HLMP-CM31-S00DD [AVAGO]

T-13/4 (5 mm) Precision Optical Performance InGaN Blue, Green and Cyan Lamps; T- 13/4 ( 5毫米)的精密光学性能的InGaN蓝色,绿色和青色灯
HLMP-CM31-S00DD
型号: HLMP-CM31-S00DD
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

T-13/4 (5 mm) Precision Optical Performance InGaN Blue, Green and Cyan Lamps
T- 13/4 ( 5毫米)的精密光学性能的InGaN蓝色,绿色和青色灯

可见光LED 光电
文件: 总11页 (文件大小:367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HLMP-Cxxx  
T-13/4 (5 mm) Precision Optical Performance  
InGaN Blue, Green and Cyan Lamps  
Data Sheet  
HLMP-CB15, HLMP-CB16, HLMP-CB30, HLMP-CB31, HLMP-CM15, HLMP-CM16, HLMP-CM30,  
HLMP-CM31, HLMP-CE15, HLMP-CE16, HLMP-CE23, HLMP-CE24, HLMP-CE30, HLMP-CE31  
Description  
Features  
These high intensity blue, green and cyan LEDs are based  
on InGaN material technology. InGaN is the most efficient  
and cost effective material for LEDs in the blue and green  
region of the spectrum. The 472 nm typical dominant  
wavelength for blue and 526 nm typical dominant wave-  
length for green are well suited to color mixing in full  
color signs. The 505 nm typical dominant wavelength  
matches international specifications for green traffic  
signals. These LED lamps are untinted, nondiffused, T-  
13/4 packages incorporating second generation optics  
which produce well defined spatial radiation patterns  
at specific viewing cone angles. These lamps are made  
with an advanced optical grade epoxy, offering superior  
high temperature and high moisture resistance perfor-  
mance in outdoor signal and sign applications. The high  
maximum LED junction temperature limit of +130°C  
enables high temperature operation in bright sunlight  
conditions. The package epoxy contains both UV-A  
and UV-B inhibitors to reduce the effects of long term  
exposure to direct sunlight. These lamps are available  
in two viewing angle for Green and Blue, and 3 viewing  
angles options for Cyan to give the designer flexibility  
with optical design.  
Well defined spatial radiation pattern  
Viewing angles: 15° , 23º and 30°  
High luminous output  
Colors: 472 nm Blue, 526 nm Green, 505 nm Cyan  
Superior resistance to moisture  
UV resistant epoxy  
Benefits  
Superior performance in outdoor environments  
Wavelengths suitable for color mixing in full color  
(RGB) signs  
Applications  
Commercial outdoor signs  
Automotive interior lights  
Front panel indicators  
Front panel backlighting  
CAUTION: HLMP-CBxx, HLMP-CMxx and HLMP-CExx LEDs are Class 1C ESD sensitive. Please observe appropriate  
precautions during handling and processing. Refer to Avago Application Note AN-1142 for additional details.  
Device Selection Guide  
Luminous Intensity,  
Typical  
Color and Typ.  
[3,4,5]  
Iv (mcd) at 20 mA  
Min.  
880  
Viewing Angle Dominant Wavelength  
2q (Deg)  
1/2  
Leads with  
Stand-Offs  
Package  
Drawing  
[1]  
[2]  
Part Number  
λd (nm)  
Max.  
-
HLMP-CB15-P00xx  
HLMP-CB15-QT0xx  
HLMP-CB15-R00xx  
