U4256BM-RSG3 [ATMEL]

Frequency Synthesizer for Radio Tuning; 频率合成调谐收音机
U4256BM-RSG3
型号: U4256BM-RSG3
厂家: ATMEL    ATMEL
描述:

Frequency Synthesizer for Radio Tuning
频率合成调谐收音机

商用集成电路 光电二极管 信息通信管理 异步传输模式 ATM
文件: 总19页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Reference Oscillator up to 15 MHz (Tuned)  
Oscillator Buffer Output (for AM Up/Down Conversion)  
Two Programmable 16-bit Dividers  
Fine-tuning Steps Possible  
Fast Response Time due to Integrated Loop Push-pull Stage  
3-wire Bus (Enable, Clock and Data; 3 V and 5 V Microcontrollers Acceptable)  
Four Programmable Switching Outputs (Open Drain)  
Three DACs for Software Controlled Tuner Alignment  
Low-power Consumption  
High S/N Ratio  
Integrated Band Gap – only One Supply Voltage Necessary  
Frequency  
Synthesizer for  
Radio Tuning  
Description  
The U4256BM-R is a synthesizer IC for FM receivers and an AM up-convertion  
system in BICMOS technology. Together with the AM/FM IC T4258 or U4255BM, it  
performs a complete AM/FM car radio front-end, which is recommended also for RDS  
(Radio Data System) applications. It is controlled by a 3-wire bus and also contains  
switches and Digital to Analog Converters (DACs) for software-controlled alignment of  
the AM/FM tuner. The U4256BM-R is the pin-compatible succesor IC of U4256BM-N.  
U4256BM-R  
Preliminary  
Pin Configuration  
Figure 1. Pinning SSO20  
Rev. 4562C–AUDR–08/04  
Pin Description  
Pin  
Symbol  
PDO  
Function  
1
Phase detector output  
Pulsed current output  
Digital-to-analog converter 1  
Digital-to-analog converter 2  
Digital-to-analog converter 3  
Supply voltage analog part  
Switching output 1  
Switching output 2  
Switching output 3  
Switching output 4  
Ground, digital part  
Reference oscillator output  
Reference oscillator input  
Capacitor band gap  
Oscillator buffer output  
Data input  
2
PD  
3
DAC1  
DAC2  
DAC3  
VS  
4
5
6
7
SWO1  
SWO2  
SWO3  
SWO4  
GND  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
OSCOUT  
OSCIN  
V5  
MX2LO  
DATA  
CLK  
Clock  
EN  
Enable  
FMOSCIN  
GNDan  
FM-oscillator input  
Ground, analog part  
Figure 2. Block Diagram  
SWO1 SWO2 SWO3 SWO4  
7
8
9
10  
Tuning  
13  
12  
OSCIN  
Oscillator  
Switching outputs  
DAC3  
3-bit  
OSCOUT  
5
DAC3  
V
15  
Ref  
OSC  
buffer  
MX2LO  
DAC2  
DAC1  
4
3
DAC2  
DAC1  
17  
16  
18  
CLK  
DATA  
EN  
3W-  
bus  
interface  
R-  
divider  
DAC  
AM/FM  
V
Ref  
1
2
19  
FM-  
preamp  
N-  
divider  
Phase  
detector  
Current  
sources  
FMOSCIN  
PDO  
PD  
Bandgap  
6
20  
14  
11  
GNDan  
V5  
GND  
VS  
2
U4256BM-R  
4562C–AUDR–08/04  
U4256BM-R  
Functional  
Description  
For a tuned FM-broadcast receiver, the following parts are needed:  
Voltage-Controlled Oscillator (VCO)  
Antenna Amplifier Tuned Circuit  
RF Amplifier Tuned Circuit  
Typical modern receivers with electronic tuning are tuned to the desired FM frequency  
by the frequency synthesizer IC U4256BM-R. The special design allows the user to  
build software-controlled tuner alignment systems. Two programmable DACs (Digital-to-  
