AMMP-6130 [AVAGO]

30 GHz Power Amplifier with Frequency Multiplier (x2); 30 GHz功率放大器与倍频(×2)
AMMP-6130
型号: AMMP-6130
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

30 GHz Power Amplifier with Frequency Multiplier (x2)
30 GHz功率放大器与倍频(×2)

放大器 功率放大器
文件: 总8页 (文件大小:196K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMMP-6130  
30 GHz Power Amplifier with Frequency Multiplier (x2)  
in SMT Package  
Data Sheet  
Features  
Description  
Avago Technologies AMMP-6130 is a high gain,  
narrowband doubler and output power amplifier  
designed for DBS applications and other commercial  
communication systems. The MMIC takes an input 15  
GHz signal and passes it through a harmonic frequency  
multiplier (x2) and then three stages of power  
amplification. Integrated matching structures filter and  
match input/output to 50 . It has integrated input  
and output DC blocking capacitors and bias structures  
to all stages. The MMIC is fabricated using PHEMT  
technology. The backside of this package part is both  
RF and DC ground. This helps simply the assembly  
process and reduces assembly related performance  
variations and costs. The surface mount package allows  
elimination of “chip & wire” assembly for lower cost.  
This MMIC is a cost effective alternative to hybrid  
(discrete-FET) amplifiers that require complex tuning  
and assembly process.  
5x5 mm Surface Mount Package  
Integrated DC Block and Choke  
50 Input and Output Match  
Single Positive Supply Pin  
No Negative Gate Bias  
Specifications (Vd=4.5V, Idd=200mA)  
Frequency Range 15GHz in, 30GHz out  
Output Power: 21 dBm  
Harmonic Suppression: 60dBc  
Single Positive Supply  
DC Requirements: 4.5V, 200mA  
Applications  
Microwave Radio systems  
Satellite VSAT, DBS Up/Down Link  
Broadband Wireless Access)  
Surface Mount Package, 5.0 x 5.0 x 1.25 mm  
Pin Connections (Top View)  
Pin  
1
2
Function  
Vd  
1
2
3
3
4
RFOut  
5
8
4
X2  
6
7
8
RF In  
7
6
5
PACKAGE  
BASE  
GND  
Note: These devices are ESD sensitive. The following precautions are strongly recommended. Ensure  
that an ESD approved carrier is used when units are transported from one destination to another.  
Personal grounding is to be worn at all times when handling these devices. The manufacturer  
assumes no responsibilities for ESD damage due to improper storage and handling of these devices.  
(1)  
(2)  
Absolute Maximum Ratings  
DC Specifications/ Physical Properties  
Sym Parameters/Condition  
Vdd Drain to Ground Voltage  
Idd Drain Current  
Unit Max  
Parameter and  
Sym Test Condition  
Unit Min Typ Max  
200 250  
V
5
Idd Drain Supply Current mA  
under any RF power  
drive and temp.  
mA  
300  
Pin  
RF CW Input Power Max  
dBm 15  
(Vd=4.5 V)  
Tch Max channel temperature  
Tstg Storage temperature  
C
C
C
+150  
Vd  
Drain Supply Voltage  
Thermal Resistance(3) C/W  
V
3.5 4.5  
45  
5
-65 +150  
θjc  
Tmax Maximum Assembly Temp  
260 for 20s  
Notes.  
2. Ambient operational temperature TA=25°C unless noted  
1. Operation in excess of any of these conditions may result in  
permanent damage to this device. The absolute maximum ratings  
