HCPL-3100-300E

更新时间:2024-09-18 12:57:20
品牌:AVAGO
描述:Power MOSFET/IGBT Gate Drive Optocouplers

HCPL-3100-300E 概述

Power MOSFET/IGBT Gate Drive Optocouplers 功率MOSFET / IGBT栅极驱动光电耦合器 光耦合器

HCPL-3100-300E 规格参数

是否无铅: 不含铅是否Rohs认证: 符合
生命周期:Obsolete包装说明:ROHS COMPLIANT, SURFACE MOUNT, DIP-8
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8541.40.80.00风险等级:5.33
Is Samacsys:N其他特性:UL RECOGNIZED
配置:COMPLEX最大正向电流:0.02 A
最大绝缘电压:5000 VJESD-609代码:e3
元件数量:1最大通态电流:0.1 A
最高工作温度:70 °C最低工作温度:-40 °C
光电设备类型:LOGIC IC OUTPUT OPTOCOUPLER最小供电电压:15 V
端子面层:Matte Tin (Sn)Base Number Matches:1

HCPL-3100-300E 数据手册

通过下载HCPL-3100-300E数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
HCPL-3100,HCPL-3101  
Power MOSFET/IGBT Gate Drive Optocouplers  
DataSheet  
Description  
Features  
The HCPL-3100/3101 consists of an LED* optically  
coupled to an integrated circuit with a power output  
stage. These optocouplers are suited for driving  
power MOSFETs and IGBTs used in motor control  
inverter applications.Thehigh operating voltage range  
of the output stage providesthe voltage drivesrequired  
by gate controlled devices. The voltage and current  
supplied by these optocouplers allow for direct  
interfacing to the power device without the need for an  
intermediate amplifier stage.  
High output current IO1 and IO2  
(0.6 A Peak, 0.1 A continuous)  
• 15 kV/ µs minimum Common Mode Rejection (CMR) at  
VCM = 1500 V  
• Wide operating V range (15 to 30 volts)  
CC  
High speed  
– 1 µs typical propagation delay (HCPL-3100)  
– 0.3 µs typical propagation delay (HCPL-3101)  
Recognized under UL 1577 for dielectric withstand proof  
test voltages of 5000 vac, 1 minute  
The HCPL-3100 switches a 3000 pF load in 2 µs and  
the HCPL-3101, using a higher speed LED, switches a  
3000 pF load in 0.5 µs. With a CMR rating of 15 kV/µs  
Applications  
typical these opto-couplers readily reject transients • Isolated MOSFET/ IGBT gate drive  
found in inverter applications.  
AC and DC motor drives  
General purpose industrial inverters  
The LED controls the state of the output stage.  
TransistorQ2intheoutputstageisonwiththeLEDoff,  
Uninterruptable power supply  
allowing the gate of the power device to be held low.  
Turning on the LED turns off transistor Q2 and  
switches on transistor Q1 in the output stage which  
Functional Diagram  
provides current and voltage to drive the gate of the  
HCPL-3100  
HCPL-3101  
power device.  
ANODE  
1
8
V
1
8
V
CC  
CC  
ANODE  
CATHODE  
2
3
7
6
GND  
2
3
7
6
GND  
Q2  
Q1  
Q2  
Q1  
V
V
CATHODE  
O2  
O2  
4
5
V
O1  
4
5
V
O1  
TRUTH TABLE  
LED  
ON  
OUTPUT  
Q1  
Q2  
HIGH LEVEL  
LOW LEVEL  
ON  
OFF  
ON  
OFF  
OFF  
THE USE OF A 0.1 µF BYPASS CAPACITOR CONNECTED BETWEEN PINS 8 AND 7  
IS RECOMMENDED. ALSO CURRENT LIMITING RESISTOR IS RECOMMENDED  
(SEE FIGURE 1, AND NOTE 2 AND NOTE 7).  
