HLMP-1521-EU302 [AVAGO]

SINGLE COLOR LED;
HLMP-1521-EU302
型号: HLMP-1521-EU302
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

SINGLE COLOR LED

文件: 总9页 (文件大小:237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HLMP-132x Series, HLMP-142x Series,  
HLMP-152x Series  
T-1 (3 mm) High Intensity LED Lamps  
Data Sheet  
Description  
Features  
High intensity  
This family of T-1 lamps is specially designed for applica-  
tions requiring higher on-axis intensity than is achiev-  
able with a standard lamp. The light generated is focused  
to a narrow beam to achieve this effect.  
Choice of 3 bright colors  
High Efficiency Red  
Yellow  
High Performance Green  
Package Dimensions  
Popular T-1 diameter package  
Selected minimum intensities  
Narrow viewing angle  
General purpose leads  
Reliable and rugged  
3.17 (.125)  
Ø
2.67 (.105)  
3.43 (.135)  
2.92 (.115)  
Available on tape and reel  
4.70 (.185)  
4.19 (.165)  
For more information, please refer to Tape and Reel  
Option data sheet  
1.14 (.045)  
0.51 (.020)  
6.35 (.250)  
5.58 (.220)  
Selection Guide  
Luminous Intensity  
Iv (mcd) @ 10 mA  
Package  
Description  
0.65 (0.026) max.  
Part Number  
Color  
Min.  
8.6  
8.6  
9.2  
Max.  
HLMP-1321  
Tinted,  
Non-diffused  
High Efficiency  
Red  
HLMP-1321-G00xx  
HLMP-1420  
24.1(.95) min.  
Microtinted,  
Non-diffused  
Yellow  
Green  
HLMP-1421  
Tinted,  
Non-diffused  
9.2  
9.2  
6.7  
HLMP-1421-F00xx  
HLMP-1520  
1.52 (.060)  
1.02 (.040)  
Microtinted,  
Non-diffused  
HLMP-1521  
Tinted,  
Non-diffused  
6.7  
6.7  
HLMP-1521-E00xx  
(0.022) 0.55  
(0.016) 0.40  
SQ. TYP.  
2.79 (.110)  
2.29 (.090)  
Notes:  
1. All dimensions are in millimeters (inches).  
2. An epoxy meniscus may extend about 1 mm (0.40") down the leads.  
3. For PCB hole recommendations, see the Precautions section.  
Part Numbering System  
HLMP - 1 x xx - x x x xx  
Mechanical Option  
00: Bulk  
01: Tape & Reel, Crimped Leads  
02: Tape & Reel, Straight Leads  
A1: Right Angle Housing, Uneven Leads  
A2: Right Angle Housing, Even Leads  
Color Bin Options  
0: Full Color Bin Distribution  
Maximum Iv Bin Options  
0: Open (no max. limit)  
Others: Please refer to the Iv Bin Table  
Minimum Iv Bin Options  
Please refer to the Iv Bin Table  
Lens Options  
20: Untinted or Microtinted, Non-diffused  
21: Tinted, Non-diffused  
Color Options  
3: GaP HER  
4: GaP Yellow  
5: GaP Green  
Package Options  
1: T-1 (3 mm)  
Absolute Maximum Ratings at TA = 25°C  
Parameter  
Red  
Yellow  
Green  
Units  
mA  
mA  
mA  
mW  
V
Peak Forward Current  
90  
60  
90  
Average Forward Current[1]  
DC Current[2]  
Power Dissipation[3]  
25  
20  
25  
30  
20  
30  
135  
85  
135  
Reverse Voltage (IR = 100 µA)  
Transient Forward Current[4] (10 µsec Pulse)  
LED Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
5
5
5
500  
500  
500  
mA  
°C  
110  
110  
110  
-40 to +100  
-40 to +100  
-40 to +100  
-40 to +100  
-20 to +100  
-40 to +100  
°C  
Notes:  
1. See Figure 5 (Red), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.  
2. For Red and Green series derate linearly from 50°C at 0.5 mA/°C. For Yellow series derate linearly from 50°C at 0.2 mA/°C.  
3. For Red and Green series derate power linearly from 25°C at 1.8 mW/°C. For Yellow series derate power linearly from 50°C at 1.6 mW/°C.  
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die  
and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute  
Maximum Ratings.  