Analog Converter) support the computer-controlled alignment. The output of the PLL is  
a tuning voltage which is connected to the VCO of the receiver IC. The output of the  
VCO is equal to the desired station frequency plus the IF (10.7 MHz). The RF and the  
oscillator signal (VCO) are both input to the mixer that translates the desired FM chan-  
nel signal to the fixed IF signal. For FM, the double-conversion system of the receiver  
requires exactly 10.7 MHz for the first IF frequency, which determines the center fre-  
quency of the software-controlled integrated second IF filter.  
If this oscillator tuning feature is not used, the internal capacities have to be switched off  
and the oscillator has to be operated with high-quality external capacities to ensure that  
the operational frequency is exactly 10.250 MHz.  
When dimensioning the oscillator circuit, it is important that the additional capacities  
enable the oscillator to operate through its complete tracking range. The oscillating abil-  
ity depends very strongly on the used crystal oscillator. Initializing the oscillator should  
be established without switching any additional capacities to guarantee that the oscilla-  
tor starts to operate properly. Due to the lower quality of the integrated capacities  
compared to discrete capacities, the amount of the switched integrated capacities  
should always be minimized. (If necessary reduce tracking range or use another crystal  
oscillator.)  
The U4256BM-R has a very fast response time of maximum 800 µs (at 2 mA,  
fStep = 50 kHz, measured on MPX signal). It performs a high signal to noise ratio. Only  
one supply voltage is necessary, due to a integrated band gap.  
Input/Output  
Interface Circuits  
PDO (Pin 1)  
PD (Pin 2)  
PDO is the buffer amplifier output of the PLL. The bipolar output stage is a rail-to-rail  
amplifier.  
PD is the current charge pump output of the PLL. The current can be controlled by  
setting the Bits. The loop filter has to be designed corresponding to the choosen pump  
current and the internal reference frequency. A recommendation can be found in the  
application circuit.  
The charge-pump current can be choosen by setting the Bits 71 and 70 as following:  
IPD (µA)  
25  
B71  
0
B70  
0
100  
0
1
500  
1
0
2000  
1
1
3
4562C–AUDR–08/04  
Figure 3. Internal Components at PDO Connection  
VS  
VS  
VS  
PDO  
PD  
FMOSCIN (Pin 19)  
FMOSCIN is the preamplifier input for the FM oscillator signal.  
Figure 4. Internal Components at FMOSCIN  
V5  
FMOSCIN  
MX2LO (Pin 15)  
MX2LO is the buffered output of the crystal oscillator. This signal can be used as a refer-  
ence frequency for U4255BM or T4258.  
The oscillator buffer output can be switched by the OSCB Bit as following (Bit 69)  
MX2LO AC Voltage  
B69  
0
ON  
OFF  
1
Figure 5. Internal Components at MX2LO  
V5  
V5  
OSCIN  
MX2LO  
4
U4256BM-R  
4562C–AUDR–08/04  
U4256BM-R  
Function of DAC1, 2 in  
FM and AM Mode  
(Pin 3 and Pin 4)  
For automatic tuner alignment, the DAC1 and DAC2 of the U4256BM-R can be con-  
trolled by setting gain of VPDO and offset values. The following figure shows the  