*HCPL-3100 LED contains Silicon-doped GaAs and HCPL-3101  
LED contains AlGaAs.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
Schematic  
HCPL-3100  
HCPL-3101  
I
I
I
I
CC  
CC  
V
V
CC  
CC  
8
7
8
7
GND  
GND  
1
Q2  
Q1  
2
Q2  
Q1  
I
I
F
F
ANODE  
ANODE  
+
+
O2  
O2  
V
V
O2  
O2  
6
5
6
5
2
3
CATHODE  
CATHODE  
I
I
O1  
O1  
V
V
O1  
O1  
THE USE OF A 0.1 µF BYPASS CAPACITOR CONNECTED BETWEEN PINS 8 AND 7  
IS RECOMMENDED. ALSO CURRENT LIMITING RESISTOR IS RECOMMENDED  
(SEE FIGURE 1, AND NOTE 2 AND NOTE 7).  
Ordering Information  
HCPL-3100 and HCPL-3101 are UL Recognized with 5000 Vrms for 1 minute per UL1577.  
Option  
Part  
Number  
Surface  
Mount  
Gull  
Wing  
Tape  
& Reel  
RoHS Compliant  
-000E  
Package  
Quantity  
HCPL-3100  
HCPL-3101  
300 mil DIP-8  
50 per tube  
50 per tube  
1000 per reel  
-300E  
X
X
X
X
-500E  
X
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
HCPL-3100-500E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging and  
RoHS compliant.  
Example 2:  
HCPL-3101-000E to order product of 300 mil DIP package in Tube packaging and RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since July 15, 2001 and  
RoHS compliant will use ‘–XXXE.’  
2
Outline Drawing  
0.65 (0.026)  
1.05 (0.040)  
0.90 (0.035)  
1.50 (0.059)  
0°  
13°  
8
7
6
5
TYPE  
NUMBER  
0.16 (0.006)  
0.36 (0.014)  
A XXXX  
DATE  
CODE  
6.00 (0.236)  
7.00 (0.276)  
7.32 (0.288)  
7.92 (0.312)  
YYWW  
0°  
13°  
1
2
3
4
HCPL-3100  
HCPL-3101  
ANODE  
1
8
V
1
8
V
CC  
CC  
9.16 (0.361)  
10.16 (0.400)  
ANODE  
CATHODE  
2
3
7
6
GND  
2
3
7
6
GND  
0.50  
(0.020)  
TYP.  
Q2  
Q1  
Q2  
Q1  
3.00 (0.118)  
4.00 (0.157)  
V
V
CATHODE  
O2  
O2  
4
5
V
O1  
4
5
V
O1  
2.90 (0.114)  
3.90 (0.154)  
2.55 (0.100)  
3.55 (0.140)  
0.40 (0.016)  
0.60 (0.024)  
2.29 (0.090)  
2.79 (0.110)  
3
Demonstrated ESD  
Performance  
Regulatory Information  
The HCPL-3100/3101 has been  
approved by the following  
organization:  
Human Body Model: MIL-STD-  
883 Method 3015.7: Class 2  
Machine Model: EIAJ IC-121-  
1988 (1988.3.28 Version 2),  
Test Method 20, Condition  
C: 1200 V  
UL  
Recognized under UL 1577,  
Component Recognition  
Program, File E55361.  
Insulation and Safety Related Specifications  
Parameter  
Symbol Value Units  
Conditions  
Min. External Air Gap  
(External Clearance)  
L(IO1)  
6.0  
mm  
Shortest distance measured through air, between two  
conductive leads, input to output  
Min. External Tracking  
Path (External  
L(IO2)  
6.0  
mm  
Shortest distance path measured along outside surface  
of optocoupler body between input and output leads  
Creepage)  
Min. Internal Plastic  
Gap (Internal  
0.15  
mm  
Through insulation distance conductor to conductor  
inside the optocoupler cavity  
Clearance)  
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Operating Temperature  
Symbol  
Device  
Min.  
Max. Unit  
Conditions  
Fig.  
