HCPL-J454-500 [AVAGO]

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8;
HCPL-J454-500
型号: HCPL-J454-500
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8

输出元件
文件: 总19页 (文件大小:457K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-4504/J454/0454, HCNW4504  
High CMR, High Speed Optocouplers  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
ShortꢀpropagationꢀdelaysꢀforꢀTTLꢀandꢀIPMꢀapplications  
Theꢀ HCPL-4504ꢀ andꢀ HCPL-0454ꢀ containꢀ aꢀ GaAsPꢀ LEDꢀ  
whileꢀtheꢀHCPL-J454ꢀandꢀHCNW4504ꢀcontainꢀanꢀAlGaAsꢀ 15ꢀkV/µsꢀminimumꢀCommonꢀModeꢀTransientꢀimmu-  
LED.ꢀTheꢀLEDꢀisꢀopticallyꢀcoupledꢀtoꢀanꢀintegratedꢀhighꢀ  
gainꢀphotoꢀdetector.  
nityꢀatꢀVCMꢀ=ꢀ1500ꢀVꢀforꢀTTL/loadꢀdrive  
HighꢀCTRꢀatꢀTAꢀ=ꢀ25°Cꢀ  
ꢀꢀꢀꢀ>25%ꢀforꢀHCPL-4504/0454ꢀ  
ꢀꢀꢀꢀ>23%ꢀforꢀHCNW4504ꢀꢀ  
ꢀꢀꢀꢀ>19%ꢀforꢀHCPL-J454  
TheꢀHCPL-4504ꢀseriesꢀhasꢀshortꢀpropagationꢀdelaysꢀandꢀ  
highCTR.ꢀTheHCPL-4504seriesalsohasaguaranteedꢀ  
propagationꢀ delayꢀ differenceꢀ (tPLH-tPHL).Theseꢀ featuresꢀ  
makeꢀtheꢀHCPL-4504ꢀseriesꢀanꢀexcellentꢀsolutionꢀtoꢀIPMꢀ  
ElectricalꢀspecificationsꢀforꢀcommonꢀIPMꢀapplications  
inverterdeadtimeandotherswitchingproblems.Theꢀ TTLꢀcompatible  
CTR,ꢀpropagationꢀdelay,ꢀandꢀCMRꢀareꢀspecifiedꢀbothꢀforꢀ  
TTLꢀandꢀIPMꢀconditionsꢀwhichꢀareꢀprovidedꢀforꢀeaseꢀofꢀ  
application.ꢀTheseꢀsingleꢀchannel,ꢀdiode-transistorꢀopto-  
couplersꢀareꢀavailableꢀinꢀ8-PinꢀDIP,ꢀSO-8,ꢀandꢀWidebodyꢀ  
packageconfigurations.Aninsulatinglayerbetweenaꢀ  
LEDꢀandꢀanꢀintegratedꢀphotodetectorꢀprovideꢀelectricalꢀ  
insulationꢀbetweenꢀinputꢀandꢀoutput.ꢀSeparateꢀconnec-  
tionsꢀforꢀtheꢀphotodiodeꢀbiasꢀandꢀoutput-transistorꢀcol-  
lectorꢀincreaseꢀtheꢀspeedꢀupꢀtoꢀaꢀhundredꢀtimesꢀthatꢀofꢀ  
aꢀconventionalꢀphototransistorꢀcouplerꢀbyꢀreducingꢀtheꢀ  
baseꢀcollectorꢀcapacitance.  
Guaranteedꢀperformanceꢀfromꢀ0°Cꢀtoꢀ70°Cꢀ  
Openꢀcollectorꢀoutput  
Safetyꢀapproval:ꢀ  
ULꢀrecognized  
ꢀ –ꢀ3750ꢀVꢀrms/1min.ꢀforꢀHCPL-4504/0454/J454ꢀ  
–ꢀ5000ꢀVꢀrms/1min.ꢀforꢀHCPL-4504ꢀOptionꢀ020ꢀandꢀ  
HCNW4504  
ꢀ ꢀCSAꢀapprovedꢀꢀ  
IEC/EN/DINꢀENꢀ60747-5-2ꢀapproved  
ꢀ –ꢀVIORMꢀ=ꢀ560ꢀVpeakꢀforꢀHCPL-0454ꢀOptionꢀ060  
ꢀ –ꢀVIORMꢀ=ꢀ630ꢀVpeakꢀforꢀHCPL-4504ꢀOptionꢀ060  
ꢀ –ꢀVIORMꢀ=ꢀ891ꢀVpeakꢀforꢀHCPL-J454  
Functional Diagram  
ꢀ –ꢀVIORMꢀ=ꢀ1414ꢀVpeakꢀforꢀHCNW4504  
8
7
6
5
NC  
ANODE  
CATHODE  
NC  
1
2
3
4
V
CC  
Applications  
TRUTH TABLE  
NC  
ꢀꢀInverterꢀcircuitsꢀandꢀIntelligentꢀPowerꢀModuleꢀ(IPM)ꢀ  
interfacing:ꢀHighꢀCommonꢀModeꢀTransientꢀimmunityꢀ  
(>ꢀ10ꢀkV/µsꢀforꢀanꢀIPMꢀload/drive)ꢀandꢀ(tPLHꢀ-ꢀtPHL)ꢀ  
Specifiedꢀ(seeꢀPowerꢀInverterꢀDeadꢀTimeꢀsection)  
LED  
V
O
ON  
OFF  
LOW  
HIGH  
V
O
GND  
Lineꢀreceivers:ꢀShortꢀpropagationꢀdelaysꢀandꢀlowꢀin-  
put-outputꢀcapacitance  
Highꢀspeedꢀlogicꢀgroundꢀisolation:ꢀTTL/TTL,ꢀTTL/  
CMOS,ꢀTTL/LSTTL  
Aꢀ0.1ꢀµFꢀbypassꢀcapacitorꢀbetweenꢀpinsꢀ5ꢀandꢀ8ꢀisꢀrecommended.  
Schematic  
Replacesꢀpulseꢀtransformers:ꢀSaveꢀboardꢀspaceꢀandꢀ  
weight  
I
CC  
8
V
CC  
Analogꢀsignalꢀgroundꢀisolation:ꢀIntegratedꢀphotode-  
tectorꢀprovidesꢀimprovedꢀlinearityꢀoverꢀphototransis-  
tors  
I
F
+
2
ANODE  
V
F
I
O
6
5
3
V
O
CATHODE  
SHIELD  
GND  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Ordering Information  
HCPL-0454,ꢀHCPL-4504ꢀandꢀHCPL-J454ꢀareꢀULꢀRecognizedꢀwithꢀ3750ꢀVrmsꢀforꢀ1ꢀminuteꢀperꢀUL1577.  
HCNW4504ꢀisꢀULꢀRecognizedꢀwithꢀ5000ꢀVrmsꢀforꢀ1ꢀminuteꢀperꢀUL1577.ꢀHCPL-0454,ꢀHCPL-4504,ꢀHCPL-J454ꢀandꢀ  
HCNW4504ꢀareꢀapprovedꢀunderꢀCSAꢀComponentꢀAcceptanceꢀNoticeꢀ#5,ꢀFileꢀCAꢀ88324.  
UL 1577  
Option  
non RoHS  
Compliant Compliant  
5000 Vrms/  
1 Minute  
rating  
Part  
Number  
RoHS  
Surface  
Mount  
Gull  
Wing  
Tape  
& Reel  
IEC/EN/DIN  
EN 60747-5-2 Quantity  
Package  
-000E  
-300E  
-500E  
-020E  
-320E  
-520E  
-060E  
-360E  
-560E  
-000E  
-300E  
-400E  
-500E  
-600E  
-000E  
-500E  
-060E  
-560E  
-000E  
-300E  
-500E  
noꢀoption  
#300  
50ꢀperꢀtube  
X
X
X
X
50ꢀperꢀtube  
1000ꢀperꢀreel  
50ꢀperꢀtube  
50ꢀperꢀtube  
1000ꢀperꢀreel  
50ꢀperꢀtube  
50ꢀperꢀtube  
1000ꢀperꢀreel  
50ꢀperꢀtube  
50ꢀperꢀtube  
50ꢀperꢀtube  
1000ꢀperꢀreel  
750ꢀperꢀreel  
100ꢀperꢀtube  
1500ꢀperꢀreel  
100ꢀperꢀtube  
1500ꢀperꢀreel  
42ꢀperꢀtube  
42ꢀperꢀtube  
750ꢀperꢀreel  
#500  
X
X
X
#020  
X
X
X
300ꢀmilꢀ  
DIP-8  
HCPL-4504  
#320  
X
X
X
X
#520  
#060  
X
X
X
X
X
X
X
X
#360  
X
X
X
X
#560  
noꢀoption  
#300  
X
X
X
X
X
X
X
X
X
X
X
X
300ꢀmilꢀ  
DIP-8  
HCPL-J454  
NA  
#500  
X
X
NA  
noꢀoption  
#500  
X
X
HCPL-0454  
HCNW4504  
SO-8  
#060  
X
X
X
X
X
#560  
noꢀoption  
#300  
X
X
X
400ꢀmil  
Widebody  
DIP-8  
X
X
X
X
#500  
X
Toꢀorder,ꢀchooseꢀaꢀpartꢀnumberꢀfromꢀtheꢀpartꢀnumberꢀcolumnꢀandꢀcombineꢀwithꢀtheꢀdesiredꢀoptionꢀfromꢀtheꢀoptionꢀ  
columnꢀtoꢀformꢀanꢀorderꢀentry.ꢀ  
Exampleꢀ1:  
HCPL-4504-560Eꢀtoꢀorderꢀproductꢀofꢀ300ꢀmilꢀDIPꢀGullꢀWingꢀSurfaceꢀMountꢀpackageꢀinꢀTapeꢀandꢀReelꢀpackagingꢀ  
withꢀIEC/EN/DINꢀENꢀ60747-5-2ꢀSafetyꢀApprovalꢀandꢀRoHSꢀcompliant.  
Exampleꢀ2:  
HCPL-4504ꢀtoꢀorderꢀproductꢀofꢀ300ꢀmilꢀDIPꢀpackageꢀinꢀTubeꢀpackagingꢀandꢀnonꢀRoHSꢀcompliant.  