for Vdd, Idd and Pin were determined at an ambient temperature  
of 25°C unless noted otherwise.  
3. Channel-to-backside Thermal Resistance (Tchannel = 34°C) as  
measured using infrared microscopy. Thermal Resistance at  
backside temp. (Tb) = 25°C calculated from measured data.  
(4,5)  
AMMP-6130 RF Specifications  
TA= 25°C, Vdd = 4.5 V, Idd = 200mA, Zo=50 , Pin=5dBm  
Symbol  
Freq  
Parameters and Test Conditions  
Operational Frequency  
Conversion Gain(4,5)  
Frequency Units  
Minimum  
Maximum Typical  
GHz  
30  
Gain  
30  
30  
30  
dB  
14  
19  
18.5  
23.5  
16  
21  
60  
50  
Pout  
Output Power(5)  
dBm  
dBc  
dBc  
FS  
Fundamental Suppression  
3rd Harmonic Suppression  
3H Sup  
Notes.  
4. Small/Large -signal data measured in a fully de-embedded test fixture form TA = 25°C.  
5. All tested parameters guaranteed with measurement accuracy +/-1dB/dBm/dBc.  
Typical Distribution of Conversion Gain and Output Power based on 1000 parts  
StDev = 0.46  
StDev = 0.39  
Conversion Gain at 30GHz  
Output Power at 30GHz  
2
AMMP-6130 Typical Performance  
(TA = 25°C, Vdd=4.5V, Idd=200 mA, Zin = Zout = 50, Pin=3dBm unless otherwise stated)  
24  
22  
20  
18  
16  
14  
20  
18  
16  
14  
12  
10  
65  
60  
55  
50  
45  
40  
35  
30  
25  
3dBm  
5dBm  
4dBm  
8
C.G.  
2H-1H  
6
4
2
29  
29.5  
30  
30.5  
31  
14  
14.5  
15  
15.5  
16  
Output Frequency [GHz]  
Input Frequency [GHz]  
Figure 2. Output Power vs. Output Frequency vs. Input Power  
Figure 1. Conversion Gain & Fundamental Sup vs. Input Freq  
24  
22  
20  
18  
25  
20  
15  
10  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
4V  
16  
3.5V  
2H  
1H  
3H  
5
5V  
4.5V  
14  
0
12  
29  
29.5  
30  
Frequency [GHz]  
30.5  
31  
29  
29.5  
30  
30.5  
31  
Frequency [GHz]  
Figure 3. Output Power vs. Output Frequency @ 4 bias levels  
Figure 4. Fundamental, 2H & 3H Output Power vs. Output Freq  
24  
20  
16  
12  
0
S11[dB]  
S22[dB]  
-5  
-10  
-15  
-20  
-25  
-30  
8
14GHz  
16GHz  
4
0
15GHz  
-6  
-4  
-2  
0
2
4
6
13  
18  
23  
28  
33  
Frequency [GHz]  
Pin [dBm]  
Figure 5. Output Power vs. Input Power vs. Input Freq  
Figure 6. Input and Output Return Loss vs. Freq  
24  
22  
20  
18  
16  
-40C  
25C  
14  
85C  
12  
29  
29.5  
30  
30.5  
31  
Frequency [GHz]  
Figure 7. Output Power vs. Output Freq @ Temp = 25C, -40C &  
85C  
3
Typical Scattering Parameters [1]  
(TA = 25°C, Vdd =4.5 V, IDD = 200 mA, Zin = Zout = 50 )  
Freq  
S11  
S21  
S12  
S22  
GHz dB  
Mag  
Phase  
73.909  
-33.368  
dB  
Mag  
Phase  
dB  
Mag  
Phase  
96.570  
14.797  
dB  
Mag  
Phase  
1
-2.166  
0.779  
0.747  
0.669  
0.570  
0.579  
0.620  
0.642  
0.669  
0.720  
0.758  
0.754  
0.696  
0.608  
0.573  
0.471  
-80.000 0.000  
-55.139 0.002  
32.383  
-76.478 0.000  
-0.425  
-1.765  
0.952  
0.816  
0.686  
0.452  
0.546  
0.506  
0.466  
0.405  
0.394  
0.435  
0.455  
0.409  
0.321  
0.326  
0.429  
0.471  
0.407  
-101.410  
159.979  
61.101  
2
-2.531  
-3.497  
-4.889  
-4.747  
-4.158  
-3.851  
-3.490  
-2.858  
-2.405  
-2.455  
-3.151  
-4.322  
-4.834  
-8.532  
131.860 -64.437 0.001  
4.147 -60.915 0.001  
-149.666 -61.938 0.001  
