept low. The high level of output com-  
pression is necessary to keep up a high dynamic range.  
Beneath the signal path the local oscillator part and the AGC signal generation can be  
found on chip. The local oscillator uses the collector grounded colpitts type. A low phase  
noise is achieved with this access. A mutual coupling in the oscillator coil is not  
necessary.  
The AGC Concept  
Special care was taken to design a unique AGC concept. It offers 3 AGC loops for differ-  
ent kinds of reception conditions. The most important loop is the interference sensor  
part.  
In today’s high-end car radios, the FM AGC is state of the art. It is necessary to reduce  
the influence of 3rd and higher order intermodulation to sustain reception in the pres-  
ence of strong signals in the band. On one hand, it makes sense to reduce the desired  
signal level by AGC as few as possible to keep up stereo reception, on the other hand  
two or more strong out-of-channel signals may interfere and generate an intermodula-  
tion signal on the desired frequency. By introducing input attenuation, the level of the  
intermod signal decreases by a higher order, whereas the level of the desired signal  
shows only a linear dependency on the input attenuation. Therefore, input attenuation  
by pin diodes may keep up reception in the presence of strong signals.  
The standard solution to generate the pin diode current is to pick up the RF-signal in  
front of the mixer. Because the bandwidth at that point is about 1.5 MHz, this is called  
wideband AGC. The threshold of AGC start is a critical parameter. A low threshold does  
not allow any intermodulation but has the disadvantage of blocking if there is only one  
strong station on the band or if the intermod signals do not cover the desired channel. A  
higher AGC threshold may tolerate a certain ground floor of intermodulation. This avoids  
blocking, but it has the disadvantage, that no reception is possible, if the interfering sig-  
nals generate an intermod signal inside the desired channel. This contradiction could  
not be overcome in the past.  
12  
U4065B  
4807A–AUDR–05/04  
U4065B  
With the new U4065B IC, there is a unique access to this problem. This product has an  
interference sensor on chip. Thus, an input signal attenuation is only performed if the  
interfering signals do generate an intermod signal inside the desired channel. If they do  
not, the existing wideband AGC is active but up to 20 dB higher levels. The optimum  
AGC state is always generated.  
The Figure 20 to Figure 23 on page 14 illustrate the situation. In Figure 20 the AGC  
threshold of a standard tuner is high to avoid blocking. But then the intermod signal sup-  
presses the desired signal. The interference sensor of the U4065B ensures that the  
AGC threshold is kept low as illustrated in Figure 21 on page 14.  
In Figure 22 on page 14 the situation is reversed. The AGC threshold of a standard  
tuner is kept low to avoid intermod problems. But then blocking makes the desired sig-  
nal level drop below the necessary stereo level. In this case, the higher wideband AGC  
level of the U4065B enables perfect stereo reception.  
By principle, this interference sensor is an element with a third order characteristic. For  
