HCPL-2400#300

更新时间:2024-09-18 19:10:50
品牌:AVAGO
描述:1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 40Mbps, SURFACE MOUNT, DIP-8

HCPL-2400#300 概述

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 40Mbps, SURFACE MOUNT, DIP-8 光耦合器/光隔离器 光耦合器

HCPL-2400#300 规格参数

是否无铅:含铅是否Rohs认证:不符合
生命周期:Active包装说明:SURFACE MOUNT, DIP-8
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8541.40.80.00风险等级:5.18
Is Samacsys:N其他特性:CMOS COMPATIBLE, UL RECOGNIZED
配置:SINGLE标称数据速率:40 MBps
最大正向电流:0.01 A最大绝缘电压:3750 V
JESD-609代码:e0安装特点:SURFACE MOUNT
元件数量:1最大通态电流:0.025 A
最高工作温度:70 °C最低工作温度:
光电设备类型:LOGIC IC OUTPUT OPTOCOUPLER最大功率耗散:0.04 W
标称响应时间:6e-8 ns子类别:Optocoupler - IC Outputs
最小供电电压:4.75 V标称供电电压:5.25 V
表面贴装:YES端子面层:Tin/Lead (Sn/Pb)
Base Number Matches:1

HCPL-2400#300 数据手册

通过下载HCPL-2400#300数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
HCPL-2400, HCPL-2430  
20 MBd High CMR Logic Gate Optocouplers  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
The HCPL-2400 and HCPL-2430 high speed opto-cou-  
plers combine an 820 nm AlGaAs light emitting diode  
with a high speed photodetector. This combina-tion re-  
sults in very high data rate capability and low input cur-  
rent. The totem pole output (HCPL-2430) or three state  
output (HCPL-2400) eliminates the need for a pull up re-  
sistor and allows for direct drive of data buses.  
High speed: 40 MBd typical data rate  
High common mode rejection:  
HCPL-2400: 10 kV/µs at VCM = 300 V (typical)  
AC performance guaranteed over temperature  
High speed AlGaAs emitter  
Compatible with TTL, STTL, LSTTL, and HCMOS logic  
families  
The detector has optical receiver input stage with built-  
in Schmitt trigger to provide logic compatible wave-  
forms, eliminating the need for additional waveshaping.  
The hysteresis provides differential mode noise immuni-  
ty and minimizes the potential for output signal chatter.  
Totem pole and tri state output (no pull up resistor  
required)  
Safety approval  
– UL recognized – 3750 V rms for 1 minute per  
UL1577  
The electrical and switching characteristics of the HCPL-  
2400 and HCPL-2430 are guaranteed over the tempera-  
ture range of 0°C to70°C.  
– IEC/EN/DIN EN 60747-5-2 approved with  
VIORM = 630 V peak (Option 060) for HCPL-2400  
Functional Diagram  
– CSA approved  
High power supply noise immunity  
HCPL-2400/11  
HCPL-2430  
V
CC  
1
2
3
NC  
8
7
6
5
ANODE 1  
CATHODE 1  
CATHODE 2  
ANODE 2  
1
2
3
4
8
7
6
5
V
V
CC  
O1  
MIL-PRF-38534 hermetic version available  
(HCPL-5400/1 and HCPL-5430/1)  
Applications  
V
O2  
Isolation of high speed logic systems  
Computer-peripheral interfaces  
Switching power supplies  
4 NC  
GND  
GND  
TRUTH TABLE  
(POSITIVE LOGIC)  
LED ENABLE OUTPUT  
TRUTH TABLE  
(POSITIVE LOGIC)  
Isolated bus driver (networking applications)  
Ground loop elimination  
ON  
OFF  
ON  
L
L
H
H
L
H
Z
Z
LED  
ON  
OUTPUT  
L
OFF  
H
OFF  
High speed disk drive I/O  
A 0.1 µF bypass capacitor must be connected between pins 5 and 8.  
Digital isolation for A/D, D/A conversion  
Pulse transformer replacement  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
These optocouplers are compatible with TTL, STTL, LSTTL, and HCMOS logic families. When Schottky type TTL devices  
(STTL) are used, a data rate performance of 20 MBd over temperature is guaranteed when using the application cir-  
cuit of Figure 13. Typical data rates are 40MBd.  
Selection Guide  
8-Pin DIP (300 Mil)  
Minimum CMR  
Single  
Dual  
Minimum Input  
On Current  
(mA)  
Maximum  
Propagation Delay  
(ns)  
Channel  
Package  
Channel  
Package  
dV/dt  
(V/µs)  
1000  
1000  
500  
500  
500  
V
Hermetic  
Package  
CM  
(V)  
300  
50  
HCPL-2400  
4
4
6
6
6
60  
60  
60  
60  
60  
HCPL-2430  
50  
50  
50  
HCPL-540X*  
HCPL-543X*  
HCPL-643X*  
*Technical data for the Hermetic HCPL-5400/01, HCPL-5430/31, and HCPL-6430/31 are on separate Avago publications.  
Ordering Information  
HCPL-2400 and HCPL-2430 are UL Recognized with 3750 Vrms for 1 minute per UL1577.  
Option  
Part  
number  
RoHS  
Non RoHS  
Surface  
Mount  
Gull  
Wing  
Tape  
& Reel  
UL 5000 Vrms/1 IEC/EN/DIN EN  
Compliant Compliant  
Package  
Minute rating  
60747-5-2  
Quantity  
-000E  
-300E  
-500E  
-060E  
-360E  
-000E  
-300E  
-500E  
-020E  
-060E  
No option  
#300  
#500  
#060  
-360  
No option  
#300  
#500  
-
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
X
X
X
X
HCPL-2400  
300mil  
DIP-8  
X
X
X
X
X
X
X
X
X
X
300mil  
DIP-8  
HCPL-2430  
X
-
X
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
HCPL-2430-500E to order product of Gull Wing Surface Mount package in Tape in RoHS compliant.  
Example 2:  
HCPl-2400 to order product of 8-Pin DIP package in tube packaging and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since 15th July 2001 and  
RoHS compliant option will use ‘-XXXE.  
2
Schematic  
I
CC  
V
V
CC  
O1  
8
7
I
I
O
F1  
1
+
V
F1  
I
CC  
8
V
CC  
2
I
I
E
7
6
V
V
I
E
F
2
+
O
ANODE  
O
V
F
3
CATHODE  
I
5
O
3
GND  
V
V
+
O2  
6
5
F2  
4
I
F2  
GND  
TRUTH TABLE  
(POSITIVE LOGIC)  
SHIELD  
LED ENABLE OUTPUT  
TRUTH TABLE  
(POSITIVE LOGIC)  
ON  
L
L
L
H
Z
Z
LED  
ON  
OUTPUT  
OFF  
ON  
OFF  
L
H
H
OFF  
H
3
Package Outline Drawings  
8-Pin DIP Package (HCPL-2400, HCPL-2430)  
7.62 0.25  
(0.300 0.010)  
9.65 0.25  
(0.380 0.010)  
8
1
7
6
5
TYPE NUMBER  
6.35 0.25  
(0.250 0.010)  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
2
3
4
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003)  
- 0.002)  
(0.010  
3.56 0.13  
(0.140 0.005)  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
*MARKING CODE LETTER FOR OPTION NUMBERS.  
"V" = OPTION 060  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
1.080 0.320  
0.65 (0.025) MAX.  
(0.043 0.013)  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
2.54 0.25  
(0.100 0.010)  
8-Pin DIP Package with Gull Wing Surface Mount Option 300  
(HCPL-2400, HCPL-2430)  
LAND PATTERN RECOMMENDATION  
1.016 (0.040)  
9.65 0.25  
(0.380 0.010)  
6
5
8
1
7
6.350 0.25  
(0.250 0.010)  
10.9 (0.430)  
2.0 (0.080)  
2
3
4
1.27 (0.050)  
9.65 0.25  
1.780  
(0.070)  
MAX.  
(0.380 0.010)  
1.19  
(0.047)  
MAX.  
7.62 0.25  
(0.300 0.010)  
+ 0.076  
0.254  
- 0.051  
3.56 0.13  
(0.140 0.005)  
+ 0.003)  
- 0.002)  
(0.010  
1.080 0.320  
(0.043 0.013)  
0.635 0.25  
(0.025 0.010)  
12° NOM.  
0.635 0.130  
(0.025 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
4
Solder Reflow Thermal Profile  
300  
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.  
REFLOW HEATING RATE 2.5°C 0.5°C/SEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
200  
100  
0
2.5°C 0.5°C/SEC.  
SOLDERING  
TIME  
30  
160°C  
150°C  
140°C  
200°C  
SEC.  
30  
SEC.  
3°C + 1°C/–0.5°C  
PREHEATING TIME  
150°C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Note: Non-halide flux should be used.  
Recommended Pb-Free IR Profile  
TIMEWITHIN 5 °C of ACTUAL  
PEAKTEMPERATURE  
t
p
20-40 SEC.  
260 +0/-5 °C  
T
T
p
217 °C  
L
RAMP-UP  
3 °C/SEC. MAX.  
150 - 200 °C  
RAMP-DOWN  
6 °C/SEC. MAX.  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 °C, T = 150 °C  
T
smax  
smin  
Note: Non-halide flux should be used.  
Regulatory Information  
The HCPL-24XX has been approved by the following organizations:  
IEC/EN/DIN EN 60747-5-2  
VDE  
Approved under:  
Approved according to VDE 0884/06.92 (Option 060  
only).  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884  
Teil 2):2003-01.  
UL  
Recognized under UL 1577, Component Recognition  
Program, File E55361.  
(Option 060 only)  
5
Insulation and Safety Related Specifications  
Parameter  
Symbol  
Value  
Units  
Conditions  
Minimum External  
Air Gap (External  
Clearance)  
L(101)  
7.1  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Minimum External  
Tracking (External  
Creepage)  
Minimum Internal  
Plastic Gap  
(Internal Clearance)  
L(102)  
CTI  
7.4  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body.  
0.08  
Through insulation distance, conductor to  
conductor, usually the direct distance between the  
photoemitter and photodetector inside the  
optocoupler cavity.  
Tracking Resistance  
(Comparative  
Tracking Index)  
200  
IIIa  
Volts  
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Option 300 - surface mount classification is Class A in accordance with CECC 00802.  
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics  
(HCPL-2400 OPTION 060 ONLY)  
Description  
Symbol  
Characteristic  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤300 V rms  
for rated mains voltage ≤450 V rms  
Climatic Classification  
I-IV  
I-III  
55/85/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
V
630  
V peak  
V peak  
IORM  
V
IORM x 1.875 = V , 100% Production Test with tm = 1 sec,  
VPR  
VPR  
1181  
945  
Partial DischargPeR < 5 pC  
Input to Output Test Voltage, Method a*  
V
x 1.5 = VPR, Type and sample test,  
V peak  
tmIO=RM60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
VIOTM  
6000  
V peak  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Figure 12, Thermal Derating curve.)  
Case Temperature  
TS  
175  
230  
600  
≥109  
°C  
Input Current  
IS,INPUT  
mA  
mW  
Output Power  
PS,OUTPUT  
Insulation Resistance at TS, V = 500 V  
RS  
Ω
IO  
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-2 for a  
detailed description.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must ben ensured by protective circuits in applica-  
tion.  
6
Absolute Maximum Ratings  
(No derating required up to 70°C)  
Parameter  
Symbol  
TS  
Minimum  
-55  
Maximum  
Units  
°C  
Note  
Storage Temperature  
125  
85  
10  
20  
2
Operating Temperature  
Average Forward Input Current  
Peak Forward Input Current  
Reverse Input Voltage  
TA  
-40  
°C  
IF(AVG)  
IFPK  
mA  
mA  
V
12  
V
R
Three State Enable Voltage  
(HCPL-2400 Only)  
V
-0.5  
10  
V
E
Supply Voltage  
V
0
7
V
mA  
V
CC  
Average Output Collector Current  
Output Collector Voltage  
Output Voltage  
IO  
-25  
-0.5  
-0.5  
25  
10  
18  
40  
V
O
V
V
O
Output Collector Power Dissipation  
(Each Channel)  
PO  
mW  
Total Package Power Dissipation  
(Each Channel)  
PT  
350  
mW  
Lead Solder Temperature  
(for Through Hole Devices)  
260°C for 10 sec., 1.6 mm below seating plane  
Reflow Temperature Profile  
(Option #300)  
See Package Outline Drawings section  
Recommended Operating Conditions  
Parameter  
Symbol  
Minimum  
4.75  
4
Maximum  
Units  
V
Power Supply Voltage  
Forward Input Current (ON)  
Forward Input Voltage (OFF)  
Fan Out  
V
5.25  
8
CC  
IF(ON)  
mA  
V
V
0.8  
5
F(OFF)  
N
TTL Loads  
V
Enable Voltage (Low)  
HCPL-2400 Only)  
V
0
2
0
0.8  
EL  
Enable Voltage (High)  
HCPL-2400 Only)  
VEH  
TA  
V
V
CC  
Operating Temperature  
70  
°C  
7
Electrical Specifications  
0°C ≤T ≤70°C, 4.75 V ≤VCC ≤5.25 V, 4 mA ≤IF(ON) ≤8 mA, 0 V ≤VF(OFF) ≤0.8 V. All typicals at TA =25°C, VCC = 5 V, IF(ON) = 6.0  
mA, VFA(OFF) = 0 V, except where noted. See Note 11.  