Note  
TS  
-55  
125  
°C  
°C  
T
HCPL-3100  
HCPL-3101  
-40  
-40  
100  
85  
A
Input  
Continuous  
Current  
IF  
HCPL-3100  
HCPL-3101  
25  
20  
mA  
mA  
V
11  
11  
1
1
Reverse  
Voltage  
V
HCPL-3100  
HCPL-3101  
6
5
T = 25°C  
R
A
Supply VoltageV  
35  
V
CC  
Output 1  
Continuous  
Current  
IO1  
0.1  
A
A
1
1
Peak Current  
0.6  
Pulse Width < 0.15 µs,  
Duty cycle = 1%  
Voltage  
V
35  
V
A
O1  
Output 2  
Continuous  
Current  
IO2  
0.1  
1
1
Peak Current  
0.6  
A
Pulse Width < 0.15 µs,  
Duty cycle = 1%  
Output Power Dissipation  
Total Power Dissipation  
Lead Solder Temperature  
PO  
PT  
500  
550  
mW  
mW  
12  
12  
1
1
270°C for 10 s, 1.0 mm below seating plane  
4
Recommended Operating Conditions  
Parameter  
Symbol  
Device  
Min.  
Max.  
Units  
Power Supply Voltage  
V
15  
30  
V
CC  
Input Current (ON)  
IF  
HCPL-3100  
HCPL-3101  
14  
15  
20  
20  
70  
mA  
mA  
°C  
Operating Temperature  
T
-40  
A
recommended circuit design  
showing a current limiting  
Recommended Protection for  
Output Transistors  
During switching transitions, the  
output transistors Q1 and Q2 of  
the HCPL-3100/3101 can  
resistor R2 which is necessary in  
order to prevent damage to the  
output transistors Q1 and Q2.  
(See Note 7.) A bypass capacitor  
C1 is also recommended to  
conduct large amounts of  
current. Figure 1 describes a  
reduce power supply noise.  
HCPL-3100/ 1  
+5 V  
8
C
R
1
3
7
6
5
ANODE  
12 V  
Q2  
Q1  
+ HVDC  
IGBT  
(OR )t  
(MOSFET)  
CONTROL  
TTL  
OR  
LSTTL  
R
2
CATHODE  
INPUT  
3-PHASE  
AC  
TOTEM  
POLE  
12 V  
OUTPUT  
GATE  
- HVDC  
R
= 25 - 100  
= 180 (HCPL-3100)  
240 (HCPL-3101)  
2
R
3
BYPASS CAPACITOR C = 0.1 µF  
1
Figure 1. Recommended output transistor protection and typical application circuit.  
5
Electrical Specifications  
Over recommended temperature (T = -40°C to +100°C, HCPL-3100; T = -40°C to +85°C, HCPL-3101) unless otherwise specified.  
A
A
Parameter  
Sym.  
Device  
Min.  
Typ.  
Max. Units  
Test Conditions  
Fig.  
Note  
Input Forward  
V
HCPL-3100  
-
1.2  
1.4  
V
IF = 20 mA  
T = 25°C  
13  
F
A
Voltage  
0.6  
-
0.9  
1.6  
1.5  
-
-
1.75  
-
V
V
IF = 0.2 mA  
IF = 10 mA  
IF = 0.2 mA  
HCPL-3101  
HCPL-3100  
14  
1.2  
-
V
Input Reverse  
Current  
IR  
10  
µA  
V = 4 V  
T = 25°C  
R
A
HCPL-3101  
HCPL-3100  
HCPL-3101  
HCPL-3100  
V = 5 V  
F
Input Capacitance  
C
-
-
-
30  
60  
250  
150  
0.4  
pF  
pF  
V
V = 0 V, f = 1 kHz, T = 25°C  
F A  
IN  
V = 0 V, f = 1 MHz, T = 25°C  
F
A
Output 1  
Output 2  
Low  
Level  
Voltage  
V
0.2  
IF = 10 mA  
V
CC1 = 12 V,  
IO1 = 0.1 A,  
VCC2 = -12 V  
2, 17,  
18  
2
2
O1L  
HCPL-3101  
IF = 5 mA  
Leakage  
Current  
IO1L  
-
-
500  
-
µA  
V = V = 35 V, V = 0 V  
5
CC  
O1  
O2  
IF = 0 mA, T = 25°C  
A
High  
V
HCPL-3100  
HCPL-3101  
20  
22  
V
IF = 10 mA  
IF = 5 mA  
V = 24 V,  
V = 24 V,  
IO2 = -0.1 A  
3, 19,  
20  
O2H  
CC  
Level  
Voltage  
O1  
Low  
Level  
Voltage  
V
-
-
0.5  
-
0.8  
V
V = V = 24 V, IO2 = 0.1 A,  
