HCMS-2902 [AVAGO]

High Performance CMOS 5 x 7 Alphanumeric Displays; 高性能CMOS 5× 7文数字显示
HCMS-2902
型号: HCMS-2902
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

High Performance CMOS 5 x 7 Alphanumeric Displays
高性能CMOS 5× 7文数字显示

显示器 光电 功效 PC
文件: 总16页 (文件大小:201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCMS-29xx Series  
High Performance CMOS 5 x 7 Alphanumeric Displays  
DataSheet  
Description  
Features  
The HCMS-29xx series are high performance, easy • Easy to use  
to use dot matrix displays driven by on-board CMOS  
ICs. Each display can be directly interfaced with a  
microprocessor, thus eliminating the need for  
cumbersome interface components. The serial IC  
interface allows higher character count information  
displays with a minimum of data lines. A variety of  
colors, font heights, and character counts gives  
designers a wide range of product choices for their  
specific applications and the easy to read 5 x 7 pixel  
format allows the display of uppercase, lower case,  
Katakana,andcustomuser-definedcharacters.These  
displays are stackable in the x- and y- directions,  
making them ideal for high character count displays.  
• Interfaces directly with microprocessors  
• 0.15" character height in 4, 8, and 16 (2x8) character  
packages  
• 0.20" character height in 4 and 8 character packages  
• Rugged X- and Y-stackable package  
• Serial input  
• Convenient brightness controls  
• Wave solderable  
• Offered in five colors  
• Low power CMOS technology  
• TTL compatible  
Applications  
• Telecommunications equipment  
• Portable data entry devices  
• Computer peripherals  
• Medical equipment  
• Test equipment  
• Business machines  
• Avionics  
• Industrial controls  
Device Selection Guide  
AlGaAs  
HCMS-  
HER  
HCMS-  
Orange  
HCMS-  
Yellow  
HCMS-  
Green  
HCMS-  
Package  
Drawing  
Description  
1 x 4 0.15" Character  
1 x 8 0.15" Character  
2 x 8 0.15" Character  
1 x 4 0.20" Character  
1 x 8 0.20" Character  
2905  
2915  
2925  
2965  
2975  
2902  
2912  
2922  
2962  
2972  
2904  
2914  
2924  
2964  
2974  
2901  
2911  
2921  
2961  
2971  
2903  
2913  
2923  
2963  
2973  
A
B
C
D
E
ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED TO AVOID  
STATIC DISCHARGE.  
HCMS-290x  
17.78 (0.700) MAX.  
PIN FUNCTION  
ASSIGNMENT TABLE  
PIN # FUNCTION  
4.45 (0.175) TYP.  
2.22 (0.087) SYM.  
1
2
3
4
5
6
7
8
9
DATA OUT  
OSC  
V LED  
DATA IN  
RS  
CLK  
CE  
12  
1
1
2
3
4
BLANK  
GND  
3.71 (0.146) TYP.  
10.16 (0.400) MAX.  
10 SEL  
11 V LOGIC  
12 RESET  
2.11 (0.083) TYP.  
DATE CODE  
PIN # 1 IDENTIFIER  
LIGHT INTENSITY CATEGORY  
COLOR BIN  
COUNTRY OF ORIGIN  
0.25  
(0.010)  
PART NUMBER  
5.08  
(0.200)  
HCMS-290X X Z  
YYWW  
COO  
4.32  
(0.170)  
TYP.  
0.51 (0.020)  
PIN # 1  
2.54  
SYM.  
1.27  
(0.050)  
SYM.  
(0.100)  
2.54 ± 0.13  
(0.100 ± 0.005)  
(NON ACCUM.)  
TYP.  
7.62  
(0.300)  
0.51 ± 0.13  
(0.020 ± 0.005)  
TYP.  
NOTES:  
1. DIMENSIONS ARE IN mm (INCHES).  
2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS ± 0.38 mm (0.015 INCH).  
3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.  
HCMS-291x  
35.56 (1.400) MAX.  
2.22 (0.087) SYM.  
4.45  
(0.175)  
TYP.  
PIN FUNCTION  
ASSIGNMENT TABLE  
26  
PIN # FUNCTION  
3.71  
TYP.  
10.16 (0.400) MAX.  
0
1
2
3
4
5
6
7
(0.146)  
1
2
3
NO PIN  
NO PIN  
V LED  
3
4
5
6
7
8
9
NO PIN  
NO PIN  
NO PIN  
GND LED  
NO PIN  
NO PIN  
V LED  
NO PIN  
NO PIN  
NO PIN  
DATA IN  
RS  
NO PIN  
CLOCK  
CE  
BLANK  
GND LOGIC  
SEL  
2.11 (0.083) TYP.  
DATE CODE (YEAR, WEEK)  
PIN # 1 IDENTIFIER  
INTENSITY CATEGORY  
COLOR BIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
PART NUMBER  
COUNTRY OF ORIGIN  
0.25  
(0.010)  
HCMS-291X  
YYWW  
X
Z
COO  
5.08 (0.200)  
0.51  
(0.020)  
4.32  
(0.170)  
TYP.  
V LOGIC  
NO PIN  
RESET  
OSC  
2.54  
SYM.  
(0.100)  
0.51 ± 0.13  
(0.020 ± 0.005)  
1.27  
(0.050)  
DATA OUT  
TYP.  
SYM.  
2.54 ± 0.13  
(0.100 ± 0.005)  
(NON ACCUM.)  
7.62  
(0.300)  
TYP.  
NOTES:  
1. DIMENSIONS ARE IN mm (INCHES).  
2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS ± 0.38 mm (0.015 INCH).  
3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.  
2
HCMS-292x  
PIN FUNCTION ASSIGNMENT TABLE  
PIN # FUNCTION PIN # FUNCTION  
35.56 (1.400) MAX.  
1B  
2B  
3B  
4B  
5B  
6B  
7B  
8B  
9B  
NO PIN  
NO PIN  
V LED  
NO PIN  
NO PIN  
NO PIN  
GND LED  
NO PIN  
NO PIN  
1A  
2A  
3A  
4A  
5A  
6A  
7A  
8A  
9A  
NO PIN  
NO PIN  
V LED  
NO PIN  
NO PIN  
NO PIN  