HLMP-CB15-RSCxx  
HLMP-CB16-P00xx  
HLMP-CB16-QT0xx  
HLMP-CM15-S00xx  
HLMP-CM15-SV0xx  
HLMP-CM15-VY0xx  
HLMP-CM15-W00xx  
HLMP-CM15-WXBxx  
HLMP-CM15-WZ0xx  
HLMP-CM16-S00xx  
HLMP-CM16-VY0xx  
HLMP-CM16-WYGxx  
HLMP-CE15-VWCxx  
HLMP-CE15-WZCxx  
HLMP-CE15-WZQxx  
HLMP-CE16-UXQxx  
HLMP-CE16-WZBxx  
HLMP-CE16-WZCxx  
HLMP-CE16-WZQxx  
HLMP-CEꢀ3-UVQxx  
HLMP-CEꢀ3-UXCxx  
HLMP-CEꢀ3-UXQxx  
HLMP-CEꢀ3-VWCxx  
HLMP-CEꢀ3-VWQxx  
HLMP-CEꢀ3-VXQxx  
HLMP-CEꢀ3-VYCxx  
HLMP-CEꢀ4-UX0xx  
HLMP-CEꢀ4-UXCxx  
HLMP-CEꢀ4-UXQxx  
HLMP-CEꢀ4-VXQxx  
HLMP-CEꢀ4-VYCxx  
HLMP-CEꢀ4-VYQxx  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
15°  
ꢀ3°  
ꢀ3°  
ꢀ3°  
ꢀ3°  
ꢀ3°  
ꢀ3°  
ꢀ3°  
ꢀ3°  
ꢀ3°  
ꢀ3°  
ꢀ3°  
ꢀ3°  
ꢀ3°  
Blue 47ꢀ  
Blue 47ꢀ  
Blue 47ꢀ  
Blue 47ꢀ  
Blue 47ꢀ  
Blue 47ꢀ  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
A
A
A
A
B
B
A
A
A
A
A
A
B
B
B
A
A
A
B
B
B
B
A
A
A
A
A
A
A
B
B
B
B
B
B
1150  
1500  
1500  
880  
3ꢀ00  
-
ꢀ500  
-
1150  
1900  
1900  
4ꢀ00  
5500  
5500  
5500  
1900  
4ꢀ00  
5500  
4ꢀ00  
5500  
5500  
3ꢀ00  
5500  
5500  
5500  
3ꢀ00  
3ꢀ00  
3ꢀ00  
4ꢀ00  
4ꢀ00  
4ꢀ00  
4ꢀ00  
3ꢀ00  
3ꢀ00  
3ꢀ00  
4ꢀ00  
4ꢀ00  
4ꢀ00  
3ꢀ00  
-
5500  
1ꢀ000  
-
9300  
16000  
-
1ꢀ000  
1ꢀ000  
7ꢀ00  
16000  
16000  
9300  
16000  
16000  
16000  
5500  
9300  
9300  
7ꢀ00  
7ꢀ00  
9300  
1ꢀ000  
9300  
9300  
9300  
9300  
1ꢀ000  
1ꢀ000  
Device Selection Guide (Continued)  
Luminous Intensity,  
Typical  
Viewing Angle  
2q (Deg)  
1/2  
Color and Typ.  
[3,4,5]  
Iv (mcd) at 20 mA  
Min.  
310  
Dominant Wavelength  
Leads with  
Stand-Offs  
Package  
Drawing  
[1]  
[2]  
Part Number  
λd (nm)  
Max.  
-
HLMP-CB30-K00xx  
HLMP-CB30-M00xx  
HLMP-CB30-NPCxx  
HLMP-CB30-NRGxx  
HLMP-CB30-PQCxx  
HLMP-CB31-M00xx  
HLMP-CB31-NRGxx  
HLMP-CB31-PQCxx  
HLMP-CM30-M00xx  
HLMP-CM30-RSBxx  
HLMP-CM30-S00xx  
HLMP-CM30-TUCxx  
HLMP-CM30-TW0xx  
HLMP-CM30-TWAxx  
HLMP-CM30-UVAxx  
HLMP-CM30-UVCxx  
HLMP-CM31-M00xx  
HLMP-CM31-S00xx  
HLMP-CM31-S0Dxx  
HLMP-CM31-TUCxx  
HLMP-CM31-TW0xx  
HLMP-CM31-TWAxx  
HLMP-CM31-UVCxx  
HLMP-CM31-VWCxx  
HLMP-CE30-RSCxx  
HLMP-CE30-RUCxx  
HLMP-CE30-STQxx  
HLMP-CE30-SVCxx  
HLMP-CE30-SVQxx  
HLMP-CE31-SVCxx  
HLMP-CE31-SVQxx  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
30°  
Blue 47ꢀ  
Blue 47ꢀ  
Blue 47ꢀ  
Blue 47ꢀ  
Blue 47ꢀ  
Blue 47ꢀ  
Blue 47ꢀ  
Blue 47ꢀ  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Green 5ꢀ6  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
Cyan 505  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
Yes  
Yes  
A
A
A
A
A
B
B
B
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
A
A
A
A
A
B
B
5ꢀ0  
-
680  
1150  
1900  
1500  
-
680  
880  
5ꢀ0  
680  
1900  
1500  
-
880  
5ꢀ0  
1500  
1900  
ꢀ500  
ꢀ500  
ꢀ500  
3ꢀ00  
3ꢀ00  
5ꢀ0  
ꢀ500  
-
4ꢀ00  
7ꢀ00  
7ꢀ00  
5500  
5500  
-
1900  
1900  
ꢀ500  
ꢀ500  
ꢀ500  
3ꢀ00  
4ꢀ00  
1500  
1500  
1900  
1900  
1900  
1900  
1900  
-
-
4ꢀ00  
7ꢀ00  
7ꢀ00  
5500  
7ꢀ00  
ꢀ500  
4ꢀ00  
3ꢀ00  
5500  