IF = 0 mA  
4, 21,  
22  
O2L  
CC  
O1  
Leakage  
Current  
IO2L  
HCPL-3100  
500  
µA  
IF = 10 mA  
IF = 5 mA  
V = 35 V,  
6
CC  
V = 35 V,  
O2  
HCPL-3101  
HCPL-3100  
T = 25°C  
A
Supply  
Current  
High  
Level  
ICCH  
-
-
1.3  
1.3  
1.3  
4.0  
3.0  
3.0  
3.0  
7.0  
mA  
mA  
mA  
mA  
V = 24 V  
7, 23  
2
O1  
V = 24 V, IF = 10 mA  
CC  
HCPL-3101  
V = 24 V  
O1  
V = 24 V, IF = 5 mA  
CC  
Low  
Level  
ICCL  
IFLH  
-
V = 24 V  
7, 24  
O1  
V = 24 V, IF = 0 mA  
CC  
Low to High  
HCPL-3100  
HCPL-3101  
1.0  
T = 25°C  
8, 15,  
16  
2, 3  
A
Threshold Input  
0.6  
0.3  
0.2  
-
1.5  
-
10.0  
3.0  
mA  
mA  
mA  
V = V = 24 V  
CC  
O1  
T = 25°C  
A
5.0  
V = V = 24 V  
CC  
O1  
6
Switching Specifications (T = 25°C)  
A
Parameter  
Sym.  
tPLH  
Device  
Min. Typ.  
Max. Units  
Test Conditions  
Fig.  
Note  
Propagation  
HCPL-3100  
-
-
1
2
µs  
µs  
IF = 10 mA  
V = 24 V,  
9,  
2, 6  
CC  
Delay Time to  
High Output  
Level  
V = 24 V,  
25,  
26,  
27  
O1  
HCPL-3101  
0.3  
0.5  
IF = 5 mA  
RG = 47 ,  
CG = 3000 pF  
Propagation  
Delay Time to  
Low Output  
Level  
tPHL  
HCPL-3100  
HCPL-3101  
-
-
1
2
µs  
µs  
IF = 10 mA  
IF = 5 mA  
0.3  
0.5  
Rise Time  
tr  
HCPL-3100  
HCPL-3101  
HCPL-3100  
HCPL-3101  
HCPL-3100  
-
-
0.2  
0.2  
0.5  
0.5  
-
µs  
µs  
IF = 10 mA  
IF = 5 mA  
IF = 10 mA  
IF = 5 mA  
Fall Time  
tf  
Output High  
Level Common  
Mode Transient  
Immunity  
| CMH|  
15  
kV/ µs IF = 10 mA  
VCM = 1500 V  
10  
2
(peak),  
HCPL-3101  
IF = 5mA  
V = 24 V  
CC  
V = 24 V  
O1  
V02H = V  
02L  
Output Low  
| CML|  
15  
-
kV/ µs IF = 0 mA  
= 2.0 V  
Level Common  
Mode Transient  
Immunity  
Packaging Characteristics  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Fig.  
Note  
Input-Output Momentary  
Withstand Voltage*  
V
5000  
V rms  
RH = 40% to 60%  
4, 5  
ISO  
t = 1 min, T = 25°C  
A
Resistance (Input-Output)  
R
5x1010  
1011  
1.2  
V
I-O = 500 V, T = 25°C  
4
4
I-O  
A
RH = 40% to 60%  
Capacitance (Input-Output)  
C
pF  
f = 1 MHz  
I-O  
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage  
rating. For the continuous voltage rating refer to the IEC/ EN/ DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level  
safety specification, or Avago Application Note 1074, “Optocoupler Input-Output Endurance Voltage.”  
Notes:  
1. Derate absolute maximum ratings with ambient temperatures as shown in Figures 11 and 12.  
2. A bypass capacitor of 0.01 µF or more is needed near the device between VCC and GND when measuring output and transfer  
characteristics.  
3. IFLH represents the forward current when the output goes from low to high.  
4. Device considered a two terminal device; pins 1-4 are shorted together and pins 5-8 are shorted together.  
5. For devices with minimum VISO specified at 5000 V rms, in accordance with UL 1577, each optocoupler is proof-tested by  
applying an insulation test voltage 6000 V rms for one second (leakage current detection limit, II-O 200 µA).  
6. The tPLH and tPHL propagation delays are measured from the 50% level of the input pulse to the 50% level of the output pulse.  
7. R2 limits the Q1 and Q2 peak currents. For more applications and circuit design information see Application Note “Power  
Transistor Gate/Base Drive Optocouplers.”  
7
HCPL-3100  
HCPL-3100  
V
V
CC  
V
CC  
CC  
1
8
7
1
2
3
4
8
7
+
I
I
F
F
-
V
CC1  
GND  
Q2  
GND  
Q2  
+
2
3
I
O2  
-
+
V
V
CC2  
O2H  
+
-
6
6
V
V
O2  
I
O2  
O1  
Q1  
Q1  
V
O1L  
+
4
5
5
V
V
O1  
O1  
Figure 2. Test circuit for low level output voltage V  
.
Figure 3. Test circuit for high level output voltage V  
.
O1L  
O2H  
HCPL-3100  
HCPL-3100  
V
V
CC  
CC  
1
2
3
4
8
7
1
8
7
+
-
+
I
V
CC  
I
F
F
-
V
CC  
GND  
Q2  
GND  
Q2  
2
3
V
O2L  
+
I
O2  
6
6
V
V
O2  
O2  
Q1  
Q1  
I
O1L  
5
4
5
V
O1  
V
O1  
Figure 4. Test circuit for low level output voltage V  
.
Figure 5. Test circuit for leakage current IO1L.  
O2L  
HCPL-3100  
HCPL-3100  
I
CC  
V
V
CC  
CC  
1
2
3
4
8
7
1
2
3
4
8
7
+
-
I
+
I
F
F
-
V
CC  
GND  
Q2  
V
CC  
GND  
Q2  
I
O2L  
6
6
V
V
O2  
O2  
Q1  
Q1  
5
5
V
O1  
V
O1  
Figure 6. Test circuit for leakage current IO2L  
.
Figure 7. Test circuit for ICCH and ICCL.  
HCPL-3100  
I
V
F
CC  
1
2
3
4
8
7
SWEEP  
+
V
CC  
-
GND  
Q2  
V
O2  
+
6
V
O2  
Q1  
5
V
O1  
Figure 8. Test circuit for threshold input current IFLH  
.
8
HCPL-3100  
HCPL-3100  
I
V
I
V
CC  
F
CC  
F
1
2
3
4
8
7
6
1
2
3
4
8
7
6
+
+
V
V
CC  
t
= t = 0.01 µs  
f
PULSE WIDTH 5 µs  
DUTY RATIO 50%  
r
CC  
-
-
V
GND  
Q2  
GND  
Q2  
IN  
SW  
V
V
C
G
O2  
+
O2  
+
A
B
R
G
V
O2  
V
O2  
Q1  
Q1  
5
5
V
V
O1  
O1  
+
V
CM  
V
CM  
50%  
V
IN  
WAVE FORM  
V
CM  
t
t
PLH  
PLH  
GND  
90%  
CM , V  
O2  
H
V
O2H  
50%  
10%  
SW AT A, I = 10 mA, HCPL-3100  
F
SW AT A, I = 5 mA, HCPL-3101  
F
V
OUT  
WAVE FORM  
V  
O2H  
t
t
r
f
V  
O2L  
CM , V  
V
L
O2  
O2L  
GND  
SW AT B, I = 0 mA  
F
Figure 9. Test circuit for tPLH, tPHL, tr, and tf.  
Figure 10. Test circuit for CMH and CML.  
60  
60  
50  
40  
30  
20  
600  
500  
400  
300  
200  
50  
40  
30  
20  
P
tot  
P
O
10  
0
10  
0
100  
0
-40 -25  
0
25  
50  
75 85 100 125  
-40 -25  
0
25  
50  
75  
100 125  
-40 -25  
0
25  
50  
75  
100 125  
AMBIENT TEMPERATURE T (°C)  
AMBIENT TEMPERATURE T (°C)  
AMBIENT TEMPERATURE T (°C)  
A
A
A
Figure 11. LED forward current vs. ambient  
temperature, HCPL-3100.  
