HFBR-2402 [AVAGO]

FIBER OPTIC RECEIVER, 5Mbps, THROUGH HOLE MOUNT, SMA CONNECTOR, PLASTIC, DIP-8;
HFBR-2402
型号: HFBR-2402
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

FIBER OPTIC RECEIVER, 5Mbps, THROUGH HOLE MOUNT, SMA CONNECTOR, PLASTIC, DIP-8

光纤
文件: 总24页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFBR-0400 Series  
HFBR-14xxTransmitters  
HFBR-24xxReceivers  
Low Cost,Miniature Fiber Optic Components  
withS,SMA,SCandFCPorts  
DataSheet  
Description  
Features  
The HFBR-0400 Series of components is designed to • Meets IEEE 802.3 Ethernet and 802.5 Token Ring  
provide cost effective, high performance fiber optic  
communication links for information systems and  
industrial applications with link distances of up to  
2.7 kilometers. With the HFBR-24X6, the 125 MHz  
analog receiver, data rates of up to 160 megabaud are  
attainable.  
Standards  
Low cost transmitters and receivers  
®
Choice of ST , SMA, SC or FC ports  
• 820 nm wavelength technology  
• Signal rates up to 160 megabaud  
Link distances up to 2.7 km  
Transmitters and receivers are directly compatible • Specified with 50/ 125 µm, 62.5/ 125 µm, 100/ 140 µm,  
®
withpopularindustry-standardconnectors:ST,SMA,  
SCandFC.Theyarecompletelyspecifiedwithmultiple  
fiber sizes; including 50/125 µm, 62.5/125 µm,  
100/140 µm, and 200 µm.  
and 200 µm HCS fiber  
• Repeatable ST connections within 0.2 dB typical  
Unique optical port design for efficient coupling  
Auto-insertable and wave solderable  
• No board mounting hardware required  
Complete evaluation kits are available for ST product  
offerings;includingtransmitter,receiver,connectored  
cable, and technical literature. In addition, ST  
connectored cables are available for evaluation.  
• Wide operating temperature range  
-40°C to 85°C  
AlGaAs emitters 100% burn-in ensures high reliability  
Conductive port option  
Applications  
Local area networks  
Computer to peripheral links  
Computer monitor links  
Digital cross connect links  
Central office switch/ PBX links  
Video links  
• Modems and multiplexers  
• Suitable for tempest systems  
• Industrial control links  
®
ST is a registered trademark of AT&T.  
®
HCS is a registered trademark of the SpecTran Corporation.  
HFBR-0400 Series Part Number Guide  
HFBR X4XXaa  
1 = Transmitter  
2 = Receiver  
Option T (Threaded Port Option)  
Option C (Conductive Port Receiver Option)  
Option M (Metal Port Option)  
4 = 820 nm Transmitter and  
Receiver Products  
2 = Tx, Standard Power  
4 = Tx, High Power  
2 = Rx, 5 MBd, TTL Output  
6 = Rx, 125 MHz, Analog Output  
0 = SMA, Housed  
1 = ST, Housed  
2 = FC, Housed  
E = SC, Housed  
Available Options  
HFBR-1402  
HFBR-1404  
HFBR-1412  
HFBR-1412T  
HFBR-1414  
HFBR-1414M  
HFBR-1414T  
HFBR-1424  
HFBR-1412TM HFBR-2412TC  
HFBR-2412T  
HFBR-2422  
HFBR-24E6  
HFBR-2416T  
HFBR-2416TC  
HFBR-14E4  
HFBR-2402  
HFBR-2406  
HFBR-2416  
HFBR-2416M  
HFBR-2412  
Link Selection Guide  
Data Rate (MBd)  
Distance (m)  
1500  
Transmitter  
Receiver  
Fiber Size (µm)  
200 HCS  
Evaluation Kit  
N/ A  
5
HFBR-14X2  
HFBR-14X4  
HFBR-14X4  
HFBR-14X4  
HFBR-14X4  
HFBR-14X4  
HFBR-14X4  
HFBR-14X4  
HFBR-24X2  
HFBR-24X2  
HFBR-24X6  
HFBR-24X6  
HFBR-24X6  
HFBR-24X6  
HFBR-24X6  
HFBR-24X6  
5
2000  
62.5/ 125  
62.5/ 125  
62.5/ 125  
62.5/ 125  
62.5/ 125  
62.5/ 125  
62.5/ 125  
HFBR-0410  
HFBR-0414  
HFBR-0414  
HFBR-0414  
HFBR-0416  
HFBR-0416  
HFBR-0416  
20  
32  
55  
125  
155  
160  
2700  
2200  
1400  
700  
600  
500  
For additional information on specific links see the following individual link descriptions. Distances measured over temperature range from 0 to 70°C.  
Applications Support Guide  
transceiver. Avago offers a wide  
selection of evaluation kits for  
hands-on experience with fiber-  
optic products as well as a wide  
range of application notes com-  
plete with circuit diagrams and  
board layouts. Furthermore,  
Avago’s application support  
group is always ready to assist  
with any design consideration.  
This section gives the designer  
information necessary to use the  
HFBR-0400 series components to  
make a functional fiber-optic  
Application Literature  
Title  
Description  
HFBR-0400 Series  
Reliability Data  
Transmitter & Receiver Reliability Data  
Application Bulletin 78  
Application Note 1038  
Application Note 1065  
Application Note 1073  
Application Note 1086  
Application Note 1121  
Application Note 1122  
Application Note 1123  
Application Note 1137  
Low Cost Fiber Optic Links for Digital Applications up to 155 MBd  
Complete Fiber Solutions for IEEE 802.3 FOIRL, 10 Base-FB and 10 Base-FL  
Complete Solutions for IEEE 802.5J Fiber-Optic Token Ring  
HFBR-0319 Test Fixture for 1X9 Fiber Optic Transceivers  
Optical Fiber Interconnections in Telecommunication Products  
DC to 32 MBd Fiber-Optic Solutions  
2 to 70 MBd Fiber-Optic Solutions  
20 to 160 MBd Fiber-Optic Solutions  
Generic Printed Circuit Layout Rules  
2
HFBR-0400 Series Evaluation  
Kits  
HFBR-0410 ST Evaluat ion Kit  
HFBR-0416 Evaluat ion Kit  
Clean compressed air often is  
sufficient to remove particles of  
dirt; methanol on a cotton swab  
also works well.  
Contains the following:  
• One fully assembled 1x9  
transceiver board for 155 MBd  
evaluation including:  
-HFBR-1414 transmitter  
-HFBR-2416 receiver  