Device  
HCPL-  
Parameter  
Symbol  
VOL  
Min. Typ.*  
Max. Units  
Test Conditions  
Fig.  
1
Note  
Logic Low Output Voltage  
0.5  
V
V
IOL = 8.0 mA (5 TTL Loads)  
Logic High Output  
Voltage  
VOH  
2.4  
2.7  
IOH = -4.0 mA  
IOH = -0.4 mA  
2
Output Leakage Current  
Logic High Enable Current  
Logic Low Enable Voltage  
Logic High Enable  
IOHH  
VEH  
VEL  
IEH  
100  
µA  
V
VO = 5.25 V, VF = 0.8 V  
2400  
2400  
2400  
2.0  
0.8  
20  
V
µA  
VE = 2.4 V  
VE = 5.25 V  
VE = 0.4 V  
Current  
100  
Logic Low Enable Current  
Logic Low Supply Current  
IEL  
2400  
2400  
-0.28 -0.4  
mA  
mA  
ICCL  
19  
26  
V = 5.25 V, VE = 0 V,  
IOCC= Open  
2430  
2400  
34  
17  
46  
26  
V = 5.25 V, IO = Open  
CC  
Logic High Supply  
Current  
ICCH  
mA  
mA  
V = 5.25 V, VE = 0 V,  
IOCC= Open  
2430  
2400  
32  
22  
42  
28  
V = 5.25 V, IO = Open  
CC  
High Impedance State  
Supply Current  
ICCZ  
V = 5.25 V, VE = 5.25 V  
CC  
High Impedance State  
Output Current  
IOZL  
IOZH  
IOZH  
IOSL  
2400  
20  
20  
µA  
µA  
µA  
mA  
VO = 0.4 V  
VO = 2.4 V  
VO = 5.25 V  
VE = 2 V  
100  
Logic Low Short Circuit  
Output Current  
52  
VO = V = 5.25 V,  
2
CC  
IF = 8 mA  
Logic High Short Circuit  
Output Current  
IOSH  
-45  
mA  
mA  
V = 5.25 V, IF = 0 mA,  
2
CC  
V = GND  
O
Input Current Hysteresis  
Input Forward Voltage  
IHYS  
VF  
0.25  
1.1  
1.0  
3.0  
2.0  
VCC = 5 V  
3
4
1.3  
5.0  
1.5  
T = 25°C  
IF = 8 mA  
A
1.55  
Input Reverse Breakdown  
Voltage  
BVR  
V
T = 25°C  
IR = 10 µA  
A
Temperature  
Coefficient of  
Forward Voltage  
∆VF  
∆TA  
-1.44  
mV/°C IF = 6 mA  
4
Input Capacitance  
CIN  
20  
pF  
f = 1 MHz, V = 0 V  
F
*All typical values at T = 25°C and VCC = 5 V, unless otherwise noted.  
A
8
Switching Specifications  
0°C ≤ T ≤ 70°C, 4.75 V ≤ VCC ≤ 5.25 V, 4 mA ≤ IF(ON) ≤ 8 mA, 0 V ≤ VF(OFF) ≤ 0.8 V. All typicals at T = 25°C, VCC = 5 V,  
A
A
IF(ON) = 6.0 mA, VF(OFF) = 0 V, except where noted. See Note 11.  
Device  
HCPL-  
Parameter  
Symbol  
Min.  
15  
Typ.*  
Max.  
