HLMP-HM55-PQCXX [AVAGO]

5 mm Precision Optical Performance InGaN Oval LED Lamps; 5毫米精密光学性能的InGaN椭圆形LED灯
HLMP-HM55-PQCXX
型号: HLMP-HM55-PQCXX
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

5 mm Precision Optical Performance InGaN Oval LED Lamps
5毫米精密光学性能的InGaN椭圆形LED灯

文件: 总12页 (文件大小:101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HLMP-HB55/HLMP-HM55/  
HLMP-HB54/HLMP-HM54  
5 mm Precision Optical Performance  
InGaNOvalLEDLamps  
DataSheet  
Description  
Features  
These Precision Optical Performance Oval LEDs are  
specifically designed for full color/video and  
passenger information signs. The oval shaped  
radiationpatternandhighluminousintensityensure  
that this device is excellent for wide field of view  
outdoor applications where a wide viewing angle  
and readability in sunlight are essential. This lamp  
hasverysmooth,matchedradiationpatternsensuring  
consistent color mixing in full color applications,  
message uniformity across the viewing angle of the  
sign. High efficiency LED material is used in this  
lamp: Indium Gallium Nitride for Blue and Green.  
Each lamp is made with an advanced optical grade  
epoxy offering superior high temperature and high  
moisture resistance in outdoor applications. The  
packageepoxycontainsbothUV-aandUV-binhibitors  
to reduce the effects of long term exposure to direct  
sunlight. These lamps are available in two package  
options (standoff and without standoff) to give  
designer flexibility with device mounting.  
• Well-defined spatial radiation pattern  
High brightness material  
– Blue InGaN 470 nm  
Green InGaN 525 nm  
Applications  
• Full color signs  
Commercial outdoor advertising  
Benefits  
Viewing angle designed for wide field of view appli-  
cations  
• Superior performance for outdoor environments  
CAUTION: InGaN devices are Class 1C HBM ESD sensitive per JEDEC standard. Please observe appropriate precautions  
during handling and processing. Refer to Application Note AN-1142 for additional details.  
Package Dimensions  
Package Drawing A  
NOTE: MEASURED JUST ABOVE FLANGE.  
3.80  
(0.150)  
1.50  
(0.059)  
MAX.  
0.50 ± 0.10  
(0.019 ± 0.003)  
0.70  
MAX.  
2.54  
(0.10)  
5.20  
(0.204)  
CATHODE  
LEAD  
1.00  
(0.039)  
MIN.  
7.00  
(0.275)  
25.00  
MIN.  
(0.984)  
NOTES:  
1. DIMENSIONS IN MILLIMETERS (INCHES).  
2. TOLERANCE ± 0.25 mm UNLESS OTHERWISE NOTED.  
Package Drawing B  
NOTE: MEASURED JUST ABOVE FLANGE.  
10.85 ± 0.50  
(0.427 ± 0.019)  
3.80  
(0.150)  
0.50 ± 0.10  
(0.019 ± 0.003)  
1.20  
(0.047)  
2.54  
(0.10)  
5.20  
(0.204)  
CATHODE  
LEAD  
1.50  
MAX.  
(0.059)  
1.00  
(0.039)  
MIN.  
7.00  
(0.275)  
25.00  
MIN.  
(0.984)  
NOTES:  
1. DIMENSIONS IN MILLIMETERS (INCHES).  
2. TOLERANCE ± 0.25 mm UNLESS OTHERWISE NOTED.  
2
Device Selection Guide  
Color and  
Dominant  
Wavelength λ  
(nm)Typ.  
Luminous  
Intensity Iv  
(mcd)at  
Luminous  
Intensity Iv  
(mcd)at  
Leads with  
Standoff  
Package  
Drawing  
Tinting  
Type  
d
Part Number  
20 mA Min.  
20 mA Max.  
HLMP-HB54-FJ0xx  
HLMP-HB55-HJCxx  
Blue 470  
Blue 470  
110  
180  
310  
310  
No  
A
B
Blue  
Blue  
Yes  
HLMP-HB55-JKCxx  
HLMP-HM54-MQ0xx  
HLMP-HM55-MQ0xx  
HLMP-HM55-NPCxx  
Blue 470  
240  
520  
520  
680  
880  
400  
Yes  
No  
B
A
B
B
B
Blue  
Green 525  
Green 525  
Green 525  
Green 525  
1500  
1500  
1150  
1500  
Green  
Green  
Green  
Green  
Yes  
Yes  
Yes  
HLMP-HM55-PQCxx  
Notes:  