input levels of zero, the output level is zero, too. With increasing input level, the output  
level is increased with the power of three, thus preferring intermod signals compared to  
linear signals. At the same time, a down conversion to the IF level of 10.7 MHz is per-  
formed. If a corresponding 10.7 MHz IF filter selects the intermod signals, only an output  
is generated, if an intermod signal inside the 10.7 MHz channel is present.  
The circuit blocks interference sensor and IF, and detector build up a second IF chain. In  
an FM system, the maximum deviation of a 3rd order intermod signal is the triple max  
deviation of the desired signal. Therefore, the ceramic IF BPF between pin 11 and pin 9  
may be a large bandwidth type. This is all that is needed for this unique feature.  
A further narrow band AGC avoids overriding the second IF amplifier. The amplitude  
information of the channel is not compressed in order to maintain multipath detection in  
the IF part of the receiver.  
Figure 20. A High AGC Threshold Causes the Intermod Signal to Suppress the Desired  
Signal  
Level  
Interfering signals  
Intermod signal  
Intermod signal  
Desired  
signal  
Stereo-level  
Noise floor  
Desired  
Frequency  
frequency  
13  
4807A–AUDR–05/04  
Figure 21. AGC Threshold Settings  
Level  
Interfering signals  
Desired  
signal  
Stereo-level  
Noise floor  
Intermod  
signal  
Intermod signal  
Desired  
frequency  
Frequency  
Figure 22. A Low AGC Threshold Causes the Blocking Signal to Suppress the Desired  
Signal  
Level  
Strong signal  
Stereo-level  
Desired  
signal  
Noise floor  
Desired  
Frequency  
frequency  
Figure 23. The Correct AGC Threshold Enables Optimum Reception  
Level  
Strong signal  
Desired  
signal  
Stereo-level  
Noise floor  
Desired  
Frequency  
frequency  
14  
U4065B  
4807A–AUDR–05/04  
U4065B  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Reference point is ground (pins 2, 8, 14, 20 and 22)  
Parameters  
Symbol  
VS  
Value  
10  
Unit  
V
Supply voltage  
Power dissipation at Tamb = 85°C  
Junction temperature  
Ambient temperature range  
Storage temperature range  
Ptot  
470  
mW  
°C  
Tj  
125  
Tamb  
Tstg  
-30 to +85  
-50 to +125  
°C  
°C  
Electrostatic handling: Human body model (HBM),  
all I/O pins tested against the supply pins  
± VESD  
2000  
V
Thermal Resistance  
Parameters  
Symbol  
Value  
Unit  
Thermal resistance  
RthJA  
90  
K/W  
Electrical Characteristics  
VS = 8.0 V, fRF = 98 MHz, fOSC 108.7 MHz, fIF = fOSC - fRF = 10.7 MHz  
Reference point is ground (pins 2, 8, 14, 20, and 22),Tamb = 25°C, unless otherwise specified.  
Parameters  
Test Conditions  
Pin  
Symbol  
VS  
Min.  
Typ.  
8
Max.  
10  
Unit  
V
Supply voltage  
Supply current  
3, 6, 10, 18, 19  
3, 6, 10, 18, 19  
7
Itot  
37  
47  
mA  
Oscillator (GND5 Has to be Connected to External Oscillator Components)  
24  
23  
1
VLOB  
VLOE  
VLOBUFF  
160  
100  
90  
RG24 = 220 , unloaded Q  
of LOSC = 70, RL1 = 520 Ω  
Oscillator voltage  
mV  
70  
220  
-15  
Harmonics  
1
dBc  
Output resistance  
Voltage gain  
1
RLO  
70  
Between 1 and 23  
0.9  
Mixer (GND3 Has to be Separated from GND1, GND2 and GND4)  
Conversion power gain  
Source impedance:  
GC  
IP3  
5
4
7
6
10  
14  
dB  
3rd-order input intercept  
Conversion transconductance  
Noise figure  
dBm  
RG15,16 = 200 Ω  
Load impedance:  
RL18,19 = 200 Ω  
gC  
8
mA/V  
dB  
NFDSB  
Rignd15  
Cignd15  
Rignd16  
Cignd16  
Rii15,16  
Cii15,16  
Cignd18,19  
7
Input resistance to ground  
Input capacitance to ground  
Input resistance to ground  
Input capacitance to ground  
Input-input resistance  
f = 100 MHz  
f = 100 MHz  
f = 100 MHz  
f = 100 MHz  
15  
1.2  
9
kΩ  
pF  
15  
16  
1.6  
7
kΩ  
pF  
16  
Between 15 and 16  
Between 15 and 16  
18 and 19  
1.6  
5
kΩ  
pF  
Input-input capacitance  
Output capacitance to GND  
9
pF  
15  
4807A–AUDR–05/04  
Electrical Characteristics (Continued)  
VS = 8.0 V, fRF = 98 MHz, fOSC 108.7 MHz, fIF = fOSC - fRF = 10.7 MHz  
Reference point is ground (pins 2, 8, 14, 20, and 22),Tamb = 25°C, unless otherwise specified.  
Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
First IF Preamplifier (IF 1)  
Gain control deviation by I4  
Gain control slope  
4
4
17  
20  
24  
dB  
dGIF1/dI4  
0.15  
dB/µA  
External control current to ground  
At Gmin  
At Gnom  
At Gmax  
I4min  
I4nom  
I4max  
0
70  
140  
µA  
dB  
Power gain  
At I4min  
At I4nom  
Gmin  
Gnom  
Gmax  
-2.5  
11  
19  
2
12  
22  
2.5  
16  
28  
Between 21 and 7  
Between 21 and 7  
Source impedance:  
RG21 = 200 ,  
Load impedance:  
At I4max  
Noise figure  
At Gmax  
At Gnom  
RL7 = 200 Ω  
NFmin  
NFnom  
NFmax  
7
9
15  
dB  
At Gmin  
Temperature coefficient of the gain  
at Gnom  
TKnom  
+0.045  
dB/K  
1 dB compression at Gnom  
-3 dB cut-off frequency at Gnom  
Input resistance  
7
7
Vcnom  
fcnom  
RiIF1  
CiIF1  
RoIF1  
CoIF1  
70  
50  
330  
5
mV  
MHz  
f = 10 MHz  
f = 10 MHz  
f = 10 MHz  
f = 10 MHz  
21  
21  
7
270  
270  
400  
400  
Input capacitance  
pF  
Output resistance  
330  
7
Output capacitance  
7
pF  
Second IF Preamplifier (IF 2)  
Source impedance:  
RG5 = 200 Ω  
Load impedance:  
RL3 = 200 Ω  
Power gain  
Between 5 and 3  
GIF2  
15  
18  
19  
dB  
Noise figure  
NFIF2  
Vcomp  
fc  
7
500  
50  
330  
12  
50  
7
dB  
mV  
MHz  
1 dB compression  
3
3
5
5
3
3
-3 dB cutoff frequency  
Parallel input resistance  
Parallel input capacitance  
Parallel output resistance  
Parallel output capacitance  
Voltage Regulator  
f = 10 MHz  
f = 10 MHz  
f = 10 MHz  
f = 10 MHz  
RiIF2  
CiIF2  
RoIF2  
CoIF2  
270  
400  
pF  
kΩ  
pF  
Regulated voltage  
17  
17  
Vref  
Iref  
3.7  
5
3.9  
4.9  
50  
V
Maximum output current  
mA  
Internal differential  
resistance, dc17/di17 when I17 = 0  
17  
17  
rd17  
7
Power supply suppression  
f = 50 Hz  
psrr  
36  
50  
dB  
16  
U4065B  
4807A–AUDR–05/04  
U4065B  
Electrical Characteristics (Continued)  
VS = 8.0 V, fRF = 98 MHz, fOSC 108.7 MHz, fIF = fOSC - fRF = 10.7 MHz  
Reference point is ground (pins 2, 8, 14, 20, and 22),Tamb = 25°C, unless otherwise specified.  
Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
AGC Input Voltage Thresholds (AGC Threshold Current is 10 µA at Pin 10)  
IF2 input  
5
9
VthIF2  
VthIFD  
85  
42  
86  
43  
92  
48  
dBµV  
dBµV  
IF and detector  
fiRF = 100 MHz  
V at pin 13 = 0 V  
I through pin 13 = 0 A  
Mixer input level of  
wideband sensor  
Between 15 and 16  
VthWB1  
VthWB2  
95  
85  
98  
87  
100  
90  
dBµV  
dBµV  
Figure 24. Test Circuit  
VO IF  
4.7n  
4.7n  
VI IF  
50  
5
6
2
1
6
2
Gain IF 1  
50  
5
0 to 140 µA  
1
I4  
RL7 RG5  
VI IF  
50  
50  
2
7
4
20  
5
V
O IF  
5
1
1
6
5
21  
I3  
3
6
2
2
VS  
RG21  
RL3  
4.7n  
I18,19  
IF 1  
IF 2  
VS  
VO IF  
VS  
I10  
10  
13  
18  
2
6
5
AGC  
block  
50  
R13  
I13  
19  
14  
RL18,19  
1
AGC adjust  
(wide band)  
Mixer  
4.7n  
15  
16  
2
6
5
6
Voltage  
VS  
RG15,16  
regulator  
50  
I6  
1
4.7n  
1µ  
VI RF  
Interference  
mixer  
17  
9
VREF = 4 V  
RG24  
8p  
24  
23  
RG9  
4.7n  
Local  
Interference  
amplifier  
2
6
1
47p  
oscillator  
fOSC  
LOSC  
5
33p  
COSC  
50  
22  
11  
12  
8
1
VI IF  
RLOBUFF  
RG11  
Z/  
50 200  
VO IF  
470p  
RL1  
1
2
6
2
4
6
1
RF Transformers MCL  
Type TMO 4 - 1  
IL = 0.7 dB  
50  
VLOBUFF  
fLOBUFF  
5
5
4.7n  
0
0
17  
4807A–AUDR–05/04  
Local Oscillator  
Figure 25. LO Principle Application  
RG24  
VOSC24  
24  
23  
Local  
oscillator  
47p  
33p  
fOSC  
VOSC1, fOSC  
1
Oscillator  
output  
buffer  
520  
Tamb  
Free running oscillator frequency fOSC 110 MHz, VOSC24 = 160 mV, RG24 = 220 , QL = 70  
Figure 26. Oscillator Swing versus Temperature  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
-30  
-10  
10  
30  
50  
70  
90  
Tamb (°C)  
18  
U4065B  
4807A–AUDR–05/04  
U4065B  
Mixer  
fOSC = 110.7 MHz, VOSC24 160 mV, fIF = 10.7 MHz  
Figure 27. Mixer Principle Application  
VOIF  
50  
IL2  
18  
19  
14  
15  
IL1  
2 VIRF1  
fRF1  
1
5
2
1
5
2
6
Mixer  
6
2 VIRF2  
fRF2  
50  
RG24  
24  
23  
Local  
VS  
oscillator  
47p  
22p  
fOSC  
Tamb  
Conversion power gain GC = 20 log (VOIF/VIRF) + IL1 (dB) + IL2 (dB)  
IL1, IL2 insertion loss of the RF transformers  
Figure 28. Mixer Characteristic  
120  
100  
80  
60  
40  
20  
0
Conversion characteristic  
3rd order  
IM-characteristic  
0
20  
40  
60  
80  
100  
120  
VIRF1, VIRF2 (dBµV)  
19  
4807A–AUDR–05/04  
Figure 29. Conversion Power Gain of the Mixer Stage versus Temperature  
8
7
6
5
4
3
2
1
0
-30  
-10  
10  
30  
50  
70  
90  
Tamb (°C)  
Figure 30. Current of the Mixer Stage versus Temperature  
11.0  
10.7  
10.4  
10.1  
9.8  
9.5  
9.2  
8.9  
8.6  
8.3  
8.0  
-30  
-10  
10  
30  
50  
70  
90  
Tamb (°C)  
20  
U4065B  
4807A–AUDR–05/04  
U4065B  
First IF Preamplifier  
Figure 31. First IF Preamplifier Principle Application  
VOIF  
VOIF7  
L7 = 200  
VIIF21  
1 : 2  
IL1  
21  
2 : 1  
IL2  
7
IF  
R
RG21 = 200  
50  
1
5
2
6
2
1
5
50  
Tamb  
V (pin 4)  
I4  
4
fIF  
6
2VIIF  
Power gain GIF = 20 log (VOIF/VIIF) + IL1 (dB) + IL2 (dB)  
IL1, IL2 = insertion loss of the RF transformers  
Figure 32. Power Gain of the First IF Amplifier versus I4  
25  
T = 90°C  
20  
15  
T = -30°C  
10  
5
0
T = 30 °C  
-5  
0
20  
40  
60  
80  
100  
120  
140  
I4 (µA)  
21  
4807A–AUDR–05/04  
Figure 33. Power Gain of the First IF Amplifier versus Frequency  
25  
20  
Gmax  
15  
10  
5
Gnom  
0
Gmin  
-5  
-10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
f (MHz)  
Figure 34. V (Pin 4) versus I4  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
T = 90°C  
T = 30°C  
T = -30°C  
2.6  
2.4  
2.2  
2.0  
0
20  
40  
60  
80  
100  
120  
140  
I4 (µA)  
22  
U4065B  
4807A–AUDR–05/04  
U4065B  
Second IF Preamplifier  
Figure 35. Second IF Preamplifier Principle Application  
VS  
330  
VOIF  
VIIF5  
VOIF3  
3
2 : 1  
IL2  
5
1 : 2  
IL1  
IF  
RL3 = 200  
RG5 = 200  
2
1
5
2
6
1
5
50  
fIF  
2 VIIF  
50  
Tamb  
6
Power gain GIF = 20 log (VOIF/VIIF) + IL1 (dB) + IL2 (dB)  
IL1; IL2 = insertion loss of the RF transformers  
Figure 36. Power Gain of the Second IF Amplifier versus Temperature  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
-30 -20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Tamb (°C)  
23  
4807A–AUDR–05/04  
Figure 37. Power Gain of the Second IF Amplifier versus Frequency  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
f (MHz)  
Figure 38. AGC Threshold (110 = 1 µA) of the Second IF Amplifier versus Temperature  
87.0  
86.8  
86.6  
86.4  
86.2  
86.0  
-30  
-10  
10  
30  
50  
70  
90  
Tamb (°C)  
Figure 39. AGC Characteristic of the Second IF Amplifier Input  
10000.00  
1000.00  
100.00  
110 (90°C)/µA  
110 (-30°C)/µA  
10.00  
1.00  
0.10  
110 (30°C)/µA  
0.01  
80  
85  
90  
95  
100  
105  
VIIF (dBµA)  
24  
U4065B  
4807A–AUDR–05/04  
U4065B  
Interference Sensor (Mixer)  
Figure 40. Interference Sensor Principle Application  
50  
15  
IL1  
2 VIRF1  
RL11 = 200  
RG15/16  
= 200  
2
Interference  
mixer  
1
5
fIRF1  
11  
IL2  
6
2 VIRF2  
fIRF2  
VOIF  
fIF  
16  
2
1
5
50  
6
fLO  
Local  
oscillator  
VS  
IL1 = IL2 = 0.7 dB  
Test conditions for characteristic VOIF versus VIRF1  
:
fLO = 100 MHz, fRF1 = 89.3 MHz, VIRF2 = 0, fIF = fLO - fRF1 = 10.7 MHz  
Test conditions for 3rd order IM-characteristic VOIF versus VIRF1, VIRF2  
:
fLO = 100 MHz, fRF1 = 89.4 MHz, fRF2 = 89.5 MHz, fIF = fLO - (2 fRF1 - 1 fRF2) = 10.7 MHz  
IL1, IL2 = insertion loss of the RF transformer  
Figure 41. Characteristics of the Interference Sensor (Mixer)  
90  
80  
70  
Conversion  
characteristic  
60  
50  
40  
30  
20  
10  
0
3rd order  
IM-characteristic  
60  
65  
70  
75  
80  
85  
90  
95  
100  
VIRF (dBµV)  
25  
4807A–AUDR–05/04  
Figure 42. Conversion Characteristic of the Interference Sensor (Mixer)  
100  
90  
-30°C  
80  
70  
60  
30°C  
50  
40  
30  
90°C  
20  
10  
0
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
VIRF (dBµV)  
Figure 43. Third-order Interference Characteristic of the Interference Sensor (Mixer)  
80  
70  
60  
-30°C  
50  
40  
30°C  
30  
90°C  
20  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
VIRF (dBµV)  
26  
U4065B  
4807A–AUDR–05/04  
U4065B  
Interference Sensor (Amplifier)  
Figure 44. Interference Sensor Principle Application  
10  
VIIF9  
9
1 : 2  
IL1  
VS  
IF  
I10  
RG9 = 200  
50  
2
1
5
Tamb  
fIF  
6
2 VIIF  
IL1 = 0.7 dB  
AGC Thresholds  
Figure 45. AGC Threshold of the Interference IF Amplifier versus Temperature  
45.0  
44.5  
44.0  
43.5  
43.0  
42.5  
42.0  
41.5  
41.0  
-30 -20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Tamb (°C)  
Figure 46. Wideband AGC Threshold (I10 = 1 µA) versus I13  
105  
108 MHz  
100  
88 MHz  
95  
90  
98 MHz  
85  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
I13 (µA)  
27  
4807A–AUDR–05/04  
Figure 47. Wideband AGC Threshold (I10 = 1 µA) versus Temperature  
100  
U13 = 0 V  
98  
96  
94  
I13 = 30 µA  
92  
90  
88  
86  
84  
82  
80  
I13 = 0 A  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Tamb (°C)  
AGC Characteristics  
Figure 48. AGC Characteristic of the Interference IF and Detector Block  
10000.00  
-30°C  
1000.00  
90°C  
100.00  
30°C  
10.00  
1.00  
0.10  
0.01  
35  
45  
55  
65  
75  
85  
95  
VIIF (dBµV)  
Figure 49. Characteristic of the Wideband AGC (I13 = 0 V)  
10000.00  
1000.00  
-30°C  
100.00  
10.00  
30°C  
1.00  
90°C  
0.10  
0.01  
80  
85  
90  
95  
100  
105  
110  
115  
120  
VIIF (dBµV)  
28  
U4065B  
4807A–AUDR–05/04  
U4065B  
Figure 50. Characteristic of the Wideband AGC (V13 = 0 V)  
10000.00  
1000.00  
-30°C  
100.00  
10.00  
30°C  
1.00  
0.10  
90°C  
0.01  
90  
95  
100  
105  
110  
115  
120  
VIRF (dBµV)  
DC Characteristics  
Figure 51. Supply Current versus Supply Voltage  
18  
16  
I6  
14  
12  
10  
8
I18, I19  
6
I3  
4
2
0
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
VS (V)  
Figure 52. Reference Voltage versus Temperature  
3.88  
3.87  
3.86  
3.85  
3.84  
3.83  
3.82  
3.81  
-30 -20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Tamb (°C)  
29  
4807A–AUDR–05/04  
Figure 53. Supply Current versus Temperature  
40  
35  
30  
I3 + I6 + I18 + I19  
25  
20  
15  
I6  
I18, I19  
10  
I3  
5
0
-30  
-10  
10  
30  
50  
70  
90  
Tamb (°C)  
Figure 54. Reference Voltage versus I17  
4.00  
3.95  
3.90  
3.85  
3.80  
3.75  
-10  
-8  
-6  
-4  
-2  
0
2
4
I17 (mA)  
30  
U4065B  
4807A–AUDR–05/04  
U4065B  
Figure 55. Application Diagram  
31  
4807A–AUDR–05/04  
Part List  
Item  
Description  
Q1  
BFR93AR (BFR93A)  
Q2  
BC858  
D1  
S392D  
D2  
S391D  
D3, D4, D5  
BB804  
L1  
11 turns, 0.35 mm wire, 3 mm diameter (approximately 220 nH)  
L2  
2.2 mH (high Q type)  
L3  
TOKO® 7KL-type, # 600ENF-7251x  
TOKO 7KL-type, # 291ENS 2341IB  
TOKO 7KL-type, # M600BCS-1397N  
TOKO 7KL-type, # 291ENS 2054IB  
TOKO type SKM 2 (230 KHZ)  
TOKO type SKM 3 (180 KHZ)  
L4  
L5  
L6  
CF1  
CF2, CF3, CF4  
32  
U4065B  
4807A–AUDR–05/04  
U4065B  
Ordering Information  
Extended Type Number  
Package  
Remarks  
U4065B-AFL  
SO24 plastic  
SO24 plastic  
U4065B-AFL3  
Taping according to ICE-286-3  
Package Information  
Package SO24  
Dimensions in mm  
9.15  
8.65  
15.55  
15.30  
7.5  
7.3  
2.35  
0.25  
0.10  
0.25  
0.4  
10.50  
10.20  
1.27  
13.97  
24  
13  
technical drawings  
according to DIN  
specifications  
1
12  
33  
4807A–AUDR–05/04  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard  
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any  
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and  
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are  
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use  
as critical components in life support devices or systems.  
© Atmel Corporation 2004. All rights reserved.  
Atmel® and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.  
TOKO® is a registered trademark of TOKO KABUSHIKI KAISHA TA Toko, Inc.  
Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
4807A–AUDR–05/04  

相关型号:

U4065B-AFL3

FM Receiver IC
ATMEL

U4065B-AFLG3

FM Receiver
TEMIC

U406NL

Small Signal Field-Effect Transistor, N-Channel, Junction FET
VISHAY

U406NL-E3

Small Signal Field-Effect Transistor, N-Channel, Junction FET
VISHAY

U406_TO-71

Low Noise, Low Drift, Monolithic Dual N-Channel JFET
MICROSS

U406_TO-78

Low Noise, Low Drift, Monolithic Dual N-Channel JFET
MICROSS

U4070B-FP

Tone Ringer Interface
TEMIC

U4071B

Telecommunication IC
ETC

U4072B

Telecom IC,
VISHAY

U4074B

Tone Ringer Interface
TEMIC

U4074B-FP

暂无描述
TEMIC

U4076B

Three-Tone Ringer for Telephone Sets
TEMIC