Optionꢀdatasheetsꢀareꢀavailable.ꢀContactꢀyourꢀAvagoꢀsalesꢀrepresentativeꢀorꢀauthorizedꢀdistributorꢀforꢀinformation.  
Remarks:ꢀTheꢀnotationꢀ‘#XXX’ꢀisꢀusedꢀforꢀexistingꢀproducts,ꢀwhileꢀ(new)ꢀproductsꢀlaunchedꢀsinceꢀJulyꢀ15,ꢀ2001ꢀandꢀ  
RoHSꢀcompliantꢀwillꢀuseꢀ‘–XXXE.’  
2
Package Outline Drawings  
HCPL-4504 Outline Drawing  
7.62 0.25  
(0.300 0.010ꢀ  
9.65 0.25  
(0.380 0.010ꢀ  
8
1
7
6
5
6.35 0.25  
(0.250 0.010ꢀ  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
2
3
4
RECOGNITION  
1.78 (0.070ꢀ MAX.  
1.19 (0.047ꢀ MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003ꢀ  
- 0.002ꢀ  
3.56 0.13  
(0.140 0.005ꢀ  
(0.010  
4.70 (0.185ꢀ MAX.  
0.51 (0.020ꢀ MIN.  
2.92 (0.115ꢀ MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHESꢀ.  
1.080 0.320  
(0.043 0.013ꢀ  
0.65 (0.025ꢀ MAX.  
* MARKING CODE LETTER FOR OPTION NUMBERS  
"L" = OPTION 020  
"V" = OPTION 060  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
2.54 0.25  
(0.100 0.010ꢀ  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 milsꢀ MAX.  
HCPL-4504 Gull Wing Surface Mount Option 300 Outline Drawing  
LAND PATTERN RECOMMENDATION  
1.016 (0.040ꢀ  
9.65 0.25  
(0.380 0.010ꢀ  
6
5
8
1
7
6.350 0.25  
(0.250 0.010ꢀ  
10.9 (0.430ꢀ  
2
3
4
2.0 (0.080ꢀ  
1.27 (0.050ꢀ  
9.65 0.25  
1.780  
(0.070ꢀ  
MAX.  
(0.380 0.010ꢀ  
1.19  
(0.047ꢀ  
MAX.  
7.62 0.25  
(0.300 0.010ꢀ  
+ 0.076  
0.254  
- 0.051  
3.56 0.13  
(0.140 0.005ꢀ  
+ 0.003ꢀ  
- 0.002ꢀ  
(0.010  
1.080 0.320  
(0.043 0.013ꢀ  
0.635 0.25  
(0.025 0.010ꢀ  
12° NOM.  
0.635 0.130  
(0.025 0.005ꢀ  
2.54  
(0.100ꢀ  
BSC  
DIMENSIONS IN MILLIMETERS (INCHESꢀ.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHESꢀ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 milsꢀ MAX.  
3
Package Outline Drawings  
HCPL-J454 Outline Drawing  
7.62 0.25  
(0.300 0.010ꢀ  
9.80 0.25  
(0.386 0.010ꢀ  
8
7
6
5
6.35 0.25  
(0.250 0.010ꢀ  
TYPE NUMBER  
DATE CODE  
A XXXX  
YYWW  
U R  
UL  
1
2
3
4
RECOGNITION  
1.78 (0.070ꢀ MAX.  
1.19 (0.047ꢀ MAX.  
+ 0.076  
- 0.051  
0.254  
5 TYP.  
+ 0.003ꢀ  
- 0.002ꢀ  
3.56 0.13  
(0.140 0.005ꢀ  
(0.010  
4.70 (0.185ꢀ MAX.  
0.51 (0.020ꢀ MIN.  
2.92 (0.115ꢀ MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHESꢀ.  
1.080 0.320  
(0.043 0.013ꢀ  
0.65 (0.025ꢀ MAX.  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
2.54 0.25  
(0.100 0.010ꢀ  
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 milsꢀ MAX.  
HCPL-J454 Gull Wing Surface Mount Option 300 Outline Drawing  
LAND PATTERN RECOMMENDATION  
1.016 (0.040ꢀ  
9.80 0.25  
(0.386 0.010ꢀ  
6
5
8
1
7
6.350 0.25  
(0.250 0.010ꢀ  
10.9 (0.430ꢀ  
2
3
4
2.0 (0.080ꢀ  
1.27 (0.050ꢀ  
9.65 0.25  
1.780  
(0.070ꢀ  
MAX.  
(0.380 0.010ꢀ  
1.19  
(0.047ꢀ  
MAX.  
7.62 0.25  
(0.300 0.010ꢀ  
+ 0.076  
0.254  
- 0.051  
3.56 0.13  
(0.140 0.005ꢀ  
+ 0.003ꢀ  
- 0.002ꢀ  
(0.010  
1.080 0.320  
(0.043 0.013ꢀ  
0.635 0.25  
(0.025 0.010ꢀ  
12° NOM.  
0.635 0.130  
(0.025 0.005ꢀ  
2.54  
(0.100ꢀ  
BSC  
DIMENSIONS IN MILLIMETERS (INCHESꢀ.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHESꢀ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 milsꢀ MAX.  
4
HCPL-J454-400E/600E Widelead Gullwing Surface Mount Outline Drawing  
LAND PATTERN RECOMMENDATION  
9.80 ±0.25  
0.386 ±0.010  
1.016  
0.040  
TYPE NUMBER  
12.9  
0.508  
A XXXX  
6.35 ±0.25  
0.250 ±0.010  
YYWW R U  
DATE CODE  
1.27  
0.050  
UL  
RECOGNITION  
2.0  
0.08  
[0.65] 0.025 MAX  
[11.75 0.25]  
0.460 0.010  
[1.19]  
0.047  
MAX.  
7.62 ±0.51  
0.300±0.020  
[0.20] 0.008  
[0.33] 0.013  
3.56 ±0.13  
0.140 ±0.005  
[0.152] 0.006  
[0.406] 0.016  
[1.080] 0.320  
0.043 0.013  
0.625 ±0.254  
0.025 ±0.010  
2.54  
0.100  
BSC  
30° NOM.  
LEAD COPLANARITY  
MAXIMUM: [0.102] 0.004  
DIMENSIONS IN [MILLIMETERS] INCHES  
OPTION NUMBERS 400 AND 600 NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 mils) MAX.  
HCPL-0454 Outline Drawing (8-Pin Small Outline Package)  
LAND PATTERN RECOMMENDATION  
8
1
7
2
6
5
4
5.994 ± 0.203  
(0.236 ± 0.008)  
XXX  
YWW  
3.937 ± 0.127  
(0.155 ± 0.005)  
7.49 (0.295ꢀ  
TYPE NUMBER  
(LAST 3 DIGITS)  
DATE CODE  
3
1.9 (0.075ꢀ  
PIN ONE  
0.406 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSC  
0.64 (0.025ꢀ  
0.432  
(0.017)  
*
7
5.080 ± 0.127  
(0.200 ± 0.005)  
45 X  
3.175 ± 0.127  
(0.125 ± 0.005)  
0 ~ 7  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.203 ± 0.102  
(0.008 ± 0.004)  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.207 ± 0.254 (0.205 ± 0.010)  
*
0.305  
(0.012)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.  
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.  
5
HCNW4504 Outline Drawing (8-Pin Widebody Package)  
11.00  
(0.433ꢀ  
11.15 0.15  
(0.442 0.006ꢀ  
MAX.  
9.00 0.15  
(0.354 0.006ꢀ  
7
6
5
8
TYPE NUMBER  
DATE CODE  
A
HCNWXXXX  
YYWW  
1
3
2
4
10.16 (0.400ꢀ  
TYP.  
1.55  
(0.061ꢀ  
MAX.  
7° TYP.  
+ 0.076  
- 0.0051  
0.254  
+ 0.003ꢀ  
- 0.002ꢀ  
(0.010  
5.10  
(0.201ꢀ  
MAX.  
3.10 (0.122ꢀ  
3.90 (0.154ꢀ  
0.51 (0.021ꢀ MIN.  