2
Electrical Characteristics at TA = 25°C  
Device  
HLMP-  
Symbol  
Description  
Min.  
Typ.  
Max.  
Units Test Conditions  
IV  
Luminous Intensity  
1320  
1321  
8.6  
8.6  
30  
30  
mcd  
IF = 10 mA  
(Figure 3)  
1420  
1421  
9.2  
9.2  
15  
15  
mcd  
mcd  
Deg.  
IF = 10 mA  
(Figure 8)  
1520  
1521  
6.7  
6.7  
22  
22  
IF = 10 mA  
(Figure 3)  
2q1/2  
Including Angle Between  
Half Luminous Intensity  
Points  
All  
45  
IF = 10 mA  
See Note 1  
(Figures 6, 11, 16, 21)  
lPEAK  
Peak Wavelength  
132x  
635  
nm  
Measurement  
at Peak (Figure 1)  
142X  
152X  
583  
565  
Dl1/2  
Spectral Line Halfwidth  
Dominant Wavelength  
Speed of Response  
Capacitance  
132x  
40  
nm  
nm  
ns  
142X  
152X  
36  
28  
ld  
132x  
626  
See Note 2 (Figure 1)  
142X  
152X  
585  
569  
ts  
132x  
90  
142X  
152X  
90  
500  
C
132x  
11  
pF  
VF = 0; f = 1 MHz  
142X  
152X  
15  
18  
RqJ-PIN  
Thermal Resistance  
Forward Voltage  
All  
290  
°C/W  
V
Junction to  
Cathode Lead  
VF  
132x  
1.9  
2.4  
IF = 10 mA  
142X  
152X  
2.0  
2.1  
2.4  
2.7  
VR  
Reverse Breakdown Voltage  
Luminous Efficacy  
All  
5.0  
V
IR = 100 µA  
hV  
132x  
145  
lumens See Note 3  
watt  
142X  
152X  
500  
595  
Notes:  
1. q1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.  
2. The dominant wavelength, ld, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of  
the device.  
3. Radiant intensity, Ie, in watts/steradian, may be found from the equation Ie = lv/hv, where lv is the luminous intensity in candelas and hv is the  
luminous efficacy in lumens/watt.  
3
Figure 1. Relative intensity vs. wavelength.  
T-1 High Efficiency Red Non-Diffused  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
1.0  
2.0  
3.0  
4.0  
5.0  
0
5
10  
15  
20  
25  
30  
0
10 20 30 40 50 60 70 80 90  
IPEAK – PEAK CURRENT PER LED – mA  
VF – FORWARD VOLTAGE – V  
IDC – DC CURRENT PER LED – mA  
Figure 2. Forward current vs. forward voltage  
characteristics.  
Figure 3. Relative luminous intensity vs. DC  
forward current.  
Figure 4. Relative efficiency (luminous intensity  
per unit current) vs. peak LED current.  
0°  
6
5
4
10°  
20°  
1.0  
.8  
30°  
40°  
50°  
60°  
3
2
.6  
.4  
70°  
80°  
.2  
NON-DIFFUSED  
0° 20° 40°  
1
1.0  
90°  
10  
100  
1,000  
10,000  
60°  
80°  
100°  
tp – PULSE DURATION – µs  
Figure 5. Maximum tolerable peak current vs.  
pulse duration. (IDC MAX as per MAX ratings).  
Figure 6. Relative luminous intensity vs. angular displacement.  
4
T-1 Yellow Non-Diffused  
60  
50  
40  
30  
20  
10  
0
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°  
A
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
10  
20  
30  
40  
50  
60  
0
5
10  
15  
20  
VF – FORWARD VOLTAGE – V  
IPEAK – PEAK CURRENT – mA  
IF – FORWARD CURRENT – mA  
Figure 7. Forward current vs. forward voltage  
characteristics.  
Figure 8. Relative luminous intensity vs.  
forward current.  
Figure 9. Relative efficiency (luminous intensity  
per unit current) vs. peak current.  
0°  
10°  
20°  
6
5
4
1.0  
.8  
30°  
40°  
50°  
60°  
.6  
3
2
.4  
70°  
80°  
.2  
NON-DIFFUSED  
0° 20° 40°  
90°  
1
1.0  
60°  
80°  
100°  
10  
100  
1,000  
10,000  
tp – PULSE DURATION – µs  
Figure 10. Maximum tolerable peak current vs.  
pulse duration. (IDCMAX as per MAX ratings).  