55  
60  
55  
60  
15  
25  
35  
Units  
Test Conditions  
Figure  
Note  
Propagation Delay  
Time to Logic Low  
Output Level  
tPHL  
ns  
IF(ON) = 7 mA  
5, 6, 7  
1, 4,  
5, 6  
33  
Propagation Delay  
Time to Logic High  
Output Level  
tPLH  
|tPHL-tPLH  
tPSK  
ns  
ns  
ns  
IF(ON) = 7 mA  
5, 6, 7  
5, 8  
1, 4,  
5, 6  
15  
30  
2
Pulse Width  
Distortion  
|
IF(ON) = 7 mA  
6
7
5
Propagation Delay  
Skew  
Per Notes & Text  
15, 16  
Output Rise Time  
Output Fall Time  
tr  
tf  
20  
10  
15  
ns  
ns  
ns  
5
5
Output Enable Time  
to Logic High  
tPZH  
2400  
2400  
2400  
2400  
9, 10  
Output Enable Time  
to Logic Low  
tPZL  
30  
20  
15  
ns  
ns  
9, 10  
9, 10  
9, 10  
11  
Output Disable Time  
from Logic High  
tPHZ  
Output Disable Time  
from Logic Low  
tPLZ  
ns  
Logic High Common  
Mode Transient  
Immunity  
|CMH|  
1000 10,000  
1000 10,000  
0.5  
V/µs  
VCM = 300 V, T = 25°C,  
IF = 0 mA  
9
9
A
Logic Low Common  
Mode Transient  
Immunity  
|CML|  
PSNI  
V/µs  
VCM = 300 V, T = 25°C,  
11  
A
IF = 4 mA  
Power Supply Noise  
Immunity  
V
VCC = 5.0 V,  
10  
p-p  
48 Hz ≤ = F ≤50 MHz  
AC  
*All typical values at T = 25°C and VCC = 5 V, unless otherwise noted.  
A
9
Package Characteristics  
Parameter  
Sym.  
Device  
Min.  
Typ.*  
Max. Units Test Conditions  
Fig.  
Note  
Input-Output  
V
3750  
V rms  
RH ≤50%,  
t = 1 min.,  
3, 13  
ISO  
Momentary  
Withstand Voltage**  
T = 25°C  
A
Input-Output  
Resistance  
Input-Output  
Capacitance  
Input-Input  
Insulation Leakage  
Current  
RI-O  
CI-O  
II-I  
1012  
0.6  
Ω
VI-O = 500 Vdc  
3
8
pF  
µA  
f = 1 MHz  
VI-O = 0 Vdc  
RH ≤45%  
t = 5 s,  
VI-I = 500 Vdc  
2430  
0.005  
Resistance  
RI-I  
CI-I  
2430  
2430  
1011  
0.25  
Ω
VI-I = 500 Vdc  
f = 1 MHz  
8
8
(Input-Input)  
Capacitance  
(Input-Input)  
pF  
*All typical values are at T = 25°C.  
A
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if applicable), your equipment lev-  
el safety specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage,publication number 5963-2203E.  
Notes:  
1. Each channel.  
2. Duration of output short circuit time not to exceed 10 ms.  
3. Device considered a two terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.  
4. tPHL propagation delay is measured from the 50% level on the rising edge of the input current pulse to the 1.5 V level on the falling edge of the  
output pulse. The tPLH propagation delay is measured from the 50% level on the falling edge of the input current pulse to the 1.5 V level on the  
rising edge of the output pulse.  
5. The typical data shown is indicative of what can be expected using the application circuit in Figure 13.  
6. This specification simulates the worst case operating conditions of the HCPL-2400 over the recommended operating temperature and VCC range  
with the suggested application circuit of Figure 13.  
7. Propagation delay skew is discussed later in this data sheet.  
8. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.  
9. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) dVCM/dt of the common mode pulse, VCM, to assure  
that the output will remain in a Logic High state (i.e., VO > 2.0 V). Common mode transient immunity in a Logic Low level is the maximum toler-  
able (negative) dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in a Logic Low state (i.e., VO < 0.8 V).  
10. Power Supply Noise Immunity is the peak to peak amplitude of the ac ripple voltage on theVCC line that the device will withstand and still remain  
in the desired logic state. For desired logic high state, VOH(MIN) > 2.0 V, and for desired logic low state, VOL(MAX) < 0.8 V.  
11. Use of a 0.1 µF bypass capacitor connected between pins 8 and 5 adjacent to the device is required.  
12. Peak Forward Input Current pulse width < 50 µs at 1 KHz maximum repetition rate.  
13. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500Vrms for one second (leakage detec-  
tion current limit, II-O ≤ 5 µA). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related  
Characteristics Table, if applicable.  
10  
Figure 1. Typical logic low output voltage vs. logic low  
output current.  
Figure 2. Typical logic high output voltage vs. logic  
high output current.  
Figure 3. Typical output voltage vs. input forward  
current.  
Figure 4. Typical diode input forward current charac-  
teristic.  
Figure 5. Test circuit for tPLH, tPHL, tr, and tf.  
Figure 6. Typical propagation delay vs. ambient  
temperature.  
Figure 7. Typical propagation delay vs. input forward  
current.  
Figure 8. Typical pulse width distortion vs. ambient  
temperature.  
11  
Figure 9. Test circuit for tPHZ, tPZH, tPLZ and tPZL.  
Figure 10. Typical enable propagation delay vs. ambi-  
ent temperature.  
V
HCPL-2400/11  
CC  
V
CC  
1 NC  
2
8
7
6
5
I
F
0.1 µF *  
B
OUTPUT V  
O
3
A
MONITORING NODE  
+
V
FF  
4 NC  
GND  
CM  
C
= 15 pF  
L
800  
P
(mW)  
S
V
700  
600  
500  
400  
300  
200  
100  
0
+
I
(mA)  
S
PULSE GENERATOR  
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – °C  
T
S
Figure 11. Test diagram for common mode transient immunity and typical waveforms.  
Figure 12. Thermal derating curve, dependence of  
safety limiting value with case temperature per  
IEC/EN/DIN EN 60747-5-2.  
12  
Applications  
Figure 13. Recommended 20 MBd HCPL-2400/30 interface circuit.  
Figure 14. Alternative HCPL-2400/30 interface circuit.  
DATA  
INPUTS  
CLOCK  
I
F
50%  
50%  
1.5 V  
V
O
DATA  
I
F
OUTPUTS  
t
PSK  
V
1.5 V  
CLOCK  
O
t
PSK  
t
PSK  
Figure 15. Illustration of propagation delay skew – tPSK  
.
Figure 16. Parallel data transmission example.  
Figure 17. Modulation code selections.  
Figure 18. Typical HCPL-2400/30 output schematic.  
13  
Propagation delay skew represents the uncertainty of  
where an edge might be after being sent through an  
optocoupler. Figure16 shows that there will be uncer-  
tainty in both the data and the clock lines. It is impor-  
tant that these two areas of uncertainty not overlap,  
otherwise the clock signal might arrive before all of the  
data outputs have settled, or some of the data outputs  
may start to change before the clock signal has arrived.  
From these considerations, the absolute minimum pulse  
width that can be sent through optocouplers in a par-  
allel application is twice tPHZ. A cautious design should  
use a slightly longer pulse width to ensure that any addi-  
tional uncertainty in the rest of the circuit does not cause  
a problem.  
Propagation Delay, Pulse-Width Distortion and Propa-  
gation Delay Skew  
Propagation delay is a figure of merit which describes  
how quickly a logic signal propagates through a sys-  
tem. The propagation delay from low to high (tPLH) is the  
amount of time required for an input signal to propa-  
gate to the output, causing the output to change from  
low to high. Similarly, the propagation delay from high  
to low (tPHL) is the amount of time required for the input  
signal to propagate to the output, causing the output to  
change from high to low (see Figure 5).  
Pulse-width distortion (PWD) results when tPLH and tPHL  
differ in value. PWD is defined as the difference between  
tPLH and tPHL and often determines the maximum data  
rate capability of a transmission system. PWD can be ex-  
pressed in percent by dividing the PWD (in ns) by the  
minimum pulse width (in ns) being transmitted. Typi-  
cally, PWD on the order of 20-30% of the minimum pulse  
width is tolerable; the exact figure depends on the par-  
ticular application (RS232, RS422, T-1, etc.).  
The HCPL-2400/30 optocouplers offer the advantages of  
guaranteed specifications for propagation delays, pulse-  
width distortion, and propagation delay skew over the  
recommended temperature, input current, and power  
supply ranges.  
Application Circuit  
A recommended LED drive circuit is shown in Figure 13.  
This circuit utilizes several techniques to minimize the  
total pulse-width distortion at the output of the opto-  
coupler. By using two inverting TTL gates connected in  
series, the inherent pulse-width distortion of each gate  
cancels the distortion of the other gate. For best results,  
the two series-connected gates should be from the same  
package.  
Propagation delay skew, tPSK, is an important param-  
eter to consider in parallel data applications where  
synchronization of signals on parallel data lines is a con-  
cern. If the parallel data is being sent through a group  
of optocouplers, differences in propagation delays will  
cause the data to arrive at the outputs of the optocou-  
plers at different times. If this difference in propagation  
delays is large enough, it will determine the maximum  
rate at which parallel data can be sent through the op-  
tocouplers.  
The circuit in Figure 13 also uses techniques known as  
prebias and peaking to enhance the performance of the  
optocoupler LED. Prebias is a small forward voltage ap-  
plied to the LED when the LED is off. This small prebias  
voltage partially charges the junction capacitance of the  
LED, allowing the LED to turn on more quickly. The speed  
of the LED is further increased by applying momentary  
current peaks to the LED during the turn-on and turn-off  
transitions of the drive current. These peak currents help  
to charge and discharge the capacitances of the LED  
more quickly, shortening the time required for the LED  
to turn on and off.  
Propagation delay skew is defined as the difference be-  
tween the minimum and maximum propagation delays,  
either tPLH or tPHL, for any given group of optocouplers  
which are operating under the same conditions (i.e., the  
same drive current, supply voltage, output load, and op-  
erating temperature). As illustrated in Figure15, if the in-  
puts of a group of optocouplers are switched either ON  
or OFF at the same time, tPSK is the difference between  
the shortest propagation delay, either tPLH or tPHL, and the  
longest pro-pagation delay, either tPLH or tPHL  
.
As mentioned earlier, tPSK can determine the maximum  
parallel data transmission rate. Figure 16 is the timing  
diagram of a typical parallel data application with both  
the clock and the data lines being sent through opto-  
couplers. The figure shows data and clock signals at the  
inputs and outputs of the optocouplers. To obtain the  
maximum data transmission rate, both edges of the  
clock signals are being used to clock the data; if only one  
edge were used, the clock signal would need to be twice  
as fast.  
Switching performance of the HCPL-2400/30 optocou- the output of the optocoupler, but will not necessarily  
plers is not sensitive to the TTL logic family used in the result in lower pulse-width distortion or propagation de-  
recommended drive circuit. The typical and worst-case lay skew. This reduction in overall propagation delay is  
switching parameters given in the data sheet can be due to shorter delays in the drive circuit, not to changes  
met using common 74LS TTL inverting gates or buffers.  
Use of faster TTL families will slightly reduce the overall  
propagation delays from the input of the drive circuit to  
in the propagation delays of the optocoupler; optocou-  
pler propagation delays are not affected by the speed of  
the logic used in the drive circuit.  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0563EN  
AV02-0962EN - January 4, 2008  

HCPL-2400#300 替代型号

型号 制造商 描述 替代类型 文档
HCPL-2400#500 AVAGO 1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 40Mbps, DIP-8 类似代替

HCPL-2400#300 相关器件

型号 制造商 描述 价格 文档
HCPL-2400#500 AVAGO 1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 40Mbps, DIP-8 获取价格
HCPL-2400-000E AVAGO 20 MBd High CMR Logic Gate Optocouplers 获取价格
HCPL-2400-060E AVAGO 20 MBd High CMR Logic Gate Optocouplers 获取价格
HCPL-2400-300E AVAGO 20 MBd High CMR Logic Gate Optocouplers 获取价格
HCPL-2400-360E AVAGO 20 MBd High CMR Logic Gate Optocouplers 获取价格
HCPL-2400-500 AVAGO 暂无描述 获取价格
HCPL-2400-500E AVAGO 20 MBd High CMR Logic Gate Optocouplers 获取价格
HCPL-2411 AVAGO 1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 40Mbps 获取价格
HCPL-2411-000E AVAGO 1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 40Mbps 获取价格
HCPL-2411-300E AVAGO 20 m baud high cmr logic gate optocoupler 获取价格

HCPL-2400#300 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6