14.517 -76.478 0.000  
3
-148.095 -47.131 0.004  
-81.506 -3.270  
-167.459 -6.891  
-43.361 -5.259  
179.115 -5.923  
4
81.765  
-35.890 0.016  
-39.659 0.010  
-23.500  
-102.375  
170.014  
79.202  
5
-58.704  
6
177.213 -42.499 0.008  
-90.973 -60.000 0.001  
125.799 -52.217 0.002  
7
65.073  
-40.491 0.009  
-38.202 0.012  
90.638  
-0.484  
-6.641  
-7.851  
8
-47.052  
6.552  
-50.903 0.003  
-19.043  
-114.956  
158.758  
78.557  
9
-152.082 -36.449 0.015  
115.491 -39.453 0.011  
127.728 -51.213 0.003  
-65.533 -50.752 0.003  
-163.279 -51.057 0.003  
107.046 -51.701 0.003  
-66.346 -8.101  
-143.716 -7.230  
143.963 -6.848  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
30.433  
-36.924 0.014  
-31.920 0.025  
-60.545  
70.767  
-5.502  
-7.764  
-9.863  
-2.902  
-169.451 -25.739 0.052  
3.617  
-53.351 0.002  
-100.642  
143.433  
47.561  
73.490  
-21.180 0.087  
-18.548 0.118  
-117.593 -56.773 0.001  
110.391 -58.416 0.001  
-76.081 -9.730  
-115.604 -7.355  
176.951 -6.539  
114.486 -7.803  
-34.070  
-17.084 0.140  
178.992 -17.566 0.132  
-53.423 -17.635 0.131  
6.543  
-55.139 0.002  
-30.885  
-107.509  
152.353  
7.160  
-4.491  
-3.044  
-3.366  
-3.044  
-2.867  
-3.422  
-4.695  
-4.668  
-3.628  
-3.951  
-6.246  
-4.878  
-2.704  
-2.261  
-2.438  
-4.679  
-3.935  
-2.625  
-2.781  
-1.933  
-2.389  
-3.601  
-3.147  
-2.535  
0.596  
0.704  
0.679  
0.704  
0.719  
0.674  
0.582  
0.584  
0.659  
0.635  
0.487  
0.570  
0.732  
0.771  
0.755  
0.584  
0.636  
0.739  
0.726  
0.800  
0.760  
0.661  
0.696  
0.747  
-135.344 -54.895 0.002  
136.100 -55.918 0.002  
-155.503 -23.293 0.068  
102.797 -18.655 0.117  
53.047  
10.720  
-10.664 0.293  
95.071  
-55.650 0.002  
-9.247  
0.345  
0.486  
-9.051  
-9.450  
0.337  
0.502  
0.629  
0.678  
0.789  
0.909  
1.198  
1.872  
2.716  
2.728  
2.381  
1.764  
1.262  
0.779  
0.635  
0.555  
-14.777 -50.604 0.003  
-145.395 -48.068 0.004  
-48.544 -6.265  
-113.148  
132.293  
-67.065  
-171.437  
116.377  
37.539  
-108.593 -5.991  
162.205 -4.028  
-132.798 -11.811 0.257  
150.079 -13.966 0.200  
82.328  
-48.291 0.004  
63.767  
-3.379  
-2.061  
-39.850 -47.033 0.004  
-163.461 -49.119 0.004  
77.624  
-10.858 0.287  
-51.945  
-14.763 -13.856 0.203  
-91.783 -26.366 0.048  
-133.605 -20.510 0.094  
-121.717 -14.933 0.179  
154.890 -13.580 0.209  
104.130 -19.160 0.110  
-154.450 -0.831  
115.995 1.569  
69.328  
-54.425 0.002  
-59.027 -63.098 0.001  
160.771 -54.425 0.002  
-161.333  
150.560  
94.577  
5.230  
5.448  
-139.262 8.677  
123.438 8.718  
0.554  
-161.843 -51.535 0.003  
45.858 -44.883 0.006  
-52.956 0.002  
112.029  
60.389  
55.231  
7.537  
4.931  
33.927  
-10.134 0.324  
-17.264  
-99.661 -40.677 0.009  
124.211 -45.352 0.005  
-92.384 -16.812 0.144  
171.824 -12.958 0.225  
-33.753  
93.604  
-129.407 2.021  
87.568  
-0.364  
-54.324  
-2.173  
-3.950  
-5.113  
-7.487  
-121.959 -54.425 0.002  
74.844 -51.213 0.003  
-47.639 0.004  
82.835  
29.124  
24.686  
-7.855  
-6.979  
-7.925  
0.405  
0.448  
0.402  
28.172  
-23.046  
-70.880  
-120.006  
-83.063  
-78.816  
-129.674  
175.556  