Figure 11. Relative luminous intensity vs. angular displacement.  
5
T-1 Green Non-Diffused  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
5
10 15 20  
25 30 35 40  
0
10 20 30 40 50 60 70 80 90 100  
IPEAK – PEAK CURRENT PER LED – mA  
1.0  
2.0  
3.0  
4.0  
5.0  
IPEAK – PEAK CURRENT PER LED – mA  
VF – FORWARD VOLTAGE – V  
Figure 12. Forward current vs. forward voltage  
characteristics.  
Figure 13. Relative luminous intensity vs.  
forward current.  
Figure 14. Relative efficiency (luminous inten-  
sity per unit current) vs. peak LED current.  
6
5
4
0°  
10°  
20°  
1.0  
.8  
30°  
40°  
50°  
60°  
3
2
.6  
.4  
70°  
80°  
.2  
NON-DIFFUSED  
0° 20° 40°  
1
1.0  
90°  
10  
100  
1,000  
10,000  
60°  
80°  
100°  
tp – PULSE DURATION – µs  
Figure 15. Maximum tolerable peak current vs.  
pulse duration. (IDCMAX as per MAX ratings).  
Figure 16. Relative luminous intensity vs. angular displacement.  
6
Intensity Bin Limits  
Intensity Bin Limits  
Intensity Range (mcd)  
Intensity Range (mcd)  
Color  
Bin  
G
H
I
Min.  
Max.  
Color  
Bin  
E
Min.  
Max.  
9.7  
15.5  
7.6  
12.0  
15.5  
24.8  
F
12.0  
19.1  
24.8  
39.6  
G
H
I
19.1  
30.7  
J
39.6  
63.4  
30.7  
49.1  
K
L
63.4  
101.5  
162.4  
234.6  
340.0  
540.0  
850.0  
1200.0  
1700.0  
2400.0  
3400.0  
4900.0  
7100.0  
10200.0  
14800.0  
21400.0  
30900.0  
16.6  
49.1  
78.5  
101.5  
162.4  
234.6  
340.0  
540.0  
850.0  
1200.0  
1700.0  
2400.0  
3400.0  
4900.0  
7100.0  
10200.0  
14800.0  
21400.0  
10.3  
J
78.5  
125.7  
201.1  
289.0  
417.0  
680.0  
1100.0  
1800.0  
2700.0  
4300.0  
6800.0  
10800.0  
16000.0  
25000.0  
40000.0  
M
N
O
P
K
125.7  
201.1  
289.0  
417.0  
680.0  
1100.0  
1800.0  
2700.0  
4300.0  
6800.0  
10800.0  
16000.0  
25000.0  
L
M
N
O
P
Green  
Red  
Q
R
S
Q
R
T
U
V
W
X
Y
Z
F
S
T
U
V
W
Maximum tolerance for each bin limit is ± 1ꢀ8%  
G
H
I
16.6  
26.5  
26.5  
42.3  
42.3  
67.7  
J
67.7  
108.2  
173.2  
250.0  
360.0  
510.0  
800.0  
1250.0  
1800.0  
2900.0  
4700.0  
7200.0  
11700.0  
18000.0  
27000.0  
K
L
108.2  
173.2  
250.0  
360.0  
510.0  
800.0  
1250.0  
1800.0  
2900.0  
4700.0  
7200.0  
11700.0  
18000.0  
M
N
O
P
Yellow  
Q
R
S
T
U
V
W
7
Color Categories  
Lambda (nm)  
Color  
Category #  
Min.  
Max.  
564.5  
567.5  
570.5  
573.5  
576.5  
584.5  
587.0  
589.5  
592.0  
593.0  
6
5
4
3
2
1
3
2
4
5
561.5  
564.5  
567.5  
570.5  
573.5  
582.0  
584.5  
587.0  
589.5  
592.0  
Green  
Yellow  
Maximum tolerance for each bin limit is ± ±%. nm%  
Mechanical Option Matrix  
Mechanical Option Code  
Definition  
00  
01  
02  
A1  
A2  
Bulk Packaging, minimum increment 500 pcs/bag  
Tape & Reel, crimped leads, minimum increment 1800 pcs/bag  
Tape & Reel, straight leads, minimum increment 1800 pcs/bag  
Right Angle Housing, uneven leads, minimum increment 500 pcs/bag  
Right Angle Housing, even leads, minimum increment 500 pcs/bag  
Note:  
All categories are established for classification of products. Products may not be available in all categories. Please contact your local Avago  
representative for further clarification/information.  