-circuitry  
Contains the following :  
• One HFBR-1412 transmitter  
Recommended Chemicals for  
Cleaning/Degreasing  
HFBR-0400 Product s  
• One HFBR-2412 five megabaud  
TTL receiver  
• Three meters of ST connec-  
tored 62.5/125 (µm fiber optic  
cable with low cost plastic  
ferrules.  
Alcohols: methyl, isopropyl,  
isobutyl. Aliphatics: hexane,  
heptane, Other: soap solution,  
naphtha.  
• Related literature  
Package and Handling  
Information  
Package Informat ion  
• Related literature  
Do not use partially halogenated  
hydrocarbons such as 1,1.1  
HFBR-0414 ST Evaluat ion Kit  
All HFBR-0400 Series  
transmitters and receivers are  
housed in a low-cost, dual-inline  
package that is made of high  
strength, heat resistant, chem-  
ically resistant, and UL 94V-O  
Includes additional components  
to interface to the transmitter and  
receiver as well as the PCB to  
reduce design time.  
Contains the following:  
• One HFBR-1414T transmitter  
• One HFBR-2416T receiver  
• Three meters of ST connec-  
tored 62.5/125 µm fiber optic  
cable  
• Printed circuit board  
• ML-4622 CP Data Quantizer  
• 74ACTllOOON LED Driver  
• LT1016CN8 Comparator  
• 4.7 µH Inductor  
trichloroethane, ketones such as  
MEK, acetone, chloroform, ethyl  
acetate, methylene dichloride,  
phenol, methylene chloride, or  
N-methylpyrolldone. Also, Avago  
does not recommend the use of  
cleaners that use halogenated  
hydrocarbons because of their  
potential environmental harm.  
®
flame retardant ULTEM (plastic  
(UL File #E121562). The  
transmitters are easily identified  
by the light grey color connector  
port. The receivers are easily  
identified by the dark grey color  
connector port. (Black color for  
conductive port.) The package is  
designed for auto-insertion and  
wave soldering so it is ideal for  
high volume production  
applications.  
• Related literature  
Handling and Design  
Informat ion  
HFBR-0400 SMA Evaluat ion  
Kit  
Each part comes with a protective  
port cap or plug covering the  
optics. These caps/plugs will vary  
by port style. When soldering, it  
is advisable to leave the protec-  
tive cap on the unit to keep the  
optics clean. Good system  
performance requires clean port  
optics and cable ferrules to avoid  
obstructing the optical path.  
Contains the following :  
• One HFBR-1402 transmitter  
• One HFBR-2402 five megabaud  
TTL receiver  
• Two meters of SMA  
connectored 1000 µm plastic  
optical fiber  
• Related literature  
®
Ultem is a registered Trademark of the GE corporation.  
3
1/4 - 36 UNS 2A THREAD  
Mechanical Dimensions  
SMA Port  
12.7  
(0.50)  
HFBR-X40X  
22.2  
(0.87)  
6.35  
(0.25)  
12.7  
(0.50)  
6.4  
10.2  
(0.40)  
3.6  
(0.14)  
DIA.  
(0.25)  
5.1  
(0.20)  
3.81  
(0.15)  
1.27  
(0.05)  
2.54  
(0.10)  
PINS 1,4,5,8  
0.51 X 0.38  
2.54  
(0.020 X 0.015)  
(0.10)  
PINS 2,3,6,7  
0.46  
(0.018)  
DIA.  
PIN NO. 1  
INDICATOR  
Mechanical Dimensions  
ST Port  
12.7  
(0.50)  
HFBR-X41X  
8.2  
(0.32)  
27.2  
(1.07)  
6.35  
(0.25)  
12.7  
(0.50)  
7.0  
10.2  
(0.40)  
3.6  
(0.14)  
DIA.  
(0.28)  
5.1  
(0.20)  
3.81  
(0.15)  
1.27  
(0.05)  
2.54  
(0.10)  
PINS 1,4,5,8  
0.51 X 0.38  
(0.020 X 0.015)  
2.54  
(0.10)  
PINS 2,3,6,7  
0.46  
(0.018)  
DIA.  
PIN NO. 1  
INDICATOR  
4
5.1  
(0.20)  
Mechanical Dimensions  
Threaded ST Port  
HFBR-X41XT  
12.7  
(0.50)  
8.4  
(0.33)  
27.2  
(1.07)  
7.6  
(0.30)  
6.35  
(0.25)  
12.7  
(0.50)  
7.1  
(0.28)  
10.2  
(0.40)  
DIA.  
3.6  
(0.14)  
5.1  
(0.20)  
3/8 - 32 UNEF - 2A  
3.81  
1.27  
(0.05)  
(0.15)  
2.54  
(0.10)  
DIA.  
PINS 1,4,5,8  
0.51 X 0.38  
(0.020 X 0.015)  
2.54  
(0.10)  
PINS 2,3,6,7  
0.46  
(0.018)  
DIA.  
PIN NO. 1  
INDICATOR  
Mechanical Dimensions  
FC Port  
M8 x 0.75 6G  
THREAD (METRIC)  
HFBR-X42X  
12.7  
(0.50)  
19.6  
(0.77)  
12.7  
(0.50)  
7.9  
(0.31)  
10.2  
(0.40)  
3.6  
(0.14)  
5.1  
(0.20)  
3.81  
(0.15)  
2.5  
(0.10)  
2.5  
(0.10)  
PIN NO. 1  
INDICATOR  
5
Mechanical Dimensions  
SC Port  
HFBR-X4EX  
28.65  
(1.128)  
6.35  
(0.25)  
12.7  
(0.50)  
10.38  
(0.409)  
10.0  
(0.394)  
3.60  
(0.140)  
5.1  
(0.200)  
15.95  
(0.628)  
3.81  
(0.15)  
1.27  
(0.050)  
2.54  
(0.10)  
2.54  
(0.100)  
12.7  
(0.500)  
6
LED OR DETECTOR IC  
LENS–SPHERE  
(ON TRANSMITTERS ONLY)  
HOUSING  
LENS–WINDOW  
CONNECTOR PORT  
HEADER  
EPOXY BACKFILL  
PORT GROUNDING PATH INSERT  
Figure 1. HFBR-0400 ST series cross-sectional view.  
Panel Mount Hardware  
HFBR-4401: for SMA Port s  
HFBR-4411: for ST Port s  
1/4 - 36 UNEF -  
2B THREAD  
PART  
NUMBER  
3/8 - 32 UNEF -  
2B THREAD  
0.2 IN.  
DATE CODE  
7.87  
DIA.  
12.70  
DIA.  
(0.310)  
(0.50)  
1.65  
1.65  
(0.065)  
3/8 - 32 UNEF -  
2A THREADING  
(0.065)  
HEX-NUT  
HEX-NUT  
1 THREAD  
AVAILABLE  
7.87 TYP.  
(0.310) DIA.  
14.27 TYP.  
(0.563) DIA.  
WALL  
NUT  
6.61  
DIA.  
10.41 MAX.  
(0.410) DIA.  
0.14  
(0.005)  
(0.260)  
0.46  
(0.018)  
WASHER  
WASHER  
WASHER  
(Each HFBR-4401 and HFBR-4411 kit consist s of 100 nut s and 100 w ashers.)  
Port Cap Hardware  
HFBR-4402: 500 SMA Port Caps  
HFBR-4120: 500 ST Port Plugs (120 psi)  
7
Options  
Opt ion C (Conduct ive Port  
Receiver Opt ion)  
In addition to the various port  
styles available for the HFBR-  
0400 series products, there are  
also several extra options that  
can be ordered. To order an  