Figure 12. LED forward current vs. ambient  
temperature, HCPL-3101.  
Figure 13. Maximum power dissipation  
vs. ambient temperature, HCPL-3100.  
9
600  
500  
400  
300  
200  
100  
10  
1
100  
10  
1
P
tot  
25°C  
P
0°C  
O
T
= 100°C  
85°C  
A
T
= 85°C  
A
-20°C  
-40°C  
0°C  
50°C  
-40°C  
100  
0
50°C  
25°C  
0.1  
0.1  
1.0  
-40 -25  
0
25  
50  
75 85 100 125  
0.50 0.75 1.00 1.25 1.50 1.75 2.00  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
AMBIENT TEMPERATURE T (°C)  
FORWARD VOLTAGE V (V)  
F
FORWARD VOLTAGE V (V)  
A
F
Figure 14. Maximum power dissipation  
vs. ambient temperature, HCPL-3101.  
Figure 15. Typical forward current vs. forward  
voltage, HCPL-3100.  
Figure 16. Typical forward current vs. forward  
voltage, HCPL-3101.  
160  
120  
120  
V
= 24 V  
T
= 25°C  
T
= 25°C  
CC  
A
A
140  
120  
100  
110  
100  
90  
110  
100  
90  
VALUE OF V = 24 V  
CC  
ASSUME 100  
I
= 100% at T = 25°C  
A
FLH  
I
= 100% at V = 24 V  
CC  
FLH  
80  
60  
80  
70  
80  
70  
-40 -20  
0
20  
40  
60  
80 100  
15  
18  
21  
24  
27  
30  
15  
18  
21  
24  
27  
30  
AMBIENT TEMPERATURE T (°C)  
SUPPLY VOLTAGE V (V)  
CC  
SUPPLY VOLTAGE V (V)  
CC  
A
Figure 17. Normalized low to high threshold  
input current vs. supply voltage, HCPL-3100.  
Figure 18. Normalized low to high threshold  
input current vs. supply voltage, HCPL-3101.  
Figure 19. Normalized low to high threshold  
input current vs. ambient temperature,  
HCPL-3100.  
120  
3
3
T
= 25°C  
= 12 V  
= -12 V  
T
= 25°C  
= 12 V  
= -12 V  
A
A
V
= 24 V  
CC  
V
V
CC1  
CC1  
110  
100  
90  
V
V
CC2  
I = 5 mA  
CC2  
I = 10 mA  
F
F
2
1
0
2
1
0
I
= 100% at T = 25°C  
A
FLH  
80  
70  
60  
-40 -20  
0
20  
40  
60  
80 100  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
AMBIENT TEMPERATURE T (°C)  
O OUTPUT CURRENT I (A)  
O OUTPUT CURRENT I (A)  
A
1
O1  
1
O1  
Figure 20. Normalized low to high threshold  
input current vs. ambient temperature,  
HCPL-3101.  
Figure 21. Typical low level output 1 voltage  
vs. output 1 current, HCPL-3100.  
Figure 22. Typical low level output 1 voltage  
vs. output 1 current, HCPL-3101.  
10  
0.30  
0.25  
0.20  
0.15  
0.30  
0.25  
0.20  
0.15  
30  
27  
24  
21  
V
= 12 V  
= -12 V  
= 10 mA  
= 0.1 A  
V
= 12 V  
= -12 V  
CC1  
CC1  
V
V
T = 25°C  
A
F
CC2  
F
O2  
CC2  
I
I
I = 5 mA  
I = 10 mA  
F
I
= 0.1 A  
O2  
0.10  
0.05  
0
0.10  
0.05  
0
18  
15  
12  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
15  
18  
21  
24  
27  
30  
AMBIENT TEMPERATURE T (°C)  
AMBIENT TEMPERATURE T (°C)  
SUPPLY VOLTAGE V (V)  
CC  
A
A
Figure 23. Typical low level output 1 voltage  
vs. ambient temperature, HCPL-3100.  
Figure 24. Typical low level output 1 voltage  
vs. ambient temperature, HCPL-3101.  
Figure 25. Typical high level output 2 voltage  
vs. supply voltage, HCPL-3100.  