GND LED  
NO PIN  
NO PIN  
2.22 (0.088) SYM.  
4.45 (0.175) MAX.  
26B  
26A  
10B V LED  
11B NO PIN  
12B NO PIN  
13B NO PIN  
14B DATA IN  
15B RS  
16B NO PIN  
17B CLOCK  
18B CE  
19B BLANK  
20B GND LOGIC  
21B SEL  
22B V LOGIC  
23B NO PIN  
24B RESET  
25B OSC  
ROW B  
10A V LED  
11A NO PIN  
12A NO PIN  
13A NO PIN  
14A DATA IN  
15A RS  
16A NO PIN  
17A CLOCK  
18A CE  
19A BLANK  
20A GND LOGIC  
21A SEL  
22A V LOGIC  
23A NO PIN  
24A RESET  
25A OSC  
0
8
1
9
2
3
4
5
6
7
4.83  
(0.190)  
3B  
3A  
19.81 (0.780) MAX.  
9.65 (0.380)  
ROW A  
10  
11  
12  
13  
14  
15  
3.71 (0.146) TYP.  
2.11 (0.083) TYP.  
DATE CODE (YEAR, WEEK)  
INTENSITY CATEGORY  
PIN # 1 IDENTIFIER  
26B DATA OUT  
26A DATA OUT  
COLOR BIN  
PART NUMBER  
COUNTRY OF ORIGIN  
0.25  
(0.010)  
HCMS-292X  
YYWW  
X
Z
COO  
5.08 (0.200)  
0.51  
(0.020)  
2.54  
SYM.  
1.27  
(0.050)  
(0.100)  
0.51 ± 0.13  
(0.020 ± 0.005)  
TYP.  
2.03  
(0.080)  
2.54 ± 0.13  
(0.100 ± 0.005)  
(NON ACCUM.)  
TYP.  
7.62  
(0.300)  
NOTES:  
1. DIMENSIONS ARE IN mm (INCHES).  
2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS ± 0.38 mm (0.015 INCH).  
3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.  
HCMS-296x  
PIN FUNCTION  
ASSIGNMENT TABLE  
PIN # FUNCTION  
21.46 (0.845) MAX.  
1
2
DATA OUT  
OSC  
3
4
5
V LED  
DATA IN  
RS  
2.67 (0.105) SYM.  
2.54 (0.100) TYP.  
6
7
CLK  
CE  
8
9
BLANK  
GND  
4.57  
(0.180)  
0
1
2
3
TYP.  
10  
11  
12  
SEL  
V LOGIC  
RESET  
11.43 (0.450) MAX.  
5.36 (0.211) TYP.  
PIN # 1 IDENTIFIER  
DATE CODE (YEAR, WEEK)  
INTENSITY CATEGORY  
COLOR BIN  
PART NUMBER  
0.25  
(0.010)  
COUNTRY OF ORIGIN  
HCMS-296X  
YYWW  
X Z  
COO  
5.31  
(0.209)  
3.71  
TYP.  
(0.146)  
0.50  
(0.020)  
0.169  
SYM.  
(4.28)  
0.51 ± 0.13  
(0.020 ± 0.005)  
TYP.  
0.072  
(1.83)  
SYM.  
2.54 ± 0.13  
TYP.  
(0.100 ± 0.005)  
7.62  
(0.300)  
NOTES:  
1. DIMENSIONS ARE IN mm (INCHES).  
2. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON DIMENSIONS IS ± 0.38 mm (0.015 INCH).  
3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.  
3
HCMS-297x  
42.93 (1.690) MAX.  
2.67 (0.105) SYM.  
5.36 (0.211) TYP.  
PIN FUNCTION  
ASSIGNMENT TABLE  
26  
4.57  
TYP.  
PIN # FUNCTION  
1
2
3
4
5
6
7
8
11.43 (0.450) MAX.  
(0.180)  
1
NO PIN  
NO PIN  
V LED  
2
3
3
4
5
6
7
8
9
NO PIN  
NO PIN  
NO PIN  
GND LED  
NO PIN  
NO PIN  
V LED  
NO PIN  
NO PIN  
NO PIN  
DATA IN  
RS  
NO PIN  
CLOCK  
CE  
BLANK  
GND LOGIC  
SEL  
2.54 (0.100) TYP.  
PIN # 1 IDENTIFIER  
DATE CODE (YEAR, WEEK)  
INTENSITY CATEGORY  
COLOR BIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
0.25  
(0.010)  
PART NUMBER  
COUNTRY OF ORIGIN  
HCMS-297X  
YYWW  
5.31  
(0.209)  
X Z  
COO  
0.51  
(0.020)  
3.71  
TYP.  
(0.146)  
V LOGIC  
NO PIN  
RESET  
OSC  
6.22  
(0.245)  
SYM.  
0.51 ± 0.13  
(0.020 ± 0.005)  
TYP.  
DATA OUT  
1.90  
(0.075)  
SYM.  
2.54 ± 0.13  
(0.100 ± 0.005)  
(NON ACCUM.)  
TYP.  
7.62  
(0.300)  
NOTES:  
1. DIMENSIONS ARE IN mm (INCHES).  
2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS ± 0.38 mm (0.015 INCH).  
3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.  
Absolute Maximum Ratings  
Logic Supply Voltage, VLOGIC to GNDLOGIC  
LED Supply Voltage, VLED to GNDLED  
Input Voltage, Any Pin to GND  
-0.3 V to 7.0 V  
-0.3 V to 5.5 V  
-0.3 V to VLOGIC +0.3 V  
-40°C to +85°C  
85%  
[1]  
Free Air Operating Temperature Range TA  
Relative Humidity (noncondensing)  
Storage Temperature, TS  
-55°C to 100°C  
Soldering Temperature [1.59 mm (0.063 in.) Below Body]  
Solder Dipping  
Wave Soldering  
260°C for 5 secs  
250°C for 3 secs  
ESD Protection @ 1.5 k, 100 pF (each pin)  
Class 1, 0-1999 V  
[2]  
TOTAL Package Power Dissipation at TA = 25°C  
4 Character  
8 Character  
16 Character  
1.2 W  
2.4 W  
4.8 W  
Notes:  
1. For operation in high ambient temperatures, see Appendix A, Thermal Considerations.  
Recommended Operating Conditions Over Temperature Range  
(-40°C to +85°C)  
Parameter  
Symbol  
Min.  
3.0  
Typ.  
5.0  
5.0  
0
Max.  
5.5  
Units  
V
Logic Supply Voltage  
LED Supply Voltage  
V
LOGIC  
V
LED  
4.0  
5.5  
V
GND to GND  
-0.3  
+0.3  
V
LED  
LOGIC  
4
Electrical Characteristics Over Operating Temperature Range (-40°C to +85°C)  
T = 25°C -40°C < T < 85°C  
A
A
V
Typ.  
= 5.0 V  
Max.  
3.0 V < V  
Min.  
< 5.5 V  
LOGIC  
LOGIC  
Parameter  
Symbol  
Max.  
Units Test Conditions  
Input Leakage Current  
I
µA  
mA  
µA  
mA  
µA  
V = 0 V to V  
IN LOGIC  
I
HCMS-290X/ 296X (4 char)  
HCMS-291X/ 297X (8 char)  
HCMS-292X (16 char)  
+7.5  
+15  
+15  
-2.5  
-5.0  
-5.0  
+50  
+100  
+100  
I
OPERATING  
I
(OPT)  
(SLP)  
V = V  
IN LOGIC  
LOGIC  
LOGIC  
HCMS-290X/ 296X (4 char)  
HCMS-291X/ 297X (8 char)  
HCMS-292X (16 char)  
[1]  
0.4  
0.8  
0.8  
2.5  
5
5
5
10  
10  
I
SLEEP  
I
V = V  
LOGIC  
LOGIC  
IN  
LOGIC  
HCMS-290X/ 296X (4 char)  
HCMS-291X/ 297X (8 char)  
HCMS-292X (16 char)  
5
10  
10  
15  
30  
30  
25  
50  
50  
I
BLANK  
I
(BL)  
BL = 0 V  
LED  
LED  
HMCS-290X/ 296X (4 char)  
HCMS-291X/ 297X (8 char)  
HCMS-292X (16 char)  
[1]  
2.0  
4.0  
4.0  
4
8
8
4.0  
8
8
I
SLEEP  
I
(SLP)  
LED  
LED  
HCMS-290X/ 296X (4 char)  
HCMS 291X/ 297X (8 char)  
HCMS-292X (16 char)  
[2]  
1
2
2
3
6
6
50  
100  
100  
Peak Pixel Current  
I
V
LED  
= 5.5 V  
PIXEL  
HCMS-29X5 (AlGaAs)  
HCMS-29XX (Other Colors)  
15.4  
14.0  
17.1  
15.9  
18.7  
17.1  
mA  
mA  
All pixels ON,  
Average value per pixel  
HIGH Level Input Voltage  
LOW Level Input Voltage  
HIGH Level Output Voltage  
V
2.0  
V
V
V
V
V
4.5 V < V  
< 5.5 V  
< 4.5 V  
< 5.5 V  
< 4.5 V  
ih  
LOGIC  
0.8 V  
3.0 V < V  
LOGIC  
LOGIC  
V
il  
0.8  
4.5 V < V  
LOGIC  
0.2 V  
3.0 V < V  
LOGIC  
LOGIC  
V
oh  
2.0  
0.8 V  
V
LOGIC  
= 4.5 V,  
I
oh  
= -40 µA  
V
V
3.0 V < V  
< 4.5 V  
< 4.5 V  
LOGIC  
LOGIC  
LOW Level Output Voltage  
V
ol  
0.4  
0.2 V  
V
LOGIC  
= 5.5 V,  
[3]  
I = 1.6 mA  
ol  
V
3.0 V < V  
LOGIC  
LOGIC  
Thermal Resistance  
Rq  
70  
°C/ W IC junction to pin  
J-P  
Notes:  
1. In SLEEP mode, the internal oscillator and reference current for LED drivers are off.  
2. Average peak pixel current is measured at the maximum drive current set by Control Register 0. Individual pixels may exceed this value.  
3. For the Oscillator Output, I = 40 µA.  
ol  
5
[1]  
Optical Characteristics at 25°C  
= 5.0 V, 50% Peak Current, 100% Pulse Width  
V
LED  
Peak  
Wavelength  
Dominant  
[2]  
Luminous Intensity per LED  
Character Average (µcd)  
Wavelength  
[3]  
l
(nm)  
l
(nm)  
Peak  
d
Display Color  
AlGaAs Red  
High Efficiency Red  
Orange  
Part Number  
HCMS-29X5  
HCMS-29X2  
HCMS-29X4  
HCMS-29X1  
HCMS-29X3  
Min.  
Typ.  
230  
64  
Typ.  
645  
635  
600  
583  
568  
Typ.  
637  
626  
602  
585  
574  
95  
29  
29  
64  
Yellow  
29  
64  
Green  
57  
114  
Notes:  
1. Refers to the initial case temperature of the device immediately prior to measurement.  
2. Measured with all LEDs illuminated.  
3. Dominant wavelength, l , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the perceived LED color.  
d
Electrical Description  
Pin Function  
Description  
RESET (RST)  
Sets Control Register bits to logic low. The Dot Register contents are  
unaffected by the Reset pin. (logic low = reset; logic high = normal  
operation).  
DATA IN (DIN)  
DATA OUT (DOUT  
CLOCK (CLK)  
Serial Data input for Dot or Control Register data. Data is entered on the  
rising edge of the Clock input.  
)
Serial Data output for Dot or Control Register data. This pin is used for  
cascading multiple displays.  
Clock input for writing Dot or Control Register data. When Chip Enable is  
logic low, data is entered on the rising Clock edge.  
REGISTER SELECT (RS)  
CHIP ENABLE (CE)  
Selects Dot Register (RS = logic low) or Control Register (RS = logic high)  
as the destination for serial data entry. The logic level of RS is latched on  
the falling edge of the Chip Enable input.  
This input must be a logic low to write data to the display. When CE  
returns to logic high and CLK is logic low, data is latched to either the LED  
output drivers or a Control Register.  
OSCILLATOR SELECT  
(SEL)  
Selects either an internal or external display oscillator source.  
(logic low = External Display Oscillator; logic high = Internal Display  
Oscillator).  
OSCILLATOR (OSC)  
Output for the Internal Display Oscillator (SEL = logic high) or input for an  
External Display Oscillator (SEL = logic low).  
BLANK (BL)  
GNDLED  
GNDLOGIC  
VLED  
Blanks the display when logic high. May be modulated for brightness control.  
Ground for LED drivers.  
Ground for logic.  
Positive supply for LED drivers.  
Positive supply for logic.  
VLOGIC  
6
AC Timing Characteristics Over Temperature Range (-40°C to +85°C)  
Timing  
Diagram Ref.  
4.5 V < V  
<5.5 V  
V
= 3 V  
LOGIC  
LOGIC  
Number  
Description  
Symbol Min.  
Max.  
Min.  
Max.  
Units  
ns  
1
2
3
Register Select Setup Time to Chip Enable  
Register Select Hold Time to Chip Enable  