5500  
5500  
5500  
Notes:  
1. q is the off-axis angle where the luminous intensity is one half the on-axis intensity.  
1/2  
2. Dominant Wavelength, λd, is derived from the CIE Chromaticity. Diagram and represents the color of the lamp.  
3. The luminous intensity is measured on the mechanical axis of the lamp package.  
4. The optical axis is closely aligned with the package mechanical axis.  
5. Tolerance for each intensity bin limit is 15ꢀ.  
3
Part Numbering System  
HLMP - X X XX - X X X XX  
Mechanical Options  
00: Bulk  
DD: Ammo Pack  
YY: Flexi bin, Bulk  
ZZ: Flexi bin, Ammo Pack  
Color Bin Selection  
0: Full color range  
A: Color bin 1 & 2 only  
B: Color bin 2 & 3 only  
C: Color bin 3 & 4 only  
G: Color bin 2, 3 & 4 only  
Q: Color bin 7 & 8 only  
Maximum Intensity Bin  
0: No maximum Iv bin limit  
Others: Refer to Intensity Bin Limit Table  
Minimum Intensity Bin  
Refer to Device Selection Guide  
Viewing Angle and Standoff Options  
15: 15 degree without standoff  
16: 15 degree with standoff  
23: 23 degree without standoff  
24: 23 degree with standoff  
30: 30 degree without standoff  
31: 30 degree with standoff  
Color  
B: Blue  
M: Green  
E: Cyan  
Package  
C: T-1 3/4 (5 mm) round lamp  
4
Package Dimensions  
Package A  
Package B  
5.00 ± 0.20  
(0.197 ± 0.008)  
5.00 ± 0.20  
(0.197 ± 0.008)  
1.14 ± 0.20  
(0.045 ± 0.008)  
8.71 ± 0.20  
(0.343 ± 0.008)  
8.71 ± 0.20  
(0.343 ± 0.008)  
d
1.14 ± 0.20  
(0.045 ± 0.008)  
2.35 (0.093)  
MAX.  
0.70 (0.028)  
MAX.  
1.50 ± 0.15  
31.60  
MIN.  
(0.059 ± 0.006)  
31.60  
MIN.  
(1.244)  
(1.244)  
0.70 (0.028)  
MAX.  
CATHODE  
LEAD  
CATHODE  
LEAD  
0.50 ± 0.10  
(0.020 ± 0.004)  
0.50 ± 0.10  
(0.020 ± 0.004)  
SQ. TYP.  
SQ. TYP.  
1.00  
MIN.  
1.00  
MIN.  
(0.039)  
(0.039)  
5.80 ± 0.20  
(0.228 ± 0.008)  
5.80 ± 0.20  
(0.228 ± 0.008)  
CATHODE  
FLAT  
CATHODE  
FLAT  
2.54 ± 0.38  
(0.100 ± 0.015)  
2.54 ± 0.38  
(0.100 ± 0.015)  
HLMP-Cx16  
d = 1ꢀ.6 0.18  
(0.496 0.007)  
HLMP-Cx24  
HLMP-Cx31  
d = 1ꢀ.ꢀꢀ 0.50  
(0.481 0.0ꢀ0)  
d = 1ꢀ.40 0.ꢀ5  
(0.488 0.010)  
Notes:  
1. Dimensions in mm.  
2. Tolerance 0.1 mm unless otherwise noted.  
5
Absolute Maximum Ratings at T = 25°C  
A
Parameter  
Value  
30  
Units  
mA  
[1]  
DC Forward Current  
Peak Forward Current  
100  
mA  
Power Dissipation  
Blue  
Green / Cyan  
mW  
111  
117  
Reverse Voltage (IR= 100 µA)  
LED Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
5
V
130  
°C  
°C  
°C  
-40 to +80  
-40 to +100  
Note:  
1. Derate linearly as shown in Figure 4 for temperatures above 50°C.  
2. Duty Factor 10ꢀ, 1kHz  
Electrical/Optical Characteristics at T = 25°C  
A
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
I = ꢀ0 mA  
Forward Voltage  
Blue  
Green / Cyan  
V
F
V
F
3.ꢀ  
3.ꢀ  
3.7  
3.9  
Reverse Voltage  
V
R
5
I = 100 µA  
R
Peak Wavelength  
l
nm  
nm  
Peak of Wavelength of  
Spectral Distribution at I = ꢀ0 mA  
peak  
Blue (λd = 47ꢀ nm)  