option, simply place the corre-  
sponding option number at the  
end of the part number. See page  
2 for available options.  
• Designed to withstand electro-  
static discharge (ESD) of 25kV  
to the port  
• Significantly reduces effect of  
electromagnetic interference  
(EMI) on receiver sensitivity  
• Allows designer to separate the  
signal and conductive port  
grounds  
• Recommended for use in noisy  
environments  
Opt ion T (Threaded Port  
Opt ion)  
• Allows ST style port com-  
ponents to be panel mounted.  
• Compatible with all current  
makes of ST multimode  
connectors  
• Mechanical dimensions are  
compliant with MIL-STD-  
83522/13  
• Maximum wall thickness when  
using nuts and washers from  
the HFBR-4411 hardware kit is  
2.8 mm (0.11 inch)  
• Available on SMA and threaded  
ST port style receivers only  
Opt ion M (Met al Port Opt ion)  
• Nickel plated aluminum con-  
nector receptacle  
• Designed to withstand electro-  
static discharge (ESD) of 15kV  
to the port  
• Significantly reduces effect of  
electromagnetic interference  
(EMI) on receiver sensitivity  
• Allows designer to separate the  
signal and metal port grounds  
• Available on all ST ports  
• Recommended for use in very  
noisy environments  
• Available on SMA, ST, and  
threaded ST ports  
8
Typical Link Data  
HFBR-0400 Series  
Description  
corresponds to transceiver solu-  
tions combining the HFBR-0400  
series components and various  
recommended transceiver design  
circuits using off-the-shelf  
example of typical link perform-  
ance for a given design and does  
not call out any link limitations.  
Please refer to the appropriate  
application note given for each  
link to obtain more information.  
The following technical data is  
taken from 4 popular links using  
the HFBR-0400 series: the 5 MBd  
link, Ethernet 20 MBd link,  
Token Ring 32 MBd link, and the  
155 MBd link. The data given  
electrical components. This data  
is meant to be regarded as an  
5 MBd Link (HFBR-14XX/ 24X2)  
Link Performance -40°C to +85°C unless otherwise specified  
Parameter  
Symbol  
OPB  
Min.  
Typ.  
Max.  
Units  
Conditions  
Reference  
Optical Power Budget  
with 50/ 125 µm fiber  
4.2  
9.6  
dB  
HFBR-14X4/ 24X2  
NA = 0.2  
Note 1  
50  
Optical Power Budget  
with 62.5/ 125 µm fiber  
OPB  
8.0  
8.0  
12  
15  
15  
20  
dB  
dB  
dB  
HFBR-14X4/ 24X2  
NA = 0.27  
Note 1  
Note 1  
Note 1  
Note 2  
62.5  
100  
200  
Optical Power Budget  
with 100/ 140 µm fiber  
OPB  
OPB  
HFBR-14X2/ 24X2  
NA = 0.30  
Optical Power Budget  
with 200 µm fiber  
HFBR-14X2/ 24X2  
NA = 0.37  
Date Rate Synchronous  
Asynchronous  
dc  
dc  
5
MBd  
MBd  
2.5  
Note 3,  
Fig. 7  
Propagation Delay  
LOW to HIGH  
t
t
t
72  
46  
26  
ns  
ns  
ns  
T = 25°C,  
P = -21 dBm Peak  
R
Figs. 6, 7, 8  
PLH  
PHL  
A
Propagation Delay  
HIGH to LOW  
System Pulse Width  
Distortion  
-t  
Fiber cable  
length = 1 m  
PLH PHL  
-9  
Bit Error Rate  
BER  
10  
Data Rate <5 Bd  
P > -24 dBm Peak  
R
Notes:  
1. OPB at T = -40 to 85°C, V = 5.0 V dc, I  
= 60 mA. P = -24 dBm peak.  
R
A
CC  
F ON  
2. Synchronous data rate limit is based on these assumptions: a) 50% duty factor modulation, e.g., Manchester I or BiPhase Manchester II; b)  
continuous data; c) PLL Phase Lock Loop demodulation; d) TTL threshold.  
3. Asynchronous data rate limit is based on these assumptions: a) NRZ data; b) arbitrary timing-no duty factor restriction; c) TTL threshold.  
9
5 MBd Logic Link Design  
The following example will illus-  
trate the technique for selecting  
The curves in Figures 3, 4, and 5  
are constructed assuming no in-  
line splice or any additional  
system loss. Should the link  
consists of any in-line splices,  
these curves can still be used to  
calculate link limits provided they  
are shifted by the additional  
system loss expressed in dB. For  
example, Figure 3 indicates that  
with 48 mA of transmitter drive  
current, a 1.75 km link distance  
is achievable with 62.5/125 µm  
fiber which has a maximum  
attenuation of 4 dB/km. With  
2 dB of additional system loss, a  
1.25 km link distance is still  
achievable.  
If resistor R in Figure 2 is  
1
the appropriate value of I and R .  
F
1
70.4 , a forward current I of  
48 mA is applied to the HFBR-  
14X4 LED transmitter. With I =  
F
Maximum distance required  
F
= 400 meters. From Figure 3 the  
drive current should be 15 mA.  
From the transmitter data  
48 mA the HFBR-14X4/24X2  
logic link is guaranteed to work  
with 62.5/125 µm fiber optic  
cable over the entire range of 0  
to 1750 meters at a data rate of  
dc to 5 MBd, with arbitrary data  
format and pulse width distortion  
typically less than 25%. By  
V = 1.5 V (max.) at I = 15 mA  
F
F
as shown in Figure 9.  
V
- V  
F
5 V - 1.5 V  
15 mA  
CC  
I
F
R = ––––––– = –––––––––  
1
setting R = 115 , the transmit-  
1
R = 233 Ω  
1
ter can be driven with I = 30 mA,  
F
if it is desired to economize on  
power or achieve lower pulse  
distortion.  
Figure 2. Typical circuit configuration.  
10  
0
60  
50  
-1  
-2  
-3  
WORST CASE  
-40°C, +85°C  
UNDERDRIVE  
TYPICAL 26°C 40  
UNDERDRIVE  
30  
-4  
CABLE ATTENUATION dB/km  
α MAX (-40°C, +85°C)  
α MIN (-40°C, +85°C)  
α TYP (-40°C, +85°C)  
4
1
2.8  
20  
-5  
-6  
0
0.4  
0.8  
1.2  
1.6  
2
LINK LENGTH (km)  