-110.128 -14.647 0.185  
-179.000 -20.114 0.099  
-47.149 -50.314 0.003  
-142.199 -47.432 0.004  
119.631 -45.514 0.005  
-44.356 -12.031 0.250  
-103.624 -24.967 0.056  
170.138 -11.511 0.266  
76.661  
-23.728 0.065  
-29.776 0.032  
-52.739  
19.317  
-48.995 0.004  
109.913 -8.394  
59.709 -8.793  
0.380  
0.363  
-142.354 -37.109 0.014  
-63.508 -48.636 0.004  
Note:  
Data obtained off of a connectorized module  
4
Biasing and Operation  
The AMMP-6130 frequency doubler has been designed  
with a fully integrated self bias network; thus, requiring  
only a single 4.5v bias input with a typical current draw  
of 200mA.  
The one-stage frequency doubler relies on the non-  
linear behavior of the FET to produce the doubled  
signal at the output. A high-pass filter at the input  
shorts any reflected 2nd harmonic signal to ground.  
The input also consists of matching components tuned  
to 15GHz. An additional LC-filter is included at the  
input for stability. The doubler is operated at pinch-  
off to create a half-wave conduction angle ideal for  
generation of the 2nd harmonic. The AMMP-6130 is  
also designed for stability over temperature.  
Figure 8. Evaluation / Test Board (Available to qualified  
customer requests)  
C
C3  
MLIN  
TL11  
MLIN  
TL12  
MLIN  
TL13  
Port  
Vd1  
Port  
Vd2  
MLIN  
TL10  
C
C7  
Port  
Output_30G  
HP_FET  
HPFET4  
MLOC  
TL8  
C
MLIN  
TL22  
MLIN  
TL16  
HP_FET  
C6  
HPFET3  
C
MLIN  
TL21  
MLIN  
TL15  
HP_FET  
C5  
MLIN  
TL19  
C
C2  
MLIN  
TL3  
HPFET2  
MLIN  
C
MLIN  
TL20  
MLIN  
HP_FET  
MLIN  
MLIN  
TL18  
TL7  
C4  
TL14  
TL17  
HPFET1  
C
C
C
C
R
Port  
Input_15G  
MLIN  
TL4  
MLIN  
TL2  
C15C13 C14C16R6  
R
R4  
MLOC  
TL9  
C
C
R
C11 C12 R5  
R
R2  
R
R3  
C
C
R
C9 C10 R1  
Figure 9. Simplified Doubler-Amplifier Schematic  
5
The AMMP Packaged Devices are compatible with high  
volume surface mount PCB assembly processes.  
Recommended SMT Attachment for 5x5 Package  
The PCB material and mounting pattern, as defined in  
the data sheet, optimizes RF performance and is  
strongly recommended. An electronic drawing of the  
land pattern is available upon request from Avago Sales  
& Application Engineering.  
Manual Assembly  
Follow ESD precautions while handling packages.  
Handling should be along the edges with tweezers.  
Recommended attachment is conductive solder  
paste. Please see recommended solder reflow  
profile. Neither Conductive epoxy or hand soldering  
is recommended.  
Apply solder paste using a stencil printer or dot  
placement. The volume of solder paste will be  
dependent on PCB and component layout and  
should be controlled to ensure consistent  
mechanical and electrical performance.  
Follow solder paste and vendor’s recommendations  
when developing a solder reflow profile. A standard  
profile will have a steady ramp up from room  
temperature to the pre-heat temp. to avoid damage  
due to thermal shock.  
Packages have been qualified to withstand a peak  
temperature of 260°C for 20 seconds. Verify that  
the profile will not expose device beyond these  
limits.  
A properly designed solder screen or stencil is required  