principle of the operation. In FM Mode the gain is in the range of 0.69 × V(PDO) to 2.16 ×  
V(PDO). The offset range is +0.56 V to -0.59 V. For alignment, DAC1 and DAC2 are con-  
nected to the varicaps of the preselection filters. For alignment, offset and gain is set for  
having the best tuner tracking.  
Figure 6. Principle Operation for Alignment  
Bit 34  
PDO (FM)  
DAC1,2  
Gain  
+/-  
Vref (AM)  
(3 V)  
Offset  
The DAC mode can be controlled by setting the Bit 34 as following:  
DAC Mode  
FM  
B34  
0
AM  
1
If Bit 34 = 1 (AM Mode), the DAC1, DAC2 can be used as standard DAC converters.  
The internal voltage of 3 V is connected to the gain- and offset-input of DAC1 and DAC2  
(only in AM Mode). The gain is in the range of 0.46 × 3 V to 3.03 × 3 V. The offset range  
is +1.46 V to -1.49 V.  
Figure 7. Internal Components at DAC1,2 Output  
VS  
DAC1,2  
5
4562C–AUDR–08/04  
DAC 1, 2 in FM Mode  
(Pin 3 and Pin 4)  
The gains of DAC1 and DAC2 have a range of 0.69 × V(PDO) to 2.16 × V(PDO). V(PDO) is  
the PLL tuning voltage output. This range is divided into 256 steps. So one step is  
approximately (2.16 - 0.46) × V(PDO) / 255 = 0.005764 × V(PDO). The gain of DAC1 can be  
controlled by the Bits 36 to 43 (G-20 to G-27) and the gain of DAC2 by the Bits 0 to 7 (G-  
20 to G-27) as following:  
Gain DAC1  
Approximately  
Decimal  
Gain  
B43  
B42  
B41  
B40  
B39  
B38  
B37  
B36  
Gain DAC2  
Approximately  
Decimal  
Gain  
B7  
0
B6  
0
B5  
0
B4  
0
B3  
0
B2  
0
B1  
0
B0  
0
0.69 × V(PDO)  
0.69576 × V(PDO)  
0.70153 × V(PDO)  
0.70729 × V(PDO)  
...  
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
2
0
0
0
0
0
0
1
1
3
...  
0
...  
0
...  
1
...  
1
...  
0
...  
1
...  
0
...  
1
...  
0.99549 × V(PDO)  
...  
53  
...  
...  
1
...  
1
...  
1
...  
1
...  
1
...  
1
...  
0
...  
1
2.14847 × V(PDO)  
2.15424 × V(PDO)  
2.16 × V(PDO)  
253  
254  
255  
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
Offset = 31 (intermediate position)  
The offset of DAC1 and DAC2 has a range of 0.56 V to -0.59 V. This range is divided  
into 64 steps. So one step is approximately 1.15 V/ 63 = 18.25 mV. The offset DAC1  
can be controlled by the Bits 44 to 49 (O-20 to O-25) and the offset of DAC2 by the Bits 8  
to 13 (O-20 to O-25) as following:  
Offset DAC1  
Approximately  
Decimal  
Gain  
B49  
B48  
B47  
B46  
B45  
B44  
Offset DAC2  
Approximately  
Decimal  
Gain  
B13  
0
B12  
0
B11  
0
B10  
0
B9  
0
B8  
0
0.56 V  
0.5417 V  
0.5235 V  
0.5052 V  
...  
0
1
0
0
0
0
0
1
0
0
0
0
1
0
2
0
0
0
0
1
1
3
...  
0
...  
1
...  
1
...  
1
...  
1
...  
1
...  
31  
...  
61  
62  
63  
+0.0059 V  
...  
...  
1
...  
1
...  
1
...  
1
...  
0
...  
1
0.5535 V  
-0.5717 V  
-0.59 V  
1
1
1
1
1
0
1
1
1
1
1
1
Gain = 53 (intermediate position)  
6
U4256BM-R  
4562C–AUDR–08/04  
U4256BM-R  
DAC 1, 2 in AM Mode  
(Pin 3 and Pin 4)  
In AM mode the DAC input voltage V(PDO) is internal connected to 3 V. The gains of  
DAC1 and DAC2 have a range of 0.46 × 3 V to 3.03 × 3 V. V(PDO) is the PLL tuning volt-  
age output. This range is divided into 256 steps. So one step is approximately  
(3.03 - 0.46) × 3 V/255 = 0.01007 × 3 V. The gain of DAC1 can be controlled by the Bits  
36 to 43 (G-20 to G-27) and the gain of DAC2 by the Bits 0 to 7 (G-20 to G-27) as  
following:  
Gain DAC1  
Approximately  
Decimal  
Gain  
B43  
B42  
B41  
B40  
B39  
B38  
B37  
B36  
Gain DAC2  
Approximately  
Decimal  
Gain  
B7  
0
B6  
0
B5  
0
B4  
0
B3  
0
B2  
0
B1  
0
B0  
0
0.4607 × 3 V  
0.4710 × 3 V  
0.4812 × 3 V  
0.4915 × 3 V  
...  
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
2
0
0
0
0
0
0
1
1
3
...  
0
...  
0
...  
1
...  
1
...  
0
...  
1
...  
0
...  
1
...  
1.0029 × 3 V  
...  
53  
...  
...  
1
...  
1
...  
1
...  
1
...  
1
...  
1
...  
0
...  
1
3.0097 × 3 V  
3.0196 × 3 V  
3.0296 × 3 V  
253  
254  
255  
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
Offset = 31 (intermediate position)  
Remark: V(PDO) is 3 V in AM mode.  
The offset of DAC1 and DAC2 has a range of +1.46 V to -1.49 V. This range is divided  
into 64 steps. So one step is approximately 2.95 V/ 63 = 46.8 mV. The offset DAC1 can  
be controlled by the Bits 44 to 49 (O-20 to O-25) and the offset of DAC2 by the Bits 8 to  
13 (O-20 to O-25) as following:  
Offset DAC1  
Approximately  
Decimal  
Gain  
B49  
B48  
B47  
B46  
B45  
B44  
Offset DAC2  
Approximately  
Decimal  
Gain  
B13  
0
B12  
0
B11  
0
B10  
0
B9  
0
B8  
0
1.4606 V  
1.4138 V  
1.3665 V  
1.3196 V  
...  
0
1
0
0
0
0
0
1
0
0
0
0
1
0
2
0
0
0
0
1
1
3
...  
0
...  
1
...  
1
...  
1
...  
1
...  
1
...  
31  
...  
61  
62  
63  
-0.0079 V  
...  
...  
1
...  
1
...  
1
...  
1
...  
0
...  
1
-1.3975 V  
-1.4447 V  
-1.4917 V  
1
1
1
1
1
0
1
1
1
1
1
1
Gain = 53 (intermediate position)  
7
4562C–AUDR–08/04  
DAC3 (Pin 5)  
The DAC3 output voltage can be controlled by the Bits P-20 to P-22 (Bits 66 to 68) as  
following:  
DAC3 Offset Approximately  
B68  
0
B67  
0
B66  
0
0.55 V  
1.25 V  
1.90 V  
2.60 V  
3.30 V  
4.10 V  
4.80 V  
5.45 V  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Figure 8. Internal Components at DAC3  
VS  
DAC3  
EN, DATA, CLK  
(Pin 16-18)  
All functions can be controlled via a 3-wire bus consisting of ENABLE, DATA and  
CLOCK. The bus is designed for microcontrollers which operate with 3 V supply voltage.  
Details of the data transfer protocol are shown in the table ‘3-wire Bus Description’.  
Figure 9. Internal Components at EN, DATA, CLK  
V5  
EN  
DATA  
CLK  
8
U4256BM-R  
4562C–AUDR–08/04  
U4256BM-R  
SWO1, 2, 3 and 4  
(Pin 7-10)  
All switching outputs are ‘open drain’ and can be set and reset by software control.  
Details are described in the data transfer protocol.  
The switching output SWO1 to SWO4 can be controlled as following (Bits 30 to 33):  
Switch Output  
SWOx = ON (switch to GND)  
SWOx = OFF  
B30 + X  
0
1
X = 0 to 3  
Figure 10. Internal Components at SWO1, 2, 3 and 4  
SWO1  
I
SWO2  
SWO3  
SWO4  
OSCIN, OSCOUT  
(Pin 12 and Pin 13)  
A crystal resonator (up to 15 MHz) is connected between OSCIN and OSCOUT in order  
to generate the reference frequency. By using the U4256BM-R in connection with  
U4255BM or T4258, the crystal frequency must be 10.25 MHz. The complete applica-  
tion circuit is shown in Figure 15. If a reference is available, it can be applied at OSCIN.  
The minimum voltage should be 100 mVrms. In this case, Pin OSCOUT has to be open.  
The tuning capacity for the crystal oscillator has a range of 0.5 pF to 71.5 pF. The  
values are coded binary. The tuning can be controlled by the Bits 78 to 85 as following:  
B85 = 1  
[pF]  
B85 = 0  
[pF]  
B84  
1
B83  
1
B82  
1
B81  
1
B80  
1
B79  
1
B78  
1
0
8.0  
8.5  
0.5  
1.0  
1.5  
...  
1
1
1
1
1
1
0
9.0  
1
1
1
1
1
0
1
19.5  
...  
1
1
1
1
1
0
0
...  
0
...  
0
...  
0
...  
0
...  
0
...  
0
...  
0
63.0  
63.5  
71.0  
71.5  
0
0
0
0
0
0
0
9
4562C–AUDR–08/04  
Figure 11. Internal Components at OSCIN and OSCOUT  
V5  
OSCIN  
V5  
OSCOUT  
Figure 12. Internal Connection of Tuning Capacity for Crystal Oscillator  
Cx1  
Cx2  
INV  
8pF  
0.5 pF  
0.5 pF  
...  
32pF  
8pF  
32pF  
...  
B78  
B84  
B85  
10  
U4256BM-R  
4562C–AUDR–08/04  
U4256BM-R  
Application Information  
Figure 13. FMOSCIN Sensitivity  
Vi (mVrms on 50 )  
150  
100  
50  
0
0
20  
40  
60  
80  
100  
120 140  
160  
Frequency (MHz)  
3-wire Bus  
Description  
The register settings of U4256BM-R are programmed by a 3-wire bus protocol. The bus  
protocol consists of separate commands. A defined number of bits is transmitted  
sequentially during each command.  
One command is used to program all the bits of one register. The different registers  
available (see table Data Transfer) are addressed by the length of the command (num-  
ber of transmitted bits) and by two address bits, that are unique to each register of a  
given length. 16-bit registers are programmed by 16-bit commands and 24-bit registers  
are programmed by 24-bit commands.  
Each bus command starts with a rising edge on the enable line (EN) and ends with a  
falling edge on EN. EN has to be kept HIGH during the bus command.  
The sequence of transmitted bits during one command starts with the LSB of the first  
byte and ends with the MSB of the last byte of the register addressed. To transmit one  
bit (0/1) DATA has to be set to the appropriate value (LOW/HIGH) and a LOW to HIGH  
transition has to be performed on the clock line (CLK) while DATA is valid. The DATA is  
evaluated at the rising edges of CLK. The number of LOW to HIGH transitions on CLK  
during the HIGH period of EN is used to determine the length of the command.  
The bus protocol and the register addressing of U4256BM-R are compatible to the  
addressing used in U4255BM and T4258. That means U4256BM-R and U4255BM (or  
T4258) can be operated on the same 3-wire bus as shown in the application circuit.  
11  
4562C–AUDR–08/04  
Figure 14. 3-wire Bus Timing Diagram  
tF  
tR  
VHIGH  
VLOW  
Enable  
tHEN  
tS  
tR  
tF  
VHIGH  
VLOW  
Data  
tHDA  
tS  
tR  
tF  
VHIGH  
VLOW  
Clock  
tH  
tL  
Figure 15. 3-wire Pulse Diagram  
16-bit command  
EN  
DATA  
CLK  
LSB  
BYTE 1  
MSB LSB  
BYTE 2  
MSB  
24-bit command  
EN  
DATA  
CLK  
LSB  
BYTE 1  
MSB LSB  
BYTE 2  