Figure 3. HFBR-1414/ HFBR-2412 link design  
Figure 4. HFBR-14X2/ HFBR-24X2 link design  
Figure 5. HFBR-14X4/ HFBR-24X2 link design  
limits with 62.5/ 125 µm cable.  
limits with 100/ 140 µm cable.  
limits with 50/ 125 µm cable.  
75  
70  
55  
50  
45  
40  
t
(TYP) @ 25°C  
PLH  
65  
60  
55  
50  
45  
40  
35  
30  
35  
30  
25  
t
(TYP) @ 25°C  
PHL  
25  
20  
20  
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12  
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12  
P
– RECEIVER POWER – dBm  
P
– RECEIVER POWER – dBm  
R
R
Figure 6. Propagation delay through system  
with one meter of cable.  
Figure 7. Typical distortion of pseudo random  
data at 5 Mb/ s.  
Figure 8. System propagation delay test circuit and waveform timing definitions.  
11  
Ethernet 20 MBd Link (HFBR-14X4/ 24X6)  
(refer to Application Note 1038 for details)  
Typical Link Performance  
[1,2]  
Parameter  
Symbol  
Typ.  
Units  
Conditions  
Receiver Sensitivity  
-34.4  
dBm  
20 MBd D2D2 Hexadecimal Data  
average  
2 km 62.5/ 125 µm fiber  
Link Jitter  
7.56  
ns pk-pk  
ns pk-pk  
ns pk-pk  
ECL Out Receiver  
7.03  
TTL Out Receiver  
Transmitter Jitter  
Optical Power  
0.763  
-15.2  
20 MBd D2D2 Hexadecimal Data  
20 MBd D2D2 Hexadecimal Data  
P
T
dBm  
average  
Peak I  
= 60 mA  
F,ON  
LED rise time  
t
t
1.30  
3.08  
1.77  
ns  
ns  
ns  
1 MHz Square Wave Input  
r
LED fall time  
f
Mean difference  
Bit Error Rate  
| t -t |  
r
f
-10  
BER  
10  
Output Eye Opening  
Data Format 50% Duty Factor  
Notes:  
36.7  
20  
ns  
At AUI Receiver Output  
MBd  
1. Typical data at T = 25°C, V = 5.0 V dc.  
A
CC  
2. Typical performance of circuits shown in Figure 1 and Figure 3 of AN-1038 (see applications support section).  
Token Ring 32 MBd Link (HFBR-14X4/ 24X6)  
(refer to Application Note 1065 for details)  
Typical Link Performance  
[1,2]  
Parameter  
Symbol  
Typ.  
Units  
Conditions  
Receiver Sensitivity  
-34.1  
dBm  
32 MBd D2D2 Hexadecimal Data  
average  
2 km 62.5/ 125 µm fiber  
Link Jitter  
6.91  
5.52  
0.823  
-12.2  
-82.2  
1.3  
ns pk-pk  
ns pk-pk  
ns pk-pk  
dBm peak  
ECL Out Receiver  
TTL Out Receiver  
Transmitter Jitter  
Optical Power Logic Level “0”  
Optical Power Logic Level “1”  
LED Rise Time  
32 MBd D2D2 Hexadecimal Data  
P
Transmitter TTL in I  
= 60 mA,  
T ON  
F ON  
I
= 1 mA  
F OFF  
P
T OFF  
t
t
nsec  
nsec  
nsec  
1 MHz Square Wave Input  
r
LED Fall Time  
3.08  
1.77  
f
Mean Difference  
| t -t |  
r
f
-10  
Bit Error Rate  
BER  
10  
Data Format 50% Duty Factor  
32  
MBd  
Notes:  
1. Typical data at T = 25°C, V = 5.0 V dc.  
A
CC  
2. Typical performance of circuits shown in Figure 1 and Figure 3 of AN-1065 (see applications support section).  
12  
155 MBd Link (HFBR-14X4/ 24X6)  
(refer to Application Bulletin 78 for details)  
Typical Link Performance  
[1,2]  
Parameter  
Symbol  
OPB  
Typ.  
Units Max. Units Conditions  
Ref.  
Optical Power Budget  
with 50/ 125 µm fiber  
7.9  
13.9  
17.7  
17.7  
22.0  
dB  
dB  
dB  
dB  
MBd  
ns  
NA = 0.2  
Note 2  
50  
Optical Power Budget  
with 62.5/ 125 µm fiber  
OPB  
11.7  
11.7  
16.0  
1
NA = 0.27  
NA = 0.30  
NA = 0.35  
62  
Optical Power Budget  
with 100/ 140 µm fiber  
OPB  
100  
Optical Power Budget  
with 200 µm HCSf Fiber  
OPB  
200  
Data Format 20% to  
80% Duty Factor  
175  
System Pulse Width  
Distortion  
| t -t  
PLH PHL  
|
1
PR = -7 dBm Peak  
1 meter 62.5/ 125 µm fiber  
-9  
Bit Error Rate  
BER  
10  
Data Rate < 100 MBaud  
PR >-31 dBm Peak  
Note 2  
Notes:  
1. Typical data at T = 25°C, V = 5.0 V dc, PECL serial interface.  
2. Typical OPB was determined at a probability of error (BER) of 10 . Lower probabilities of error can be achieved with short fibers that have less  
optical loss.  
A
CC  
-9  
13  
HFBR-14X2/ 14X4 Low-Cost  
High-Speed Transmitters  
Descript ion  
60 mA into 50/125 µm fiber and  
-12 dBm into 62.5/125 µm fiber.  
The HFBR-14X2 standard  
Housed Product  
transmitter typically can launch  
-12 dBm of optical power at  
60 mA into 100/140 µm fiber  
cable. It is ideal for large size  
fiber such as 100/140 µm. The  
high launched optical power level  
is useful for systems where star  
couplers, taps, or inline connec-  
tors create large fixed losses.  
The HFBR-14XX fiber optic  
transmitter contains an 820 nm  
AlGaAs emitter capable of  
efficiently launching optical  
power into four different optical  
fiber sizes: 50/125 µm, 62.5/125  
µm, 100/140 µm, and 200 µm  
®
HCS . This allows the designer  
flexibility in choosing the fiber  
size. The HFBR-14XX is designed  
to operate with the Avago  
Consistent coupling efficiency is  
assured by the double-lens optical  
system (Figure 1). Power coupled  
into any of the three fiber types  
varies less than 5 dB from part to  
part at a given drive current and  
temperature. Consistent coupling  
efficiency reduces receiver  
dynamic range requirements  
which allows for longer link  
lengths.  
HFBR-24XX fiber optic receivers.  
Unhoused Product  
The HFBR-14XX transmitter’s  
high coupling efficiency allows  
the emitter to be driven at low  
current levels resulting in low  
power consumption and increased  
reliability of the transmitter. The  
HFBR-14X4 high power transmit-  
ter is optimized for small size  
fiber and typically can launch  
-15.8 dBm optical power at  
Regulatory Compliance – Targeted Specifications  
Feature  
Test Method  
Performance  
Class 1B (>500, <1000 V) – Human Body Model  
Electrostatic Discharge (ESD)  
MIL-STD-883 Method 3015  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
-55  
-40  
Max.  
+85  
+85  
Units  
°C  
°C  
Reference  
Storage Temperature  
Operating Temperature  
T
S
T
A
Lead Soldering Cycle  
Forward Input Current  
Reverse Input Voltage  
Temp.  
+260  
10  
°C  
sec  
mA  
mA  
V
Time  
Peak  
dc  
I
200  
100  
1.8  
Note 1  
FPK  
I
Fdc  
V
BR  
14  
Electrical/ Optical Specifications -40°C to +85°C unless otherwise specified.  
[2]  
Parameter  
Symbol  
Min.  
Typ.  
1.70  
1.84  
-0.22  
-0.18  
3.8  
Max. Units  
Conditions  
I = 60 mA dc  
Reference  
Forward Voltage  
V
F
1.48  
2.09  
V
Figure 9  
F
I = 100 mA dc  
F
Forward Voltage  
Temperature Coefficient  
V / T  
mV/ °C I = 60 mA dc  
Figure 9  
F
F
I = 100 mA dc  
F
Reverse Input Voltage  
Peak Emission Wavelength  
Diode Capacitance  
V
BR  
1.8  
V
I = 100 µA dc  
F
λ
792  
820  
865  
nm  
P
C
T
55  
pF  
V = 0, f = 1 MHz  
I = 60 mA dc  
Optical Power Temperature  
Coefficient  
P / T  
-0.006  
-0.010  
260  
dB/ °C  
T
I = 100 mA dc  
Thermal Resistance  
θ
°C/ W  
Notes 3, 8  
JA  
14X2 Numerical Aperture  
14X4 Numerical Aperture  
14X2 Optical Port Diameter  
14X4 Optical Port Diameter  
NA  
NA  
D
0.49  
0.31  
290  
µm  
µm  
Note 4  
Note 4  
D
150  
HFBR-14X2 Output Power Measured Out of 1 Meter of Cable  
[2]  
Parameter  
Symbol  
Min.  
-21.8  
-22.8  
-20.3  
-21.9  
-19.0  
-20.0  
-17.5  
-19.1  
-15.0  
16.0  
Typ.  
Max.  
-16.8  
-15.8  
-14.4  
-13.8  
-14.0  
-13.0  
-11.6  
-11.0  
-10.0  
-9.0  
Unit  
dBm  
peak  
Conditions  
T = 25°C I = 60 mA dc  
Reference  
50/ 125 µm  
Fiber Cable  
NA = 0.2  
P
P
P
P
-18.8  
Notes 5, 6, 9  
T50  
A
F
-16.8  
-16.0  
-14.0  
-12.0  
-10.0  
-7.1  
T = 25°C  
A
I = 100 mA dc  
F
62.5/ 125 µm  
Fiber Cable  
NA = 0.275  
dBm  
peak  
T = 25°C  
A
I = 60 mA dc  
F
T62  
T = 25°C  
A
I = 100 mA dc  
F
100/ 140 µm  
Fiber Cable  
NA = 0.3  
dBm  
peak  
T = 25°C  
A
I = 60 mA dc  
F
T100  
T200  
-13.5  
-15.1  
-10.7  
-11.7  
-9.2  
-7.6  
T = 25°C  
A
I = 100 mA dc  
F
-7.0  
200 µm HCS  
Fiber Cable  
NA = 0.37  
-4.7  
dBm  
peak  
T = 25°C  
A
I = 60 mA dc  
F
-3.7  
-5.2  
-2.3  
T = 25°C  
A
I = 100 mA dc  
F
-10.8  
-1.7  
CAUTION: The sma ll junction sizes inher ent to the design of these components incr ea se the components’  
susceptibility to da ma ge fr om electr osta tic discha r ge (ESD). It is a dvised tha t nor ma l sta tic pr eca utions be  
ta ken in ha ndling a nd a ssembly of these components to pr event da ma ge a nd/ or degr a da tion which ma y be  
induced by ESD.  
15  
HFBR-14X4 Output Power Measured out of 1 Meter of Cable  
[2]  
Parameter  
Symbol  
Min.  
-18.8  
-19.8  
-17.3  
-18.9  
-15.0  
-16.0  
-13.5  
-15.1  
-9.5  
Typ.  
Max.  
-13.8  
-12.8  
-11.4  
-10.8  
-10.0  
-9.0  
Unit  
dBm  
peak  
Conditions  
T = 25°C I = 60 mA dc  
Reference  
50/ 125 µm  
Fiber Cable  
NA = 0.2  
PT50  
-15.8  
Notes 5, 6, 9  
A
F
-13.8  
-12.0  
-10.0  
-6.5  
T = 25°C  
A
I = 100 mA dc  
F
62.5/ 125 µm  
Fiber Cable  
NA = 0.275  
PT62  
dBm  
peak  
T = 25°C  
A
I = 60 mA dc  
F
-7.6  
T = 25°C  
A
I = 100 mA dc  
F
-7.0  
100/ 140 µm  
Fiber Cable  
NA = 0.3  
PT100  
PT200  
-4.5  
dBm  
peak  
T = 25°C  
A
I = 60 mA dc  
F
-10.5  
-8.0  
-3.5  
-4.5  
-2.1  
T = 25°C  
A
I = 100 mA dc  
F
-9.6  
-1.5  
200 µm HCS  
Fiber Cable  
NA = 0.37  
-5.2  
-3.7  
+0.8  
+1.8  
+3.2  
+3.8  
dBm  
peak  
T = 25°C  
A
I = 60 mA dc  
F
-6.2  
-3.7  
-1.7  
T = 25°C  
A
I = 100 mA dc  
F
-5.3  
14X2/ 14X4 Dynamic Characteristics  
[2]  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Reference  
Rise Time, Fall Time  
(10% to 90%)  
t , t  
4.0  
6.5  
nsec  
No Pre-bias  
I = 60 mA  
Figure 12  
Note 7  
r
f
f
F
Rise Time, Fall Time  
(10% to 90%)  
t , t  
r
3.0  
0.5  
nsec  
nsec  
I = 10 to  
Note 7,  
Figure 11  
F
100 mA  
Pulse Width Distortion  
PWD  
Figure 11  
Notes:  
1. For I > 100 mA, the time duration should not exceed 2 ns.  
FPK  
2. Typical data at T = 25°C.  
A
3. Thermal resistance is measured with the transmitter coupled to a connector assembly and mounted on a printed circuit board.  
4. D is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of the maximum.  
®
5. P is measured with a large area detector at the end of 1 meter of mode stripped cable, with an ST precision ceramic ferrule (MIL-STD-83522/ 13)  
T
for HFBR-1412/ 1414, and with an SMA 905 precision ceramic ferrule for HFBR-1402/ 1404.  
6. When changing µW to dBm, the optical power is referenced to 1 mW (1000 µW). Optical Power P (dBm) = 10 log P (µW)/ 1000 µW.  
7. Pre-bias is recommended if signal rate >10 MBd, see recommended drive circuit in Figure 11.  
8. Pins 2, 6, and 7 are welded to the anode header connection to minimize the thermal resistance from junction to ambient. To further reduce the  
thermal resistance, the anode trace should be made as large as is consistent with good RF circuit design.  
9. Fiber NA is measured at the end of 2 meters of mode stripped fiber, using the far-field pattern. NA is defined as the sine of the half angle,  
determined at 5% of the peak intensity point. When using other manufacturer’s fiber cable, results will vary due to differing NA values and  
specification methods.  
All HFBR-14XX LED t ransmit t ers are classified as IEC 825-1 Accessible Emission Limit (AEL)  
Class 1 based upon t he current proposed draft scheduled t o go in t o effect on J anuary 1, 1997.  
AEL Class 1 LED devices are considered eye safe. Cont act your Avago sales represent at ive for  
more informat ion.  
CAUTION: The sma ll junction sizes inher ent to the design of these components incr ea se the components’  
susceptibility to da ma ge fr om electr osta tic discha r ge (ESD). It is a dvised tha t nor ma l sta tic pr eca utions be  
ta ken in ha ndling a nd a ssembly of these components to pr event da ma ge a nd/ or degr a da tion which ma y be  
induced by ESD.  
16  
Recommended Drive Circuits  
The circuit used to supply current  
to the LED transmitter can  
significantly influence the optical  
switching characteristics of the  
LED. The optical rise/fall times  
and propagation delays can be  
improved by using the appro-  
priate circuit techniques. The  
LED drive circuit shown in  
pensation to reduce the typical  
rise/fall times of the LED and a  
small pre-bias voltage to minimize  
propagation delay differences  
that cause pulse-width distortion.  
The circuit will typically produce  
rise/fall times of 3 ns, and a total  
jitter including pulse-width dis-  
tortion of less than 1 ns. This  
circuit is recommended for appli-  
cations requiring low edge jitter  
or high-speed data transmission  
at signal rates of up to 155 MBd.  
Component values for this circuit  
can be calculated for different  
LED drive currents using the  
equations shown below. For  
additional details about LED  
drive circuits, the reader is  
encouraged to read Avago  
Application Bulletin 78 and  
Application Note 1038.  
Figure 11 uses frequency com-  
(V - V ) + 3.97 (V - V - 1.6 V)  
(5 - 1.84) + 3.97 (5 - 1.84 - 1.6)  
R = –––––––––––––––––––––––––––––  
CC  
F
CC  
F
R = –––––––––––––––––––––––––––––––  
y
y
I
(A)  
0.100  
F ON  
1
R
3.16 + 6.19  
y
R
= – ––––  
R = ––––––––––– = 93.5 Ω  
X1  
y
)
(
2
3.97  
0.100  
1
2
93.5  
3.97  
R
R
() = R - 1  
R
= – –––– = 11.8 Ω  
EQ2  
X1  
X1  
)
(
= R = R = 3(R  
)
R
R
= 11.8 - 1 = 10.8 Ω  
X2  
X3  
X4  
EQ2  
EQ2  
2000(ps)  
C(pF) = ––––––––  
= R = R = 3(10.8) = 32.4 Ω  
X2  
X3  
X4  
R
()  
X1  
2000 ps  
11.8 Ω  
Exa mple for I  
obta ined fr om Figur e 9 (= 1.84 V).  
= 100 mA: V ca n be  
C = ––––––– = 169 pF  
F ON  
F
17  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.0  
2.0  
1.4  
1.0  
0.8  
0
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-7.0  
0
10 20 30 40 50 60 70 80 90 100  
– FORWARD CURRENT – mA  
I
F
Figure 9. Forward voltage and current  
characteristics.  
Figure 10. Normalized transmitter output vs.  
forward current.  
Figure 11. Recommended drive circuit.  
Figure 12. Test circuit for measuring t , t .  
r
f
18  
HFBR-24X2 Low-Cost 5 MBd  
Receiver  
Housed Product  
designed for direct interfacing to  
popular logic families. The  
absence of an internal pull-up  
resistor allows the open-collector  
output to be used with logic  
families such as CMOS requiring  
voltage excursions much higher  
Description  
The HFBR-24X2 fiber optic  
receiver is designed to operate  
with the Hewlett-Packard HFBR-  
14XX fiber optic transmitter and  
50/125 µm, 62.5/125 µm, 100/  
than V .  
CC  
®
140 µm, and 200 µm HCS fiber  
Both the open-collector “Data”  
optic cable. Consistent coupling  
into the receiver is assured by the  
lensed optical system (Figure 1).  
Response does not vary with fiber  
size 0.100 µm.  
output Pin 6 and V Pin 2 are  
CC  
referenced to “Com” Pin 3, 7. The  
“Data” output allows busing,  
strobing and wired “OR” circuit  
configurations. The transmitter is  
designed to operate from a single  
+5 V supply. It is essential that a  
bypass capacitor (0.1 µF  
The HFBR-24X2 receiver incor-  
porates an integrated photo IC  
containing a photodetector and  
dc amplifier driving an open-  
collector Schottky output  
ceramic) be connected from  
Pin 2 (V ) to Pin 3 (circuit  
CC  
common) of the receiver.  
transistor. The HFBR-24X2 is  
Unhoused Product  
PIN FUNCTION  
1
2
3
4
V
(5 V)  
CC  
COMMON  
DATA  
COMMON  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
-55  
Max.  
+85  
+85  
+260  
10  
Units  
°C  
Reference  
Storage Temperature  
Operating Temperature  
T
S
T
A
-40  
°C  
Lead Soldering Cycle  
Temp.  
Time  
°C  
Note 1  
sec  
V
SupplyVoltage  
Output Current  
Output Voltage  
V
CC  
-0.5  
-0.5  
7.0  
I
O
25  
mA  
V
V
O
18.0  
40  
Output Collector Power Dissipation  
Fan Out (TTL)  
P
O AV  
mW  
N
5
Note 2  
19  
Electrical/ Optical Characteristics -40°C to + 85°C unless otherwise specified  
Fiber sizes with core diameter 100 µm and NA 0.35, 4.75 V V 5.25 V  
CC  
[3]  
Parameter  
Symbol Min.  
Typ.  
Max.  
Units  
Conditions  
V = 18  
Reference  
High Level Output Current  
I
OH  
5
250  
µA  
O
P < -40 dBm  
R
Low Level Output Voltage  
High Level Supply Current  
Low Level Supply Current  
V
0.4  
3.5  
6.2  
0.5  
6.3  
10  
V
I = 8 mA  
O
P > -24 dBm  
R
OL  
I
mA  
mA  
V = 5.25 V  
CC  
P < -40 dBm  
R
CCH  
I
V = 5.25 V  
CC  
CCL  
P > -24 dBm  
R
Equivalent N.A.  
NA  
D
0.50  
400  
Optical Port Diameter  
µm  
Note 4  
Dynamic Characteristics  
-9  
-40°C to +85°C unless otherwise specified; 4.75 V V 5.25 V; BER 10  