1 The luminous intensity is measured on the mechanical axis of the lamp package.  
2. The optical axis is closely aligned with the package mechanical axis.  
3. The dominant wavelength, λ , is derived from the Chromaticity Diagram and represents the color of the lamp.  
d
Part Numbering System  
HLMP-X X XX – X X X XX  
Mechanical Options  
00: Bulk Packaging  
DD: Ammo Pack  
Color Bin Selections  
0: No color bin limitation  
Maximum Intensity Bin  
0: No Iv bin limitation  
Minimum Intensity Bin  
Refer to Device Selection Guide  
Color  
B: 470 nm Blue  
M: 525 nm Green  
Package  
H: 5 mm Oval 40° x 100°  
3
Absolute Maximum Ratings at T = 25°C  
A
Parameter  
Value  
[1]  
DC Forward Current  
30 mA  
100 mA  
117 mW  
[2]  
Peak Pulsed Forward Current  
Power Dissipation  
Reverse Voltage  
5 V (I = 10 µA)  
R
LED Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
130°C  
–40°C to +80°C  
–40°C to +100°C  
Notes:  
1. Derate linearly as shown in Figure 3.  
2. Duty factor 10%, Frequency 1kHz  
Electrical / Optical Characteristics Table  
T = 25°C  
A
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
I = 20 mA  
Forward Voltage  
Blue (λ = 470 nm)  
V
F
3.2  
3.2  
3.7  
3.9  
V
d
F
Green (λ = 525 nm)  
d
Reverse Voltage  
Capacitance  
V
R
5
I = 10 µA  
R
Blue (λ = 470 nm)  
C
40  
pF  
V = 0, f = 1 MHz  
F
d
Green (λ = 525 nm)  
d
Thermal Resistance  
Rθ  
240  
°C/ W  
deg  
LED Junction-to-Cathode Lead  
J-PIN  
Viewing Angle  
Major Axis  
2θ  
1/ 2  
100  
40  
Minor Axis  
Peak Wavelength  
Blue (λ = 470 nm)  
λ
467  
520  
nm  
Peak of Wavelength of Spectral  
d
P
Green (λ = 525 nm)  
Distribution at I = 20 mA  
d
F
Spectral Halfwidth  
Blue (λ = 470 nm)  
∆λ  
24  
35  
nm  
Wavelength Width at Spectral  
d
1/ 2  
Green (λ = 525 nm)  
Distribution Power Point at I = 20 mA  
d
F
Luminous Efficacy  
Blue (λ = 470 nm)  
η
75  
520  
lm/W  
Emitted luminous power/ Emitted  
radiant power  
d
v
Green (λ = 525 nm)  
d
Notes:  
1. 2θ is the off-axis angle where the luminous intensity is / 2 the on axis intensity.  
1
1/ 2  
2. The radiant intensity, Ie in watts per steradian, may be found from the equation Ie = Iv/ ηv where Iv is the luminous intensity in candelas and ηv  
is the luminous efficacy in lumens/ watt.  
4
1.0  
0.8  
0.6  
0.4  
BLUE  
GREEN  
0.2  
0
400  
450  
500  
550  
600  
650  
700  
WAVELENGTH – nm  
Figure 1. Relative intensity vs. wavelength.  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
35  
30  
25  
20  
15  
10  
5
0
0
5
10  
15  
20  
25  
30  
0
10 20 30 40 50 60 70 80 90  
FORWARD CURRENT – mA  
AMBIENT TEMPERATURE – °C  
Figure 2. Relative luminous intensity vs.  
forward current.  
Figure 3. Forward current vs. ambient temperature.  
30  
25  
20  
15  
10  
5
1.035  
1.030  
1.025  
GREEN  
1.020  
1.015  
1.010  
1.005  
BLUE  
1.000  
0.995  
0.990  
0.985  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
FORWARD VOLTAGE – V  
0
5
10  
15  
20  
25  
30  
FORWARD CURRENT – mA  
Figure 4. Forward current vs. forward voltage.  
Figure 5. Relative dominant wavelength vs.  
forward current.  
5
1.0  
0.5  
0
-90  
-70  
-50  
-30  
-10  
10  
30  
50  
70  
90  
ANGLE – DEGREES  
Figure 6. Spatial radiation pattern – minor axis.  
1.0  
0.5  
0
-90  
-70  
-50  
-30  
-10  
10  
30  
50  
70  
90  
ANGLE – DEGREES  
Figure 7. Spatial radiation pattern – major axis.  
Intensity Bin Limits  
(mcd @ 20 mA)  
Bin Name  
Min.  
110  
140  
180  
240  
310  
400  
520  
680  
880  
1150  
1500  
Max.  
140  
F
G
H
J
180  
240  
310  
K
L
M
N
P
400  
520  
680  
880  
1150  
1500  
1900  
Q
R
Tolerance will be ±15% of these limits.  
6
Green Color Bin Table  
Bin  
Min. Dom.  
Max. Dom.  
Xmin.  
0.0743  
0.1650  
0.1060  
0.1856  
0.1387  
0.2068  
0.1702  
0.2273  
0.2003  
0.2469  
Ymin.  
0.8338  
0.6586  
0.8292  
0.6556  
0.8148  
0.6463  
0.7965  
0.6344  
0.7764  
0.6213  
Xmax.  
0.1856  
0.1060  
0.2068  
0.1387  
0.2273  
0.1702  
0.2469  
0.2003  
0.2659  
0.2296  
Ymax.  
0.6556  
0.8292  
0.6463  
0.8148  
0.6344  
0.7965  
0.6213  
0.7764  
0.6070  
0.7543  
1
520.0  
524.0  
2
3
4
5
524.0  
528.0  
532.0  
536.0  
528.0  
532.0  
536.0  
540.0  
Tolerance for each bin limit is ± 0.5 nm  
Blue Color Bin Table  
Bin  
Min. Dom.  