MSB LSB  
BYTE 3  
MSB  
e.g. R-Divider  
IPD  
Status 0  
OSCB  
25  
27  
26  
R-Divider  
28  
20  
21  
22  
23  
24  
29 210  
211 212  
0
1
2
0
Addr.  
213 214 215  
0
P-2 P-2 P-2  
DAC3  
12  
U4256BM-R  
4562C–AUDR–08/04  
U4256BM-R  
Data Transfer  
Table 1. Control Registers  
A
MSB  
ADDR.  
BYTE 3  
STATUS 0  
OSCB  
LSB  
MSB  
BYTE 2  
LSB  
MSB  
BYTE 1  
LSB  
DAC3  
P-21  
B67  
R-Divider  
0
0
IPD  
0=on,  
1=off  
P-22  
B68  
P-20  
B66  
215  
214  
213  
212  
210  
211  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
B71  
B70  
B69  
B65  
B64  
B63  
B62  
B61  
B60  
B59  
B58  
B57  
B56  
B55  
B54  
B53  
B52  
B51  
B50  
B
MSB  
BYTE 3  
LSB  
MSB  
BYTE 2  
LSB  
MSB  
BYTE 1  
LSB  
ADDR.  
STATUS 1  
N-Divider  
AM=1 SWO4 SWO3 SWO2 SWO1  
FM=0 0=on, 0=on, 0=on, 0=on,  
0
1
0
215  
214  
213  
212  
210  
211  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
DAC  
1=off 1=off 1=off 1=off  
B35  
B34  
B33  
B32  
B31  
B30  
B29  
B28  
B27  
B26  
B25  
B24  
B23  
B22  
B21  
B20  
B19  
B18  
B17  
B16  
B15  
B14  
C
MSB  
BYTE 2  
DAC1 OFFSET  
LSB  
MSB  
BYTE 1  
DAC1 GAIN  
LSB  
ADDR.  
0
0
O-25 O-24  
B49 B48  
O-23  
B47  
O-22  
B46  
O-21  
B45  
O-20  
B44  
G-27  
B43  
G-26  
B42  
G-27  
B41  
G-25  
B40  
G-24  
B39  
G-23  
B38  
G-22  
B37  
G-20  
B36  
D
MSB  
BYTE 2  
DAC2 OFFSET  
LSB  
MSB  
BYTE 1  
DAC2 GAIN  
LSB  
ADDR.  
0
1
O-25 O-24  
O-23  
O-22  
O-21  
B9  
O-20  
B8  
G-27  
B7  
G-26  
B6  
G-27  
B5  
G-25  
G-24  
G-23  
B2  
G-22  
B1  
G-20  
B0  
B13 B12  
B11  
B10  
B4  
B3  
E
MSB  
BYTE 2  
LSB  
MSB  
BYTE 1  
LSB  
ADDR.  
0
Oscillator tuning function  
Not used  
1
8pF 32pF 16pF  
B85 B84 B83  
8pF  
B82  
4pF  
B81  
2pF  
B80  
1pF  
B79  
0.5pF  
B78  
X
X
X
X
X
X
B77  
B76  
B75  
B74  
B73  
B72  
Absolute Maximum Ratings  
Parameters  
Symbol  
Value  
Unit  
Analog supply voltage  
Input voltage BUS  
Pin 6  
VS  
VI  
IO  
8 to 12  
V
V
Pins 16, 17 and 18  
Pins 7, 8, 9 and 10  
-0.3 to +5.3  
-1 to +5  
Output current switches  
(see Figure 10)  
mA  
Drain voltage switches  
Pins 7, 8, 9 and 10  
VOD  
Tamb  
Tstg  
Tj  
15  
-40 to +85  
-40 to +125  
125  
V
Ambient temperature range  
Storage temperature range  
Junction temperature  
°C  
°C  
°C  
V
Electrostatic handling M.M.  
VESD  
300  
13  
4562C–AUDR–08/04  
Thermal Resistance  
Parameters  
Symbol  
Value  
Unit  
Junction ambient, when soldering to PCB  
RthJA  
140  
K/W  
Operating Range  
All voltages are referred to GND (Pin 11)  
Parameters  
Symbol  
VS  
Min.  
8
Typ.  
Max.  
12  
Unit  
Supply voltage range  
Pin 6  
8.5  
V
Ambient temperature  
Tamb  
fin  
-40  
70  
2
+85  
160  
65535  
15  
°C  
Input frequency FMOSCIN  
Programmable N, R divider  
Crystal reference oscillator  
Pin 19  
MHz  
SF  
Pins 12 and 13  
fXTAL  
0.1  
MHz  
Electrical Characteristics  
Test Conditions (unless otherwise specified): VS = 8.5 V, Tamb = 25°C.  
No.  
1
Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
8.5  
10  
Max.  
12  
Unit  
V
Type*  
Supply Voltage  
Analog supply voltage  
Supply Current  
Analog supply current  
OSCIN  
1.1  
2
6
VS  
8
5
A
A
B
2.1  
3
6
IS  
25  
mA  
3.1  
4
Input voltage  
f = 0.1 to 15 MHz  
13  
OSC  
100  
mVrms  
OSC Buffer (MX2LO)  
Output AC voltage  
4.1  
At Pin15: 47 pF and  
1 kΩ  
15  
15  
vMX2LO  
VMX2LO  
80  
120  
2.0  
200  
2.2  
mVpp  
V
B
A
4.2  
5
Output DC voltage  
FMOSCIN  
1.8  
5.1  
Input voltage  
f = 70 to 120 MHz  
f = 120 to 160 MHz  
FMOSC  
FMOSC  
40  
150  
mVrms  
mVrms  
19  
B
6
Pulsed Current Output PD  
6.1  
Output current Bit 71,  
70 = ‘00’  
PD = 2.5 V  
2
2
2
±IPD  
±IPD  
±IPD  
20  
80  
25  
100  
500  
2000  
30  
µA  
µA  
µA  
A
A
A
6.2  
6.3  
6.4  
6.5  
Output current Bit 71,  
70 = ‘01’  
PD = 2.5 V  
PD = 2.5 V  
PD = 2.5 V  
PD = 2.5 V  
120  
600  
Output current Bit 71,  
70 = ‘10’  
400  
1500  
Output current Bit 71,  
70 = ‘11’  
2
2
±IPD  
2400  
20  
µA  
nA  
A
A
Leakage current  
±IPDL  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
14  
U4256BM-R  
4562C–AUDR–08/04  
U4256BM-R  
Electrical Characteristics (Continued)  
Test Conditions (unless otherwise specified): VS = 8.5 V, Tamb = 25°C.  
No.  
7
Parameters  
PDO  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
7.1  
Saturation voltage  
HIGH  
3, 4  
3, 4  
8.0  
0
8.5  
0.4  
V
V
A
A
7.2  
Saturation voltage  
LOW  
8
SWO1, SWO2, SWO3, SWO4 (Open Drain)  
8.1  
Output leakage current  
HIGH  
Pin 7,8,9,10 over R  
against 8.5 V  
7, 8,  
9, 10  
ISWOH  
100  
400  
nA  
A
A
8.2  
Output voltage LOW  
I = 1 mA  
7, 8,  
9, 10  
VSWOL  
100  
mV  
9
DAC1, DAC2  
Output current  
Output voltage  
9.1  
9.2  
9.3  
3, 4  
3, 4  
IDAC1, 2  
±1  
mA  
V
C
A
VDAC1, 2  
0.3  
VS-0.6  
Maximum offset range  
(FM)  
offset = 0, gain = 53  
offset = 63, gain = 53  
gain = 255, offset = 31  
gain = 0, offset = 31  
3, 4  
3, 4  
3, 4  
3, 4  
0.45  
0.56  
-0.57  
0.69  
2.16  
0.65  
-0.65  
0.75  
2.23  
V
V
A
A
A
A
9.4  
9.5  
9.6  
Minimum offset range  
(FM)  
-0.45  
0.63  
2.1  
Maximum gain range  
(FM)  
Minimum gain range  
(FM)  
10  
DAC3  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
10.8  
10.9  
11  
Output current  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
5
5
5
5
5
5
5
5
5
IDAC3  
VDAC3  
VDAC3  
VDAC3  
VDAC3  
VDAC3  
VDAC3  
VDAC3  
VDAC3  
±1  
mA  
V
C
A
A
A
A
A
A
A
A
Bit 68-66: 000  
Bit 68-66: 001  
Bit 68-66: 010  
Bit 68-66: 011  
Bit 68-66: 100  
Bit 68-66: 101  
Bit 68-66: 110  
Bit 68-66: 111  
0.4  
1.1  
1.8  
2.4  
3.2  
3.8  
4.5  
5.2  
0.55  
1.25  
1.90  
2.60  
3.30  
4.10  
4.80  
5.45  
0.7  
1.4  
2.1  
2.8  
3.5  
4.3  
5.0  
5.7  
V
V
V
V
V
V
V
3-wire Bus, ENABLE, DATA, CLOCK  
11.1  
Input voltage HIGH  
LOW  
VBUSH  
VBUSL  
2.7  
-0.3  
5.3  
0.8  
V
V
16-18  
17  
A
A
D
11.2  
11.3  
Clock frequency  
1.0  
MHz  
Period of CLK HIGH  
LOW  
tH  
tL  
250  
250  
ns  
ns  
17  
11.4  
11.5  
Rise time EN, DATA,  
CLK  
16-18  
16-18  
tr  
tf  
400  
100  
ns  
ns  
D
D
Fall time EN, DATA,  
CLK  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
15  
4562C–AUDR–08/04  
Electrical Characteristics (Continued)  
Test Conditions (unless otherwise specified): VS = 8.5 V, Tamb = 25°C.  
No.  
11.6  
11.7  
11.8  
Parameters  
Set-up time  
Test Conditions  
Pin  
16-18  
18  
Symbol  
ts  
Min.  
100  
250  
0
Typ.  
Max.  
Unit  
ns  
Type*  
D
D
D
Hold time EN  
Hold time DATA  
tHEN  
tHDA  
ns  
16  
ns  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Figure 16. Application Circuit  
EN  
CLK  
DATA  
GND  
C12  
100 nF  
C9  
*)  
R5  
*)  
5.1 k  
*) depends on  
crystal  
C8  
47 pF  
10.25 MHz  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
C1  
R2  
BUS  
OSC  
600  
10 pF  
fOSC  
LOGIC  
FM  
VCO  
DAC's  
4
Switches  
8
1
2
3
5
6
7
9
10  
V
tune  
C16  
C5  
C 6  
330 pF  
R4  
8.2 k  
C15  
C4  
10 nF  
100 nF  
C14  
10 nF  
100 mF  
C7  
R3  
10 nF  
10 nF  
100  
DAC1  
DAC2  
DAC3  
VS  
SWO1  
SWO2  
SWO3  
SWO4  
8 ... 12 V  
16  
U4256BM-R  
4562C–AUDR–08/04  
U4256BM-R  
Figure 17. Application Board Schematic  
17  
4562C–AUDR–08/04  
Ordering Information  
Extended Type Number  
Package  
SSO20  
SSO20  
Remarks  
U4256BM-RFS  
Tube  
U4256BM-RSG3  
Taped and reeled  
Package Information  
5.7  
5.3  
Package SSO20  
Dimensions in mm  
6.75  
6.50  
4.5  
4.3  
1.30  
0.15  
0.15  
0.05  
0.25  
0.65  
6.6  
6.3  
5.85  
20  
11  
technical drawings  
according to DIN  
specifications  
1
10  
18  
U4256BM-R  
4562C–AUDR–08/04  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
Europe  
Microcontrollers  
Atmel Sarl  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
FAX 1(719) 540-1759  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
AAvenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
FAX (33) 4-76-58-34-80  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
FAX 1(719) 540-1759  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
© Atmel Corporation 2003.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty  
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors  
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does  
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted  
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical  
components in life support devices or systems.  
Atmel® is the registered trademark of Atmel.  
Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
4562C–AUDR–08/04  
xM  

相关型号:

U425_PDIP

a high input impedance Monolithic Dual N-Channel JFET
MICROSS

U425_SOIC

a high input impedance Monolithic Dual N-Channel JFET
MICROSS

U425_TO-71

a high input impedance Monolithic Dual N-Channel JFET
MICROSS

U425_TO-78

a high input impedance Monolithic Dual N-Channel JFET
MICROSS

U426

Linear Systems replaces discontinued Siliconix U426
MICROSS

U426

N-Channel Dual JFET
CALOGIC

U426(8PDIP)

Transistor
MICROSS

U426(TO-78)

Transistor
MICROSS

U426-PDIP

暂无描述
MICROSS

U426-PDIP

Small Signal Field-Effect Transistor, 2-Element, N-Channel, Silicon, Junction FET, PLASTIC, DIP-8
Linear

U426-SOIC

Small Signal Field-Effect Transistor, 2-Element, N-Channel, Silicon, Junction FET, SOIC-8
Linear

U426-TO-71

Small Signal Field-Effect Transistor, 2-Element, N-Channel, Silicon, Junction FET, HERMETIC SEALED, TO-71, 6 PIN
Linear