ACPM-7821

更新时间:2024-09-18 08:12:02
品牌:AVAGO
描述:4 x 4 Power Amplifier Module for J-CDMA (898 - 925 MHz)

ACPM-7821 概述

4 x 4 Power Amplifier Module for J-CDMA (898 - 925 MHz) 4 ×4功率放大器模块J- CDMA ( 898 - 925兆赫)

ACPM-7821 数据手册

通过下载ACPM-7821数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
ACPM-7821  
4x4 Power Amplifier Module  
for J-CDMA (898 – 925 MHz)  
Data Sheet  
Features  
Description  
Excellent linearity  
The ACPM-7821 is a CDMA (Code Division Multiple  
Access) power amplifier module designed for hand-  
sets operating in the 898–925MHz bandwidth. The  
ACPM-7821 meets stringent CDMA linearity require-  
ments up to 28 dBm output power.  
High efficiency  
10-pin surface mounting package  
(4 mm x 4 mm x 1.1 mm)  
Low quiescent current  
A low current (Vcont) pin is provided for high effi-  
ciency improvement of the low output power range.  
The ACPM-7821 features CoolPAM circuit technology  
offering state-of-the-art reliability, temperature  
stability and ruggedness.  
Internal 50matching networks for both RF input  
and output  
CDMA 95A/B, CDMA2000-1X/EVDO  
ACPM-7821 is self contained, incorporating 50 ohm  
input and output matching networks.  
Applications  
Digital Cellular (J-CDMA)  
Functional Block Diagram  
Vref(1)  
Vcont(2)  
Bias Circuit & Control Logic  
Inter  
Stage  
Match  
Input  
Match  
Output  
Match  
DA  
PA  
RF Input  
(4)  
RF Output  
(8)  
MMIC  
MODULE  
Vcc1(5)  
Vcc2(6)  
Ordering Information  
Part Number  
No. of Devices  
Container  
ACPM-7821-TR1  
ACPM-7821-BLK  
1000  
100  
7" Tape and Reel  
Bulk  
Table 1. Absolute Maximum Ratings[1]  
Parameter  
Symbol  
Min.  
Nominal  
Max.  
Unit  
RF Input Power  
Pin  
10.0  
5.0  
dBm  
V
DC Supply Voltage  
DC Reference Voltage  
Control Voltage  
Vcc  
0
3.4  
2.85  
2.85  
Vref  
Vcont  
Tstg  
0
3.3  
V
0
3.3  
V
Storage Temperature  
-55  
+125  
°C  
Table 2. Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
Nominal  
Max.  
Unit  
DC Supply Voltage  
Vcc  
3.2  
3.4  
4.2  
V
V
DC Reference Voltage  
Vref  
2.75  
2.85  
2.95  
Mode Control Voltage  
High Power Mode  
Low Power Mode  
Vcont  
Vcont  
0
2.85  
V
V
Operating Frequency  
Fo  
To  
898  
-30  
925  
85  
MHz  
Case Operating Temperature  
25  
°C  
Table 3. Power Range Truth Table  
Power Mode  
Symbol  
Vref  
Vcont[2]  
Range  
High Power Mode  
Low Power Mode  
Shut Down Mode  
Notes:  
PR2  
PR1  
2.85  
2.85  
0
Low  
High  
~28 dBm  
~17 dBm  
1. No damage assuming only one parameter is set at limit at a time with all other parameters set at or  
below nominal value.  