2.54 (0.100ꢀ  
TYP.  
1.78 0.15  
(0.070 0.006ꢀ  
0.40 (0.016ꢀ  
0.56 (0.022ꢀ  
DIMENSIONS IN MILLIMETERS (INCHESꢀ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 milsꢀ MAX.  
HCNW4504 Gull Wing Surface Mount Option 300 Outline Drawing  
11.15 0.15  
(0.442 0.006ꢀ  
LAND PATTERN RECOMMENDATION  
7
6
5
8
9.00 0.15  
(0.354 0.006ꢀ  
13.56  
(0.534ꢀ  
1
3
2
4
2.29  
(0.09ꢀ  
1.3  
(0.051ꢀ  
12.30 0.30  
1.55  
(0.061ꢀ  
MAX.  
(0.484 0.012ꢀ  
11.00  
MAX.  
(0.433ꢀ  
4.00  
MAX.  
(0.158ꢀ  
1.78 0.15  
(0.070 0.006ꢀ  
1.00 0.15  
(0.039 0.006ꢀ  
0.75 0.25  
(0.030 0.010ꢀ  
+ 0.076  
- 0.0051  
2.54  
(0.100ꢀ  
BSC  
0.254  
+ 0.003ꢀ  
- 0.002ꢀ  
(0.010  
DIMENSIONS IN MILLIMETERS (INCHESꢀ.  
7° NOM.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHESꢀ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 milsꢀ MAX.  
6
Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3 °C + 1 °C/–0.5 °C/SEC.  
REFLOW HEATING RATE 2.5 °C 0.5 °C/SEC.  
PEAK  
TEMP.  
245 °C  
PEAK  
TEMP.  
240 °C  
PEAK  
TEMP.  
230 °C  
200  
100  
0
2.5 C 0.5 °C/SEC.  
SOLDERING  
30  
TIME  
160 °C  
150 °C  
140 °C  
SEC.  
200 °C  
30  
SEC.  
3 °C + 1 °C/–0.5 °C  
PREHEATING TIME  
150 °C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
NOTE: NON-HALIDE FLUX SHOULD BE USED.  
Recommended Pb-Free IR Profile  
TIMEWITHIN 5 °C of ACTUAL  
PEAKTEMPERATURE  
tp  
15 SEC.  
* 260 +0/-5 °C  
RAMP-UP  
Tp  
217 °C  
TL  
RAMP-DOWN  
6 °C/SEC. MAX.  
3 °C/SEC. MAX.  
150 - 200 °C  
Tsmax  
Tsmin  
ts  
tL  
PREHEAT  
60 to 150 SEC.  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THETIME FROM 25 °C to PEAKTEMPERATURE = 8 MINUTES MAX.  
Tsmax = 200 °C, Tsmin = 150 °C  
NOTE: NON-HALIDE FLUX SHOULD BE USED.  
* RECOMMENDED PEAKTEMPERATURE FORWIDEBODY 400mils PACKAGE IS 245 °C  
7
Regulatory Information  
Theꢀdevicesꢀcontainedꢀinꢀthisꢀdataꢀsheetꢀhaveꢀbeenꢀapprovedꢀbyꢀtheꢀfollowingꢀagencies:  
Agency/Standard  
HCPL-4504  
HCPL-J454  
HCPL-0454  
HCNW4504  
UL1577  
3750ꢀVrmsꢀ/ꢀꢀ  
1ꢀminute,ꢀ  
Optionꢀ020ꢀ5000ꢀ  
Vrmsꢀ/ꢀ1ꢀminute  
3750ꢀVrmsꢀ/ꢀꢀ  
1ꢀminute  
3750ꢀVrmsꢀ/ꢀꢀ  
1ꢀminute  
5000ꢀVrmsꢀ/ꢀꢀ  
1ꢀminute  
Underwriters Laboratories (UL)  
RecognizedꢀunderꢀUL1577,ꢀꢀ  
ComponentꢀRecognitionꢀProgram,ꢀꢀ  
CategoryꢀFPQU2,ꢀFileꢀE55361  
Component 3750ꢀVrmsꢀ/ꢀꢀ  
3750ꢀVrmsꢀ/ꢀꢀ  
1ꢀminute  
3750ꢀVrmsꢀ/ꢀꢀ  
1ꢀminute  
5000ꢀVrmsꢀ/ꢀꢀ  
1ꢀminute  
Canadian Standards Association (CSA)  
FileꢀCA88324  
Acceptance  
Noticeꢀ#5  
1ꢀminute,ꢀ  
Optionꢀ020ꢀ5000ꢀ  
Vrmsꢀ/ꢀ1ꢀminute  
Optionꢀ060ꢀꢀꢀ  
VIORMꢀ=ꢀ630ꢀVpeak  
VIORMꢀ=ꢀ891ꢀ  
Vpeak  
Optionꢀ060ꢀꢀ  
VIORMꢀ=ꢀ560ꢀ  
Vpeak  
VIORMꢀ=ꢀ1414ꢀ  
Vpeak  
IEC/EN/DIN EN 60747-5-2  
Approvedꢀunder:  
IECꢀ60747-5-2:1997ꢀ+ꢀA1:2002  
ENꢀ60747-5-2:2001ꢀ+ꢀA1:2002  
DINꢀENꢀ60747-5-2ꢀ(VDEꢀ0884ꢀTeilꢀ2):2003-01  
Insulation and Safety Related Specifications  
Value  
HCPL-  
J454  
HCPL-J454  
All other  
HCPL-  
HCPL-  
0454  
HCNW  
Parameter  
Symbol  
4504 -400E/-600E options  
4504 Units Conditions  
MinimumꢀExternalꢀ  
AirꢀGapꢀ  
(ExternalꢀClearance)  
L(101)  
7.1  
8.0  
7.4  
8.0  
4.9  
9.6  
mm Measuredꢀfromꢀinputꢀter-  
minalsꢀtoꢀoutputꢀterminals,ꢀ  
shortestꢀdistanceꢀthroughꢀair.  
MinimumꢀExternalꢀ  
Trackingꢀ  
(ExternalꢀCreepage)  
L(102)  
7.4  
8.0  
4.8  
10.0  
mm Measuredꢀfromꢀinputꢀter-  
minalsꢀtoꢀoutputꢀterminals,ꢀ  
shortestꢀdistanceꢀpathꢀalongꢀ  
body.  
MinimumꢀInternalꢀ  
PlasticꢀGapꢀ  
(InternalꢀClearance)  
0.08  
0.5  
0.5  
0.08  
1.0  
mm Throughꢀinsulationꢀdistance,ꢀ  
conductorꢀtoꢀconductor,ꢀ  
usuallyꢀtheꢀdirectꢀdistanceꢀ  
betweenꢀtheꢀphotoemitterꢀ  
andꢀphotodetectorꢀinsideꢀtheꢀ  
optocouplerꢀcavity.  
MinimumꢀInternalꢀ  
Trackingꢀ(Internalꢀ  
Creepage)  
NA  
≥175  
IIIa  
NA  
≥175  
IIIa  
NA  
≥175  
IIIa  
NA  
≥175  
IIIa  
4.0  
mm Measuredꢀfromꢀinputꢀter-  
minalsꢀtoꢀoutputꢀꢀterminals,ꢀ  
alongꢀinternalꢀcavity.  
TrackingꢀResistanceꢀ CTI  
(Comparativeꢀ  
TrackingꢀIndex)  
≥200 Volts DINꢀIECꢀ112/VDEꢀ0303ꢀPartꢀ1  
IsolationꢀGroup  
IIIa  
MaterialꢀGroupꢀ(DINꢀVDEꢀ  
0110,ꢀ1/89,ꢀTableꢀ1)  
AllꢀAvagoꢀdataꢀsheetsꢀreportꢀtheꢀcreepageꢀandꢀclearanceꢀ creepage,theshortestdistancepathalongthesurfaceꢀ  
inherentꢀtoꢀtheꢀoptocouplerꢀcomponentꢀitself.ꢀTheseꢀdi-  
mensionsꢀareꢀneededꢀasꢀaꢀstartingꢀpointꢀforꢀtheꢀequip-  
ofaprintedcircuitboardbetweenthesolderlletsofꢀ  
theinputandoutputleadsmustbeconsidered.ꢀThereꢀ  
mentdesignerwhendeterminingthecircuitinsulationꢀ areꢀrecommendedꢀtechniquesꢀsuchꢀasꢀgroovesꢀandꢀribsꢀ  
requirements.  
whichꢀmayꢀbeꢀusedꢀonꢀaꢀprintedꢀcircuitꢀboardꢀtoꢀachieveꢀ  
desiredꢀ creepageꢀ andꢀ clearances.ꢀ Creepageꢀ andꢀ clear-  
anceꢀ distancesꢀ willꢀ alsoꢀ changeꢀ dependingꢀ onꢀ factorsꢀ  
suchꢀasꢀpollutionꢀdegreeꢀandꢀinsulationꢀlevel.  
However,ꢀonceꢀmountedꢀonꢀaꢀprintedꢀcircuitꢀboard,ꢀmini-  
mumꢀ creepageꢀ andꢀ clearanceꢀ requirementsꢀ mustꢀ beꢀ  
metꢀasꢀspecifiedꢀforꢀindividualꢀequipmentꢀstandards.ꢀForꢀ  
8
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics  
HCPL-0454  
OPTION 060  
HCPL-4504  
OPTION 060  
Description  
Symbol  
HCPL-J454  
HCNW4504  
Unit  
Installationꢀclassificationꢀper  
DINꢀVDEꢀ0110/1.89,ꢀTableꢀ1  
ꢀ forꢀratedꢀmainsꢀvoltageꢀ≤150ꢀVꢀrms  
ꢀ forꢀratedꢀmainsꢀvoltageꢀ≤300ꢀVꢀrms  
ꢀ forꢀratedꢀmainsꢀvoltageꢀ≤450ꢀVꢀrms  
ꢀ forꢀratedꢀmainsꢀvoltageꢀ≤600ꢀVꢀrms  
ꢀ forꢀratedꢀmainsꢀvoltageꢀ≤1000ꢀVꢀrms  
I-IV  
I-III  
I-IV  
I-IV  
I-III  
I-IV  
I-IV  
I-III  
I-III  
I-IV  
I-IV  
I-IV  
I-IV  
I-III  
ClimaticꢀClassification  
55/100/21  
55/100/21  
55/100/21  
55/85/21  
2
PollutionꢀDegreeꢀ(DINꢀVDEꢀ0110/1.89)  
MaximumꢀWorkingꢀInsulationꢀVoltage  
2
2
2
V
IORM  
560  
630  
891  
1414  
Vꢀpeak  
Vꢀpeak  
InputꢀtoꢀOutputꢀTestꢀVoltage,ꢀMethodꢀb*  
ꢀ VIORMꢀxꢀ1.875ꢀ=ꢀVPR,ꢀ100%ꢀProduction  
ꢀ Testꢀwithꢀtmꢀ=ꢀ1ꢀsec,  
VPR  
1050  
840  
1181  
945  
1670  
1336  
6000  
2652  
2121  
8000  
ꢀ PartialꢀDischargeꢀ<ꢀ5ꢀpC  
InputꢀtoꢀOutputꢀTestꢀVoltage,ꢀMethodꢀa*  
ꢀ VIORMꢀxꢀ1.5ꢀ=ꢀVPR,ꢀTypeꢀandꢀSample  
ꢀ Test,tmꢀ=ꢀ60ꢀsec,  
VPR  
Vꢀpeak  
ꢀ PartialꢀDischargeꢀ<ꢀ5ꢀpC  
HighestꢀAllowableꢀOvervoltage*  
(TransientꢀOvervoltage,ꢀtiniꢀ=ꢀ10ꢀsec)  
SafetyꢀLimitingꢀValuesꢀ-ꢀMaximum  
ValuesꢀAllowedꢀinꢀtheꢀEventꢀofꢀaꢀFailure,  
alsoꢀseeꢀꢀThermalꢀDeratingꢀcurve  
VIOTM  
4000  
6000  
Vꢀpeak  
ꢀ CaseꢀTemperature  
ꢀ InputꢀCurrent  
TS  
150  
150  
600  
≥109  
175  
230  
600  
≥109  
175  
400  
600  
≥109  
150  
400  
700  
≥109  
°C  
IS,INPUT  
PS,OUTPUT  
RS  
mA  
mW  
Ω
ꢀ OutputꢀPower  
InsulationꢀResistanceꢀatꢀTS,  
ꢀ V ꢀ=ꢀ500ꢀV  
IO  
*ReferꢀtoꢀtheꢀoptocouplerꢀsectionꢀofꢀtheꢀDesigner'sꢀCatalog,ꢀunderꢀregulatoryꢀinformationꢀ(IEC/EN/DINꢀENꢀ60747-5-2)ꢀforꢀaꢀdetailedꢀdescriptionꢀofꢀ  
MethodꢀaꢀandꢀMethodꢀbꢀpartialꢀdischargeꢀtestꢀprofiles.  
NOTE:ꢀTheseꢀoptocouplersꢀareꢀsuitableꢀforꢀ"safeꢀelectricalꢀisolation"ꢀonlyꢀwithinꢀtheꢀsafetyꢀlimitꢀdata.ꢀMaintenanceꢀofꢀtheꢀsafetyꢀdataꢀshallꢀbeꢀensuredꢀ  
byꢀmeansꢀofꢀprotectiveꢀcircuits.  
NOTE:ꢀInsulationꢀCharacteristicsꢀareꢀperꢀIEC/EN/DINꢀENꢀ60747-5-2.  
NOTE:ꢀSurfaceꢀmountꢀclassificationꢀisꢀClassꢀAꢀinꢀaccordanceꢀwithꢀCECCꢀ00802.  
9
Absolute Maximum Ratings  
Parameter  
Symbol  
TS  
Device  
Min.  
-55  
-55  
Max.  
125  
100  
Units  
°C  
Note  
StorageꢀTemperature  
OperatingꢀTemperature  
TA  
HCPL-4504  
HCPL-0454  
HCPL-J454  
°C  
HCNW4504  
-55  
85  
25  
50  
AverageꢀForwardꢀInputꢀCurrent  
PeakꢀForwardꢀInputꢀCurrent  
IF(AVG)  
mA  
mA  
1
2
IF(PEAK)  
HCPL-4504  
HCPL-0454  
(50%ꢀdutyꢀcycle,ꢀ1ꢀmsꢀpulseꢀwidth)  
HCPL-J454  
HCNW4504  
40  
1
PeakꢀTransientꢀInputꢀCurrent  
IF(TRANS)  
HCPL-4504  
HCPL-0454  
A
(≤1ꢀµsꢀpulseꢀwidth,ꢀ300ꢀpps)  
HCPL-J454  
HCNW4504  
0.1  
5
ReverseꢀLEDꢀInputꢀVoltageꢀ(Pinꢀ3-2)  
VR  
HCPL-4504  
HCPL-0454  
V
HCPL-J454  
HCNW4504  
3
InputꢀPowerꢀDissipation  
PIN  
HCPL-4504  
HCPL-0454  
45  
40  
mW  
3
HCPL-J454  
HCNW4504  
AverageꢀOutputꢀCurrentꢀ(Pinꢀ6)  
PeakꢀOutputꢀCurrent  
IO(AVG)  
IO(PEAK)  
VCC  
8
mA  
mA  
V
16  
30  
20  
100  
260  
SupplyꢀVoltageꢀ(Pinꢀ8-5)  
OutputꢀVoltageꢀ(Pinꢀ6-5)  
OutputꢀPowerꢀDissipation  
-0.5  
-0.5  
VO  
V
PO  
mW  
°C  
4
LeadꢀSolderꢀTemperature  
(Through-HoleꢀPartsꢀOnly)  
TLS  
HCPL-4504  
HCPL-J454  
1.6ꢀmmꢀbelowꢀseatingꢀplane,ꢀ10ꢀseconds  
ꢀ ꢀUpꢀtoꢀseatingꢀplane,ꢀ10ꢀseconds  
HCNW4504  
260  
ReflowꢀTemperatureꢀProfile  
TRP  
HCPL-0454,  
SeeꢀPackage Outline Drawingsꢀ  
Optionꢀ300ꢀ,  
Optionꢀ500,ꢀ  
Optionꢀ400E  
&ꢀOptionꢀ600E.  
section  
10  
Electrical Specifications (DC)  
Overꢀrecommendedꢀtemperatureꢀ(TAꢀ=ꢀ0°Cꢀtoꢀ70°C)ꢀunlessꢀotherwiseꢀspecified.ꢀSeeꢀnoteꢀ12.  
Parameter  
Symbol Device  
Min. Typ.*  
Max. Units  
Test Conditions  
Fig.  
Note  
Current  
Transfer  
Ratio  
CTR  
CTR  
VOL  
HCPL-4504  
HCPL-0454  
25  
21  
19  
13  
23  
19  
26  
22  
21  
16  
25  
21  
32  
34  
37  
39  
29  
31  
35  
37  
43  
45  
33  
35  
0.2  
60  
60  
%
%
V
TAꢀ=ꢀ25°C  
VOꢀ=ꢀ0.4ꢀV  
VOꢀ=ꢀ0.5ꢀV  
IFꢀ=ꢀ16ꢀmA,  
VCCꢀ=ꢀ4.5ꢀV  
1,ꢀ2,  
4
5
HCPL-J454  
TAꢀ=ꢀ25°C  
TAꢀ=ꢀ25°C  
TAꢀ=ꢀ25°C  
TAꢀ=ꢀ25°C  
TAꢀ=ꢀ25°C  
TAꢀ=ꢀ25°C  
TAꢀ=ꢀ25°C  
TAꢀ=ꢀ25°C  
VOꢀ=ꢀ0.4ꢀV  
VOꢀ=ꢀ0.5ꢀV  
VOꢀ=ꢀ0.4ꢀV  
VOꢀ=ꢀ0.5ꢀV  
VOꢀ=ꢀ0.4ꢀV  
VOꢀ=ꢀ0.5ꢀV  
VOꢀ=ꢀ0.4ꢀV  
VOꢀ=ꢀ0.5ꢀV  
VOꢀ=ꢀ0.4ꢀV  
VOꢀ=ꢀ0.5ꢀV  
IOꢀ=ꢀ4.0ꢀmA  
IOꢀ=ꢀ3.3ꢀmA  
IOꢀ=ꢀ3.6ꢀmA  
IOꢀ=ꢀ3.0ꢀmA  
IOꢀ=ꢀ3.6ꢀmA  
IOꢀ=ꢀ3.0ꢀmA  
VOꢀ=ꢀVCCꢀ=ꢀ5.5ꢀV  
VOꢀ=ꢀVCCꢀ=ꢀ15ꢀV  
HCNW4504  
60  
63  
65  
Current  
Transfer  
Ratio  
HCPL-4504  
HCPL-0454  
IFꢀ=ꢀ12ꢀmA,  
VCCꢀ=ꢀ4.5ꢀV  
1,ꢀ2,  
4
5
HCPL-J454  
65  
HCNW4504  
65  
68  
LogicꢀLow  
Output  
Voltage  
HCPL-4504  
HCPL-0454  
0.4  
0.5  
0.4  
IFꢀ=ꢀ16ꢀmA,  
VCCꢀ=ꢀ4.5ꢀV  
HCPL-J454  
0.2  
0.5  
0.2  
0.5  
HCNW4504  
0.4  
LogicꢀHigh  
Output  
Current  
IOH  
0.003 0.5  
µA  
µA  
TAꢀ=ꢀ25°C  
TAꢀ=ꢀ25°C  
IFꢀ=ꢀ0ꢀmA  
5
0.01  
1
50  
200  
LogicꢀLow  
Supply  
Current  
ICCL  
HCPL-4504  
HCPL-0454  
HCNW4504  
50  
IFꢀ=ꢀ16ꢀmA,ꢀVOꢀ=ꢀOpen,ꢀVCCꢀ=ꢀ15ꢀV  
12  
HCPL-J454  
70  
LogicꢀHigh  
SupplyꢀCurrent  
ICCH  
0.02  
1.5  
1
µA  
V
TAꢀ=ꢀ25°C  
TAꢀ=ꢀ25°C  
TAꢀ=ꢀ25°C  
IRꢀ=ꢀ10ꢀµA  
IRꢀ=ꢀ100ꢀµA  
IFꢀ=ꢀ0ꢀmA,ꢀVOꢀ=ꢀOpen,  
12  
3
2
VCCꢀ=ꢀ15ꢀV  
IFꢀ=ꢀ16ꢀmA  
InputꢀForward  
Voltage  
VF  
HCPL-4504  
HCPL-0454  
1.7  
1.8  
1.85  
1.95  
HCPL-J454  
HCNW4504  
1.45 1.59  
IFꢀ=ꢀ16ꢀmA  
1.35  
5
InputꢀReverse  
Breakdown  
Voltage  
BVR  
HCPL-4504  
HCPL-0454  
V
HCPL-J454  
HCNW4504  
3
Temperature  
Coefficient  
ofꢀForward  
Voltage  
∆VF  
TA  
HCPL-4504  
HCPL-0454  
-1.6  
-1.4  
60  
mV/°C IFꢀ=ꢀ16ꢀmA  
HCPL-J454  
HCNW4504  
Input  
Capacitance  
CIN  
HCPL-4504  
HCPL-0454  
pF  
fꢀ=ꢀ1ꢀMHz,ꢀVFꢀ=ꢀ0ꢀV  
HCPL-J454  
HCNW4504  
70  
*AllꢀtypicalsꢀatꢀTAꢀ=ꢀ25°C.  
11  
AC Switching Specifications  
Overꢀrecommendedꢀtemperatureꢀ(TAꢀ=ꢀ0°Cꢀtoꢀ70°C)ꢀunlessꢀotherwiseꢀspecified.  
Parameter  
Symbol Device Min.  
Typ.  
0.2  
0.2  
Max. Units  
Test Conditions  
Fig.  
Note  
PropagationꢀDelayꢀ tPHL  
TimeꢀtoꢀLogicꢀLowꢀ  
atꢀOutputꢀ  
0.3  
0.5  
µs  
µs  
µs  
µs  
µs  
TAꢀ=ꢀ25°C  
Pulse:ꢀꢀfꢀ=ꢀ20ꢀkHz,  
DutyꢀCycleꢀ=ꢀ10%,  
IFꢀ=ꢀ16ꢀmA,ꢀVCCꢀ=ꢀ5.0ꢀV,  
RLꢀ=ꢀ1.9ꢀkΩ,ꢀCLꢀ=ꢀ15ꢀpF,  
VTHHLꢀ=ꢀ1.5ꢀV  
6,  
8,ꢀ9  
9
tPHL  
0.2  
0.5  
0.7  
1.0  
TAꢀ=ꢀ25°C  
TAꢀ=ꢀ25°C  
TAꢀ=ꢀ25°C  
Pulse:ꢀꢀfꢀ=ꢀ10ꢀꢀkHz,  
DutyꢀCycleꢀ=ꢀ50%,  
IFꢀ=ꢀ12ꢀmA,ꢀVCCꢀ=ꢀ15.0ꢀV,  
RLꢀ=ꢀ20ꢀkΩ,ꢀCLꢀ=ꢀ100ꢀpF,  
VTHHLꢀ=ꢀ1.5ꢀV  
6,  
10-14  
10  
9
HCPL- 0.05  
J454  
Others 0.1  
PropagationꢀDelayꢀ tPLH  
TimeꢀtoꢀLogicꢀHighꢀ  
atꢀOutput  
0.3  
0.3  
0.5  
0.7  
Pulse:ꢀꢀfꢀ=ꢀ20ꢀꢀkHz,  
DutyꢀCycleꢀ=ꢀ10%,  
IFꢀ=ꢀ16ꢀmA,ꢀVCCꢀ=ꢀ5.0ꢀV,  
RLꢀ=ꢀ1.9ꢀkΩ,ꢀCLꢀ=ꢀ15ꢀpF,  
VTHLHꢀ=ꢀ1.5ꢀV  
6,  
8,ꢀ9  
tPLH  
0.3  
0.2  
0.8  
0.8  
1.1  
1.4  
Pulse:ꢀꢀfꢀ=ꢀ10ꢀꢀkHz,  
DutyꢀCycleꢀ=ꢀ50%,  
IFꢀ=ꢀ12ꢀmA,ꢀVCCꢀ=ꢀ15.0ꢀV,  
RLꢀ=ꢀ20ꢀkΩ,ꢀCLꢀ=ꢀ100ꢀpF,  
VTHLHꢀ=ꢀ2.0ꢀV  
6,  
10-14  
10  
17  
PropagationꢀDelayꢀ tPLH  
DifferenceꢀBe-  
tweenꢀAnyꢀ2ꢀParts  
-
-0.4  
-0.7  
0.3  
0.3  
0.9  
1.3  
TAꢀ=ꢀ25°C Pulse:ꢀꢀfꢀ=ꢀ10ꢀꢀkHz,  
DutyꢀCycleꢀ=ꢀ50%,  
6,  
10-14  
tPHL  
IFꢀ=ꢀ12ꢀmA,ꢀVCCꢀ=ꢀ15.0ꢀV,  
RLꢀ=ꢀ20ꢀkΩ,ꢀCLꢀ=ꢀ100ꢀpF,  
VTHHLꢀ=ꢀ1.5ꢀV,ꢀVTHLHꢀ=ꢀ2.0ꢀV  
CommonꢀModeꢀꢀ  
TransientꢀImmu-  
nityꢀatꢀLogicꢀHigh  
|CMH|  
15  
15  
15  
30  
30  
30  
30  
kV/µs TAꢀ=ꢀ25°C  
VCMꢀ=  
VCCꢀ=ꢀ5.0ꢀV,ꢀRLꢀ=ꢀ1.9ꢀkΩ,  
CLꢀ=ꢀ15ꢀpF,ꢀIFꢀ=ꢀ0ꢀmA  
7
7
7
7
7,ꢀ9  
1500ꢀVP-P  
|CMH|  
kV/µs  
VCCꢀ=ꢀ15.0ꢀV,ꢀRLꢀ=ꢀ20ꢀkΩ,  
CLꢀ=ꢀ100ꢀpF,ꢀIFꢀ=ꢀ0ꢀmA  
8,ꢀ10  
7,ꢀ9  
LevelꢀOutputꢀꢀ  
|CML|  
kV/µs TAꢀ=ꢀ25°C  
VCMꢀ=  
VCCꢀ=ꢀ5.0ꢀV,ꢀRLꢀ=ꢀ1.9ꢀkΩ,  
CLꢀ=ꢀ15ꢀpF,ꢀIFꢀ=ꢀ16ꢀmA  
CommonꢀModeꢀ  
TransientꢀImmu-  
nityꢀatꢀꢀLogicꢀLowꢀ  
LevelꢀOutput  
1500ꢀVP-P  
|CML| HCPL- 15  
J454  
kV/µs  
VCCꢀ=ꢀ15.0ꢀV,ꢀRLꢀ=ꢀ20ꢀkΩ,  
CLꢀ=ꢀ100ꢀpF,ꢀIFꢀ=ꢀ12ꢀmA  
8,ꢀ10  
Others 10  
|CML|  
15  
30  
kV/µs  
VCCꢀ=ꢀ15.0ꢀV,RLꢀ=ꢀ20ꢀkΩ,  
CLꢀ=ꢀ100ꢀpF,IFꢀ=ꢀ16ꢀmA  
7
8,ꢀ10  
*AllꢀtypicalsꢀatꢀTAꢀ=ꢀ25°C.  
12  
Package Characteristics  
Overꢀrecommendedꢀtemperatureꢀ(TAꢀ=ꢀ0°Cꢀtoꢀ25°C)ꢀunlessꢀotherwiseꢀspecified.  
Parameter  
Symbol  
Device  
Min.  
Typ.*  
Max.  
Units  
Test Conditions  
Figure  
Note  
Input-Output  
Momentary  
Withstand  
Voltage†  
V
ISO  
HCPL-4504  
HCPL-0454  
3750  
Vꢀrms  
RHꢀ≤50%,  
tꢀ=ꢀ1ꢀmin.,  
TAꢀ=ꢀ25°C  
6,ꢀ13,  
16  
HCPL-J454  
3750  
5000  
5000  
6,ꢀ14,  
16  
HCPL-4504  
Optionꢀ020  
ꢀꢀ6,ꢀ11,  
15  
HCNW4504  
6,ꢀ15,  
16  
Input-Output  
Resistance  
RI-O  
HCPL-4504  
HCPL-0454  
HCPL-J454  
1012  
Ω
VI-Oꢀ=ꢀ500ꢀVdc  
6
6
HCNW4504  
1012  
1011  
1013  
0.6  
TAꢀ=ꢀ25°C  
TAꢀ=ꢀ100°C  
fꢀ=ꢀ1ꢀMHz  
Capacitance  
(Input-Output)  
CI-O  
HCPL-4504  
HCPL-0454  
pF  
HCPL-J454  
HCNW4504  
0.8  
0.5  
0.6  
AllꢀtypicalsꢀatꢀTAꢀ=ꢀ25°C..  
†TheꢀInput-OutputꢀMomentaryꢀWithstandꢀVoltageꢀisꢀaꢀdielectricꢀvoltageꢀratingꢀthatꢀshouldꢀnotꢀbeꢀinterpretedꢀasꢀanꢀinput-outputꢀcontinuousꢀ  
voltageꢀrating.ꢀForꢀtheꢀcontinuousꢀvoltageꢀratingꢀreferꢀtoꢀtheꢀIEC/EN/DINꢀENꢀ60747-5-2ꢀInsulationꢀRelatedꢀCharacteristicsꢀTableꢀ(ifꢀapplicable),ꢀyourꢀ  
equipmentꢀlevelꢀsafetyꢀspecificationꢀorꢀAvagoꢀApplicationꢀNoteꢀ1074ꢀentitledꢀ“OptocouplerꢀInput-OutputꢀEnduranceꢀVoltage.”  
Notes:  
1.ꢀ Derateꢀlinearlyꢀaboveꢀ70°Cꢀfree-airꢀtemperatureꢀatꢀaꢀrateꢀofꢀ0.8ꢀmA/°Cꢀ(8-PinꢀDIP).ꢀ  
Derateꢀlinearlyꢀaboveꢀ85°Cꢀfree-airꢀtemperatureꢀatꢀaꢀrateꢀofꢀ0.5ꢀmA/°Cꢀ(SO-8).  
2.ꢀ Derateꢀlinearlyꢀaboveꢀ70°Cꢀfree-airꢀtemperatureꢀatꢀaꢀrateꢀofꢀ1.6ꢀmA/°Cꢀ(8-PinꢀDIP).ꢀ  
Derateꢀlinearlyꢀaboveꢀ85°Cꢀfree-airꢀtemperatureꢀatꢀaꢀrateꢀofꢀ1.0ꢀmA/°Cꢀ(SO-8).  
3.ꢀ Derateꢀlinearlyꢀaboveꢀ70°Cꢀfree-airꢀtemperatureꢀatꢀaꢀrateꢀofꢀ0.9ꢀmW/°Cꢀ(8-PinꢀDIP).ꢀ  
Derateꢀlinearlyꢀaboveꢀ85°Cꢀfree-airꢀtemperatureꢀatꢀaꢀrateꢀofꢀ1.1ꢀmW/°Cꢀ(SO-8).  
4.ꢀ Derateꢀlinearlyꢀaboveꢀ70°Cꢀfree-airꢀtemperatureꢀatꢀaꢀrateꢀofꢀ2.0ꢀmW/°Cꢀ(8-PinꢀDIP).ꢀ  
Derateꢀlinearlyꢀaboveꢀ85°Cꢀfree-airꢀtemperatureꢀatꢀaꢀrateꢀofꢀ2.3ꢀmW/°Cꢀ(SO-8).  
5.ꢀ CURRENTꢀTRANSFERꢀRATIOꢀinꢀpercentꢀisꢀdefinedꢀasꢀtheꢀratioꢀofꢀoutputꢀcollectorꢀcurrent,ꢀIO,ꢀtoꢀtheꢀforwardꢀLEDꢀinputꢀcurrent,ꢀIF,ꢀtimesꢀ100.  
6.ꢀ Deviceꢀconsideredꢀaꢀtwo-terminalꢀdevice:ꢀPinsꢀ1,ꢀ2,ꢀ3,ꢀandꢀ4ꢀshortedꢀtogetherꢀandꢀPinsꢀ5,ꢀ6,ꢀ7,ꢀandꢀ8ꢀshortedꢀtogether.  
7.ꢀ UnderꢀTTLꢀloadꢀandꢀdriveꢀconditions:ꢀCommonꢀmodeꢀtransientꢀimmunityꢀinꢀaꢀLogicꢀHighꢀlevelꢀisꢀtheꢀmaximumꢀtolerableꢀ(positive)ꢀdVCM/dtꢀonꢀ  
theꢀleadingꢀedgeꢀofꢀtheꢀcommonꢀmodeꢀpulse,ꢀVCM,ꢀtoꢀassureꢀthatꢀtheꢀoutputꢀwillꢀremainꢀinꢀaꢀLogicꢀHighꢀstateꢀ(i.e.,V ꢀ>ꢀ2.0ꢀV).ꢀCommonꢀmodeꢀ  