CC  
[3]  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
-40  
Units  
Conditions  
Reference  
Peak Optical Input Power  
Logic Level HIGH  
P
dBm pk  
µW pk  
dBm pk  
µW pk  
dBm pk  
µW pk  
ns  
λ = 820 nm  
P
Note 5  
RH  
RL  
0.1  
Peak Optical Input Power  
Logic Level LOW  
P
-25.4  
2.9  
-9.2  
120  
-10.0  
100  
T = +25°C,  
Note 5  
Note 6  
A
I
OL  
= 8 mA  
-24.0  
4.0  
I
OL  
= 8 mA  
Propagation Delay LOW  
to HIGH  
t
t
65  
49  
T = 25°C,  
PLHR  
PHLR  
A
P = -21 dBm,  
R
Data Rate =  
5 MBd  
Propagation Delay HIGH  
to LOW  
ns  
Notes:  
1. 2.0 mm from where leads enter case.  
2. 8 mA load (5 x 1.6 mA), R = 560 .  
L
3. Typical data at T = 25°C, V = 5.0 Vdc.  
A
CC  
4. D is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter  
and the lens magnification.  
5. Measured at the end of 100/ 140 µm fiber optic cable with large area detector.  
6. Propagation delay through the system is the result of several sequentially-occurring phenomena. Consequently it is a combination of data-rate-  
limiting effects and of transmission-time effects. Because of this, the data-rate limit of the system must be described in terms of time differentials  
between delays imposed on falling and rising edges.  
7. As the cable length is increased, the propagation delays increase at 5 ns per meter of length. Data rate, as limited by pulse width distortion, is not  
affected by increasing cable length if the optical power level at the receiver is maintained.  
CAUTION: The sma ll junction sizes inher ent to the design of these components incr ea se the components’  
susceptibility to da ma ge fr om electr osta tic discha r ge (ESD). It is a dvised tha t nor ma l sta tic pr eca utions be  
ta ken in ha ndling a nd a ssembly of these components to pr event da ma ge a nd/ or degr a da tion which ma y be  
induced by ESD.  
20  
HFBR-24X6 Low-Cost 125 MHz  
Receiver  
Description  
integrated circuit. The HFBR-24X6  
receives an optical signal and  
converts it to an analog voltage.  
The output is a buffered emitter-  
follower. Because the signal  
receiver from noisy host systems.  
Refer to AN 1038, 1065, or AB 78  
for details.  
The HFBR-24X6 fiber optic  
receiver is designed to operate  
with the Avago HFBR-14XX fiber  
optic transmitters and 50/125  
µm, 62.5/125 µm, 100/140 µm  
amplitude from the HFBR-24X6  
receiver is much larger than from a  
simple PIN photodiode, it is less  
susceptible to EMI, especially at  
high signaling rates. For very noisy  
environments, the conductive or  
metal port option is recommended.  
A receiver dynamic range of 23 dB  
over temperature is achievable  
Housed Product  
6
V
CC  
ANALOG  
SIGNAL  
2
®
and 200 µm HCS fiber optic  
3 & 7  
cable. Consistent coupling into  
the receiver is assured by the  
lensed optical system (Figure 1).  
Response does not vary with fiber  
size for core diameters of 100 µm  
or less.  
V
EE  
4
3
2
1
5
6
7
8
-9  
(assuming 10 BER).  
BOTTOM VIEW  
PIN NO. 1  
INDICATOR  
The frequency response is typically  
dc to 125 MHz. Although the  
HFBR-24X6 is an analog receiver,  
it is compatible with digital  
The receiver output is an analog  
signal which allows follow-on  
circuitry to be optimized for a  
variety of distance/data rate  
requirements. Low-cost external  
components can be used to convert  
the analog output to logic  
PIN FUNCTION  
1†  
N.C.  
2
SIGNAL  
3*  
4†  
5†  
6
7*  
8†  
V
N.C.  
N.C.  
V
V
N.C.  
EE  
systems. Please refer to  
CC  
EE  
Application Bulletin 78 for simple  
and inexpensive circuits that  
operate at 155 MBd or higher.  
compatible signal levels for various  
data formats and data rates up to  
175 MBd. This distance/data rate  
tradeoff results in increased optical  
power budget at lower data rates  
which can be used for additional  
distance or splices.  
* PINS 3 AND 7 ARE ELECTRICALLY  
CONNECTED TO THE HEADER.  
The recommended ac coupled  
receiver circuit is shown in Figure  
12. It is essential that a 10 ohm  
resistor be connected between pin  
6 and the power supply, and a 0.1  
µF ceramic bypass capacitor be  
connected between the power  
supply and ground. In addition, pin  
6 should be filtered to protect the  
† PINS 1, 4, 5, AND 8 ARE ISOLATED FROM  
THE INTERNAL CIRCUITRY, BUT ARE  
ELECTRICALLY CONNECTED TO EACH OTHER.  
Unhoused Product  
PIN FUNCTION  
The HFBR-24X6 receiver contains  
a PIN photodiode and low noise  
transimpedance pre-amplifier  
1
2*  
3
SIGNAL  
V
EE  
V
CC  
V
EE  
4*  
6
POSITIVE  
SUPPLY  
BIAS & FILTER  
CIRCUITS  
V
CC  
300 pF  
2
ANALOG  
SIGNAL  
V
OUT  
5.0  
mA  
3, 7  
NEGATIVE  
SUPPLY  
V
EE  
Figure 11. Simplified schematic diagram.  
CAUTION: The sma ll junction sizes inher ent to the design of these components incr ea se the components’  
susceptibility to da ma ge fr om electr osta tic discha r ge (ESD). It is a dvised tha t nor ma l sta tic pr eca utions be  
ta ken in ha ndling a nd a ssembly of these components to pr event da ma ge a nd/ or degr a da tion which ma y be  
induced by ESD.  
21  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
-55  
Max.  
+85  
+85  
+260  
10  
Units  
°C  
°C  
°C  
s
Reference  
Storage Temperature  
Operating Temperature  
Lead Soldering Cycle  
T
S
T
A
-40  
Temp.  
Time  
Note 1  
Supply Voltage  
Output Current  
Signal Pin Voltage  
V