24  
30  
24  
T
= 25°C  
= 5 mA  
A
27  
24  
21  
I
NEARLY = 0 A  
I
= NEARLY 0 A  
O2  
O2  
I
F
23  
22  
23  
22  
I
= -0.1 A  
I
= -0.1 A  
O2  
O2  
18  
15  
12  
21  
20  
21  
20  
V
= 24 V  
= 10 mA  
V
= 24 V  
= 5 mA  
CC  
CC  
I
I
F
F
-40 -20  
0
20  
40  
60  
80 100  
15  
18  
21  
24  
27  
30  
-40 -20  
0
20  
40  
60  
80 100  
AMBIENT TEMPERATURE T (°C)  
SUPPLY VOLTAGE V (V)  
CC  
AMBIENT TEMPERATURE T (°C)  
A
A
Figure 26. Typical high level output 2 voltage  
vs. supply voltage, HCPL-3101.  
Figure 27. Typical high level output 2 voltage  
vs. ambient temperature, HCPL-3100.  
Figure 28. Typical high level output 2 voltage  
vs. ambient temperature, HCPL-3101.  
3
3
0.8  
V
= 24 V  
= 0 mA  
= 0.1 A  
T
= 25°C  
T
= 25°C  
CC  
A
A
I
V
= V = 24 V  
V
= V = 24 V  
0.7  
0.6  
0.5  
F
CC  
F
O1  
CC  
F
O1  
I
I
= 0 mA  
I
= 0 mA  
O2  
2
1
0
2
1
0
0.4  
0.3  
0.2  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
-40 -20  
0
20  
40  
60  
80 100  
O OUTPUT CURRENT I (A)  
O OUTPUT CURRENT I (A)  
AMBIENT TEMPERATURE T (°C)  
2
O2  
2
O2  
A
Figure 31. Typical low level output 2 voltage  
vs. ambient temperature, HCPL-3100.  
Figure 29. Typical low level output 2 voltage  
vs. output 2 current, HCPL-3100.  
Figure 30. Typical low level output 2 voltage  
vs. output 2 current, HCPL-3101.  
11  
0.8  
0.7  
0.6  
0.5  
3.0  
2.5  
2.0  
1.5  
3.0  
2.5  
2.0  
1.5  
V
= 24 V  
= 0 mA  
= 0.1 A  
CC  
T
= 25°C  
= 10 mA  
T
= 25°C  
= 5 mA  
A
A
I
F
I
I
F
F
I
O2  
0.4  
0.3  
0.2  
1.0  
0.5  
0
1.0  
0.5  
0
-40 -20  
0
20  
40  
60  
80 100  
15  
18  
21  
24  
27  
30  
15  
18  
21  
24  
27  
30  
AMBIENT TEMPERATURE T (°C)  
SUPPLY VOLTAGE V (V)  
CC  
SUPPLY VOLTAGE V (V)  
CC  
A
Figure 32. Typical low level output 2 voltage  
vs. ambient temperature, HCPL-3101.  
Figure 33. Typical high level supply current  
vs. supply voltage, HCPL-3100.  
Figure 34. Typical high level supply current  
vs. supply voltage, HCPL-3101.  
3.0  
3.0  
3.0  
T
= 25°C  
= 0 mA  
T
= 25°C  
= 0 mA  
V
= 24 V  
= 10 mA  
A
A
CC  
2.5  
2.0  
1.5  
2.5  
2.0  
1.5  
2.5  
2.0  
1.5  
I
I
I
F
F
F
1.0  
0.5  
0
1.0  
0.5  
0
1.0  
0.5  
0
15  
18  
21  
24  
27  
30  
15  
18  
21  
24  
27  
30  
-40 -20  
0
20  
40  
60  
80 100  
SUPPLY VOLTAGE V (V)  
CC  
SUPPLY VOLTAGE V (V)  
CC  
AMBIENT TEMPERATURE T (°C)  
A
Figure 35. Typical low level supply current  
vs. supply voltage, HCPL-3100.  
Figure 36. Typical low level supply current  
vs. supply voltage, HCPL-3101.  
Figure 37. Typical high level supply current  
vs. ambient temperature, HCPL-3100.  