O
transientꢀimmunityꢀinꢀaꢀLogicꢀLowꢀlevelꢀisꢀtheꢀmaximumꢀtolerableꢀ(negative)ꢀdVCM/dtꢀonꢀtheꢀtrailingꢀedgeꢀofꢀtheꢀcommonꢀmodeꢀpulseꢀsignal,ꢀ  
VCM,ꢀtoꢀassureꢀthatꢀtheꢀoutputꢀwillꢀremainꢀinꢀaꢀLogicꢀLowꢀstateꢀ(i.e.,ꢀVOꢀ<ꢀ0.8ꢀV).  
8.ꢀꢀ UnderꢀIPMꢀ(IntelligentꢀPowerꢀModule)ꢀloadꢀandꢀLEDꢀdriveꢀconditions:ꢀCommonꢀmodeꢀtransientꢀimmunityꢀinꢀaꢀLogicꢀHighꢀlevelꢀisꢀtheꢀmaximumꢀ  
tolerableꢀdVCM/dtꢀonꢀtheꢀleadingꢀedgeꢀofꢀtheꢀcommonꢀmodeꢀpulse,ꢀVCM,ꢀtoꢀassureꢀthatꢀtheꢀoutputꢀwillꢀremainꢀinꢀaꢀLogicꢀHighꢀstateꢀ(i.e.,ꢀVOꢀ>ꢀ3.0ꢀ  
V).ꢀCommonꢀmodeꢀtransientꢀimmunityꢀinꢀaꢀLogicꢀLowꢀlevelꢀisꢀtheꢀmaximumꢀtolerableꢀdVCM/dtꢀonꢀtheꢀtrailingꢀedgeꢀofꢀtheꢀcommonꢀmodeꢀpulseꢀ  
signal,ꢀVCM,ꢀtoꢀassureꢀthatꢀtheꢀoutputꢀwillꢀremainꢀinꢀaꢀLogicꢀLowꢀstateꢀ(i.e.,VOꢀ<ꢀ1.0V).  
9.ꢀꢀ Theꢀ1.9ꢀkΩꢀloadꢀrepresentsꢀ1ꢀTTLꢀunitꢀloadꢀofꢀ1.6ꢀmAꢀandꢀtheꢀ5.6ꢀkΩꢀpull-upꢀresistor.  
10.ꢀTheꢀRLꢀ=ꢀ20ꢀkΩ,ꢀCLꢀ=ꢀ100ꢀpFꢀloadꢀrepresentsꢀanꢀIPMꢀ(IntelligentꢀPowerꢀModule)ꢀload.  
11.ꢀSeeꢀOptionꢀ020ꢀdataꢀsheetꢀforꢀmoreꢀinformation.  
12.ꢀUseꢀofꢀaꢀ0.1ꢀµFꢀbypassꢀcapacitorꢀconnectedꢀbetweenꢀPinsꢀ5ꢀandꢀ8ꢀisꢀrecommended.  
13.ꢀInꢀaccordanceꢀwithꢀULꢀ1577,ꢀeachꢀoptocouplerꢀisꢀproofꢀtestedꢀbyꢀapplyingꢀanꢀinsulationꢀtestꢀvoltageꢀ≥4500ꢀVꢀrmsꢀforꢀ1ꢀsecondꢀ(leakageꢀdetectionꢀ  
currentꢀlimit,ꢀIi-oꢀ≤5ꢀµA).  
14.ꢀInꢀaccordanceꢀwithꢀULꢀ1577,ꢀeachꢀoptocouplerꢀisꢀproofꢀtestedꢀbyꢀapplyingꢀanꢀinsulationꢀtestꢀvoltageꢀ≥4500ꢀVꢀrmsꢀforꢀ1ꢀsecondꢀ(leakageꢀdetectionꢀ  
currentꢀlimit,ꢀIi-oꢀ≤ꢀ5ꢀµA).  
15.ꢀInꢀaccordanceꢀwithꢀULꢀ1577,ꢀeachꢀoptocouplerꢀisꢀproofꢀtestedꢀbyꢀapplyingꢀanꢀinsulationꢀtestꢀvoltageꢀ≥6000ꢀVꢀrmsꢀforꢀ1ꢀsecondꢀ(leakageꢀdetectionꢀ  
currentꢀlimit,ꢀIi-oꢀ≤5ꢀµA).  
16.ꢀThisꢀtestꢀisꢀperformedꢀbeforeꢀtheꢀ100%ꢀProductionꢀtestꢀshownꢀinꢀtheꢀVDEꢀ0884ꢀInsulationꢀRelatedꢀCharacteristicsꢀTable,ꢀifꢀapplicable.  
17.ꢀTheꢀdifferenceꢀbetweenꢀtPLHꢀandꢀtPHLꢀbetweenꢀanyꢀtwoꢀdevicesꢀ(sameꢀpartꢀnumber)ꢀunderꢀtheꢀsameꢀtestꢀcondition.ꢀ(SeeꢀPowerꢀInverterꢀDeadꢀ  
TimeꢀandꢀPropagationꢀDelayꢀSpecificationsꢀsection.)  
13  
HCPL-4504/0454  
HCNW4504  
HCPL-J454  
= 25° C  
25  
20  
15  
10  
40 mA  
35 mA  
T
CC  
= 25°C  
T = 25°C  
A
CC  
A
T
V
A
10  
20  
18  
16  
14  
12  
10  
8
V
= 5.0 V  
V
= 5.0 V  
= 5.0 V  
CC  
40 mA  
35 mA  
40 mA  
35 mA  
30 mA  
25 mA  
20 mA  
30 mA  
25 mA  
20 mA  
30 mA  
25 mA  
20 mA  
5
15 mA  
10 mA  
15 mA  
10 mA  
15 mA  
10 mA  
6
5
0
4
I
= 5 mA  
F
I
= 5 mA  
F
2
0
I
= 5 mA  
F
0
0
20  
0
20  
10  
– OUTPUT VOLTAGE – V  
10  
V – OUTPUT VOLTAGE – V  
O
0
5
10  
15  
20  
V
– OUTPUT VOLTAGE – V  
O
V
O
Figure 1. DC and pulsed transfer characteristics.  
HCPL-4504/0454  
1.5  
HCPL-J454  
HCNW4504  
NORMALIZED  
2.0  
1.5  
1.0  
0.5  
0
NORMALIZED  
2.0  
1.6  
1.2  
0.8  
0.4  
0
I
= 16 mA  
F
O
I
V
V
= 16 mA  
F
V
= 0.4 V  
= 5.0 V  
= 25°C  
= 0.4 V  
O
V
T
CC  
= 5.0 V  
CC  
1.0  
A
T
= 25° C  
A
0.5  
0.0  
NORMALIZED  
= 16 mA  
I
F
V
= 0.4 V  
O
V
= 5.0 V  
CC  
T
= 25°C  
A
0
2
4
I
6
8 10 12 14 16 18 20 22 24 26  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
I
– INPUT CURRENT – mA  
– INPUT CURRENT – mA  
F
I
– INPUT CURRENT – mA  
F
F
Figure 2. Current transfer ratio vs. input current.  
HCPL-4504/0454  
1000  
HCPL-J454/HCNW4504  
= 25°C  
1000  
100  
10  
T
A
100  
I
I
F
F
T
A
= 25°C  
+
+
10  
1.0  
V
V
F
F
1.0  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.2  
1.3  
V – FORWARD VOLTAGE – VOLTS  
F
1.4  
1.5  
1.6  
1.7  
V
– FORWARD VOLTAGE – VOLTS  
F
Figure 3. Input current vs. forward voltage.  
14  
HCPL-4504/0454  
HCNW4504  
NORMALIZED  
HCPL-J454  
1.1  
1.0  
1.05  
1.0  
1.05  
1.0  
NORMALIZED  
= 16 mA  
I
= 16 mA  
F
O
I
F
O
CC  
A
V
= 0.4 V  
V
V
T
= 0.4 V  
= 5.0 V  
= 25° C  
V
= 5.0 V  
= 25°C  
CC  
T
A
0.9  
0.8  
0.7  
0.6  
NORMALIZED  
= 16 mA  
0.95  
0.9  
0.95  
0.9  
I
F
V
= 0.4 V  
O
V
= 5.0 V  
CC  
= 25°C  
T
A
0.85  
0.85  
-60 -40 -20  
0
20 40 60 80 100 120  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100 120  
T – TEMPERATURE – °C  
A
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
Figure 4. Current transfer ratio vs. temperature.  
4
10  
3
10  
I
V
= 0 mA  
F
= V = 5.0 V  
O
CC  
2
10  
1
0
10  
10  
-1  
10  
10  
-2  
-60 -40 -20  
0
20 40 60 80 100 120  
T
– TEMPERATURE – °C  
A
Figure 5. Logic high output current vs. temperature.  
I
F
I
PULSE  
GEN.  
F
8
7
6
5
1
2
3
4
V
CC  
0
Z
t
= 50  
O
r
= 5 ns  
R
V
L
CC  
V
O
V
O
V
V
THLH  
THHL  
0.1µF  
V
I
MONITOR  
F
OL  
C
L
R
M
t
t
PHL  
PLH  
Figure 6. Switching test circuit.  
8
7
6
5
V
CC  
1
2
3
4
V
CM  
90% 90%  
I
F
0 V  
10%  
10%  
R
L
t
r
A
t
f
B
V
O
0.1µF  
V
V
O
CC  
SWITCH AT A: I = 0 mA  
F
C
L
V
FF  
V
V
+
O
V
CM  
OL  
SWITCH AT B: I = 12 mA, 16 mA  
F
PULSE GEN.  
Figure 7. Test circuit for transient immunity and typical waveforms.  
15  
HCPL-4504/0454  
= 5.0 V  
R = 1.9 kΩ  
HCPL-J454/HCNW4504  
= 5.0 V  
R = 1.9 kΩ  
0.50  
0.45  
0.50  
0.45  
1.4  
1.2  
1.0  
0.8  
V
V
= 5.0 V  
= 25° C  
= 15 pF  
= V  
V
CC  
CC  
CC  
T
L
A
L
C = 15 pF  
C
V
C = 15 pF  
L
L
L
0.40  
0.40  
V
= V  
= 1.5 V  
= 1.5 V  
THLH  
V
= V  
= 1.5 V  
THLH  
THHL  
THLH  
THHL  
THHL  
t
t
PLH  
PLH  
10% DUTY CYCLE  
10% DUTY CYCLE  
10% DUTY CYCLE  
t
0.35  
0.30  
0.25  
0.35  
0.30  
0.25  
PLH  
t
PHL  
t
0.6  
0.4  
0.2  
0.0  
PHL  
I
= 10 mA  
= 16 mA  
F
t
PHL  
I
F
0.20  
0.20  
I
= 10 mA  
= 16 mA  
I
= 10 mA  
= 16 mA  
F
F
0.15  
0.10  
0.15  
0.10  
I
I
F
F
-60 -40 -20  
0
20 40 60 80 100 120  
-60 -40 -20  
0
20 40 60 80 100 120  
0
2
4
6
8
– LOAD RESISTANCE – kΩ  
L
10 12 14 16 18 20  
R
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
Figure 8. Propagation delay time vs. temperature.  
Figure 9. Propagation delay time vs. load resis-  
tance.  
HCPL-4504/0454  
HCPL-J454/HCNW4504  
1.1  
2.6  
2.4  
1.1  
1.0  
V
= 15.0 V  
V
= 5.0 V  
= 25° C  
= 100 pF  
I
= 10 mA  
I = 16 mA  
F
V
R
= 15.0 V  
= 20 k  
I
= 10 mA  
I = 16 mA  
F
CC  
CC  
F
CC  
L
F
R
= 20 kΩ  
T
1.0  
0.9  
L
A
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
C = 100 pF  
C
C = 100 pF  
L
L
L
0.9  
V
V
= 1.5 V  
= 2.0 V  
V
V
= 1.5 V  
= 2.0 V  
V
V
= 1.5 V  
= 2.0 V  
50% DUTY CYCLE  
THHL  
THLH  
THHL  
THLH  
THHL  
THLH  
t
t
PLH  
PLH  
0.8  
0.7  
0.6  
0.8  
0.7  
0.6  
50% DUTY CYCLE  
50% DUTY CYCLE  
t
PLH  
I
= 10 mA  
I = 16 mA  
F
F
t
PHL  
8
0.5  
0.5  
t
t
PHL  
PHL  
0.4  
0.3  
0.4  
0.3  
0.2  
0.0  
-60 -40 -20  
0
20 40  
-60 -40 -20  
0
20 40  
60 80 100 120  
60 80 100 120  
T – TEMPERATURE – °C  
A
0
2
4
6
10 12 14 16 18 20  
T
– TEMPERATURE – °C  
R – LOAD RESISTANCE – k  
A
L
Figure 10. Propagation delay time vs. load  
resistance.  
Figure 11. Propagation delay time vs. temperature.  
1.8  
3.5  
1.2  
1.1  
1.0  
V
= 15.0 V  
V
= 15.0 V  
= 25° C  
T = 25° C  
A
L
CC  
= 25° C  
CC  
t
PLH  
PHL  
1.6  
1.4  
T
T
R = 20 kΩ  
A
A
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
C = 100 pF  
R = 20 k  
C = 100 pF  
L
L
L
V
V
= 1.5 V  
= 2.0 V  
V
V
= 1.5 V  
= 2.0 V  
V
V
= 1.5 V  
= 2.0 V  
THHL  
THLH  
THHL  
THLH  
THHL  
THLH  
0.9  
0.8  
0.7  
1.2  
1.0  
0.8  
0.6  
0.4  
t
PLH  
50% DUTY CYCLE  
50% DUTY CYCLE  
50% DUTY CYCLE  
t
PLH  
t
t
0.6  
0.5  
0.4  
0.3  
0.2  
PHL  
t
PHL  
I
I
= 10 mA  
= 16 mA  
F
I
I
= 10 mA  
= 16 mA  
F
I
I
= 10 mA  
= 16 mA  
F
F
0.2  
0.0  
F
F
0.0  
0
100 200 300 400 500 600 700 800 9001000  
– LOAD CAPACITANCE – pF  
10 11 12 13 14 15 16 17 18 19 20  
– SUPPLY VOLTAGE – V  
0
5
10 15 20 25 30 35 40 45 50  
C
R
– LOAD RESISTANCE – k  
V
CC  
L
L
Figure 12. Propagation delay time vs. load  
resistance.  
Figure 13. Propagation delay time vs. load  
capacitance.  
Figure 14. Propagation delay time vs. supply  
voltage.  
16  
HCPL-4504 OPTION 060/HCPL-J454  
HCPL-0454 OPTION 060/HCNW4504  
1000  
800  
700  
600  
500  
400  
300  
P
(mWꢀ for HCNW4504  
(mAꢀ for HCNW4504  
(mWꢀ for HCPL-0454  
S
P
(mWꢀ  
S
900  
800  
700  
600  
500  
400  
300  
I
P
S
I
(mAꢀ for HCPL-4504  
OPTION 060  
(mAꢀ for HCPL-J454  
S
S
OPTION 060  
I
S
I
(mAꢀ for HCPL-0454  
S
OPTION 060  
(230ꢀ  
200  
200  
(150ꢀ  
100  
100  
0
0
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – °C  
0
25  
50 75 100 125 150 175  
T
T – CASE TEMPERATURE – °C  
S
S
Figure 15. Thermal derating curve, dependence of safety limiting valve with case temperature per  
IEC/EN/DIN EN 60747-5-2.  
+HV  
+
HCPL-4504/0454/J454  
HCNW4504  
8
7
6
2
3
LED 1  
BASE/GATE  
DRIVE CIRCUIT  
Q1  
OUT 1  
5
+
HCPL-4504/0454/J454  
HCNW4504  
8
7
6
2
3
LED 2  
BASE/GATE  
DRIVE CIRCUIT  
Q2  
OUT 2  
5
–HV  
Figure 16. Typical power inverter.  
17  
Figure 17. LED delay and dead time diagram.  
Power Inverter Dead Time and Propagation Delay Specifica-  
tions  
Theꢀ HCPL-4504/0454/J454ꢀ andꢀ HCNW4504ꢀ includeꢀ aꢀ  
specificationꢀintendedꢀtoꢀhelpꢀdesignersꢀminimizeꢀ“deadꢀ  
time”ꢀinꢀtheirꢀpowerꢀinverterꢀdesigns.ꢀTheꢀnewꢀ“propaga-  
tionꢀdelayꢀdifference”ꢀspecificationꢀ(tPLHꢀ-ꢀtPHL)ꢀisꢀusefulꢀforꢀ  
determiningꢀ notꢀ onlyꢀ howꢀ muchꢀ optocouplerꢀ switch-  
ingꢀdelayꢀisꢀneededꢀtoꢀpreventꢀ“shoot-through”ꢀcurrent,ꢀ  
butꢀalsoꢀforꢀdeterminingꢀtheꢀbestꢀachievableꢀworst-caseꢀ  
deadꢀtimeꢀforꢀaꢀgivenꢀdesign.  
Theamountofturn-ondelayneededdependsontheꢀ  
propagationꢀdelayꢀcharacteristicsꢀofꢀtheꢀoptocoupler,ꢀasꢀ  
wellꢀasꢀtheꢀcharacteristicsꢀofꢀtheꢀtransistorꢀbase/gateꢀdriveꢀ  
circuit.ꢀConsideringꢀonlyꢀtheꢀdelayꢀcharacteristicsꢀofꢀtheꢀ  
optocoupler(thecharacteristicsofthebase/gatedriveꢀ  
circuitꢀcanꢀbeꢀanalyzedꢀinꢀtheꢀsameꢀway),ꢀitꢀisꢀimportantꢀ  
toꢀknowꢀtheꢀminimumꢀandꢀmaximumꢀturn-onꢀ(tPHL)ꢀandꢀ  
turnoffꢀ (tPLH)ꢀ propagationꢀ delayꢀ specifications,ꢀ prefer-  
ablyꢀoverꢀtheꢀdesiredꢀoperatingꢀtemperatureꢀrange.ꢀTheꢀ  
importanceꢀofꢀtheseꢀspecificationsꢀisꢀillustratedꢀinꢀFigureꢀ  
17.Theꢀ waveformsꢀ labeledLED1,LED2,OUT1,ꢀ andꢀ  
“OUT2”aretheinputandoutputvoltagesoftheopto-  
couplerꢀcircuitsꢀdrivingꢀQ1ꢀandꢀQ2ꢀrespectively.ꢀMostꢀin-  
