HCNW4504#300E [AVAGO]

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, ROHS COMPLIANT, SURFACE MOUNT, DIP-8;
HCNW4504#300E
型号: HCNW4504#300E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, ROHS COMPLIANT, SURFACE MOUNT, DIP-8

输出元件 光电
文件: 总20页 (文件大小:459K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-4504/J454/0454,HCNW4504  
High CMR,High Speed Optocouplers  
DataSheet  
Description  
Features  
The HCPL-4504 and HCPL-0454 contain a GaAsP  
LED while the HCPL-J454 and HCNW4504 contain an  
AlGaAs LED. The LED is optically coupled to an  
integrated high gain photo detector.  
• Short propagation delays for TTL and IPM applications  
• 15 kV/ µs minimum Common Mode Transient immunity at  
V = 1500 V for TTL/ load drive  
CM  
High CTR at T = 25°C  
A
>25% for HCPL-4504/ 0454  
>23% for HCNW4504  
>19% for HCPL-J454  
The HCPL-4504 series has short propagation delays  
and high CTR. The HCPL-4504 series also has a  
guaranteed propagation delay difference (tPLH-tPHL).  
ThesefeaturesmaketheHCPL-4504seriesanexcellent  
solution to IPM inverter dead time and other switching  
problems. The CTR, propagation delay, and CMR are  
specified both for TTL and IPM conditions which are  
provided for ease of application. These single channel,  
diode-transistor optocouplers are available in 8-Pin  
DIP, SO-8, and Widebody package configurations. An  
insulating layer between a LED and an integrated  
photodetector provide electrical insulation between  
input and output. Separate connections for the  
photodiodebiasandoutput-transistorcollectorincrease  
the speed up to a hundred times that of a conventional  
phototransistor coupler by reducing the base collector  
capacitance.  
Electrical specifications for common IPM applications  
TTL compatible  
Guaranteed performance from 0°C to 70°C  
Open collector output  
• Safety approval:  
UL recognized  
– 3750 V rms / 1min. for HCPL-4504/ 0454/ J454  
– 5000 V rms / 1min. for HCPL-4504 Option 020 and  
HCNW4504  
CSA approved  
IEC/ EN/ DIN EN 60747-5-2 approved  
VIORM = 560 Vpeak for HCPL-0454 Option 060  
VIORM = 630 Vpeak for HCPL-4504 Option 060  
VIORM = 891 Vpeak for HCPL-J454  
VIORM = 1414 Vpeak for HCNW4504  
Functional Diagram  
Applications  
• Inverter circuits and Intelligent Power Module (IPM)  
interfacing:  
High Common Mode Transient immunity (> 10 kV/ µs for an  
IPM load/ drive) and (tPLH - tPHL) Specified (see Power  
Inverter Dead Time section)  
8
7
6
5
NC  
ANODE  
CATHODE  
NC  
1
2
3
4
V
CC  
TRUTH TABLE  
NC  
LED  
V
O
ON  
OFF  
LOW  
HIGH  
V
O
Line receivers:  
Short propagation delays and low input-output capacitance  
GND  
High speed logic ground isolation:  
A 0.1 µF bypass capacitor between  
pins 5 and 8 is recommended.  
TTL/ TTL, TTL/ CMOS, TTL/ LSTTL  
Replaces pulse transformers:  
Save board space and weight  
Analog signal ground isolation:  
Integrated photodetector provides improved linearity over  
phototransistors  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
Selection Guide  
Standard 8-Pin  
DIP (300 Mil)  
White Mold 8-Pin  
DIP (300 Mil)  
Widebody  
(400 Mil)  
Package Type  
Small Outline SO8  
Part Number  
HCPL-4504  
HCPL-J454  
HCPL-0454  
HCNW4504  
IEC/ EN/ DIN EN  
60747-5-2  
V
IORM = 630 Vpeak  
(Option 060)  
VIORM = 891 Vpeak  
V
IORM = 560 Vpeak  
(Option 060)  
VIORM = 1414 Vpeak  
Approval  
Schematic  
I
CC  
8
V
CC  
I
F
+
ANODE  
2
V
F
I
O
6
5
V
O
CATHODE  
3
SHIELD  
GND  
2
Ordering Information  
HCPL-0454, HCPL-4504 and HCPL-J454 are UL Recognized with 3750 Vrms for 1 minute per UL1577.  
HCNW4504 is UL Recognized with 5000 Vrms for 1 minute per UL1577. HCPL-0454, HCPL-4504,  
HCPL-J454 and HCNW4504 are approved under CSA Component Acceptance Notice #5, File CA 88324.  
Option  
Part  
Number  
RoHS  
non RoHS  
Surface Gull  
Tape  
UL 5000 Vrms/ IEC/ EN/ DIN  
Compliant Compliant Package  
Mount Wing & Reel 1 Minute rating EN 60747-5-2 Quantity  
-000E  
-300E  
-500E  
-020E  
no option 300 mil DIP-8  
50 per tube  
#300  
X
X
X
X
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
100 per tube  
1500 per reel  
100 per tube  
1500 per reel  
42 per tube  
42 per tube  
750 per reel  
#500  
X
X
X
#020  
X
X
X
HCPL-4504 -320E  
-520E  
#320  
X
X
X
X
#520  
-060E  
#060  
X
X
X
X
X
X
-360E  
#360  
X
X
X
X
-560E  
#560  
-000E  
no option 300 mil DIP-8  
HCPL-J454 -300E  
-500E  
#300  
X
X
X
X
X
X
X
X
#500  
X
X
X
-000E  
no option SO-8  
#500  
HCPL-0454 -500E  
-060E  
#060  
X
X
X
X
X
-560E  
#560  
-000E  
no option 400 mil  
X
X
X
HCNW4504 -300E  
-500E  
#300  
#500  
Widebody  
DIP-8  