3.0  
3.0  
3.0  
V
= 24 V  
V
= 24 V  
V
= 24 V  
CC  
I = 0 mA  
CC  
I = 5 mA  
CC  
I = 0 mA  
2.5  
2.0  
1.5  
2.5  
2.0  
1.5  
2.5  
2.0  
1.5  
F
F
F
1.0  
0.5  
0
1.0  
0.5  
0
1.0  
0.5  
0
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
AMBIENT TEMPERATURE T (°C)  
AMBIENT TEMPERATURE T (°C)  
AMBIENT TEMPERATURE T (°C)  
A
A
A
Figure 39. Typical low level supply current  
vs. ambient temperature, HCPL-3100.  
Figure 40. Typical low level supply current  
vs. ambient temperature, HCPL-3101.  
Figure 38. Typical high level supply current  
vs. ambient temperature, HCPL-3101.  
12  
2.5  
2.0  
1.5  
2.5  
2.0  
1.5  
1.0  
0.8  
0.6  
t
t
t
t
PHL  
PLH  
PHL  
PLH  
V
= V = 24 V  
O1  
V
= V = 24 V  
= 47 W  
= 3000 pF  
= 10 mA  
V
= V = 24 V  
O1  
CC  
CC O1  
CC  
R
= 47 W  
R
R
= 47 W  
G
G
G
C
= 3000 pF  
C
C
= 3000 pF  
G
G
F
G
I
T
= 85°C 25°C -40°C  
T
= 85°C 25°C -40°C  
A
A
1.0  
0.5  
0
1.0  
0.5  
0
0.4  
0.2  
0
t
t
PHL  
PLH  
-40°C 25°C  
85°C  
85°C  
25°C -40°C  
15  
FORWARD CURRENT I (mA)  
0
5
10  
15  
20  
25  
-40 -20  
0
20  
40  
60  
80 100  
0
5
10  
20  
25  
FORWARD CURRENT I (mA)  
AMBIENT TEMPERATURE T (°C)  
A
F
F
Figure 41. Typical propagation delay time  
vs. forward current, HCPL-3100.  
Figure 42. Typical propagation delay time  
vs. forward current, HCPL-3101.  
Figure 43. Typical propagation delay time  
vs. ambient temperature, HCPL-3100.  
1.0  
V
= V = 24 V  
O1  
CC  
R
= 47 W  
G
0.8  
0.6  
C
= 3000 pF  
= 5 mA  
G
F
I
t
t
PLH  
PHL  
0.4  
0.2  
0
-40 -20  
0
20  
40  
60  
80 100  
AMBIENT TEMPERATURE T (°C)  
A
Figure 44. Typical propagation delay time  
vs. ambient temperature, HCPL-3101.  
13  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2939EN  
AV01-0573EN July 16, 2007  

HCPL-3100-300E 相关器件

型号 制造商 描述 价格 文档
HCPL-3100-500 AVAGO 1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, SURFACE MOUNT, DIP-8 获取价格
HCPL-3100-500E AVAGO Logic IC Output Optocoupler, 1-Element, 5000V Isolation, LEAD FREE, SURFACE MOUNT, DIP-8 获取价格
HCPL-3101 AGILENT Power MOSFET/IGBT Gate Drive Optocouplers 获取价格
HCPL-3101 HP Power MOSFET/IGBT Gate Drive Optocouplers 获取价格
HCPL-3101 AVAGO Power MOSFET/IGBT Gate Drive Optocouplers Uninterruptable power supply 获取价格
HCPL-3101-000 AVAGO Logic IC Output Optocoupler, 1-Element, 5000V Isolation, DIP-8 获取价格
HCPL-3101-000E AVAGO Power MOSFET/IGBT Gate Drive Optocouplers 获取价格
HCPL-3101-300 AVAGO 1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, SURFACE MOUNT, DIP-8 获取价格
HCPL-3101-300E AVAGO Logic IC Output Optocoupler, 1-Element, 5000V Isolation, LEAD FREE, SURFACE MOUNT, DIP-8 获取价格
HCPL-3101-500E AVAGO Logic IC Output Optocoupler, 1-Element, 5000V Isolation, LEAD FREE, SURFACE MOUNT, DIP-8 获取价格

HCPL-3100-300E 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6