Green (λd = 5ꢀ6 nm)  
Cyan (λd = 505 nm)  
470  
5ꢀ4  
50ꢀ  
F
Spectral Halfwidth  
Blue (λd = 47ꢀ nm)  
Green (λd = 5ꢀ6 nm)  
Cyan (λd = 505 nm)  
Dl  
Wavelength Width at Spectral Power  
1/ꢀ  
35  
47  
35  
Point at I = ꢀ0 mA  
F
Capacitance  
Blue/ Green  
Cyan  
C
pF  
V = 0, F = 1 MHz  
F
43  
40  
Luminous Efficacy  
Blue (λd = 47ꢀ nm)  
Green (λd = 5ꢀ6 nm)  
Cyan (λd = 505 nm)  
ηv  
lm/W  
Emitted Luminous Power/Emitted  
Radiant Power  
75  
5ꢀ0  
350  
Thermal Resistance  
Rq  
J-PIN  
ꢀ40  
°C/W  
LED Junction-to-Cathode Lead  
Notes:  
1. The dominant wavelength, l , is derived from the CIE Chromaticity Diagram and represents the perceived color of the device.  
d
2. The radiant intensity, le in watts per steradian, may be found from the equation le = I /h , where Iv is the luminous intensity in candelas and hV is  
V
V
the luminous efficacy in lumens/watt.  
6
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
35  
30  
25  
20  
15  
10  
5
Cyan  
Blue  
Green/ Cyan  
Green  
Blue  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
380  
430  
480  
530  
580  
630  
680  
730  
780  
FORWARD VOLTAGE - V  
WAVELENGTH - nm  
Figure 1. Relative intensity vs. wavelength.  
Figure 2 : Forward current vs. forward voltage.  
1.5  
40  
35  
30  
25  
20  
1.0  
0.5  
0
15  
10  
5
0
0
10  
20  
25  
30  
0
20  
40  
60  
80  
100  
5
15  
- FORWARD CURRENT - mA  
TA - AMBIENT TEMPERATURE - oC  
IF  
Figure 3. Relative luminous intensity vs. forward current.  
Figure 4. Maximum forward current vs. ambient temperature.  
1.030  
1.025  
1.020  
1.015  
0.9  
0.8  
0.7  
0.6  
1.010  
0.5  
0.4  
Blue  
Cyan  
1.005  
Green  
1.000  
0.3  
0.2  
0.995  
0.990  
0.1  
0
-30  
0
5
10  
15  
20  
25  
30  
35  
-20  
-10  
0
10  
20  
3 0  
DC FORWARD CURRENT - mA  
ANGULAR DISPLACEMENT - DEGREES  
Figure 5. Color vs. forward current  
Figure 6. Spatial radiation pattern – 15° lamps.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40  
0
-50 -40  
-30 -20  
-10  
0
10  
20  
30  
40  
50  
-30  
-20  
-10  
0
10  
20  
30  
40  
ANGLE - DEGREES  
ANGULAR DISPLACEMENT - DEGREES  
Figure 7. Spatial radiation pattern – 23° lamps.  
Figure 8. Spatial radiation pattern – 30° lamps.  
7
Color Bin Limits (nm at 20 mA)  
Intensity Bin Limits  
Blue  
Bin ID  
Color Range (nm)  
Bin Name  
Min.  
310  
400  
5ꢀ0  
680  
Max.  
400  
5ꢀ0  
680  
880  
1150  
1500  
1900  
ꢀ500  
3ꢀ00  
4ꢀ00  
5500  
7ꢀ00  
9300  
1ꢀ000  
16000  
Min.  
Max.  
464.0  
468.0  
47ꢀ.0  
476.0  
480.0  
K
L
1
3
4
5
460.0  
464.0  
468.0  
47ꢀ.0  
476.0  
M
N
P
Q
R
S
880  
1150  
1500  
1900  
ꢀ500  
3ꢀ00  
4ꢀ00  
5500  
7ꢀ00  
9300  
1ꢀ000  
Tolerance for each bin limit is 0.5 nm.  
T
Green  
Bin ID  
Color Range (nm at 20mA)  
U
V
W
X
Y
Z
Min.  
5ꢀ0.0  
5ꢀ4.0  
5ꢀ8.0  
53ꢀ.0  
536.0  
Max.  
5ꢀ4.0  
5ꢀ8.0  
53ꢀ.0  
536.0  
540.0  
1
3
4
5
Tolerance for each intensity bin limit is 15ꢀ.  
Tolerance for each bin limit is 0.5 nm.  
Note:  
Cyan  
Color Range (nm)  
1. All bin categories are established for classification of products.  
Products may not be available in all bin categories. Please contact  
your Avago representatives for further information.  
Bin ID  
Min.  
Max.  
1
3
4
7
8
495  
500  
505  
498  
503  
500  
505  
510  
503  
508  
Tolerance for each bin limit is 0.5 nm  
Relative Light Output vs. Junction Temperature  
1.6  
1.4  
Cyan  
1.2  
Green  
Blue  
1
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
TJ  
40  
60  
80  
°C  
100  
120  
140  
- JUNCTION TEMPERATURE -  
8
Precautions:  
Lead Forming:  
Avago Technologies LED configuration  
The leads of an LED lamp may be performed or cut to  
length prior to insertion and soldering on PC board.  
If lead forming is required before soldering, care must  
be taken to avoid any excessive mechanical stress that  
induced into the LED package. Otherwise, cut the  
leads to applicable length after soldering process at  
room temperature. The solder joint formed will absorb  
the mechanical stress, due to the lead cutting, from  
traveling to the LED chip die attach and wirebond.  
Cathode  
For better control, it is recommended to use proper  
tool to precisely form and cut the leads to applicable  
length rather than doing it manually.  
Note: Electrical connection between bottom surface of LED die and  
the lead frame material through conductive paste of solder.  
Soldering condition:  
If necessary, use fixture to hold the LED component  
in proper orientation with respect to the PCB during  
soldering process.  
Care must be taken during PCB assembly and  
soldering process to prevent damage to the LED  
component.  
At elevated temperature, the LED is more susceptible  
to mechanical stress. Therefore, PCB must allowed to  
cool down to room temperature prior to handling,  
which includes removal of jigs, fixtures or pallet.  
Special attention must be given to board fabrication,  
solder masking, surface platting and lead holes size  
and component orientation to assure the solderability.  
The closest manual soldering distance of the soldering  
heat source (soldering iron’s tip) to the body is  
1.59mm. Soldering the LED closer than 1.59mm might  
damage the LED.  
1.59mm  
Recommended PC board plated through holes size for  
LED component leads.  
Recommended soldering condition:  
LED component  
lead size  
Plated through  
hole diameter  
Diagonal  
Manual Solder  
Wave Soldering  
Pre-heat temperature 105 °C Max.  
Dipping  
0.457 x 0.457 mm  
0.646 mm  
0.976 to 1.078 mm  
(0.038 to 0.04ꢀ inch)  
(0.018 x 0.018 inch) (0.0ꢀ5 inch)  
0.508 x 0.508 mm 0.718 mm  
(0.0ꢀ0 x 0.0ꢀ0 inch) (0.0ꢀ8 inch)  
-
1.049 to 1.150 mm  
(0.041 to 0.045 inch)  
Preheat time  
Peak temperature  
Dwell time  
30 sec Max  
ꢀ50 °C Max.  
3 sec Max.  
-
ꢀ60 °C Max.  
5 sec Max  
Over sizing of plated through hole can lead to twisting  
or improper LED placement during auto insertion.  
Under sizing plated through hole can lead to  
mechanical stress on the epoxy lens during clinching.  
Wave soldering parameter must be set and maintain  
according to the recommended temperature and  
dwell time. Customer is advised to daily check on the  
soldering profile to ensure that the soldering profile  
is always conforming to recommended soldering  
condition.  
Note: Refer to application note AN1027 for more information on  
soldering LED components.  
Note:  
1. PCB with different size and design (component density) will  
have different heat mass (heat capacity). This might cause a  
change in temperature experienced by the board if same wave  
soldering setting is used. So, it is recommended to re-calibrate  
the soldering profile again before loading a new type of PCB.  
2. Avago Technologies’ high brightness LED are using high  
efficiency LED die with single wire bond as shown below.  
Customer is advised to take extra precaution during wave  
soldering to ensure that the maximum wave temperature is  
not exceeding 250°C. Over-stressing the LED during soldering  
process might cause premature failure to the LED due to  
delamination.  
9
Recommended Wave Soldering Profile  
LAMINAR WAVE  
HOT AIR KNIFE  
TURBULENT WAVE  
250  
200  
150  
TOP SIDE  
OF PC BOARD  
BOTTOM SIDE  
OF PC BOARD  
CONVEYOR SPEED = 1.83 M/MIN (6 FT/MIN)  
FLUXING  
PREHEAT SETTING = 150  
SOLDER WAVE TEMPERATURE = 245  
AIR KNIFE AIR TEMPERATURE = 390  
°C (100°C PCB)  
°C  
5ꢁC  
°
C
100  
AIR KNIFE DISTANCE = 1.91 mm (0.25 IN.)  
AIR KNIFE ANGLE = 40  
SOLDER: SN63; FLUX: RMA  
LEAD FREE SOLDER  
96.5ꢀSn; 3.0ꢀAg; 0.5ꢀ Cu  
50  
30  
NOTE: ALLOW FOR BOARDS TO BE  
SUFFICIENTLY COOLED BEFORE  
EXERTING MECHANICAL FORCE.  
PREHEAT  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TIME - SECONDS  
Ammo Packs Drawing  
12.70±1.00  
0.50±0.0394  
6.35±1.30  
0.25±0.0512  
CATHODE  
20.50±1.00  
0.807±0.039  
9.125±0.625  
0.3593±0.0246  
18.00±0.50  
0.7087±0.0197  
4.00±0.20TYP.  
0.1575±0.008  
A
A
12.70±0.30  
0.50±0.0118  
VIEW A-A  
0.70±0.20  
0.0276±0.0079  
Note: The ammo-packs drawing is applicable for packaging option –DD & -ZZ and regardless standoff or non-standoff  
10  
Packaging Box for Ammo Packs  
Note: For InGaN device, the ammo pack packaging box contain ESD logo  
DISCLAIMER  
AVAGO TECHNOLOGIES’ PRODUCTS AND SOFTWARE ARE NOT SPECIFICALLY DESIGNED, MANUFACTURED OR AU-  
THORIZED FOR SALE AS PARTS, COMPONENTS OR ASSEMBLIES FOR THE PLANNING, CONSTRUCTION, MAINTENANCE  
OR DIRECT OPERATION OF A NUCLEAR FACILITY OR FOR USE IN MEDICAL DEVICES OR APPLICATIONS. CUSTOMER IS  
SOLELY RESPONSIBLE, AND WAIVES ALL RIGHTS TO MAKE CLAIMS AGAINST AVAGO OR ITS SUPPLIERS, FOR ALL LOSS,  
DAMAGE, EXPENSE OR LIABILITY IN CONNECTION WITH SUCH USE.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.  
Data subject to change. Copyright © ꢀ007 Avago Technologies Limited. All rights reserved.  
AV0ꢀ-0ꢀ13EN - March ꢀ1, ꢀ007  

相关型号:

HLMP-CM31-S00XX

T-13/4 (5 mm) Precision Optical Performance InGaN Blue, Green and Cyan Lamps
AVAGO

HLMP-CM31-S00ZZ

Single Color LED, Green, Untinted Nondiffused, T-1 3/4, 5mm
AVAGO

HLMP-CM31-S0D00

T-13/4 (5 mm) Precision Optical Performance InGaN Blue, Green and Cyan Lamps
AVAGO

HLMP-CM31-S0DDD

T-13/4 (5 mm) Precision Optical Performance InGaN Blue, Green and Cyan Lamps
AVAGO

HLMP-CM31-S0DXX

T-13/4 (5 mm) Precision Optical Performance InGaN Blue, Green and Cyan Lamps
AVAGO

HLMP-CM31-S0DYY

T-1 3/4 SINGLE COLOR LED, GREEN, 5mm
AVAGO

HLMP-CM31-S0DZZ

Single Color LED, Green, Untinted Nondiffused, T-1 3/4, 5mm
AVAGO

HLMP-CM31-SK000

T-1 3/4 (5 mm) Precision Optical Performance InGaN Blue and Green LEDs
AGILENT

HLMP-CM31-SL000

T-1 3/4 (5 mm) Precision Optical Performance InGaN Blue and Green LEDs
AGILENT

HLMP-CM31-SM000

T-1 3/4 (5 mm) Precision Optical Performance InGaN Blue and Green LEDs
AGILENT

HLMP-CM31-SN000

T-1 3/4 (5 mm) Precision Optical Performance InGaN Blue and Green LEDs
AGILENT

HLMP-CM31-SP000

T-1 3/4 (5 mm) Precision Optical Performance InGaN Blue and Green LEDs
AGILENT