vertersꢀareꢀdesignedꢀsuchꢀthatꢀtheꢀpowerꢀtransistorꢀturnsꢀ  
onꢀwhenꢀtheꢀoptocouplerꢀLEDꢀturnsꢀon;ꢀthisꢀensuresꢀthatꢀ  
bothꢀpowerꢀtransistorsꢀwillꢀbeꢀoffꢀinꢀtheꢀeventꢀofꢀaꢀpowerꢀ  
lossꢀinꢀtheꢀcontrolꢀcircuit.ꢀInvertersꢀcanꢀalsoꢀbeꢀdesignedꢀ  
suchꢀthatꢀtheꢀpowerꢀtransistorꢀturnsꢀoffꢀwhenꢀtheꢀopto-  
couplerLEDturnson;thistypeofdesign,however,re-  
quiresꢀadditionalꢀfail-safeꢀcircuitryꢀtoꢀturnꢀoffꢀtheꢀpowerꢀ  
transistorꢀ ifꢀ anꢀ over-currentꢀ conditionꢀ isꢀ detected.Theꢀ  
timingillustratedinFigure17assumesthatthepowerꢀ  
transistorꢀturnsꢀonꢀwhenꢀtheꢀoptocouplerꢀLEDꢀturnsꢀon.  
Wheninverterpowertransistorsswitch(Q1andQ2inꢀ  
Figureꢀ17),ꢀitꢀisꢀessentialꢀthatꢀtheyꢀneverꢀconductꢀatꢀtheꢀ  
sameꢀtime.ꢀExtremelyꢀlargeꢀcurrentsꢀwillꢀflowꢀifꢀthereꢀisꢀ  
anyoverlapintheirconductionduringswitchingtran-  
sitions,ꢀ potentiallyꢀ damagingꢀ theꢀ transistorsꢀ andꢀ evenꢀ  
theꢀsurroundingꢀcircuitry.ꢀThisꢀ“shoot-through”ꢀcurrentꢀisꢀ  
eliminatedꢀbyꢀdelayingꢀtheꢀturn-onꢀofꢀoneꢀtransistorꢀ(Q2)ꢀ  
longꢀenoughꢀtoꢀensureꢀthatꢀtheꢀopposingꢀtransistorꢀ(Q1)ꢀ  
hasꢀcompletelyꢀturnedꢀoff.ꢀThisꢀdelayꢀintroducesꢀaꢀsmallꢀ  
amountꢀofꢀ“deadꢀtime”ꢀatꢀtheꢀoutputꢀofꢀtheꢀinverterꢀdur-  
ingꢀwhichꢀbothꢀtransistorsꢀareꢀoffꢀduringꢀswitchingꢀtran-  
sitions.ꢀMinimizingꢀthisꢀdeadꢀtimeꢀisꢀanꢀimportantꢀdesignꢀ  
goalꢀforꢀanꢀinverterꢀdesigner.  
18  
Thisꢀexpressionꢀcanꢀbeꢀrearrangedꢀtoꢀobtainꢀ  
[(tPLHmax-tPHLmin)-(tPHLmin-tPHLmax)],  
TheꢀLEDꢀsignalꢀtoꢀturnꢀonꢀQ2ꢀshouldꢀbeꢀdelayedꢀenoughꢀ  
soꢀ thatꢀ anꢀ optocouplerꢀ withꢀ theꢀ veryꢀ fastestꢀ turn-onꢀ  
propagationꢀdelayꢀ(tPHLmin)ꢀwillꢀneverꢀturnꢀonꢀbeforeꢀanꢀ  
optocouplerꢀwithꢀtheꢀveryꢀslowestꢀturn-offꢀpropagationꢀ  
delayꢀ(tPLHmax)ꢀturnsꢀoff.ꢀToꢀensureꢀthis,ꢀtheꢀturn-onꢀofꢀtheꢀ  
optocouplerꢀ shouldꢀ beꢀ delayedꢀ byꢀ anꢀ amountꢀ noꢀ lessꢀ  
thanꢀ(tPLHmaxꢀ-ꢀtPHLmin),ꢀwhichꢀalsoꢀhappensꢀtoꢀbeꢀtheꢀmax-  
imumꢀdataꢀsheetꢀvalueꢀforꢀtheꢀpropagationꢀdelayꢀdiffer-  
enceꢀspecification,ꢀ(tPLHꢀ-ꢀtPHL).ꢀTheꢀHCPL-4504/0454/J454ꢀ  
andꢀHCNW4504ꢀspecifyꢀaꢀmaximumꢀ(tPLHꢀ-ꢀtPHL)ꢀofꢀ1.3ꢀµsꢀ  
overꢀanꢀoperatingꢀtemperatureꢀrangeꢀofꢀ0-70°C.  
andꢀfurtherꢀrearrangedꢀtoꢀobtain  
[(tPLH-tPHL max-(tPLH-tPHL)min],  
)
whichꢀisꢀtheꢀmaximumꢀminusꢀtheꢀminimumꢀdataꢀsheetꢀ  
valuesꢀ ofꢀ (tPLH-tPHL).Theꢀ differenceꢀ betweenꢀ theꢀ maxi-  
mumꢀandꢀminimumꢀvaluesꢀdependsꢀdirectlyꢀonꢀtheꢀtotalꢀ  
spreadꢀinꢀpropagationꢀdelaysꢀandꢀsetsꢀtheꢀlimitꢀonꢀhowꢀ  
goodꢀtheꢀworst-caseꢀdeadꢀtimeꢀcanꢀbeꢀforꢀaꢀgivenꢀdesign.ꢀ  
Therefore,ꢀ optocouplersꢀ withꢀ tightꢀ propagationꢀ delayꢀ  
specificationsꢀ(andꢀnotꢀjustꢀshorterꢀdelaysꢀorꢀlowerꢀpulse-  
widthꢀdistortion)ꢀcanꢀachieveꢀshortꢀdeadꢀtimesꢀinꢀpowerꢀ  
inverters.ꢀ Theꢀ HCPL-4504/0454/J454ꢀ andꢀ HCNW4504ꢀ  
specifyꢀaꢀminimumꢀ(tPLHꢀ-ꢀtPHL)ꢀofꢀ-0.7ꢀµsꢀoverꢀanꢀoperat-  
ingꢀtemperatureꢀrangeꢀofꢀ0-70°C,ꢀresultingꢀinꢀaꢀmaximumꢀ  
deadꢀtimeꢀofꢀ2.0ꢀµsꢀwhenꢀtheꢀLEDꢀturn-onꢀdelayꢀisꢀequalꢀ  
Althoughꢀ(tPLH-tPHL maxꢀtellsꢀtheꢀdesignerꢀhowꢀmuchꢀdelayꢀ  
)
isꢀneededꢀtoꢀpreventꢀshoot-throughꢀcurrent,ꢀitꢀisꢀinsuffi-  
cientꢀtoꢀtellꢀtheꢀdesignerꢀhowꢀmuchꢀdeadꢀtimeꢀaꢀdesignꢀ  
willꢀhave.ꢀAssumingꢀthatꢀtheꢀoptocouplerꢀturn-onꢀdelayꢀ  
isꢀexactlyꢀequalꢀtoꢀ(tPLHꢀ-ꢀtPHL max,ꢀtheꢀminimumꢀdeadꢀtimeꢀ  
)
isꢀzeroꢀ(i.e.,ꢀthereꢀisꢀzeroꢀtimeꢀbetweenꢀtheꢀturnoffꢀofꢀtheꢀ  
veryꢀ slowestꢀ optocouplerꢀ andꢀ theꢀ turn-onꢀ ofꢀ theꢀ veryꢀ  
fastestꢀoptocoupler).  
toꢀ(tPLH-tPHL max  
ItꢀisꢀimportantꢀtoꢀmaintainꢀaccurateꢀLEDꢀturn-onꢀdelaysꢀ  
becauseꢀ delaysꢀ shorterꢀ thanꢀ (tPLHꢀ-ꢀtPHL maxꢀ mayꢀ allowꢀ  
)
,ꢀorꢀ1.3ꢀµs.  
Calculatingꢀ theꢀ maximumꢀ deadꢀ timeꢀ isꢀ slightlyꢀ moreꢀ  
complicated.ꢀAssumingꢀthatꢀtheꢀLEDꢀturn-onꢀdelayꢀisꢀstillꢀ  
)
shoot-throughꢀcurrents,ꢀwhileꢀlongerꢀdelaysꢀwillꢀincreaseꢀ  
theꢀworst-caseꢀdeadꢀtime.  
exactlyꢀequalꢀtoꢀ(tPLHꢀ-ꢀtPHL max,ꢀitꢀcanꢀbeꢀseenꢀinꢀFigureꢀ17ꢀ  
)
thatꢀtheꢀmaximumꢀdeadꢀtimeꢀisꢀtheꢀsumꢀofꢀtheꢀmaximumꢀ  
differenceꢀinꢀturn-onꢀdelayꢀplusꢀtheꢀmaximumꢀdifferenceꢀ  
inꢀturnoffꢀdelay,  
[(tPLHmax-tPLHmin)+(tPHLmax-tPHLmin)].  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0552EN  
AV02-0867EN - June 20, 2008  

相关型号:

HCPL-J454-500E

High CMR, High Speed Optocouplers
AVAGO

HCPL-J454-600E

High CMR, High Speed Optocouplers
AVAGO

HCPL-J456

Intelligent Power Module and Gate Drive Interface Optocouplers
AVAGO

HCPL-J456#300

SCHMITT-TRIGGER-OUTPUT OPTOCOUPLER
ETC

HCPL-J456#500

SCHMITT-TRIGGER-OUTPUT OPTOCOUPLER
ETC

HCPL-J456-000E

Intelligent Power Module and Gate Drive Interface Optocouplers
AVAGO

HCPL-J456-300

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8
AVAGO

HCPL-J456-300E

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 0.300 INCH, SURFACE MOUNT, DIP-8
AGILENT

HCPL-J456-500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, DIP-8
AVAGO

HCPL-J456-500E

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 0.300 INCH, DIP-8
AGILENT

HCPL-J456300E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, LEAD FREE, DIP-8
AVAGO

HCPL-J456500E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, LEAD FREE, DIP-8
AVAGO