2. High (2.0V 3.0V), Low (0.0V 0.5V).  
2
Table 4. Electrical Characteristics for CDMA Mode (Vcc=3.4V, Vref=2.85V, T=25°C)  
Characteristics  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Gain_hi  
Gain_low  
Pout = 28.0 dBm  
Pout = 17 dBm  
24  
17  
27  
20  
dB  
dB  
Gain  
PAE_hi  
PAE_low  
Pout = 28.0 dBm  
Pout = 17 dBm  
37  
17  
41.2  
21.5  
%
%
Power Added Efficiency  
Total Supply Current  
Icc_hi  
Icc_low  
Pout = 28.0 dBm  
Pout = 17 dBm  
450  
68  
500  
86  
mA  
mA  
Iq_hi  
Iq_low  
High Power Mode  
Low Power Mode  
85  
14  
115  
22  
mA  
mA  
Quiescent Current  
Reference Current  
Iref_hi  
Iref_low  
Pout = 28.0 dBm  
Pout = 17 dBm  
4
4.5  
7
8
mA  
mA  
Control Current[1]  
Icont  
Ipd  
Pout = 17 dBm  
Vref = 0V  
0.2  
0.2  
1
5
mA  
Total Current in Power-down mode  
µA  
0.885 MHz offset ACPR1_hi  
1.98 MHz offset ACPR2_hi  
Pout = 28.0 dBm  
Pout = 28.0 dBm  
-53  
-60  
-46  
-57  
dBc  
dBc  
ACPR in High power mode  
ACPR in Low power mode  
Harmonic Suppression  
0.885 MHz offset ACPR1_low  
1.98 MHz offset ACPR2_low  
Pout = 17 dBm  
Pout = 17 dBm  
-57  
-68  
-46  
-57  
dBc  
dBc  
Second  
Third  
2f0  
3f0  
Pout = 28.0 dBm  
Pout = 28.0 dBm  
-35  
-55  
-30  
-40  
dBc  
dBc  
Input VSWR  
VSWR  
S
2:1  
2.5:1  
-60  
VSWR  
dBc  
Stability (Spurious Output)  
Noise Power in Rx Band  
Ruggedness (No Damage)  
Notes:  
VSWR 6:1, All phase  
Pout = 28.0 dBm  
RxBN  
Ru  
-136  
-134  
10:1  
dBm/Hz  
VSWR  
Pout < 28.0 dBm, Pin < 10.0 dBm  
1. Control current when series 6.2kohm is used.  
2. Characterized with IS-95 modulated signal  
3
Characterization Data(Vcc=3.4V, Vref=2.85V, T=25°C)  
30  
25  
20  
15  
10  
500  
450  
400  
350  
898MHz  
910MHz  
925MHz  
898MHz  
300  
910MHz  
250  
200  
925MHz  
150  
100  
50  
5
0
0
-10  
-5  
0
5
10  
15  
20  
25  
30  
-10  
-5  
0
5
10  
15  
20  
25  
30  
Pout (dBm)  
Pout (dBm)  
Figure 1. Total Current vs. Output Power.  
Figure 2. Gain vs. Output Power.  
45  
40  
35  
30  
25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
898MHz  
910MHz  
925MHz  
898MHz  
910MHz  
925MHz  
20  
15  
10  
5
0
-10  
-5  
0
5
10  
15  
20  
25  
30  
-10  
-5  
0
5
10  
15  
20  
25  
30  
Pout (dBm)  
Pout (dBm)  
Figure 4. Adjacent Channel Power Ratio 1 vs.  
Output Power.  
Figure 3. Power Added Efficiency vs. Output Power.  
-40  
-45  
-50  
-55  
898MHz  
-60  
-65  
-70  
910MHz  
925MHz  
-75  
-80  
-85  
-90  
-10  
-5  
0
5
10  
15  
20  
25  
30  
Pout (dBm)  
Figure 5. Adjacent Channel Power Ratio 2 vs.  
Output Power.  
4
Evaluation Board Description  
Vref  
1 Vref  
GND 10  
GND 9  
C1  
100pF  
Vcont  
2 Vcont  
3 GND  
4 RF In  
5 Vcc1  
C2  
100pF  
R1  
6.2kohm  
RF Out  
RF Out 8  
GND 7  
RF In  
Vcc1  
Vcc2 6  
C4  
2.2µF  
C3  
22pF  
C7  
68pF  
C5  
1.5nF  
C6  
2.2µF  
Vcc2  
Figure 6. Evaluation Board Schematic.  
C1  
R1  
C2  
AVAGO  
ACPM-7821  
PYYWW  
AAAAA  
C7  
C3  
C5  
C6  
C4  
Figure 7. Evaluation Board Assembly Diagram.  
5
Package Dimensions and Pin Descriptions  
Pin 1 Mark  
0.48  
10  
9
1
2
4
0.1  
3
4
5
8
7
6
1.1 0.1  
4
0.1  
TOP VIEW  
SIDE VIEW  
1.9  
1.0  
Pin #  
Name  
Vref  
Description  
Reference Voltage  
Control Voltage  
Ground  
1
2
3
4
5
6
7
8
9
10  
0.5  
0.85  
0.85  
Vcont  
GND  
RF In  
Vcc1  
Vcc2  
GND  
RF Out  
GND  
GND  
0.6  
RF Input  
Supply Voltage  
Supply Voltage  
Ground  
1.7  
1.9  
RF Output  
Ground  
0.4  
0.4  
Ground  
BOTTOM VIEW  
PIN DESCRIPTIONS  
Figure 8. Package Dimensional Drawing and Pin Descriptions.  
6
Package Dimensions and Pin Descriptions, continued  
Pin 1 Mark  
AVAGO  
ACPM-7821  
PYYWW  
Manufacturing Part Number  
Lot Number  
P
Manufacturing info  
AAAAA  
YY  
WW  
Manufacturing Year  
Work Week  
AAAAA Assembly Lot Number  
Figure 9. Marking Specifications.  
7
Peripheral Circuit in Handset  
+2.85V  
C8  
MSM PA_ON  
PA_R0  
R1  
C2  
C1  
Output Matching Circuit  
C6  
ACPM-7821  
Vdd  
Vref  
Vcont  
GND  
IN  
GND  
GND  
OUT  
GND  
Vcc2  
RF Out  
RF In  
Duplexer  
RF SAW  
Vcc1  
C7  
L1  
C3  
C4  
C5  
VBATT  
Notes:  
- Recommended voltage for Vref is 2.85V  
- Place C1 near to Vref pin.  
- Place C3 and C4 close to pin 5 (Vcc1) and pin 6 (Vcc2). These capacitors can affect the RF performance  
- Use 50Ω transmission line between PAM and Duplexer and make it as short as possible to reduce conduction loss  
- π-type circuit topology is good to use for matching circuit between PA and Duplexer.  
- Pull-up resistor(R1) should be used to limit current drain. 6.2kΩ is recommended for ACPM-7821  
Figure 10. Peripheral Circuit.  
8
Calibration  
power where PA mode changes from high mode to  
Calibration procedure is shown in Figure 11. Two low mode), should be adopted to prevent system  
calibration tables, high mode and low mode respec- oscillation. 3 to 5 dB is recommended for Hysteresis.  
tively, are required for CoolPAM, which is due to gain  
difference in each mode.  
Average Current and Talk Time  
Probability Distribution Function implies that what  
For continuous output power at the mode change  
is important for longer talk time is the efficiency of  
points, the input power should be adjusted accord-  
low or medium power range rather than the efficiency  
ing to gain step during the mode change.  
at full power. ACPM-7821 idle current is 14 mA and  
operating current at 17 dBm is 68 mA at nominal  
Offset Value  
condition. This PA with low current consumption pro-  
longs talk time by no less than 30 minutes compared  
to other PAs.  
(difference between rising point and falling point)  
Offset value, which is the difference between the ris-  
ing point (output power where PA mode changes from  
low mode to high mode) and falling point (output  
Average current = (PDF x Current)dp  
TX AGC  
Gain  
Low mode  
High mode  
High Mode  
Low Mode  
Pout  
Max PWR  
Pout  
Falling  
Rising  
Falling  
Min PWR  
Rising  
Figure 12. Setting of offset between rising and falling power.  
Figure 11. Calibration procedure.  
5.00  
4.50  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
700  
600  
500  
CDG Urban  
CDG Suburban  
400  
300  
200  
100  
0
0.00  
-50  
-40  
-30  
-20  
-10  
0
10  
20  
30  
PA Out (dBm)  
Conv PAM  
Digitally Controlled PA  
Cool PAM  
Figure 13. CDMA Power Distribution Function.  
9
0.1  
PCB Design Guidelines  
0.25  
The recommended ACPM-7821 PCB Land pattern is  
shown in Figure 14 and Figure 15. The substrate is  
coated with solder mask between the I/O and con-  
ductive paddle to protect the gold pads from short  
circuit that is caused by solder bleeding/bridging.  
0.85  
Stencil Design Guidelines  
A properly designed solder screen or stencil is  
required to ensure optimum amount of solder paste  
is deposited onto the PCB pads.  
0.4  
0.7  
0.6  
The recommended stencil layout is shown in Figure  
16. Reducing the stencil opening can potentially  
generate more voids. On the other hand, stencil open-  
ings larger than 100% will lead to excessive solder  
paste smear or bridging across the I/O pads or  
conductive paddle to adjacent I/O pads. Considering  
the fact that solder paste thickness will directly affect  
the quality of the solder joint, a good choice is to use  
laser cut stencil composed of 0.100 mm (4mils) or  
0.127 mm (5mils) thick stainless steel which is capable  
of producing the required fine stencil outline.  
Ø 0.3mm  
on 0.6mm pitch  
Figure 14. Metallization.  
0.8  
0.65  
0.5  
1.8  
0.6  
0.85  
2.0  
0.8 x 0.5  
0.8 x 0.6  
Figure 15. Solder Mask Opening.  
0.7  
0.6  
0.4  
1.6  
0.85  
1.6  
Figure 16. Solder Paste Stencil Aperture.  
10  
Tape Drawing  
Dimension List  
Annote  
Millimeter  
4.40 0.10  
4.40 0.10  
1.70 0.10  
1.55 0.05  
1.60 0.10  
4.00 0.10  
8.00 0.10  
Annote  
P2  
P10  
E
Millimeter  
2.00 0.05  
A0  
B0  
K0  
D0  
D1  
P0  
P1  
40.00 0.20  
1.75 0.10  
F
5.50 0.05  
W
T
12.00 0.30  
0.30 0.05  
Figure 17. Tape and Reel Format – 4mm x 4mm.  
11  
Reel Drawing  
BACK VIEW  
FRONT VIEW  
Figure 18. Plastic Reel Format13"/4".  
12  
Handling and Storage  
package at various temperatures and relative humid-  
ity, and times. After soak, the components are sub-  
jected to three consecutive simulated reflows.  
ESD (Electrostatic Discharge)  
Electrostatic discharge occurs naturally in the envi-  
ronment. With the increase in voltage potential, the  
outlet of neutralization or discharge will be sought. If  
the acquired discharge route is through a semicon-  
ductor device, destructive damage will result. ESD  
countermeasure methods should be developed and  
used to control potential ESD damage during handling  
in a factory environment at each manufacturing site.  
The out of bag exposure time maximum limits are  
determined by the classification test describe  
above which corresponds to an MSL classification  
level 6 to 1 according to the JEDEC standard  
IPC/JEDEC J-STD-020A and J-STD-033.  
ACPM-7821 is MSL3. Thus, according to the J-STD-  
033 p.11 the maximum Manufacturers Exposure Time  
(MET) for this part is 168 hours. After this time  
period, the part would need to be removed from the  
reel, de-taped and then re-bake.  
MSL (Moisture Sensitivity Level)  
Plastic encapsulated surface mount package is sen-  
sitive to damage induced by absorbed moisture and MSL classification reflow temperature for the  
temperature. Avago follows JEDEC Standard J-STD ACPM-7821 is targeted at 250°C +0/-5°C. Figure 19  
020A. Each component and package type is classi- and Table 7 show typical SMT profile for maximum  
fied for moisture sensitivity by soaking a known dry temperature of 250°C +0/-5°C.  
Table 5. ESD Classification  
Pin#  
HBM  
MM  
CDM  
Rating  
Class  
Rating  
Class  
Rating  
Class  
All Pins  
1000V  
Class 1C  
200V  
Class B  
200V  
Class II  
(JESD22-A115-A)  
(JESD22-C101C)  
Note:  
1. PA module products should be considered extremely ESD sensitive.  
Table 6. Moisture Classification Level and Floor Life  
MSL Level  
Floor Life (out of bag) at factory ambient 30°C/60% RH or as stated  
1
Unlimited at 30oC/85% RH  
1 year  
2
2a  
4 weeks  
3
168 hours  
72 hours  
4
5
48 hours  
5a  
24 hours  
6
Mandatory bake before use. After bake, must be reflowed within the time limit specified on the label  
Note:  
1. The MSL Level is marked on the MSL Label on each shipping bag.  
13  
Handling and Storage, continued  
Figure 19. Typical SMT Reflow Profile for Maximum Temperature = 250 +0/-5°C.  
Table 7. Typical SMT Reflow Profile for Maximum Temperature = 250+0/-5°C  
Profile Feature  
Sn-Pb Solder  
Pb-Free Solder  
Average ramp-up rate (TL to TP)  
3°C/sec max  
3°C/sec max  
Preheat  
- Temperature Min (Tsmin)  
- Temperature Max (Tsmax)  
- Time (min to max) (ts)  
100°C  
150°C  
60120 sec  
100°C  
150°C  
60180 sec  
Tsmax to TL  
- Ramp-up Rate  
3°C/sec max  
Time maintained above:  
- Temperature (TL)  
- Time (TL)  
183°C  
60150 sec  
217°C  
60150 sec  
Peak Temperature (Tp)  
225 +0/-5°C  
1030 sec  
250 +0/-5°C  
1030 sec  
Time within 5°C of actual Peak Temperature (tp)  
Ramp-down Rate  
6°C/sec max  
6 min max.  
6°C/sec max  
8 min max.  
Time 25°C to Peak Temperature  
14  
Handling and Storage, continued  
Removal for Failure Analysis  
Not following the requirements of 4-1 may cause  
moisture/reflow damage that could hinder or com-  
pletely prevent the determination of the original fail-  
ure mechanism.  
Storage Conditions  
Packages described in this document must be stored  
in sealed moisture barrier, anti-static bags. Shelf life  
in a sealed moisture barrier bag is 12 months at <40°C  
and 90% relative humidity (RH) J-STD-033 p.7.  
Baking of Populated Boards  
Some SMD packages and board materials are not able  
to withstand long duration bakes at 125°C. Examples  
of this are some FR-4 materials, which cannot with-  
stand a 24 hr bake at 125°C. Batteries and electro-  
lytic capacitors are also temperature sensitive. With  
component and board temperature restrictions in  
mind, choose a bake temperature from Table 4-1 in  
J-STD 033; then determine the appropriate bake  
duration based on the component to be removed. For  
additional considerations see IPC-7711 and IPC-7721.  
Out-of-Bag Time Duration  
After unpacking the device must be soldered to the  
PCB within 168 hours as listed in the J-STD-020B  
p.11 with factory conditions <30oC and 60% RH.  
Baking  
It is not necessary to re-bake the part if both condi-  
tions (storage conditions and out-of-bag  
condition) have been satisfied. Baking must be done  
if at least one of the conditions above have  
not been satisfied. The baking conditions are 125  
for 24 hours J-STD-033 p.8.  