-0.5  
-0.5  
6.0  
V
CC  
I
O
25  
mA  
V
V
SIG  
V
CC  
Electrical/ Optical Characteristics -40°C to +85°C; 4.75 V Supply Voltage 5.25 V,  
= 511 , Fiber sizes with core diameter 100 µm, and N.A. -0.35 unless otherwise specified  
R
LOAD  
[2]  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Reference  
Responsivity  
R
P
5.3  
7
9.6  
mV/ µW  
T = 25°C  
@ 820 nm, 50 MHz  
Note 3, 4  
Figure 16  
A
4.5  
11.5  
0.59  
mV/ µW  
@820 nm, 50 MHz  
RMS Output Noise  
Voltage  
V
NO  
0.40  
mV  
Bandwidth Filtered  
@ 75 MHz  
Note 5  
P = 0 µW  
R
0.70  
mV  
Unfiltered Bandwidth  
P = 0 µW  
R
Figure 13  
Equivalent Input Optical  
Noise Power (RMS)  
P
P
-43.0  
0.050  
-41.4  
dBm  
Bandwidth Filtered  
@ 75 MHz  
N
0.065 µW  
Optical Input Power  
(Overdrive)  
-7.6  
175  
-8.2  
150  
dBm pk  
T = 25°C  
A
Figure 14  
Note 6  
R
µW pk  
dBm pk  
µW pk  
Output Impedance  
Z
o
30  
Test Frequency =  
50 MHz  
dc Output Voltage  
Power Supply Current  
Equivalent N.A.  
V
-4.2  
-3.1  
9
-2.4  
15  
V
P = 0 µW  
R
o dc  
I
EE  
mA  
R
= 510 Ω  
LOAD  
NA  
D
0.35  
324  
Equivalent Diameter  
µm  
Note 7  
CAUTION: The sma ll junction sizes inher ent to the design of these components incr ea se the components’  
susceptibility to da ma ge fr om electr osta tic discha r ge (ESD). It is a dvised tha t nor ma l sta tic pr eca utions be  
ta ken in ha ndling a nd a ssembly of these components to pr event da ma ge a nd/ or degr a da tion which ma y be  
induced by ESD.  
22  
Dynamic Characteristics -40°C to +85°C; 4.75 V Supply Voltage 5.25 V; R  
LOAD  
= 511 ,  
LOAD  
C
= 5 pF unless otherwise specified  
[2]  
Parameter  
Symbol  
t , t  
Min.  
Typ.  
Max.  
Units  
Conditions  
Reference  
Rise/ Fall Time  
10% to 90%  
3.3  
6.3  
ns  
P = 100 µW peak  
R
Figure 15  
r
f
Pulse Width Distortion  
PWD  
0.4  
2
2.5  
ns  
%
P = 150 µW peak  
Note 8,  
Figure 14  
R
Overshoot  
P = 5 µW peak,  
R
Note 9  
t = 1.5 ns  
r
Bandwidth (Electrical)  
BW  
125  
MHz  
Hz•s  
-3 dB Electrical  
Bandwidth - Rise  
Time Product  
0.41  
Note 10  
Notes:  
1. 2.0 mm from where leads enter case.  
2. Typical specifications are for operation at T = 25°C and V = +5 V dc.  
A
CC  
3. For 200 µm HCS fibers, typical responsivity will be 6 mV/ µW. Other parameters will change as well.  
4. Pin # 2 should be ac coupled to a load 510 ohm. Load capacitance must be less than 5 pF.  
5. Measured with a 3 pole Bessel filter with a 75 MHz, -3 dB bandwidth. Recommended receiver filters for various bandwidths are provided in  
Application Bulletin 78.  
6. Overdrive is defined at PWD = 2.5 ns.  
7. D is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter  
and the lens magnification.  
8. Measured with a 10 ns pulse width, 50% duty cycle, at the 50% amplitude point of the waveform.  
9. Percent overshoot is defined as:  
V
- V  
PK 100%  
––––––––––  
x 100%  
(
V
100%  
)
10. The conversion factor for the rise time to bandwidth is 0.41 since the HFBR-24X6 has a second order bandwidth limiting characteristic.  
0.1 µF  
+5 V  
10 Ω  
6
30 pF  
2
POST  
AMP  
LOGIC  
OUTPUT  
3 & 7  
R
LOADS  
500 MIN.  
Figure 12. Recommended ac coupled receiver circuit. (See AB 78 and AN 1038 for more information.)  
CAUTION: The sma ll junction sizes inher ent to the design of these components incr ea se the components’  
susceptibility to da ma ge fr om electr osta tic discha r ge (ESD). It is a dvised tha t nor ma l sta tic pr eca utions be  
ta ken in ha ndling a nd a ssembly of these components to pr event da ma ge a nd/ or degr a da tion which ma y be  
induced by ESD.  
23  
150  
3.0  
6.0  
5.0  
4.0  
125  
100  
2.5  
2.0  
t
t
f
75  
50  
1.5  
1.0  
3.0  
2.0  
1.0  
r
25  
0
0.5  
0
0
10  
P
20  
30  
40  
50  
60  
70 80  
-60 -40 -20  
0
20  
40  
60  
80 100  
0
50  
100  
150  
200  
250  
300  
FREQUENCY – MH  
TEMPERATURE – °C  
– INPUT OPTICAL POWER – µW  
Z
R
Figure 13. Typical spectral noise density vs.  
frequency.  
Figure 14. Typical pulse width distortion vs.  
peak input power.  
Figure 15. Typical rise and fall times vs.  
temperature.  
1.25  
1.00  
0.75  
0.50  
0.25  
0
400 480 560 640 720 800 880 960 1040  
λ – WAVELENGTH – nm  
Figure 16. Receiver spectral response  
normalized to 820 nm.  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5988-3624EN  
AV02-0525EN June 15, 2007  

相关型号:

HFBR-2402C

Components is Designed to Provide cost effective, High performance fiber optic communication links
AGILENT

HFBR-2402C

Components is Designed to Provide cost effective, High performance fiber optic communication links
HP

HFBR-2402HA

Receiver, 175Mbps, SMA Connector, DIP, Panel Mount
AGILENT

HFBR-2402HB

暂无描述
AGILENT

HFBR-2402M

Components is Designed to Provide cost effective, High performance fiber optic communication links
AGILENT

HFBR-2402M

Components is Designed to Provide cost effective, High performance fiber optic communication links
HP

HFBR-2402OPTIONK

Receiver, 175Mbps, SMA Connector, DIP, Panel Mount
AGILENT

HFBR-2402OPTIONM

暂无描述
AGILENT

HFBR-2402OPTIONT

Receiver, 175Mbps, SMA Connector, DIP, Panel Mount
AGILENT

HFBR-2402T

Components is Designed to Provide cost effective, High performance fiber optic communication links
AGILENT

HFBR-2402T

Components is Designed to Provide cost effective, High performance fiber optic communication links
HP

HFBR-2402TA

暂无描述
AGILENT