X
X
X
X
X
To order, choose a part number from the part number column and combine with the desired option from the  
option column to form an order entry.  
Example 1:  
HCPL-4504-560E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel  
packaging with IEC/EN/DIN EN 60747-5-2 Safety Approval and RoHS compliant.  
Example 2:  
HCPL-4504 to order product of 300 mil DIP package in Tube packaging and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for  
information.  
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since July 15,  
2001 and RoHS compliant will use ‘–XXXE.’  
3
Package Outline Drawings  
HCPL-4504 Outline Drawing  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
2
3
4
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003)  
- 0.002)  
3.56 ± 0.13  
(0.140 ± 0.005)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
1.080 ± 0.320  
0.65 (0.025) MAX.  
(0.043 ± 0.013)  
* MARKING CODE LETTER FOR OPTION NUMBERS  
"L" = OPTION 020  
"V" = OPTION 060  
2.54 ± 0.25  
(0.100 ± 0.010)  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
HCPL-4504 Gull Wing Surface Mount Option 300 Outline Drawing  
LAND PATTERN RECOMMENDATION  
1.016 (0.040)  
9.65 ± 0.25  
(0.380 ± 0.010)  
6
5
8
1
7
6.350 ± 0.25  
(0.250 ± 0.010)  
10.9 (0.430)  
2.0 (0.080)  
2
3
4
1.27 (0.050)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
+ 0.076  
- 0.051  
0.254  
3.56 ± 0.13  
(0.140 ± 0.005)  
+ 0.003)  
- 0.002)  
(0.010  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.25  
(0.025 ± 0.010)  
12° NOM.  
0.635 ± 0.130  
(0.025 ± 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
4
Package Outline Drawings  
HCPL-J454 Outline Drawing  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.80 ± 0.25  
(0.386 ± 0.010)  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
2
3
4
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003)  
- 0.002)  
3.56 ± 0.13  
(0.140 ± 0.005)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
1.080 ± 0.320  
0.65 (0.025) MAX.  
(0.043 ± 0.013)  
* MARKING CODE LETTER FOR OPTION NUMBERS  
"L" = OPTION 020  
"V" = OPTION 060  
2.54 ± 0.25  
(0.100 ± 0.010)  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 mils) MAX.  
HCPL-J454 Gull Wing Surface Mount Option 300 Outline Drawing  
LAND PATTERN RECOMMENDATION  
1.016 (0.040)  
9.80 ± 0.25  
(0.386 ± 0.010)  
6
5
8
1
7
6.350 ± 0.25  
(0.250 ± 0.010)  
10.9 (0.430)  
2.0 (0.080)  
2
3
4
1.27 (0.050)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
+ 0.076  
- 0.051  
0.254  
3.56 ± 0.13  
(0.140 ± 0.005)  
+ 0.003)  
- 0.002)  
(0.010  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.25  
(0.025 ± 0.010)  
12° NOM.  
0.635 ± 0.130  
(0.025 ± 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 mils) MAX.  
5
HCPL-0454 Outline Drawing (8-Pin Small Outline Package)  
LAND PATTERN RECOMMENDATION  
8
1
7
2
6
5
4
5.994 ± 0.203  
(0.236 ± 0.008)  
XXX  
YWW  
3.937 ± 0.127  
(0.155 ± 0.005)  
7.49 (0.295)  
TYPE NUMBER  
(LAST 3 DIGITS)  
DATE CODE  
3
1.9 (0.075)  
PIN ONE  
0.406 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSC  
0.64 (0.025)  
0.432  
(0.017)  
*
7°  
5.080 ± 0.127  
(0.200 ± 0.005)  
45° X  
3.175 ± 0.127  
(0.125 ± 0.005)  
0 ~ 7°  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.203 ± 0.102  
(0.008 ± 0.004)  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.207 ± 0.254 (0.205 ± 0.010)  
*
0.305  
(0.012)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.  
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.  
HCNW4504 Outline Drawing (8-Pin Widebody Package)  
11.00  
MAX.  
11.15 ± 0.15  
(0.442 ± 0.006)  
(0.433)  
9.00 ± 0.15  
(0.354 ± 0.006)  
7
6
5
8
TYPE NUMBER  
DATE CODE  
A
HCNWXXXX  
YYWW  
1
3
2
4
10.16 (0.400)  
TYP.  
1.55  
(0.061)  
MAX.  
7° TYP.  
+ 0.076  
- 0.0051  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
5.10  
(0.201)  
MAX.  
3.10 (0.122)  
3.90 (0.154)  
0.51 (0.021) MIN.  
2.54 (0.100)  
TYP.  
1.78 ± 0.15  
(0.070 ± 0.006)  
0.40 (0.016)  
0.56 (0.022)  
DIMENSIONS IN MILLIMETERS (INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
6
HCNW4504 Gull Wing Surface Mount Option 300 Outline Drawing  
11.15 ± 0.15  
(0.442 ± 0.006)  
LAND PATTERN RECOMMENDATION  
7
6
5
8
9.00 ± 0.15  
(0.354 ± 0.006)  
13.56  
(0.534)  
1
3
2
4
2.29  
(0.09)  
1.3  
(0.051)  
12.30 ± 0.30  
(0.484 ± 0.012)  
1.55  
(0.061)  
MAX.  
11.00  
MAX.  
(0.433)  
4.00  
MAX.  
(0.158)  
1.78 ± 0.15  
(0.070 ± 0.006)  
1.00 ± 0.15  
(0.039 ± 0.006)  
0.75 ± 0.25  
(0.030 ± 0.010)  
+ 0.076  
- 0.0051  
2.54  
(0.100)  
BSC  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
DIMENSIONS IN MILLIMETERS (INCHES).  
7° NOM.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.  
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
200  
100  
0
2.5°C ± 0.5°C/SEC.  
SOLDERING  
TIME  
200°C  
30  
160°C  
150°C  
140°C  
SEC.  
30  
SEC.  
3°C + 1°C/–0.5°C  
PREHEATING TIME  
150°C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Note: Non-halide flux should be used.  
7
Recommended Pb-Free IR Profile  
TIME WITHIN 5 °C of ACTUAL  
PEAKTEMPERATURE  
t
p
20-40 SEC.  
260 +0/-5 °C  
T
T
p
217 °C  
L
RAMP-UP  
3 °C/SEC. MAX.  
RAMP-DOWN  
6 °C/SEC. MAX.  
150 - 200 °C  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 °C, T = 150 °C  
T
smax  
smin  
Note: Non-halide flux should be used.  
Regulatory Information  
The devices contained in this data sheet have been approved by the following agencies:  
Agency/ Standard  
Underwriters  
HCPL-4504  
HCPL-J454  
HCPL-0456  
HCNW4504  
UL1577  
Laboratories (UL)  
Recognized under UL1577, Component  
Recognition Program, Category FPQU2,  
File E55361  
Canadian  
Standards  
Component  
Acceptance  
Association  
(CSA)  
File CA88324  
Notice # 5  
IEC/ EN/ DIN EN 60747-5-2  
Approved under:  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01  
8
Insulation and Safety Related Specifications  
Value  
Parameter  
Symbol  
Units  
Conditions  
HCPL-4504  
HCPL-J454  
HCPL-0454  
HCNW4504  
Minimum External  
Air Gap (External  
Clearance)  
L(101)  
7.1  
7.4  
4.9  
9.6  
mm Measured from input  
terminals to output  
terminals, shortest  
distance through air.  
Minimum External  
Tracking (External  
Creepage)  
L(102)  
7.4  
8.0  
4.8  
10.0  
1.0  
mm Measured from input  
terminals to output  
terminals, shortest  
distance path along  
body.  
Minimum Internal  
Plastic Gap  
(Internal Clearance)  
0.08  
0.5  
0.08  
mm Through insulation  
distance, conductor  
to conductor,  
usually the direct  
distance between the  
photoemitter and  
photodetector inside  
the optocoupler  
cavity.  
Minimum Internal  
Tracking (Internal  
Creepage)  
NA  
NA  
NA  
4.0  
mm Measured from input  
terminals to output  
terminals, along  
internal cavity.  
Tracking Resistance  
(Comparative  
CTI  
175  
175  
175  
200  
Volts DIN IEC 112/ VDE  
0303 Part 1  
Tracking Index)  
Isolation Group  
IIIa  
IIIa  
IIIa  
IIIa  
Material Group  
(DIN VDE 0110,  
1/ 89, Table 1)  
All Avago data sheets report the  
creepage and clearance inherent  
to the optocoupler component  
itself. These dimensions are  
needed as a starting point for the  
equipment designer when  
However, once mounted on a  
printed circuit board, minimum  
creepage and clearance  
requirements must be met as  
specified for individual  
equipment standards. For  
creepage, the shortest distance  
path along the surface of a  
printed circuit board between the  
solder fillets of the input and  
output leads must be considered.  
There are recommended  
techniques such as grooves and  
ribs which may be used on a  
printed circuit board to achieve  
desired creepage and clearances.  
Creepage and clearance distances  
will also change depending on  
factors such as pollution degree  
and insulation level.  
determining the circuit insulation  
requirements.  
9
IEC/ EN/ DIN EN 60747-5-2 Insulation Related Characteristics  
HCPL-0454  
HCPL-4504  
Description  
Symbol  
OPTION 060 OPTION 060  
HCPL-J454  
HCNW4504  
Unit  
Installation classification per  
DIN VDE 0110/ 1.89, Table 1  
for rated mains voltage 150 V rms  
for rated mains voltage 300 V rms  
for rated mains voltage 450 V rms  
for rated mains voltage 600 V rms  
for rated mains voltage 1000 V rms  
I-IV  
I-III  
I-IV  
I-IV  
I-III  
I-IV  
I-IV  
I-III  
I-III  
I-IV  
I-IV  
I-IV  
I-IV  
I-III  
Climatic Classification  
55/ 100/ 21  
55/ 100/ 21  
55/ 100/ 21  
55/ 85/ 21  
Pollution Degree (DIN VDE 0110/ 1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
2
2
2
2
V
560  
630  
891  
1414  
V peak  
V peak  
IORM  
V
IORM x 1.875 = V , 100% Production  
V
1050  
840  
1181  
945  
1670  
1336  
6000  
2652  
2121  
8000  
PR  
PR  
Test with tm = 1 sec,  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
V
IORM x 1.5 = V , Type and Sample  
V
V peak  
V peak  
PR  
PR  
Test, tm = 60 sec,  
Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
V
4000  
6000  
IOTM  
Safety Limiting Values - Maximum  
Values Allowed in the Event of a Failure,  
also see Thermal Derating curve  
Case Temperature  
Input Current  
Output Power  
TS  
IS,INPUT  
PS,OUTPUT  
150  
150  
600  
175  
230  
600  
175  
400  
600  
150  
400  
700  
°C  
mA  
mW  
Insulation Resistance at TS,  
RS  
109  
109  
109  
109  
V = 500 V  
IO  
*Refer to the optocoupler section of the Designer's Catalog, under regulatory information (IEC/ EN/ DIN EN 60747-5-2) for a detailed description of  
Method a and Method b partial discharge test profiles.  
NOTE: These optocouplers are suitable for "safe electrical isolation" only within the safety limit data.  
Maintenance of the safety data shall be ensured by means of protective circuits.  
NOTE: Insulation Characteristics are per IEC/EN/DIN EN 60747-5-2.  
NOTE: Surface mount classification is Class A in accordance with CECC 00802.  
10  
Absolute Maximum Ratings  
Parameter  
Symbol  
Device  
Min.  
-55  
Max.  
125  
Units  
°C  
Note  
Storage Temperature  
Operating Temperature  
T
S
T
A
HCPL-4504  
HCPL-0454  
HCPL-J454  
-55  
100  
°C  
HCNW4504  
-55  
85  
25  
50  
Average Forward Input Current  
I
mA  
mA  
1
2
F(AVG)  
Peak Forward Input Current  
I
HCPL-4504  
HCPL-0454  
F(PEAK)  
(50% duty cycle, 1 ms pulse width)  
HCPL-J454  
HCNW4504  
40  
1
Peak Transient Input Current  
I
HCPL-4504  
HCPL-0454  
A
V
F(TRANS)  
(1 µs pulse width, 300 pps)  
HCPL-J454  
HCNW4504  
0.1  
5
Reverse LED Input Voltage (Pin 3-2)  
Input Power Dissipation  
V
R
HCPL-4504  
HCPL-0454  
HCPL-J454  
HCNW4504  
3
P
IN  
HCPL-4504  
HCPL-0454  
45  
40  
mW  
3
HCPL-J454  
HCNW4504  
Average Output Current (Pin 6)  
Peak Output Current  
I
8
mA  
mA  
V
O(AVG)  
I
16  
O(PEAK)  
Supply Voltage (Pin 8-5)  
Output Voltage (Pin 6-5)  
Output Power Dissipation  
V
CC  
-0.5  
-0.5  
30  
V
O
20  
V
P
O
100  
260  
mW  
°C  
4
Lead Solder Temperature  
(Through-Hole Parts Only)  
T
LS  
HCPL-4504  
HCPL-J454  
1.6 mm below seating plane, 10 seconds  
Up to seating plane, 10 seconds  
HCNW4504  
260  
Reflow Temperature Profile  
T
RP  
HCPL-0454  
and  
Option 300  
See Package Outline  
Drawings section  
11  
Electrical Specifications (DC)  
Over recommended temperature (T = 0°C to 70°C) unless otherwise specified. See note 12.  
A
Parameter  
Current  
Transfer Ratio  
Symbol  
CTR  
Device  
Min.  
25  
21  
19  
13  
23  
19  
26  
22  
21  
16  
25  
21  
Typ.*  
32  
34  
37  
39  
29  
31  
35  
37  
43  
45  
33  
35  
Max. Units  
Test Conditions  
T = 25°C V = 0.4 V  
Fig.  
1, 2,  
4
Note  
5
HCPL-4504  
HCPL-0454  
HCPL-J454  
60  
%
%
V
IF = 16 mA,  
VCC = 4.5 V  
A
O
V = 0.5 V  
O
60  
T = 25°C V = 0.4 V  
A
O
V = 0.5 V  
O
HCNW4504  
60  
63  
65  
T = 25°C V = 0.4 V  
A
O
V = 0.5 V  
O
CTR  
HCPL-4504  
HCPL-0454  
HCPL-J454  
T = 25°C V = 0.4 V  
IF = 12 mA,  
VCC = 4.5 V  
1, 2,  
4
5
A
O
V = 0.5 V  
O
65  
T = 25°C V = 0.4 V  
A
O
V = 0.5 V  
O
HCNW4504  
65  
68  
T = 25°C V = 0.4 V  
A
O
V = 0.5 V  
O
Logic Low  
Output Voltage  
V
OL  
HCPL-4504  
HCPL-0454  
HCPL-J454  
0.2  
0.4  
0.5  
0.4  
0.5  
0.4  
0.5  
0.5  
1
T = 25°C IO = 4.0 mA  
IF = 16 mA,  
VCC = 4.5 V  
A
IO = 3.3 mA  
0.2  
0.2  
T = 25°C IO = 3.6 mA  
A
IO = 3.0 mA  
HCNW4504  
T = 25°C IO = 3.6 mA  
A
IO = 3.0 mA  
Logic High  
Output Current  
IOH  
0.003  
0.01  
µA  
µA  
T = 25°C V = VCC = 5.5 V  
IF = 0 mA  
5
A
O
T = 25°C V = V = 15 V  
A O CC  
50  
200  
Logic Low  
Supply Current  
ICCL  
HCPL-4504  
HCPL-0454  
HCNW4504  
HCPL-J454  
50  
IF = 16 mA, V = Open, VCC = 15 V  
12  
12  
O
70  
0.02  
Logic High  
ICCH  
1
µA  
T = 25°C IF = 0 mA, V = Open,  
A
O
Supply Current  
Input Forward  
Voltage  
2
VCC = 15 V  
T = 25°C IF = 16 mA  
V
HCPL-4504  
HCPL-0454  
HCPL-J454  
HCNW4504  
HCPL-4504  
HCPL-0454  
HCPL-J454  
HCNW4504  
HCPL-4504  
HCPL-0454  
HCPL-J454  
HCNW4504  
HCPL-4504  
HCPL-0454  
HCPL-J454  
HCNW4504  
1.5  
1.7  
1.8  
1.85  
1.95  
V
3
F
A
1.45  
1.35  
5
1.59  
T = 25°C IF = 16 mA  
A
Input Reverse  
Breakdown  
Voltage  
BV  
V
IR = 10 µA  
R
3
IR = 100 µA  
Temperature  
Coefficient of  
Forward Voltage  
V  
T  
A
-1.6  
-1.4  
60  
mV/ °C IF = 16 mA  
F
Input  
Capacitance  
C
IN  
pF  
f = 1 MHz, V = 0 V  
F
70  
*All typicals at T = 25°C.  
A
12  
AC Switching Specifications  
Over recommended temperature (TA = 0°C to 70°C) unless otherwise specified.  
Parameter  
Symbol Device Min.  
Typ. Max. Units  
Test Conditions  
Fig.  
Note  
Propagation  
Delay Time  
to Logic Low  
at Output  
tPHL  
0.2  
0.3  
0.5  
T = 25°C  
Pulse: f = 20 kHz,  
Duty Cycle = 10%,  
IF = 16 mA, VCC = 5.0 V,  
RL = 1.9 k, CL = 15 pF,  
6,  
8, 9  
A
µs  
µs  
9
VTHHL = 1.5 V  
tPHL  
0.2  
0.05  
0.1  
0.5  
0.7  
1.0  
T = 25°C  
A
Pulse: f = 10 kHz,  
Duty Cycle = 50%,  
IF = 12 mA, VCC = 15.0 V,  
RL = 20 k, CL = 100 pF,  
VTHHL = 1.5 V  
6,  
10-14  
10  
HCPL-  
J454  
Others  
Propagation  
Delay Time  
to Logic  
High at  
Output  
tPLH  
0.3  
0.5  
0.7  
T = 25°C  
Pulse: f = 20 kHz,  
Duty Cycle = 10%,  
IF = 16 mA, VCC = 5.0 V,  
RL = 1.9 k, CL = 15 pF,  
VTHLH = 1.5 V  
6,  
8, 9  
A
µs  
µs  
9
tPLH  
0.3  
0.2  
0.8  
1.1  
1.4  
T = 25°C  
A
Pulse: f = 10 kHz,  
Duty Cycle = 50%,  
IF = 12 mA, VCC = 15.0 V,  
RL = 20 k, CL = 100 pF,  
6,  
10-14  
10  
17  
VTHLH = 2.0 V  
Propagation  
Delay  
Difference  
Between  
Any 2 Parts  
tPLH-tPHL  
-0.4  
-0.7  
0.3  
0.9  
1.3  
µs  
T = 25°C  
A
Pulse: f = 10 kHz,  
Duty Cycle = 50%,  
IF = 12 mA, VCC = 15.0 V,  
RL = 20 k, CL = 100 pF,  
6,  
10-14  
VTHHL =1.5V, VTHLH =2.0V  
Common  
Mode  
Transient  
Immunity at  
Logic High  
Level Output  
| CMH|  
| CMH|  
15  
15  
30  
30  
kV/ µs T = 25°C  
V = 5.0 V, RL = 1.9 k,  
CL = 15 pF, IF = 0 mA  
A
CC  
V
CM  
=
7
7
7, 9  
1500 V  
P-P  
kV/ µs  
V = 15.0 V, RL = 20 k,  
CC  
CL = 100 pF, IF = 0 mA  
8, 10  
Common  
Mode  
Transient  
Immunity at  
Logic Low  
Level Output  
| CML|  
| CML|  
15  
30  
30  
kV/ µs T = 25°C  
V = 5.0 V, RL = 1.9 k,  
CL = 15 pF, IF = 16 mA  
A
CC  
V
CM  
=
7
7
7
7, 9  
8, 10  
8, 10  
1500 V  
P-P  
HCPL-  
J454  
15  
10  
15  
kV/ µs  
kV/ µs  
V = 15.0 V, RL = 20 k,  
CC  
CL = 100 pF, IF = 12 mA  
Others  
| CML|  
30  
V = 15.0 V, RL = 20 k,  
CC  
CL = 100 pF, IF = 16 mA  
*All typicals at T = 25°C.  
A
13  
Package Characteristics  
Over recommended temperature (T = 0°C to 25°C) unless otherwise specified.  
A
Parameter  
Sym.  
Device  
Min.  
Typ.*  
Max. Units  
Test Conditions  
Fig.  
Note  
Input-Output  
Momentary  
Withstand  
Voltage†  
V
ISO  
HCPL-4504  
HCPL-0454  
3750  
V rms  
RH 50%,  
t = 1 min.,  
T = 25°C  
A
6, 13,  
16  
6, 14,  
16  
HCPL-J454  
3750  
5000  
5000  
HCPL-4504  
Option 020  
6, 11,  
15  
HCNW4504  
6, 15,  
16  
Input-Output  
Resistance  
R
HCPL-4504  
HCPL-0454  
HCPL-J454  
1012  
V
I-O = 500 Vdc  
6
6
I-O  
HCNW4504  
1012  
1011  
1013  
0.6  
T = 25°C  
A
T = 100°C  
A
Capacitance  
(Input-Output)  
C
I-O  
HCPL-4504  
HCPL-0454  
pF  
f = 1 MHz  
HCPL-J454  
HCNW4504  
0.8  
0.5  
0.6  
*All typicals at T = 25°C..  
A
†The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage  
rating. For the continuous voltage rating refer to the IEC/ EN/ DIN EN 60747-5-2 Insulation Related Characteristics Table (if applicable), your equipment  
level safety specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.”  
Notes:  
1. Derate linearly above 70°C free-air temperature at a rate of 0.8 mA/ °C (8-Pin DIP).  
Derate linearly above 85°C free-air temperature at a rate of 0.5 mA/ °C (SO-8).  
2. Derate linearly above 70°C free-air temperature at a rate of 1.6 mA/ °C (8-Pin DIP).  
Derate linearly above 85°C free-air temperature at a rate of 1.0 mA/ °C (SO-8).  
3. Derate linearly above 70°C free-air temperature at a rate of 0.9 mW/ °C (8-Pin DIP).  
Derate linearly above 85°C free-air temperature at a rate of 1.1 mW/ °C (SO-8).  
4. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/ °C (8-Pin DIP).  
Derate linearly above 85°C free-air temperature at a rate of 2.3 mW/ °C (SO-8).  
5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100.  
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.  
7. Under TTL load and drive conditions: Common mode transient immunity in a Logic High level is the maximum tolerable (positive) dVCM/ dt on the  
leading edge of the common mode pulse, VCM, to assure that the output will remain in a Logic High state (i.e., V > 2.0 V). Common mode transient  
O
immunity in a Logic Low level is the maximum tolerable (negative) dVCM/ dt on the trailing edge of the common mode pulse signal, VCM, to assure  
that the output will remain in a Logic Low state (i.e., VO < 0.8 V).  
8. Under IPM (Intelligent Power Module) load and LED drive conditions: Common mode transient immunity in a Logic High level is the maximum  
tolerable dVCM/ dt on the leading edge of the common mode pulse, V , to assure that the output will remain in a Logic High state (i.e., VO > 3.0 V).  
CM  
Common mode transient immunity in a Logic Low level is the maximum tolerable dVCM/ dt on the trailing edge of the common mode pulse signal,  
V
CM, to assure that the output will remain in a Logic Low state (i.e., V < 1.0 V).  
O
9. The 1.9 kload represents 1 TTL unit load of 1.6 mA and the 5.6 kpull-up resistor.  
10. The RL = 20 k, CL = 100 pF load represents an IPM (Intelligent Power Module) load.  
11. See Option 020 data sheet for more information.  
12. Use of a 0.1 µF bypass capacitor connected between Pins 5 and 8 is recommended.  
13. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 4500 V rms for 1 second (leakage detection  
current limit, Ii-o 5 µA).  
14. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 4500 V rms for 1 second (leakage detection  
current limit, Ii-o 5 µA).  
15. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 6000 V rms for 1 second (leakage detection  
current limit, Ii-o 5 µA).  
16. This test is performed before the 100% Production test shown in the VDE 0884 Insulation Related Characteristics Table, if applicable.  
17. The difference between tPLH and tPHL between any two devices (same part number) under the same test condition. (See Power Inverter Dead Time  
and Propagation Delay Specifications section.)  
14  
HCNW4504  
HCPL-4504/0454  
HCPL-J454  
= 25° C  
25  
20  
15  
10  
40 mA  
35 mA  
T
= 25°C  
T = 25°C  
A
CC  
A
T
V
A
10  
20  
18  
16  
14  
12  
10  
8
V
= 5.0 V  
V
= 5.0 V  
CC  
= 5.0 V  
CC  
40 mA  
35 mA  
40 mA  
35 mA  
30 mA  
25 mA  
20 mA  
30 mA  
25 mA  
20 mA  
30 mA  
25 mA  
20 mA  
5
15 mA  
10 mA  
15 mA  
10 mA  
15 mA  
10 mA  
6
5
0
4
I
= 5 mA  
F
I
= 5 mA  
F
2
0
I
= 5 mA  
F
0
0
20  
0
20  
10  
– OUTPUT VOLTAGE – V  
10  
V – OUTPUT VOLTAGE – V  
O
0
5
10  
15  
20  
V
– OUTPUT VOLTAGE – V  
O
V
O
Figure 1. DC and pulsed transfer characteristics.  
HCPL-J454  
HCPL-4504/0454  
1.5  
HCNW4504  
NORMALIZED  
2.0  
1.5  
1.0  
0.5  
0
NORMALIZED  
2.0  
1.6  
1.2  
0.8  
0.4  
0
I
= 16 mA  
F
I
= 16 mA  
F
V
= 0.4 V  
= 5.0 V  
O
V
V
= 0.4 V  
O
V
CC  
= 5.0 V  
CC  
T
= 25°C  
1.0  
A
T
= 25° C  
A
0.5  
0.0  
NORMALIZED  
= 16 mA  
I
F
V
= 0.4 V  
O
V
= 5.0 V  
= 25°C  
CC  
T
A
0
2
4
I
6
8 10 12 14 16 18 20 22 24 26  
0
5
10  
15  
20  
I – INPUT CURRENT – mA  
F
25  
0
5
10  
15  
20  
25  
I
– INPUT CURRENT – mA  
– INPUT CURRENT – mA  
F
F
Figure 2. Current transfer ratio vs. input current.  
HCPL-4504/0454  
1000  
HCPL-J454/HCNW4504  
= 25°C  
1000  
100  
10  
T
A
100  
I
I
F
F
T
A
= 25°C  
+
+
10  
1.0  
V
V
F
F
1.0  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
V
– FORWARD VOLTAGE – VOLTS  
V
– FORWARD VOLTAGE – VOLTS  
F
F
Figure 3. Input current vs. forward voltage.  
15  
HCPL-4504/0454  
HCPL-J454  
HCNW4504  
NORMALIZED  
1.05  
1.0  
1.1  
1.0  
1.05  
1.0  
NORMALIZED  
= 16 mA  
I
= 16 mA  
F
I
F
O
CC  
A
V
= 0.4 V  
= 5.0 V  
O
V
V
T
= 0.4 V  
= 5.0 V  
= 25° C  
V
CC  
T
= 25°C  
A
0.9  
0.8  
0.7  
0.6  
NORMALIZED  
= 16 mA  
0.95  
0.9  
0.95  
0.9  
I
F
V
= 0.4 V  
O
V
= 5.0 V  
CC  
= 25°C  
T
A
0.85  
0.85  
-60 -40 -20  
0
20 40 60 80 100 120  
-60 -40 -20  
0
20 40 60 80 100 120  
T – TEMPERATURE – °C  
A
-60 -40 -20  
0
20 40 60 80 100  
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
Figure 4. Current transfer ratio vs. temperature.  
4
10  
3
10  
I
= 0 mA  
F
V
O
= V = 5.0 V  
CC  
2
10  
1
0
10  
10  
-1  
10  
10  
-2  
-60 -40 -20  
0
20 40 60 80 100 120  
T
– TEMPERATURE – °C  
A
Figure 5. Logic high output current vs. temperature.  
I
F
I
F
PULSE  
GEN.  
8
7
6
5
1
2
3
4
V
CC  
0
Z
t
= 50  
= 5 ns  
O
r
R
V
L
CC  
V
O
V
O
V
V
THLH  
THHL  
0.1µF  
V
I
MONITOR  
F
OL  
C
L
R
M
t
t
PHL  
PLH  
Figure 6. Switching test circuit.  
8
7
6
5
V
CC  
1
2
3
4
V
CM  
90% 90%  
I
F
0 V  
10%  
10%  
R
L
t
r
A
t
f
B
V
O
0.1µF  
V
V
O
CC  
SWITCH AT A: I = 0 mA  
F
C
L
V
FF  
V
V
O
V
CM  
OL  
+
SWITCH AT B: I = 12 mA, 16 mA  
F
PULSE GEN.  
Figure 7. Test circuit for transient immunity and typical waveforms.  
16  
HCPL-4504/0454  
= 5.0 V  
HCPL-J454/HCNW4504  
= 5.0 V  
0.50  
0.45  
0.50  
0.45  
1.4  
1.2  
1.0  
0.8  
V
V
= 5.0 V  
= 25° C  
= 15 pF  
= V  
V
CC  
CC  
CC  
R
= 1.9 k  
= 15 pF  
= V  
T
R
= 1.9 kΩ  
= 15 pF  
= V  
L
A
L
C
V
C
V
C
V
L
L
L
0.40  
0.40  
= 1.5 V  
= 1.5 V  
THLH  
= 1.5 V  
THLH  
THHL  
THLH  
THHL  
THHL  
t
t
PLH  
PLH  
10% DUTY CYCLE  
10% DUTY CYCLE  
10% DUTY CYCLE  
t
0.35  
0.30  
0.25  
0.35  
0.30  
0.25  
PLH  
t
PHL  
t
0.6  
0.4  
0.2  
0.0  
PHL  
I
= 10 mA  
= 16 mA  
F
t
PHL  
I
F
0.20  
0.20  
I
= 10 mA  
= 16 mA  
I
= 10 mA  
= 16 mA  
F
F
0.15  
0.10  
0.15  
0.10  
I
I
F
F
-60 -40 -20  
0
20 40 60 80 100 120  
-60 -40 -20  
0
20 40 60 80 100  
120  
0
2
4
6
8
– LOAD RESISTANCE – k  
L
10 12 14 16 18 20  
R
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
Figure 8. Propagation delay time vs. temperature.  
Figure 9. Propagation delay time vs. load  
resistance.  
HCPL-4504/0454  
HCPL-J454/HCNW4504  
1.1  
2.6  
2.4  
1.1  
1.0  
V
= 15.0 V  
I
= 10 mA  
= 16 mA  
V
= 5.0 V  
= 25° C  
= 100 pF  
V
R
= 15.0 V  
= 20 k  
I
= 10 mA  
I = 16 mA  
F
CC  
F
CC  
CC  
L
F
R
= 20 kΩ  
I
T
1.0  
0.9  
L
F
A
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
C = 100 pF  
C
C = 100 pF  
L
L
L
0.9  
V
= 1.5 V  
= 2.0 V  
V
= 1.5 V  
= 2.0 V  
V
V
= 1.5 V  
= 2.0 V  
50% DUTY CYCLE  
THHL  
THLH  
THHL  
THHL  
THLH  
t
t
PLH  
PLH  
V
V
THLH  
0.8  
0.7  
0.6  
0.8  
0.7  
0.6  
50% DUTY CYCLE  
50% DUTY CYCLE  
t
PLH  
I
= 10 mA  
I = 16 mA  
F
F
t
PHL  
8
0.5  
0.5  
t
t
PHL  
PHL  
0.4  
0.3  
0.4  
0.3  
0.2  
0.0  
-60 -40 -20  
0
20 40  
-60 -40 -20  
0
20 40  
60 80 100 120  
60 80 100 120  
T – TEMPERATURE – °C  
A
0
2
4
6
10 12 14 16 18 20  
T
– TEMPERATURE – °C  
R – LOAD RESISTANCE – kΩ  
A
L
Figure 10. Propagation delay time vs. load  
resistance.  
Figure 11. Propagation delay time vs. temperature.  
17  
1.8  
1.6  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1.2  
1.1  
1.0  
V
= 15.0 V  
V
= 15.0 V  
= 25° C  
T
R
= 25° C  
= 20 k  
C = 100 pF  
L
CC  
= 25° C  
CC  
A
L
t
PLH  
PHL  
T
T
A
A
C = 100 pF  
R = 20 k  
L
L
1.4  
V
V
= 1.5 V  
= 2.0 V  
V
= 1.5 V  
= 2.0 V  
V
V
= 1.5 V  
THHL  
THLH  
THHL  
THLH  
THHL  
0.9  
0.8  
0.7  
V
= 2.0 V  
1.2  
1.0  
0.8  
0.6  
0.4  
THLH  
t
PLH  
50% DUTY CYCLE  
50% DUTY CYCLE  
50% DUTY CYCLE  
t
PLH  
t
t
0.6  
0.5  
0.4  
0.3  
0.2  
PHL  
t
PHL  
I
= 10 mA  
= 16 mA  
F
I
I
= 10 mA  
= 16 mA  
F
I
I
= 10 mA  
= 16 mA  
F
F
I
0.2  
0.0  
F
F
0.0  
0
100 200 300 400 500 600 700 800 9001000  
– LOAD CAPACITANCE – pF  
10 11 12 13 14 15 16 17 18 19 20  
– SUPPLY VOLTAGE – V  
0
5
10 15 20 25 30 35 40 45 50  
C
R
– LOAD RESISTANCE – k  
V
CC  
L
L
Figure 12. Propagation delay time vs. load  
resistance.  
Figure 13. Propagation delay time vs. load  
capacitance.  
Figure 14. Propagation delay time vs. supply  
voltage.  
HCPL-4504 OPTION 060/HCPL-J454  
800  
HCPL-0454 OPTION 060/HCNW4504  
1000  
P
(mW) for HCNW4504  
S
P
(mW)  
S
900  
800  
700  
600  
500  
400  
300  
I
P
(mA) for HCNW4504  
S
700  
600  
500  
400  
300  
I
I
(mA) for HCPL-4504  
OPTION 060  
(mA) for HCPL-J454  
S
(mW) for HCPL-0454  
S
OPTION 060  
(mA) for HCPL-0454  
S
I
S
OPTION 060  
(230)  
200  
200  
(150)  
100  
100  
0
0
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – °C  
0
25  
50 75 100 125 150 175  
T
T – CASE TEMPERATURE – °C  
S
S
Figure 15. Thermal derating curve, dependence of safety limiting valve with case temperature  
per IEC/ EN/ DIN EN 60747-5-2.  
18  
+HV  
Power Inverter Dead Time and  
Propagation Delay Specifications  
+
HCPL-4504/0454/J454  
HCNW4504  
8
7
6
The HCPL-4504/0454/J454 and  
HCNW4504 include a specifica-  
tion intended to help designers  
minimize “dead time” in their  
power inverter designs. The new  
“propagation delay difference”  
specification (tPLH - tPHL) is useful  
for determining not only how  
much optocoupler switching delay  
is needed to prevent “shoot-  
through” current, but also for  
determining the best achievable  
worst-case dead time for a given  
design.  
2
3
LED 1  
BASE/GATE  
DRIVE CIRCUIT  
Q1  
OUT 1  
5
+
HCPL-4504/0454/J454  
HCNW4504  
8
7
6
2
3
LED 2  
BASE/GATE  
DRIVE CIRCUIT  
Q2  
OUT 2  
5
When inverter power transistors  
switch (Q1 and Q2 in Figure 17),  
it is essential that they never  
conduct at the same time.  
–HV  
Figure 16. Typical power inverter.  
Extremely large currents will flow  
if there is any overlap in their  
conduction during switching  
transitions, potentially damaging  
the transistors and even the sur-  
rounding circuitry. This “shoot-  
through” current is eliminated by  
delaying the turn-on of one  
LED 1  
OUT 1  
transistor (Q2) long enough to  
ensure that the opposing  
transistor (Q1) has completely  
turned off. This delay introduces a  
small amount of “dead time” at  
the output of the inverter during  
which both transistors are off  
during switching transitions.  
Minimizing this dead time is an  
important design goal for an  
inverter designer.  
t
PLH min  
(t  
–t )  
PLH max PLH min  
t
PLH max  
TURN-ON DELAY  
–t  
(t  
)
PLH max PLH min  
LED 2  
OUT 2  
The amount of turn-on delay  
needed depends on the propaga-  
tion delay characteristics of the  
optocoupler, as well as the  
characteristics of the transistor  
base/gate drive circuit. Consider-  
ing only the delay characteristics  
of the optocoupler (the charac-  
teristics of the base/gate drive  
circuit can be analyzed in the  
same way), it is important to  
t
PHL min  
(t  
–t  
)
PHL max PHL min  
t
PHL max  
MAXIMUM DEAD TIME  
Figure 17. LED delay and dead time diagram.  
19  
which is the maximum minus the  