to ensure optimum amount of solder paste is deposited  
onto the PCB pads. The recommended stencil layout  
is shown in Figure 8. The stencil has a solder paste  
deposition opening approximately 70% to 90% of the  
PCB pad. Reducing stencil opening can potentially  
generate more voids underneath. On the other hand,  
stencil openings larger than 100% will lead to excessive  
solder paste smear or bridging across the I/O pads.  
Considering the fact that solder paste thickness will  
directly affect the quality of the solder joint, a good  
choice is to use a laser cut stencil composed of  
0.127mm (5 mils) thick stainless steel which is capable  
of producing the required fine stencil outline.  
NOTES:  
DIMENSIONS ARE IN INCHES [MILIMETERS]  
ALL GROUNDS MUST BE SOLDERED TO PCB RF  
Material is Rogers RO4350, 0.010" thick  
Figure 10. PCB Land Pattern and Stencil Layouts  
300  
Peak = 250 5ꢀC  
250  
Melting point = 218ꢀC  
200  
150  
100  
50  
The most commonly used solder reflow method is  
accomplished in a belt furnace using convection heat  
transfer. The suggested reflow profile for automated  
reflow processes is shown in Figure 9. This profile is  
designed to ensure reliable finished joints. However,  
the profile indicated in Figure 1 will vary among  
different solder pastes from different manufacturers  
and is shown here for reference only.  
Ramp 1 Preheat Ramp 2 Reflow  
Cooling  
250  
0
0
50  
100  
150  
200  
300  
Seconds  
Figure 11. Suggested Lead-Free Reflow Profile for SnAgCu  
Solder Paste  
Package, Tape & Reel, and Ordering Information  
.011  
Dimensional Tolerances: 0.002" [0.05mm]  
Back View  
Carrier Tape and Pocket Dimensions  
AMMP-6130 Part Number Ordering Information  
Part Number  
Devices Per Container  
Container  
AMMP-6130-BLKG  
AMMP-6130-TR1G  
AMMP-6130-TR2G  
10  
Antistatic bag  
100  
500  
7" Reel  
7" Reel  
Note: No RF performance degradation is seen due to ESD upto 250 V HBM and 80 V MM. The DC characteristics in  
general show increased leakage at lower ESD discharge voltages. The user is reminded that this device is ESD  
sensitive and needs to be handled with all necessary ESD protocols.  
For product information and a complete list of distributors, please go to our web site:  
www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.  
Data subject to change. Copyright © 2006 Avago Technologies Pte. All rights reserved.  
AV01-0287EN - August 2, 2006  

相关型号:

AMMP-6130-BLKG

30 GHz Power Amplifier with Frequency Multiplier (x2)
AVAGO

AMMP-6130-TR1G

30 GHz Power Amplifier with Frequency Multiplier (x2)
AVAGO

AMMP-6130-TR2G

30 GHz Power Amplifier with Frequency Multiplier (x2)
AVAGO

AMMP-6220

6-20 GHz Low Noise Amplifier
AGILENT

AMMP-6220

6-20 GHz Low Noise Amplifier
AVAGO

AMMP-6220-BLK

6-20 GHz Low Noise Amplifier
AGILENT

AMMP-6220-BLK

6-20 GHz Low Noise Amplifier
AVAGO

AMMP-6220-TR1

6-20 GHz Low Noise Amplifier
AGILENT

AMMP-6220-TR1

6-20 GHz Low Noise Amplifier
AVAGO

AMMP-6220-TR2

6-20 GHz Low Noise Amplifier
AGILENT

AMMP-6220-TR2

6-20 GHz Low Noise Amplifier
AVAGO

AMMP-6222

7 to 21 GHz GaAs High Linearity LNA in SMT Package
AVAGO