t
t
t
10  
10  
20  
10  
rss  
10  
ns  
rsh  
Rising Clock Edge to Falling  
Chip Enable Edge  
20  
ns  
clkce  
4
5
6
7
8
9
Chip Enable Setup Time to Rising Clock Edge  
Chip Enable Hold Time to Rising Clock Edge  
Data Setup Time to Rising Clock Edge  
t
t
t
t
t
t
35  
20  
10  
10  
10  
55  
20  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ces  
ceh  
ds  
Data Hold Time after Rising Clock Edge  
dh  
[1]  
Rising Clock Edge to D  
40  
18  
65  
30  
OUT  
dout  
doutp  
Propagation Delay D to D  
Simultaneous Mode for One IC  
IN  
OUT  
[1,2]  
10  
11  
12  
CE Falling Edge to D Valid  
t
t
t
t
25  
45  
ns  
OUT  
cedo  
clkh  
clkl  
Clock High Time  
80  
80  
50  
100  
100  
50  
ns  
Clock Low Time  
ns  
Reset Low Time  
ns  
rstl  
Clock Frequency Frequency  
Internal Display Oscillator  
Internal Refresh Frequency  
F
5
4
MHz  
KHz  
Hz  
cyc  
F
inosc  
80  
210  
410  
80  
210  
400  
F
rf  
150  
150  
External Display Oscillator  
Prescaler = 1  
F
exosc  
51.2  
410  
1000  
8000  
51.2  
410  
1000  
8000  
KHz  
KHz  
Prescaler = 8  
Notes:  
1. Timing specifications increase 0.3 ns per pf of capacitive loading above 15 pF.  
2. This parameter is valid for Simultaneous Mode data entry of the Control Register.  
7
Display Overview  
Reset  
procedure shown in Table 1 and  
the Write Cycle Timing Diagram.  
The HCMS-29xx series is a  
family of LED displays driven by  
on-board CMOS ICs. The LEDs  
are configured as 5 x 7 font  
characters and are driven in  
groups of 4 characters per IC.  
Each IC consists of a 160-bit  
shift register (the Dot Register),  
two 7-bit Control Words, and  
refresh circuitry. The Dot Regis-  
ter contents are mapped on a  
one-to-one basis to the display.  
Thus, an individual Dot Register  
bit uniquely controls a single  
LED.  
Reset initializes the Control  
Registers (sets all Control  
Register bits to logic low) and  
places the display in the sleep  
mode. The Reset pin should be  
connected to the system  
power-on reset circuit. The Dot  
Registers are not cleared upon  
power-on or by Reset. After  
power-on, the Dot Register  
contents are random; however,  
Reset will put the display in  
sleep mode, thereby blanking the  
LEDs. The Control Register and  
the Control Words are cleared to  
all zeros by Reset.  
First RS is brought low, then CE  
is brought low. Next, each  
successive rising CLK edge will  
shift in the data at the D pin.  
IN  
Loading a logic high will turn  
the corresponding LED on; a  
logic low turns the LED off.  
When all 160 bits have been  
loaded (or 320 bits in an 8-digit  
display), CE is brought to logic  
high.  
When CLK is next brought to  
logic low, new data is latched  
into the display dot drivers.  
Loading data into the Dot  
Register takes place while the  
previous data is displayed and  
eliminates the need to blank the  
display while loading data.  
8-character displays have two  
ICs that are cascaded. The Data  
Out line of the first IC is  
internally connected to the Data  
In line of the second IC forming  
a 320-bit Dot Register. The dis-  
play’s other control and power  
lines are connected directly to  
both ICs. In 16-character  
displays, each row functions as  
an independent 8-character  
display with its own 320-bit Dot  
Register.  
To operate the display after  
being Reset, load the Dot  
Register with logic lows. Then  
load Control Word 0 with the  
desired brightness level and set  
the sleep mode bit to logic high.  
Pixel Map  
Dot Register  
In a 4-character display, the  
160-bits are arranged as 20  
columns by 8 rows. This array  
can be conceptualized as four 5  
x 8 dot matrix character loca-  
The Dot Register holds the  
pattern to be displayed by the  
LEDs. Data is loaded into the  
Dot Register according to the  
Table 1. Register Truth Table  
Function  
CLK  
CE  
RS  
Select Dot Register  
Load Dot Register  
Not Rising  
#
L
D = HIGH LED = "ON"  
IN  
!
L
X
D = LOW LED = "OFF"  
IN  
Copy Data from Dot Register to Dot Latch  
Select Control Register  
L
H
#
L
X
H
X
X
Not Rising  
[1,3]  
Load Control Register  
!
[2]  
Latch Data to Control Word  
L
!
Notes:  
1. BIT D of Control Word 1 must have been previously set to Low for serial mode or High for  
0
simultaneous mode.  
2. Selection of Control Word 1 or Control Word 0 is set by D of the Control Shift Register. The  
7
unselected control word retains its previous value.  
3. Control Word data is loaded Most Significant Bit (D ) first.  
7
8
HCMS-29xx Write Cycle Diagram  
RS  
T
RSS  
T
RSH  
1
2
CE  
T
T
CEH  
5
T
T
T
CLKL  
12  
CLKCE  
3
CLKH  
11  
CES  
4
CLK  
[1]  
T
T
DS  
6
DH  
7
NEW DATA LATCHED HERE  
D
IN  
T
T
CEDO  
10  
DOUT  
8
D
(SERIAL)  
OUT  
T
DOUTP  
9
D
OUT  
(SIMULTANEOUS)  
LED OUTPUTS,  
CONTROL  
PREVIOUS DATA  
NEW DATA  
REGISTERS  
NOTE:  
1. DATA IS COPIED TO THE CONTROL REGISTER OR THE DOT LATCH AND LED OUTPUTS WHEN CE IS HIGH AND CLK IS LOW.  
tions, but only 7 of the 8 rows  
have LEDs (see Figures 1 & 2).  
The bottom row (row 0) is not  
used. Thus, latch location 0 is  
never displayed. Column 0  
controls the left-most column.  
Data from Dot Latch locations  
0-7 determine whether or not  
pixels in Column 0 are  
Control Register  
successive rising CLK edge will  
shift in the data on the D pin.  
The Control Register allows  
software modification of the IC’s  
operation and consists of two  
independent 7-bit control words.  
IN  
Finally, when 8 bits have been  
loaded, the CE line is brought to  
logic high. When CLK goes to  
logic low, new data is copied  
into the selected control word.  
Loading data into the Control  
Register takes place while the  
previous control word  
Bit D in the shift register  
7
selects one of the two 7-bit  
control words. Control Word 0  
performs pulse width modula-  
tion brightness control, peak  
pixel current brightness control,  
and sleep mode. Control Word 1  
sets serial/simultaneous data  
out mode, and external oscilla-  
tor prescaler. Each function is  
independent of the others.  
turned-on or turned-off.  
Therefore, the lower left pixel is  
turned-on when a logic high is  
stored in Dot Latch location 1.  
Characters are loaded in  
serially, with the left-most  
character being loaded first and  
the right-most character being  
loaded last. By loading one  
character at a time and latching  
the data before loading the next  
character, the figures will  
appear to scroll from right to  
left.  
configures the display.  
Control Word 0  
Loading the Control Register  
with D = Logic low selects  
7
Control Word 0 (see Table 2).  
Bits D -D adjust the display  
0
3
Control Register Data Loading  
brightness by pulse width  
modulating the LED on-time,  
while Bits D -D adjust the  
Data is loaded into the Control  
Register, MSB first, according to  
the procedure shown in Table 1  
and the Write Cycle Timing  
Diagram. First, RS is brought to  
logic high and then CE is  
4
5
display brightness by changing  
the peak pixel current. Bit D  
6
selects normal operation or  
sleep mode.  
brought to logic low. Next, each  
9
DATA OUT  
RS (LATCHED)  
H
L
DATA IN  
CLK  
L
H
H
L
SER/PAR  
MODE  
CHIP  
ENABLE  
DI  
40 BIT  
S.R.  
DO  
DI  
40 BIT  
S.R.  
DO  
DI  
40 BIT  
S.R.  
DO  
DI  
40 BIT  
S.R.  
DO  
DOT  
REGISTERS  
AND  
DATA IN  
CLR  
CONTROL  
REGISTER  
DATA  
OUT  
LATCHES  
REGISTER  
SELECT  
D
Q
RS  
(LATCHED)  
V LED +  
CURRENT  
REFERENCE  
REFRESH  
CONTROL  
ANODE  
CURRENT SOURCES  
RESET  
RST  
PWM BRIGHTNESS  
CONTROL  
DOT  
REGISTER  
BIT # 159  
PRESCALE  
VALUE  
ROW 7  
H
L
÷8  
OSC  
ROW 1  
0 x x x x  
x x x x x  
CHAR 1  
x x x x x  
CHAR 2  
x x x x x ROW 0 (NO LEDS)  
H
L
OSCILLATOR  
COLUMN 0  
CHAR 0  
COLUMN 19  
CHAR 3  
L
H
OSC  
SELECT  
GND (LED)  
BLANK  
Figure 1.  
DATA FROM  
PREVIOUS  
CHARACTER  
PIXEL  
DATA TO  
NEXT  
ROW 7  
CHARACTER  
ROW 6  
ROW 5  
ROW 4  
ROW 3  
ROW 2  
ROW 1  
ROW 0  
(NOT USED)  
Figure 2.  
10  
Sleep mode (Control Word 0, bit  
Registers. In the simultaneous  
mode, N ICs only need 8 clock  
pulses to load the same data in  
all Control Registers. The  
are connected in series to form a  
320-bit dot shift register. The  
location of pixel 0 has not  
changed. However, Dot Shift  
Register bit 0 of IC2 becomes bit  
160 of the 320-bit dot shift  
register.  
D = Low) turns off the Internal  
6
Display Oscillator and the LED  
pixel drivers. This mode is used  
when the IC needs to be  
powered up, but does not need  
to be active. Current draw in  
sleep mode is nearly zero. Data  
in the Dot Register and Control  
Words are retained during sleep  
mode.  
propagation delay from the first  
IC to the last is N * t  
.
DOUTP  
External Oscillator Prescaler Bit D  
1
The Control Registers of the two  
ICs are independent of each  
other. This means that to adjust  
the display brightness the same  
control word must be entered  
into both ICs, unless the Control  
Registers are set to simultaneous  
mode.  
Bit D of Control Word 1 is used  
1
to scale the frequency of an  
external Display Oscillator.  
When this bit is logic low, the  
external Display Oscillator  
directly sets the internal display  
clock rate. When this bit is a  
logic high, the external oscillator  
is divided by 8. This scaled  
frequency then sets the internal  
display clock rate. It takes 512  
cycles of the display clock (or 8  
x 512 = 4096 cycles of an  
external clock with the divide by  
8 prescaler) to completely  
refresh the display once. Using  
the prescaler bit allows the  
designer to use a higher external  
oscillator frequency without  
extra circuitry.  
Control Word 1  
Loading the Control Register  
with D = logic high selects  
7
Control Word 1. This Control  
Word performs two functions:  
serial/simultaneous data out  
mode and external oscillator  
prescale select (see Table 2).  
Longer character string systems  
can be built by cascading multi-  
ple displays together. This is  
accomplished by creating a five  
line bus. This bus consists of CE,  
RS, BL, Reset, and CLK. The  
display pins are connected to  
the corresponding bus line.  
Serial/Simultaneous Data Output D  
0
Bit D of control word 1 is used  
0
to switch the mode of D  
OUT  
between serial and simultaneous  
data entry during Control  
Register writes. The default  
mode (logic low) is the serial  
Thus, all CE pins are connected  
to the CE bus line. Similarly, bus  
lines for RS, BL, Reset, and CLK  
are created. Then D is  
IN  
D
mode. In serial mode, D  
OUT  
OUT  
connected to the right-most  
This bit has no affect on the  
internal Display Oscillator  
Frequency.  
is connected to the last bit (D )  
7
display. D  
from this display  
OUT  
of the Control Shift Register.  
is connected to the next display.  
The left-most display receives its  
Storing a logic high to bit D  
0
D
from the D  
of the display  
Bits D -D  
IN  
OUT  
changes D  
to simultaneous  
2
6
OUT  
to its right. D  
from the  
OUT  
mode which affects the Control  
Register only. In simultaneous  
These bits must always be pro-  
grammed to logic low.  
left-most display is not used.  
mode, D  
nected to D . This arrangement  
is logically con-  
IN  
OUT  
Each display may be set to use  
its internal oscillator, or the  
displays may be synchronized by  
setting up one display as the  
master and the others as slaves.  
The slaves are set to receive  
their oscillator input from the  
master’s oscillator output.  
Cascaded ICs  
Figure 3 shows how two ICs are  
connected within an  
HCMS-29XX display. The first IC  
controls the four left-most  
characters and the second IC  
controls the four right-most  
characters. The Dot Registers  
allows multiple ICs to have their  
Control Registers written to  
simultaneously. For example, for  
N ICs in the serial mode, N * 8  
clock pulses are needed to load  
the same data in all Control  
11  
Table 2. Control Shift Register  
CONTROL WORD 0  
D4 D3 D2  
L
D6  
D5  
D1  
D0  
Bit D  
On-Time  
Oscillator  
Cycles  
Duty  
Factor  
(%)  
Relative  
Brightness  
(%)  
7
Set Low  
to Select  
Control  
Word 0  
PWM Brightness  
Control  
L
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
0
1
0
0
1.7  
3.3  
5.0  
6.7  
8.3  
11.7  
15  
L
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
0.2  
0.4  
0.6  
0.8  
1.0  
1.4  
1.8  
2.1  
2.7  
3.5  
4.3  
5.5  
7.0  
9.4  
11.7  
2
L
3
L
4
L
5
L
7
L
9
H
H
H
H
H
H
H
H
11  
14  
18  
22  
28  
36  
48  
60  
18  
23  
30  
37  
47  
60  
80  
100  
Peak Current  
Brightness  
Control  
Typical Peak  
Pixel Current  
(mA)  
Relative Full  
Scale Current  
(Relative Brightness, %)  
H
L
L
H
L
4.0  
6.4  
31  
50  
L
9.3  
73 (Default at Power Up)  
100  
H
H
12.8  
SLEEP MODE  
L – DISABLES INTERNAL OSCILLATOR-DISPLAY BLANK  
H – NORMAL OPERATION  
CONTROL WORD 1  
H
L
L
L
L
L
D1  
D0  
Serial/ Simultaneous Data Out  
Bit D  
7
L – Dout holds contents of Bit D  
7
Set High  
to Select  
Control  
Word 1  
Reserved for Future  
Use (Bits D -D  
must be set Low)  
H – Dout is functionally tied to D  
in  
2
6
External Display Oscillator Prescaler  
L – Oscillator Freq 1  
H – Oscillator Freq 8  
12  
CE  
RS  
BL  
RESET  
CLK  
CE  
RS  
BL  
CE  
RS  
BL  
RESET  
CLK  
RESET  
CLK  
IC1  
IC2  
BITS 0-159  
BITS 160-319  
CHARACTERS 4-7  
CHARACTERS 0-3  
D
D
D
D
IN  
D
OUT  
OUT  
OUT  
IN  
SEL  
OSC  
SEL  
SEL  
OSC  
OSC  
D
IN  
Figure 3. Cascaded ICs.  
13  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Appendix A. Thermal  
Considerations  
The display IC has a maximum  
junction temperature of 150°C.  
The IC junction temperature can  
be calculated with Equation 1  
below.  
P can be calculated as Equation  
2 below.  
D
R
= 100°C/W  
θ
J-A  
Figure 4 shows how to derate  
the power of one IC versus  
ambient temperature. Operation  
at high ambient temperatures  
may require the power per IC to  
be reduced. The power con-  
sumption can be reduced by  
A typical value for Rq is  
JA  
100°C/W. This value is typical  
for a display mounted in a  
socket and covered with a  
plastic filter. The socket is  
soldered to a .062 in. thick PCB  
with .020 inch wide, one ounce  
copper traces.  
25 30 35 40 45 50 55 60 65 70 75 80 85 90  
– AMBIENT TEMPERATURE – °C  
changing either the N, I  
,
PIXEL  
T
Osc cyc or V  
. Changing  
LED  
A
V
has very little impact on  
LOGIC  
the power consumption.  
Figure 4.  
Appendix B. Electrical  
Considerations  
Current Calculations  
Equation 1:  
The peak and average display  
current requirements have a  
significant impact on power  
supply selection. The maximum  
peak current is calculated with  
Equation 3 below.  
TJMAX = TA + PD * RqJA  
Where:  
TJMAX = maximum IC junction temperature  
TA = ambient temperature surrounding the display  
RqJA = thermal resistance from the IC junction to ambient  
PD = power dissipated by the IC  
The average current required by  
the display can be calculated  
with Equation 4 below.  
Equation 2:  
PD = (N * IPIXEL * Duty Factor * VLED) + ILOGIC * VLOGIC  
Where:  
The power supply has to be able  
PD = total power dissipation  
N = number of pixels on (maximum 4 char * 5 * 7 = 140)  
IPIXEL = peak pixel current.  
to supply I  
transients and  
(AVG) continuously.  
PEAK  
supply I  
LED  
The range on V  
allows noise  
LED  
Duty Factor = 1/8 * Osccyc/64  
Osc cyc = number of ON oscillator cycles per row  
ILOGIC = IC logic current  
on this supply without signifi-  
cantly changing the display  
brightness.  
VLOGIC = logic supply voltage  
V
and V Considerations  
LED  
LOGIC  
The display uses two indepen-  
dent electrical systems. One  
system is used to power the  
display’s logic and the other to  
power the display’s LEDs. These  
two systems keep the logic  
supply clean.  
Equation 3:  
IPEAK = M * 20 * IPIXEL  
Where:  
IPEAK = maximum instantaneous peak current for the display  
M = number of ICs in the system  
20 = maximum number of LEDs on per IC  
IPIXEL = peak current for one LED  
Separate electrical systems  
allow the voltage applied to V  
Equation 4:  
LED  
and V  
to be varied  
LOGIC  
ILED(AVG) = N * IPIXEL * 1/8 * (oscillator cycles)/64  
independently. Thus, V  
can  
LED  
(see Variable Definitions above)  
14  
vary from 0 to 5.5 V without  
affecting either the Dot or the  
Electrostatic Discharge  
Appendix D. Refresh Circuitry  
This display driver consists of  
20 one-of-eight column decoders  
and 20 constant current sources,  
1 one-of-eight row decoder and  
eight row sinks, a pulse width  
modulation control block, a peak  
current control block, and the  
circuit to refresh the LEDs. The  
refresh counters and oscillator  
are used to synchronize the  
columns and rows.  
The inputs to the ICs are pro-  
tected against static discharge  
and input current latchup. How-  
ever, for best results, standard  
CMOS handling precautions  
should be used. Before use, the  
HCMS-29XX should be stored in  
antistatic tubes or in conductive  
material. During assembly, a  
grounded conductive work area  
should be used and assembly  
personnel should wear conduc-  
tive wrist straps. Lab coats made  
of synthetic material should be  
avoided since they are prone to  
static buildup. Input current  
latchup is caused when the  
Control Registers. V  
can be  
LED  
varied between 4.0 to 5.5 V with-  
out any noticeable variation in  
light output. However, operating  
V
below 4.0 V may cause  
LED  
objectionable mismatch between  
the pixels and is not  
recommended. Dimming the  
display by pulse width modulat-  
ing V  
is also not  
LED  
recommended.  
The 160 bits are organized as 20  
columns by 8 rows. The IC  
illuminates the display by  
V
can vary from 3.0 to 5.5 V  
LOGIC  
without affecting either the  
displayed message or the display  
intensity. However, operation  
below 4.5 V will change the  
timing and logic levels and  
operation below 3 V may cause  
the Dot and Control Registers to  
be altered.  