8
Precautions:  
Lead Forming  
The leads of an LED lamp may be preformed or cut to  
length prior to insertion and soldering into PC board.  
Wave soldering parameter must be set and maintained  
according to recommended temperature and dwell  
time in the solder wave. Customer is advised to  
periodically check on the soldering profile to ensure  
the soldering profile used is always conforming to  
recommended soldering condition.  
If lead forming is required before soldering, care must  
be taken to avoid any excessive mechanical stress  
induced to LED package. Otherwise, cut the leads  
of LED to length after soldering process at room  
temperature. The solder joint formed will absorb the  
mechanical stress of the lead cutting from traveling to  
the LED chip die attach and wirebond.  
If necessary, use fixture to hold the LED component  
in proper orientation with respect to the PCB during  
soldering process.  
It is recommended that tooling made to precisely form  
and cut the leads to length rather than rely upon hand  
operation.  
Proper handling is imperative to avoid excessive  
thermal stresses to LED components when heated.  
Therefore, the soldered PCB must be allowed to cool  
to room temperature, 25°C, before handling.  
Soldering Conditions  
Care must be taken during PCB assembly and soldering  
process to prevent damage to LED component.  
Special attention must be given to board fabrication,  
solder masking, surface plating and lead holes size  
and component orientation to assure solderability.  
The closest LED is allowed to solder on board is 1.59  
mm below the body (encapsulant epoxy) for those  
parts without standoff.  
Recommended PC board plated through hole sizes for  
LED component leads:  
Recommended soldering conditions:  
LED Component  
Lead Size  
Plated Through  
-Hole Diameter  
Diagonal  
Manual Solder  
Lead size (typ.) 0.45 × 0.45 mm  
0.636 mm  
0.98 to 1.08 mm  
(0.039 to 0.043 in)  
Wave Soldering  
105°C Max.  
30 sec Max.  
250°C Max.  
3 sec Max.  
Dipping  
(0.018 × 0.018 in.) (0.025 in)  
Pre-heat Temperature  
Pre-heat Time  
Dambar shear- 0.65 mm  
off area (max.) (0.026 in)  
0.919 mm  
(0.036 in)  
Peak Temperature  
Dwell Time  
260°C Max.  
5 sec Max.  
Lead size (typ.) 0.50 × 0.50 mm  
0.707 mm  
1.05 to 1.15 mm  
(0.041 to 0.045 in)  
(0.020 × 0.020 in.) (0.028 in)  
Dambar shear- 0.70 mm  
off area (max.) (0.028 in)  
0.99 mm  
(0.039 in)  
Note: Refer to application note AN1027 for more information  
on soldering LED components.  
LAMINAR WAVE  
HOT AIR KNIFE  
TURBULENT WAVE  
BOTTOM SIDE  
OF PC BOARD  
250  
200  
150  
100  
TOP SIDE OF  
PC BOARD  
CONVEYOR SPEED = 1.83 M/MIN (6 FT/MIN)  
PREHEAT SETTING = 150C (100C PCB)  
SOLDER WAVE TEMPERATURE = 245C  
AIR KNIFE AIR TEMPERATURE = 390C  
AIR KNIFE DISTANCE = 1.91 mm (0.25 IN.)  
AIR KNIFE ANGLE = 40  
FLUXING  
50  
30  
SOLDER: SN63; FLUX: RMA  
PREHEAT  
20 30  
NOTE: ALLOW FOR BOARDS TO BE  
SUFFICIENTLY COOLED BEFORE EXERTING  
MECHANICAL FORCE.  
0
10  
40  
50  
TIME – SECONDS  
Figure 17. Recommended wave soldering profile.  
60  
70  
80  
90 100  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries%  
Data subject to change% Copyright © 2±±.-2±13 Avago Technologies% All rights reserved% Obsoletes .9ꢀ9-42.3EN  
AV±2-1±6ꢀEN - July 24, 2±13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY