U4089B [ATMEL]

MONOLITHIC INTEGRATED FEATUREPHONE CIRCUIT; 单片集成功能手机电路
U4089B
型号: U4089B
厂家: ATMEL    ATMEL
描述:

MONOLITHIC INTEGRATED FEATUREPHONE CIRCUIT
单片集成功能手机电路

手机
文件: 总25页 (文件大小:649K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Adjustable DC Characteristics  
Adjustable Transmit and Receive Gain  
Symmetrical Input of Microphone Amplifier  
Anti-clipping in Transmit Direction  
Automatic Line-loss Compensation  
Built-in Ear Protection  
DTMF and MUTE Input  
Adjustable Side Tone Suppression Independent of Sending and Receiving  
Amplification  
Integrated Amplifier for Loud-hearing Operation  
Anti-clipping for Loudspeaker Amplifier  
Improved Acoustical Feedback Suppression  
Selectable Line Impedance  
Monolithic  
Integrated  
Feature Phone  
Circuit  
Voice Switch  
Supply Voltages for All Functional Blocks of a Subscriber Set  
Operation Possible from 10-mA Line Current  
Benefits  
Complete System Integration of Analog Signal Processing on One Chip  
Very Few External Components  
U4089B-M  
Applications  
Feature Phones  
Answering Machines  
Fax Machines  
Speaker Phones  
Description  
The telephone circuit U4089B-M is a linear integrated circuit for use in feature phones,  
answering machines and fax machines. It contains the speech circuit, side tone  
equivalent and ear protection rectifiers. The circuit is line-powered and contains all  
components necessary for the amplification of signals and adaptation to the line.  
An integrated voice switch with a loudspeaker amplifier enables loud-hearing or  
hands-free operation. With an anti-feedback function, acoustical feedback during loud-  
hearing can be reduced significantly. The generated supply voltage is suitable for a  
wide range of peripheral circuits.  
Figure 1. Simple Block Diagram  
Speech  
circuit  
Audio  
amplifier  
Voice  
Dialer  
switch  
Rev. 4570A–CORD–04/03  
Figure 2. Block Diagram  
VL  
VB  
VMP  
GT  
STO  
IMPSEL AGA IND  
20 30  
SENSE  
10  
44  
32  
7
6
9
13  
600  
900 ꢀ  
4
MIC1  
MIC  
3
MIC2  
VM  
TXA  
33  
8
Power  
supply  
1
DTMF  
Impedance  
control  
GND  
41  
TX  
TTXA  
ACL  
Current  
supply  
27  
IREF  
AGA  
control  
INLDR  
INLDT  
TLDR  
31  
26  
29  
28  
25  
Acoustical  
feedback  
suppression  
control  
Transmit  
mute  
control  
Supply  
TLDT  
ATAFS  
11  
SAO  
R-  
SACL  
attenuation  
21  
23  
TSACL  
SAI  
22  
24  
39  
RECO  
40  
36  
42  
GSA  
MUTX  
GR  
STI  
RECIN  
2
U4089B-M  
4570A–CORD–04/03  
U4089B-M  
Pin Configuration  
Figure 3. Pinning SSO44  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
GT  
DTMF  
NC  
NC  
3
RECIN  
MIC2  
MIC1  
NC  
4
TTXA  
GR  
5
6
RECO  
NC  
IND  
7
VL  
8
NC  
GND  
9
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
STI  
NC  
NC  
VM  
SENSE  
10  
11  
VB  
SAO  
NC 12  
13  
VMP  
STO  
14  
15  
16  
17  
18  
NC  
NC  
NC  
NC  
NC  
IREF  
AGA  
TLDR  
TLDT  
INLDR  
INLDT  
ATAFS  
MUTX  
SAI  
19  
20  
NC  
IMPSEL  
21  
22  
24  
23  
TSACL  
GSA  
3
4570A–CORD–04/03  
Pin Description  
Pin  
Symbol Function  
1
DTMF Input for DTMF signals. Also used for the answering machine and hands-free input.  
MIC 2 Non-inverting input of microphone amplifier  
MIC 1 Inverting input of microphone amplifier  
3
4
The internal equivalent inductance of the circuit is proportional to the value of the capacitor at this pin. A resistor  
connected to ground may be used to reduce the DC line voltage.  
6
IND  
7
8
VL  
Line voltage  
GND  
Reference point for DC- and AC-output signals  
A small resistor (fixed) connected from this pin to VL sets the slope of the DC characteristic and also affects the line-  
length equalization characteristics and the line current at which the loudspeaker amplifier is switched on.  
9
SENSE  
10  
11  
13  
VB  
Unregulated supply voltage for peripheral circuits (voice switch); limited to typically 7 V  
Output of loudspeaker amplifier  
SAO  
VMP  
Regulated 3.3 V supply voltage for peripheral circuits. The maximum output current is 2 mA.  
Control input for selection of line impedance  
1) 600  
20  
IMPSEL 2) 900 ꢀ  
3) Mute of second transmit stage (TXA); also used for indication of external supply (answering machine);  
last chosen impedance is stored  
21  
22  
23  
TSACL Time constant of anti-clipping of speaker amplifier  
Current input for setting the gain of the speaker amplifier. Adjustment characteristic is logarithmical.  
For RGSA > 2 Mꢀꢁ thespeaker amplifier is switched off.  
GSA  
SA I  
Speaker amplifier input (for loudspeaker, tone ringer and hands-free use)  
Three-state input of transmit mute:  
1) Speech condition; inputs MIC1/MIC2 active  
24  
MUTX 2) DTMF condition; input DTMF active. A part of the input signal is passed to the receiving amplifier as a  
confidence signal during dialing.  
3) Input DTMF used for answering machine and hands-free use; receive branch is not affected.  
Attenuation of acoustical feedback suppression. Maximum attenuation of the AFS circuit is set by a resistor at this  
pin. Without the resistor, AFS is switched off.  
25  
ATAFS  
26  
27  
28  
29  
INLDT Input of transmit level detector  
INLDR Input of receive level detector  
TLDT  
TLDR  
Time constant of transmit level detector  
Time constant of receive level detector  
Automatic gain adjustment with line current. A resistor connected from this pin to GND sets the starting point.  
Max. gain change is 6 dB.  
30  
AGA  
31  
32  
33  
36  
39  
IREF  
STO  
VM  
Internal reference current generation; RREF = 62 k; IREF = 20 µA  
Side tone reduction output. Output resistance is approximately 300 . Maximum load impedance is 10 kꢀꢃ  
Reference node for microphone, earphone and loudspeaker amplifier. Supply for electret microphone (IM ? 300 µA).  
Input for side-tone network  
STI  
RECO Output of receiving amplifier  
A resistor connected from this pin to GND sets the receiving amplification of the circuit; amplifier RA1 can be  
muted by applying VMP to GR  
40  
GR  
41  
42  
TTXA  
Time constant of anti-clipping in transmit path  
RECIN Input of receiving path; input impedance is typically 80 kꢀ  
A resistor from this pin to GND sets the amplification of the microphone and DTMF signals; the input amplifier can  
be muted by applying VMP to GT.  
44  
GT  
4
U4089B-M  
4570A–CORD–04/03  
U4089B-M  
DC Line Interface and The DC line interface consists of an electronic inductance and an output stage which  
charges the capacitor at VB. The value of the equivalent inductance is given by:  
L = RSENSE P CIND Pꢀ(RDC PꢀR30)/(RDC + R30)  
Supply-voltage  
Generation  
In order to improve the supply during worst-case operating conditions, the PNP current  
source (IBOPT) supplies an extra amount of current to the supply voltages when the NPN  
in parallel is unable to conduct current.  
The U4089B-M contains a series regulator which provides a supply voltage VMP of 3.3 V  
at the 2 mA suitable for a microprocessor.  
Figure 4. DC Line Interface with Electronic Inductance and Generation of Regulated  
and Unregulated Supply  
VL  
10  
SENSE  
RSENSE  
IBOPT  
< 5 mA  
VMP  
CIND  
10 µF  
3.3 V/  
2 mA  
3.3 V  
+
-
+
-
47 µF  
IND  
R30  
RDC  
VB  
30 kꢀ  
7 V  
220 µF  
VOFFS  
5
4570A–CORD–04/03  
Figure 5. Functional Blocks for Power Supply  
VB  
7V  
Voltage  
regulator  
Power  
supply  
VMP  
VL  
ES  
IMPED  
CONTR  
LIDET  
VLON  
IMPSEL  
MIC, DTMF  
AGA, RA  
TXA  
TXACL  
OFFSA  
COMP  
SAL, SA  
SACL  
AFS  
TX MUTE  
MUT REC, STBAL  
RECATT  
1. In speech condition, the system is supplied by the line current. If the LIDET-block  
detects a line voltage above the fixed threshold (1.9 V), the internal signal VLON  
is activated, thus switching on all blocks of the chip.  
For line voltages below 1.9 V, the switches remain in their quiescent state as shown  
in Figure 5.  
OFFSACOMP disables the group listening feature (SAI, SA, SACL, AFS) below line  
currents of approximately 10 mA.  
2. Selecting IMPSEL = high impedance activates all switches at the ES line.  
Acoustic Feedback  
Suppression  
Acoustical feedback from the loudspeaker to the handset microphone may cause insta-  
bility in the system. The U4089B-M offers a very efficient feedback suppression circuit  
which uses a modified voice switch topology. Figure 6 shows the basic system  
configuration.  
Two attenuators (TX ATT and RX ATT) reduce the critical loop gain by introducing an  
externally adjustable amount of loss either in the transmit or in the receive path. The  
sliding control in block ATT CONTR determines whether the TX or the RX signal has to  
be attenuated. The overall loop gain remains constant under all operating conditions.  
Selection of the active channel is made by comparison of the logarithmically com-  
pressed TX and RX envelope curves.  
The system configuration for group listening, which is realized in the U4089B-M, is illus-  
trated in Figure 7. TXA and SAI represent the two attenuators; the logarithmic envelope  
detectors are shown in a simplified way (operational amplifiers with two diodes).  
6
U4089B-M  
4570A–CORD–04/03  
U4089B-M  
Figure 6. Basic Voice-switch System  
TX  
attenuation  
Handset  
microphone  
Logarithmic  
Hybrid  
Line  
Attenuation  
control  
Logarithmic  
Loud  
speaker  
RX  
attenuation  
Figure 7. Integration of the Acoustic Feedback-suppression Circuit Into the Speech Circuit Environment  
V
B
V
L
GT  
INLDT  
TLDT  
STO  
VL  
Z
L
-
+
VBG  
Zint  
SAO  
GSA  
AFS  
control  
Max  
att.  
AGA  
-
+
VBG  
RECIN  
STO  
SAI  
SAI  
TLDR  
RECO GR  
STI  
INLDR  
STN  
7
4570A–CORD–04/03  
Figure 8. Acoustic Feedback Suppression by Alternative Control of Transmit and Speaker Amplifier Gain  
TLDT  
TXA  
SAI  
RLDT  
RLDR  
INLDT  
INLDR  
AGA  
AGA  
IAGAFS  
IATGSA  
IGSA  
TLDR  
ATAFS  
GSA  
RATAFS  
A detailed diagram of the AFS (Acoustic Feedback Suppression) is given in Figure 8.  
Receive and transmit signals are first processed by logarithmic rectifiers in order to pro-  
duce the speech envelopes at TLDT and RLDT. After amplification, a decision is made  
by the differential pair of which direction should be transmitted.  
The attenuation of the controlled amplifiers TXA and SAI is determined by the emitter  
current IAT which is comprised of three parts:  
IATAFS  
IATGSA  
IAGAFS  
Sets maximum attenuation  
Decreases the attenuation when speaker amplifier gain is reduced  
Decreases the attenuation according to the loop-gain reduction caused  
by the AGA function  
IAT = IATAFS - IATGSA - IAGAFS  
G = IAT Pꢀ0.67 dB/A  
Figure 9 illustrates the principal relationship between the speaker amplifier gain (GSA)  
and attenuation of AFS (ATAFS). Both parameters can be adjusted independently, but  
the internal coupling between them has to be considered. The maximum GSA value to  
be used is 36 dB. The shape of the characteristic is moved in the x-direction by adjust-  
ing resistor RATAFS, thus changing ATAFSm. The actual value of the attenuation  
(ATAFSa), however, can be determined by reading the value which belongs to the actual  
gain GSAa. If the speaker amplifier gain is reduced, the attenuation of AFS is automati-  
cally reduced by the same amount in order to achieve a constant loop gain. Zero  
attenuation is set for speaker gains GSAꢀO GSA0 = 36 dB - ATAFSm.  
8
U4089B-M  
4570A–CORD–04/03  
U4089B-M  
Figure 9. Reducing Speaker Amplifier Gain Results in an Equal Reduction of  
AFS Attenuation  
ATAFS (dB)  
ATAFSm  
RATAFS  
RATAFS  
not usable  
GSA (dB)  
ATAFSa  
GSAO  
GSAa  
36 dB  
Operating Range of  
Speaker Amplifier  
The basic behavior is illustrated in Figure 10. Actual values of ILON/ILOFF vary slightly  
with the adjustment of the DC characteristics and the selection of the internal line  
impedance.  
Figure 10. Threshold of Speaker Amplifier  
SA  
on  
SA  
off  
IL  
IL  
on  
off  
IL  
Figure 11. Comparator Thresholds Depend on the DC Mask and Line Impedance  
7
RDC  
=
A
6
5
RDC = 130 kꢀ  
RDC = 68 k  
4
3
20  
10  
12  
14  
16  
18  
IL (mA)  
ILON at line impedance = 600 ꢀ  
ILOFF at line impedance = 600 ꢀ  
ILON at line impedance = 900 ꢀ  
ILOFF at line impedance = 900 ꢀ  
9
4570A–CORD–04/03  
Absolute Maximum Ratings  
Parameters  
Symbol  
IL  
Value  
140  
Unit  
mA  
V
Line current  
DC line voltage  
VL  
12  
Junction temperature  
Ambient temperature  
Storage temperature  
Total power dissipation, Tamb = 60LC, SSO44  
Tj  
125  
LC  
LC  
LC  
W
Tamb  
Tstg  
Ptot  
-25 to +75  
-55 to +150  
0.9  
Thermal Resistance  
Parameters  
Symbol  
Value  
Unit  
Junction ambient  
SSO44  
RthJA  
70  
K/W  
Electrical Characteristics  
f = 1 kHz, 0 dBm = 775 mVrms, IM = 0.3 mA, IMP = 2 mA, RDC = 130 k, Tamb = 25LC, RGSA = 560 k,  
Zear = 68 nF + 100 , ZM = 68 nF, Pin 20 open, VMUTX = GND, unless otherwise specified.  
Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
DC Characteristics  
IL = 2 mA  
2.4  
5.0  
7.5  
9.4  
V
V
V
V
IL = 14 mA  
IL = 60 mA  
IL = 100 mA  
4.6  
8.8  
5.4  
DC voltage drop over circuit  
VL  
10.0  
Transmission Amplifier, IL = 14 mA, VMIC = 2 mV, RGT = 27 k, Unless Otherwise Specified  
Adjustment range of transmit  
gain  
GT  
GT  
40  
45  
48  
50  
dB  
dB  
dB  
RGT = 12 kꢀ  
RGT = 27 kꢀ  
47  
39.8  
49  
41.8  
Transmitting amplification  
IL O 14 mA,  
f = 300 to 3400 Hz  
Frequency response  
GT  
M0.5  
Pin 20 open (AGA),  
IL = 14 to 100 mA  
Gain change with current  
Gain deviation  
GT  
GT  
M0.5  
M0.5  
dB  
dB  
dB  
Tamb = -10 to +60LC  
CMRR of microphone  
amplifier  
CMRR  
60  
45  
80  
Input resistance of MIC  
amplifier  
RGT = 12 kꢀ  
RGT = 27 kꢀ  
50  
75  
Ri  
dt  
kꢀ  
110  
2
IL > 14 mA  
VL = 700 mVrms  
Distortion at line  
%
IL > 19 mA, d < 5%  
Maximum output voltage  
V
mic = 25 mV  
VLmax  
1.8  
3
4.2  
-72  
dBm  
CTXA = 1 µF  
Noise at line psopho-  
metrically weighted  
IL > 14 mA  
GT = 48 dB  
no  
-80  
dBmp  
10  
U4089B-M  
4570A–CORD–04/03  
U4089B-M  
Electrical Characteristics (Continued)  
f = 1 kHz, 0 dBm = 775 mVrms, IM = 0.3 mA, IMP = 2 mA, RDC = 130 k, Tamb = 25LC, RGSA = 560 k,  
Zear = 68 nF + 100 , ZM = 68 nF, Pin 20 open, VMUTX = GND, unless otherwise specified.  
Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Anti-clipping  
attacktime  
release time  
0.5  
9
ms  
ms  
CTXA = 1 µF  
each 3 dB overdrive  
IL = 10 mA  
I
MP = 1 mA  
Gain at low operating current RDC = 68 kꢀ  
GT  
40  
42.5  
dB  
%
Vmic = 1 mV  
I
M = 300 µA  
IL = 10 mA  
IM = 300 µA  
IMP = 1 mA  
RDC = 68 kꢀ  
Distortion at low operating  
current  
dt  
5
Vmic = 10 mV  
IL = 100 mA,  
RAGA = 20 kꢀ  
Line-loss compensation  
GTI  
-6.4  
60  
-5.8  
80  
-5.2  
dB  
dB  
Mute suppression,  
MIC muted (microphone  
preamplifier)  
IL Oꢂ14 mA  
Mutx = open  
GTM  
Receiving Amplifier, IL = 14 mA, RGR = 62 k, Unless Otherwise Specified, VGEN = 300 mV  
Adjustment range of  
receiving gain  
IL O 14 mA,  
single-ended  
GR  
GR  
-8  
+2  
dB  
dB  
dB  
dB  
RGR = 62 kꢀ  
RGR = 22 kꢀ  
-7.75  
-7  
1.5  
-6.25  
Receiving amplification  
Amplification of DTMF signal  
from DTMF IN to RECO  
IL Oꢂ14 mA  
GRM  
GRF  
1
4
7
VMUTX = VMP  
IL > 14 mA,  
f = 300 Hz to 3400 Hz  
Frequency response  
±0.5  
Gain change with current  
Gain deviation  
IL = 14 to 100 mA  
GR  
GR  
±0.5  
±0.5  
dB  
dB  
Tamb = -10 to +60LC  
IL Oꢂ14 mA  
VGEN = 11 Vrms  
Ear protection  
EP  
1.1  
Vrms  
dB  
MUTE suppression  
DTMF operation  
IL Oꢂ14 mA  
GR  
60  
0.5  
4
VMUTX = VMP  
IL = 14 mA  
Zear = 68 nF  
Output voltage d ?ꢂ2%  
Vrms  
Maximum output current  
d ?ꢂ2%  
mA  
(peak)  
Zear = 100 ꢀ  
Receiving noise  
psophometrically weighted  
Zear = 68 nF + 100 ꢀ  
IL O 14 mA  
ni  
-80  
-77  
10  
dBmp  
Output resistance  
Line-loss compensation  
AC impedance  
Output against GND  
Ro  
RAGA = 20 k,  
IL = 100 mA  
GRI  
Zimp  
-7.0  
840  
-6.0  
900  
-5.0  
960  
dB  
11  
4570A–CORD–04/03  
Electrical Characteristics (Continued)  
f = 1 kHz, 0 dBm = 775 mVrms, IM = 0.3 mA, IMP = 2 mA, RDC = 130 k, Tamb = 25LC, RGSA = 560 k,  
Zear = 68 nF + 100 , ZM = 68 nF, Pin 20 open, VMUTX = GND, unless otherwise specified.  
Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
IL = 10 mA  
I
MP = 1 mA  
Gain at low operating current IM = 300 µA  
VGEN = 560 mV  
GR  
-8  
-7  
-6  
dB  
RDC = 68 kꢀ  
IL = 10 mA  
Distortion at low operating  
current  
IMP = 1 mA  
VGEN = 560 mV  
RDC = 68 kꢀ  
dR  
5
%
Speaker Amplifier  
Minimum line current for  
operation  
No AC signal  
ILmin  
15  
22  
mA  
Input resistance  
24  
14  
kꢀ  
VSAI = 3 mV,  
IL = 15 mA,  
RGSA = 560 kꢀ  
RGSA = 20 kꢀ  
Gain from SAI to SAO  
GSA  
35.5  
36.5  
-3  
37.5  
dB  
dB  
Load resistance  
RL = 50 , d < 5%  
Output power  
VSAI = 20 mV  
IL = 15 mA  
IL = 20 mA  
PSA  
PSA  
3
7
20  
mW  
mW  
Output noise (input SAI  
open) psopho-metrically  
weighted  
IL > 15 mA  
nSA  
200  
±1  
µVpsoph  
IL = 15 mA  
Tamb = -10 to +60LC  
Gain deviation  
GSA  
dB  
IL = 15 mA,  
VL = 0 dBm,  
Mute suppression  
VSAO  
-60  
dBm  
VSAI = 4 mV  
Pin 23 open  
Gain change with current  
IL = 15 to 100 mA  
GSA  
±1  
2
dB  
Resistor for turning off  
speaker amplifier  
IL = 15 to 100 mA  
RGSA  
0.8  
1.3  
Mꢀ  
IL = 15 mA  
f = 300 to 3400 Hz  
Gain change with frequency  
GSA  
±0.5  
dB  
Attack time of anti-clipping  
Release time of anti-clipping  
20 dB over drive  
tr  
tf  
5
ms  
ms  
80  
DTMF Amplifier Test Conditions: IMP = 2 mA, IM = 0.3 mA, VMUTX = VMP  
Adjustment range of DTMF  
gain  
IL = 15 mA  
Mute active  
GD  
GD  
GD  
40  
50  
dB  
dB  
dB  
IL = 15 mA,  
VDTMF = 8 mV  
Mute active:  
MUTX = VMP  
DTMF amplification  
Gain deviaton  
40.7  
41.7  
42.7  
±0.5  
IL = 15 mA  
Tamb = -10 to +60LC  
12  
U4089B-M  
4570A–CORD–04/03  
U4089B-M  
Electrical Characteristics (Continued)  
f = 1 kHz, 0 dBm = 775 mVrms, IM = 0.3 mA, IMP = 2 mA, RDC = 130 k, Tamb = 25LC, RGSA = 560 k,  
Zear = 68 nF + 100 , ZM = 68 nF, Pin 20 open, VMUTX = GND, unless otherwise specified.  
Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
RGT = 27 k,  
RGT = 15 kꢀ  
60  
26  
180  
70  
300  
130  
Input resistance  
Ri  
kꢀ  
IL Oꢂ15 mA  
VL = 0 dBm  
Distortion of DTMF signal  
Gain deviation with current  
dD  
2
%
IL = 15 to 100 mA  
GD  
±0.5  
dB  
AFS Acousting Feedback Suppression  
Range of attenuation  
IL Oꢂ15 mA  
0
50  
dB  
dB  
IL Oꢂ15 mA,  
IINLDT = 0 µA  
Attenuation of transmit gain  
GT  
45  
50  
RATAFS = 30 kꢀ  
IINLDR = 10 µA  
IL Oꢂ15 mA  
IINLDP = 0 µ  
Attenuation of speaker  
amplifier  
GSA  
dB  
V
RATAFS = 30 kꢀ  
IINLDR = 10 µ  
AFS disable  
IL Oꢂ15 mA  
VATAFS  
1.5  
Supply Voltages, Vmic = 25 mV, Tamb = -10 to +60LC  
IL = 14 mA,  
VMP  
RDC = 68 kꢀ  
IMP = 2 mA  
VMP  
3.1  
1.4  
3.3  
3.5  
V
IL O 14 mA,  
IM = 300 µA  
RDC = 130 kꢀ  
VM  
VM  
VB  
3.3  
7.6  
V
V
IB = +20 mA,  
IL = 0 mA  
VB  
7
MUTX Input (see Figure 20)  
VMUTX = VMP  
VMUTX = GND  
IMUTX  
IMUTX  
+20  
-20  
+30  
-30  
µA  
µA  
Input current  
VMP  
0.3 V  
-
Input high  
Input low  
VMUTX  
VMUTX  
V
V
Input voltage  
0.3  
13  
4570A–CORD–04/03  
U4089B-M Control  
MUTX  
MODE  
MIC 1/2 transmit enabled receive enable  
AFS = on  
AGA = on  
TXACL = on  
0
Z
1
Speech  
DTMF transmit enabled receive enable  
AFS = on  
AGA = on  
TXACL = on  
For answering machine  
DTMF dialling  
DTMF transmit enabled DTMF to receive enable  
AFS = off  
AGA = off  
TXACL = off  
IMPSEL  
MODE  
Line impedance = 600 ꢀ  
TXA = on  
ES = off  
0
Speech  
Transmit mute  
Transmit mute  
Speech  
Line impedance = 600 ꢀ  
TXA = off  
ES = on  
0 to Z  
1 to Z  
1
Line impedance = 900 ꢀ  
TXA = off  
ES = on  
Line impedance = 900 ꢀ  
TXA = on  
ES = off  
Logic Level  
0 = < (0.3 V)  
Z = > (1 V) < (VMP - 1 V) or (open input)  
1 = > (VMP - 0.3 V)  
AFS = Acoustical feedback-suppression control  
AGA = Automatic gain adjustment  
TXACL = Transmit anti-clipping control  
ES = External supply  
14  
U4089B-M  
4570A–CORD–04/03  
U4089B-M  
Figure 12. Typical DC Characteristic  
Figure 13. Typical Adjustment Range of the Transmit Gain  
GT (dB)  
15  
4570A–CORD–04/03  
Figure 14. Typical Adjustment Range of the Receive Gain  
Figure 15. Typical AGA Characteristic  
16  
U4089B-M  
4570A–CORD–04/03  
U4089B-M  
Figure 16. Typical Load Characteristic of VB for a Maximum (RDC = infinity)  
DC Characteristic and a 3-mW Loudspeaker Output  
Figure 17. Typical Load Characteristic of VB for a Medium DC Characteristic  
(RDC = 130 k) and a 3-mW Loudspeaker Output  
17  
4570A–CORD–04/03  
Figure 18. Typical Load Characteristic of VB for a Minimum DC Characteristic  
(RDC = 68 k) and a 3-mW Loudspeaker Output  
18  
U4089B-M  
4570A–CORD–04/03  
U4089B-M  
Figure 19. DC Voltage Absolute  
19  
4570A–CORD–04/03  
Figure 20. DC Voltage Current Test  
20  
U4089B-M  
4570A–CORD–04/03  
U4089B-M  
Figure 21. DC Ramps  
21  
4570A–CORD–04/03  
Figure 22. AC Tests  
22  
U4089B-M  
4570A–CORD–04/03  
U4089B-M  
Figure 23. Application for Hands-free Operation  
23  
4570A–CORD–04/03  
Table 1. Typical Values of External Components (see Figure 23)  
Name  
Value  
4.7 nF  
10 µF  
220 µF  
47 µF  
1 µF  
Name  
C16  
C17  
C18  
C21  
C23  
C24  
C25  
C26  
C27  
C28  
R2  
Value  
47 µF  
10 µF  
10 µF  
1 µF  
Name  
R3  
Value  
>68 kꢀ  
10 kꢀ  
62 kꢀ  
22 kꢀ  
330 kꢀ  
3 kꢀ  
Name  
R16  
R17  
R18  
R21  
R22  
R23  
R24  
R25  
R26  
R29  
R30  
Value  
1 kꢀ  
C2  
C3  
R4  
1.2 kꢀ  
30 kꢀ  
15 kꢀ  
330 kꢀ  
220 kꢀ  
68 kꢀ  
2 kꢀ  
C4  
R6  
C5  
R8  
C7  
6.8 nF  
10 nF  
100 nF  
470 nF  
33 nF  
10 µF  
20 kꢀ  
R9  
C8  
100 µF  
150 nF  
68 nF  
33 nF  
100 nF  
1 µF  
R10  
R11  
R12  
R13  
R14  
R15  
C10  
C11  
C12  
C14  
C15  
62 kꢀ  
30 kꢀ  
62 kꢀ  
120 kꢀ  
47 kꢀ  
3.3 kꢀ  
1 kꢀ  
12 kꢀ  
Ordering Information  
Extended Type Number  
Package  
SSO44  
SSO44  
Remarks  
Tubes  
Taped and reeled  
U4089B-MFN  
U4089B-MFNG3  
Package Information  
9.15  
8.65  
Package SSO44  
Dimensions in mm  
18.05  
17.80  
7.50  
7.30  
2.35  
0.3  
0.8  
0.25  
0.10  
0.25  
10.50  
10.20  
16.8  
44  
23  
technical drawings  
according to DIN  
specifications  
1
22  
24  
U4089B-M  
4570A–CORD–04/03  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
Europe  
Microcontrollers  
Atmel Sarl  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
FAX 1(719) 540-1759  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
FAX 1(719) 540-1759  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
© Atmel Corporation 2003.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty  
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors  
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does  
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted  
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical  
components in life support devices or systems.  
Atmel® is the registered trademark of Atmel.  
Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
4570A–CORD–04/03  
xM  

相关型号:

U4089B-M

MONOLITHIC INTEGRATED FEATUREPHONE CIRCUIT
ATMEL

U4089B-MFN

MONOLITHIC INTEGRATED FEATUREPHONE CIRCUIT
ATMEL

U4089B-MFNG3

MONOLITHIC INTEGRATED FEATUREPHONE CIRCUIT
ATMEL

U4089B-MSD

Speakerphone Circuit
ETC

U4089B-P

Monolithic Integrated Feature Phone Circuit
ATMEL

U4089B-PFN

Monolithic Integrated Feature Phone Circuit
ATMEL

U4089B-PFN

Telecom IC,
TEMIC

U4089B-PFNG3

Monolithic Integrated Feature Phone Circuit
ATMEL

U4089B-PFNG3

Telecom IC,
TEMIC

U4089B-PFNG3Y

Monolithic Integrated Feature Phone Circuit
ATMEL

U4089B-PFNY

Monolithic Integrated Feature Phone Circuit
ATMEL

U4089B-PSD

Telecom IC,
TEMIC