Derating due to Factory Environmental Conditions  
°C  
Factory floor life exposures for SMD packages  
removed from the dry bags will be a function of the  
ambient environmental conditions. A safe, yet con-  
servative, handling approach is to expose the SMD  
packages only up to the maximum time limits for each  
moisture sensitivity level as shown in Table 6. This  
approach, however, does not work if the factory hu-  
midity or temperature are greater than the testing  
conditions of 30°C/60% RH. A solution for address-  
ing this problem is to derate the exposure times based  
on the knowledge of moisture diffusion in the com-  
ponent packaging materials (ref. JESD22-A120). Rec-  
ommended equivalent total floor life exposures can  
be estimated for a range of humiditys and tempera-  
tures based on the nominal plastic thickness for each  
device. Table 8 lists equivalent derated floor lives for  
humiditys ranging from 2090% RH for three tem-  
peratures, 20°C, 25°C, and 30°C. This table is appli-  
cable to SMDs molded with novolac, biphenyl or mul-  
tifunctional epoxy mold compounds. The following  
assumptions were used in calculating Table 8:  
CAUTION: Tape and reel materials typically cannot  
be baked at the temperature described above.  
If out-of-bag exposure time is exceeded, parts must  
be baked for a longer time at low temperatures, or  
the parts must be re-reeled, de-taped, re-baked and  
then put back on tape and reel. (See moisture sensi-  
tive warning label on each shipping bag for informa-  
tion of baking)  
Board Rework  
Component Removal, Rework and Remount  
If a component is to be removed from the board, it is  
recommended that localized heating be used and the  
maximum body temperatures of any surface mount  
component on the board not exceed 200°C. This  
method will minimize moisture related component  
damage. If any component temperature exceeds  
200°C, the board must be baked dry per 4-2 prior to  
rework and/or component removal. Component tem-  
peratures shall be measured at the top center of the  
package body. Any SMD packages that have not ex-  
ceeded their floor life can be exposed to a maximum  
body temperature as high as their specified maximum  
reflow temperature.  
1. Activation Energy for diffusion = 0.35eV  
(smallest known value).  
2. For 60% RH, use Diffusivity = 0.121exp  
(- 0.35eV/kT) mm2/s (this uses smallest known  
Diffusivity @ 30°C).  
3. For >60% RH, use Diffusivity = 1.320exp  
(- 0.35eV/kT) mm2/s (this uses largest known  
Diffusivity @ 30°C).  
15  
Table 8. Recommended Equivalent Total Floor Life (days) @ 20°C, 25°C & 30°C For ICs with Novolac, Biphenyl and  
Multifunctional Epoxies (Reflow at same temperature at which the component was classified)  
For product information and a complete list of distributors, please go to our web site:  
www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited  
in the United States and other countries.  
Data subject to change. Copyright © 2006 Avago Technologies, Limited. All rights reserved.  
Obsoletes 5989-2534EN  
AV01-0265EN July 10, 2006  

ACPM-7821 相关器件

型号 制造商 描述 价格 文档
ACPM-7821-BLK AVAGO 4 x 4 Power Amplifier Module for J-CDMA (898 - 925 MHz) 获取价格
ACPM-7821-TR1 AVAGO 4 x 4 Power Amplifier Module for J-CDMA (898 - 925 MHz) 获取价格
ACPM-7822 AVAGO JCDMA 4x4 Power Amplifier Module (898-925MHz) 获取价格
ACPM-7822-BLK AVAGO JCDMA 4x4 Power Amplifier Module (898-925MHz) 获取价格
ACPM-7822-TR1 AVAGO JCDMA 4x4 Power Amplifier Module (898-925MHz) 获取价格
ACPM-7824-BLK AVAGO 824MHz - 849MHz RF/MICROWAVE NARROW BAND MEDIUM POWER AMPLIFIER, 4 X 4 MM, GREEN PACKAGE-10 获取价格
ACPM-7824-TR1 AVAGO 824MHz - 849MHz RF/MICROWAVE NARROW BAND MEDIUM POWER AMPLIFIER, 4 X 4 MM, GREEN PACKAGE-10 获取价格
ACPM-7831-BLK ETC Amplifier. Other 获取价格
ACPM-7831-TR1 ETC Amplifier. Other 获取价格
ACPM-7833 AGILENT CDMA1900 (PCS) Power Amplifier Module 获取价格

ACPM-7821 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6