sequentially turning ON each of  
the 8 row-drivers. To refresh the  
display once takes 512 oscillator  
cycles. Because there are eight  
row drivers, each row driver is  
selected for 64 (512/8) oscillator  
cycles. Four cycles are used to  
briefly blank the display before  
the following row is switched on.  
Thus, each row is ON for 60  
oscillator cycles out of a possible  
64. This corresponds to the  
CMOS inputs are subjected to  
either a voltage below ground  
(V < ground) or to a voltage  
IN  
higher then V  
(V  
>
LOGIC  
IN  
V
) and when a high current  
LOGIC  
is forced into the input. To  
The logic ground is internally  
connected to the LED ground by  
a substrate diode. This diode  
becomes forward biased and  
conducts when the logic ground  
is 0.4 V greater then the LED  
ground. The LED ground and the  
logic ground should be  
connected to a common ground  
which can withstand the current  
introduced by the switching LED  
drivers. When separate ground  
connections are used, the LED  
ground can vary from -0.3 V to  
+0.3 V with respect to the logic  
ground. Voltages below -0.3 V  
can cause all the dots to be ON.  
Voltage above +0.3 V can cause  
dimming and dot mismatch. The  
LED ground for the LED drivers  
can be routed separately from  
the logic ground until an  
prevent input current latchup  
and ESD damage, unused inputs  
should be connected to either  
ground or V  
. Voltages  
LOGIC  
should not be applied to the  
inputs until V has been  
maximum LED on time.  
LOGIC  
applied to the display.  
Appendix E. Display Brightness  
Two ways have been shown to  
control the brightness of this  
LED display: setting the peak  
current and setting the duty  
factor. Both values are set in  
Control Word 0. To compute the  
resulting display brightness  
when both PWM and peak  
current control are used, simply  
multiply the two relative bright-  
ness factors. For example, if  
Control Register 0 holds the  
word 1001101, the peak current  
Appendix C. Oscillator  
The oscillator provides the  
internal refresh circuitry with a  
signal that is used to synchron-  
ize the columns and rows. This  
ensures that the right data is in  
the dot drivers for that row. This  
signal can be supplied from  
either an external source or the  
internal source.  
A display refresh rate of 100 Hz  
or faster ensures flicker-free  
operation. Thus for an external  
oscillator the frequency should  
be greater than or equal to 512 x  
100 Hz = 51.2 kHz. Operation  
above 1 MHz without the  
prescaler or 8 MHz with the  
prescaler may cause noticeable  
pixel to pixel mismatch.  
is 73% of full scale (BIT D = L,  
5
BIT D = L) and the PWM is set  
4
appropriate ground plane is  
available. On long  
interconnections between the  
display and the host system,  
voltage drops on the analog  
ground can be kept from  
to 60% duty factor (BIT D = H,  
3
BIT D = H, BIT D = L, BIT D =  
2
1
0
H). The resulting brightness is  
44% (.73 x .60 = .44) of full scale.  
affecting the display logic levels  
by isolating the two grounds.  
15  
3.0  
2.6  
The temperature of the display  
will also affect the LED bright-  
ness as shown in Figure 5.  
HER/ORANGE  
YELLOW  
2.2  
1.8  
1.4  
Appendix F. Reference Material  
Application Note 1027:  
Soldering LED Components  
GREEN  
AlGaAs  
1.0  
Application Note 1015: Contrast  
Enhancement Techniques for  
LED Displays  
0.6  
0.2  
-55  
-35  
-15  
5
25  
45  
65  
85  
T
– AMBIENT TEMPERATURE – °C  
A
Figure 5.  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2006 Avago Technologies Limited. All rights reserved. Obsoletes 5988-4161EN  
5989-3181EN June 2, 2006  

相关型号:

HCMS-2903

High Performance CMOS 5 x 7 Alphanumeric Displays
AGILENT

HCMS-2903

High Performance CMOS 5 x 7 Alphanumeric Displays
AVAGO

HCMS-2904

High Performance CMOS 5 x 7 Alphanumeric Displays
AGILENT

HCMS-2904

High Performance CMOS 5 x 7 Alphanumeric Displays
AVAGO

HCMS-2905

High Performance CMOS 5 x 7 Alphanumeric Displays
AGILENT

HCMS-2905

High Performance CMOS 5 x 7 Alphanumeric Displays
AVAGO

HCMS-2911

High Performance CMOS 5 x 7 Alphanumeric Displays
AGILENT

HCMS-2911

High Performance CMOS 5 x 7 Alphanumeric Displays
AVAGO

HCMS-2912

High Performance CMOS 5 x 7 Alphanumeric Displays
AGILENT

HCMS-2912

High Performance CMOS 5 x 7 Alphanumeric Displays
AVAGO

HCMS-2913

High Performance CMOS 5 x 7 Alphanumeric Displays
AGILENT

HCMS-2913

High Performance CMOS 5 x 7 Alphanumeric Displays
AVAGO