minimum data sheet values of  
(tPLH-tPHL). The difference  
know the minimum and  
maximum data sheet value for the  
propagation delay difference  
specification, (tPLH - tPHL). The  
HCPL-4504/0454/J454 and  
HCNW4504 specify a maximum  
(tPLH - tPHL) of 1.3 µs over an  
operating temperature range  
of 0-70°C.  
maximum turn-on (tPHL) and  
turnoff (tPLH) propagation delay  
specifications, preferably over the  
desired operating temperature  
range. The importance of these  
specifications is illustrated in  
Figure 17. The waveforms labeled  
“LED1”, “LED2”, “OUT1”, and  
“OUT2” are the input and output  
voltages of the optocoupler  
between the maximum and  
minimum values depends directly  
on the total spread in propagation  
delays and sets the limit on how  
good the worst-case dead time can  
be for a given design. Therefore,  
optocouplers with tight  
propagation delay specifications  
(and not just shorter delays or  
lower pulse-width distortion) can  
achieve short dead times in power  
inverters. The  
Although (tPLH-tPHL max tells the  
)
designer how much delay is  
circuits driving Q1 and Q2  
needed to prevent shoot-through  
current, it is insufficient to tell the  
designer how much dead time a  
design will have. Assuming that  
the optocoupler turn-on delay is  
respectively. Most inverters are  
designed such that the power  
transistor turns on when the  
optocoupler LED turns on; this  
ensures that both power  
transistors will be off in the event  
of a power loss in the control  
circuit. Inverters can also be  
designed such that the power  
transistor turns off when the  
optocoupler LED turns on; this  
type of design, however, requires  
additional fail-safe circuitry to  
turn off the power transistor if an  
over-current condition is  
HCPL-4504/0454/J454 and  
HCNW4504 specify a minimum  
(tPLH - tPHL) of -0.7 µs over an  
operating temperature range of  
0-70°C, resulting in a maximum  
dead time of 2.0 µs when the LED  
turn-on delay is equal to  
exactly equal to (tPLH - tPHL max,  
)
the minimum dead time is zero  
(i.e., there is zero time between  
the turnoff of the very slowest  
optocoupler and the turn-on of  
the very fastest optocoupler).  
(tPLH-tPHL max, or 1.3 µs.  
)
Calculating the maximum dead  
time is slightly more complicated.  
Assuming that the LED turn-on  
delay is still exactly equal to  
It is important to maintain  
accurate LED turn-on delays  
because delays shorter than (tPLH  
-
tPHL max may allow shoot-  
)
detected. The timing illustrated in  
Figure 17 assumes that the power  
transistor turns on when the  
optocoupler LED turns on.  
(tPLH - tPHL)max, it can be seen in  
through currents, while longer  
delays will increase the worst-  
case dead time.  
Figure 17 that the maximum dead  
time is the sum of the maximum  
difference in turn-on delay plus  
the maximum difference in  
turnoff delay,  
The LED signal to turn on Q2  
should be delayed enough so that  
an optocoupler with the very  
fastest turn-on propagation delay  
(tPHLmin) will never turn on before  
an optocoupler with the very  
slowest turn-off propagation delay  
(tPLHmax) turns off. To ensure this,  
the turn-on of the optocoupler  
should be delayed by an amount  
no less than (tPLHmax - tPHLmin),  
which also happens to be the  
[(tPLHmax-tPLHmin)+(tPHLmax-tPHLmin)].  
This expression can be  
rearranged to obtain  
[(tPLHmax-tPHLmin)-(tPHLmin-tPHLmax)],  
and further rearranged to obtain  
[(tPLH-tPHL max-(tPLH-tPHL)min],  
)
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2114EN  
AV01-0552EN July 10, 2007  

相关型号:

HCNW4504#500E

Logic IC Output Optocoupler, 1-Element, 5000V Isolation, SURFACE MOUNT, DIP-8
AGILENT

HCNW4504-000E

High CMR, High Speed Optocouplers
AVAGO

HCNW4504-300

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.400 INCH, SURFACE MOUNT, DIP-8
AVAGO

HCNW4504-300E

High CMR, High Speed Optocouplers
AVAGO

HCNW4504-500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.400 INCH, SURFACE MOUNT, DIP-8
AVAGO

HCNW4504-500E

High CMR, High Speed Optocouplers
AVAGO

HCNW4506

Intelligent Power Module and Gate Drive Interface Optocouplers
AGILENT

HCNW4506

Intelligent Power Module and Gate Drive Interface Optocouplers
AVAGO

HCNW4506#300

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.400 INCH, SURFACE MOUNT, DIP-8
AGILENT

HCNW4506#300

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.400 INCH, DIP-8
AVAGO

HCNW4506#500

SCHMITT-TRIGGER-OUTPUT OPTOCOUPLER
ETC

HCNW4506-000E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.400 INCH, ROHS COMPLIANT, DIP-8
AVAGO