Max. Dom.  
Xmin.  
0.1440  
0.1818  
0.1374  
0.1766  
0.1291  
0.1699  
0.1187  
0.1616  
0.1063  
0.1517  
Ymin.  
0.0297  
0.0904  
0.0374  
0.0966  
0.0495  
0.1062  
0.0671  
0.1209  
0.0945  
0.1423  
Xmax.  
0.1766  
0.1374  
0.1699  
0.1291  
0.1616  
0.1187  
0.1517  
0.1063  
0.1397  
0.0913  
Ymax.  
0.0966  
0.0374  
0.1062  
0.0495  
0.1209  
0.0671  
0.1423  
0.0945  
0.1728  
0.1327  
1
460.0  
464.0  
2
3
4
5
464.0  
468.0  
472.0  
476.0  
468.0  
472.0  
476.0  
480.0  
Tolerance for each bin limit is ± 0.5 nm  
Note:  
1. All bin categories are established for classification of products. Products may not be available in all bin categories. Please contact your Avago  
representative for further information.  
7
Avago Color Bin on CIE Chromaticity Diagram  
CIE 1931 – Chromaticity Diagram  
1.000  
0.800  
1
2
3
4
5
Green  
0.600  
0.400  
0.200  
0.000  
Y
Blue  
5
4
3
2
1
0.000  
0.200  
0.400  
X
0.600  
0.800  
8
Relative Light Output vs. Junction Temperature  
1.2  
1.0  
BLUE  
GREEN  
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
T
– JUNCTION TEMPERATURE – °C  
J
Precautions:  
Lead Forming  
• Wave soldering parameter must be set and maintained  
according to recommended temperature and dwell  
time in the solder wave. Customer is advised to  
periodicallycheckonthesolderingprofiletoensurethe  
soldering profile used is always conforming to  
• The leads of an LED lamp may be preformed or cut to  
length prior to insertion and soldering into PC board.  
• If lead forming is required before soldering, care must  
be taken to avoid any excessive mechanical stress  
induced to LED package. Otherwise, cut the leads of  
LED to length after soldering process at room  
temperature. The solder joint formed will absorb the  
mechanical stress of the lead cutting from traveling to  
the LED chip die attach and wirebond.  
recommended soldering condition.  
Notes:  
1. PCB with different size and design (component density)  
will have different heat mass (heat capacity). This might  
cause a change in temperature experienced by the board if  
same wave soldering setting is used. So, it is recommended  
to recalibrate the soldering profile again before loading a  
new type of PCB.  
• For better control, it is recommended to use proper  
tool to precisely form and cut the leads to applicable  
length rather than doing it manually.  
2. Avago Technologies' high brightness LED are using high  
efficiency LED die with single wire bond as shown below.  
Customer is advised to take extra precaution during wave  
soldering to ensure that the maximum wave temperature  
is not exceeding 250°C. Overstressing the LED during  
soldering process might cause premature failure to the LED  
due to delamination.  
Soldering Conditions  
• CaremustbetakenduringPCBassemblyandsoldering  
process to prevent damage to LED component.  
• TheclosestLEDisallowedtosolderonboardis1.59mm  
below the body (encapsulant epoxy) for those parts  
without standoff.  
• Recommended soldering conditions:  
Manual Solder  
Wave Soldering Dipping  
Pre-heat Temperature 105 °C Max.  
Pre-heat Time  
Peak Temperature  
Dwell Time  
30 sec Max.  
250 °C Max.  
3 sec Max.  
260 °C Max.  
5 sec Max.  
9
Avago Technologies LED Configuration  
CATHODE  
Note: Electrical connection between bottom surface of LED die  
and the lead frame material through conductive paste of solder.  
• Ifnecessary,usefixturetoholdtheLEDcomponent • Recommended PC board plated through hole sizes for  
in proper orientation with respect to the PCB  
during soldering process.  
LED component leads:  
LED Component  
Plated Through  
Hole Diameter  
Lead Size  
Diagonal  
• At elevated temperature, the LED is more  
susceptible to mechanical stress. Therefore, PCB 0.457 x 0.457 mm  
must be allowed to cool down to room temperature (0.018 x 0.018 inch)  
0.646 mm  
(0.025 inch)  
0.976 to 1.078 mm  
(0.038 to 0.042 inch)  
prior to handling, which includes removal of jigs,  
fixtures or pallet.  
0.508 x 0.508 mm  
0.718 mm  
1.049 to 1.150 mm  
(0.041 to 0.045 inch)  
(0.020 x 0.020 inch)  
(0.028 inch)  
Note: Refer to application note AN1027 for more information on  
soldering LED components.  
• Specialattentionmustbegiventoboardfabrication,  
solder masking, surface platting and lead holes  
size and component orientation to assure the  
solderability.  
• Over sizing of plated through hole can lead to  
twisting or improper LED placement during auto  
insertion. Under sizing plated through hole can  
lead to mechanical stress on the epoxy lens during  
clinching.  
LAMINAR WAVE  
HOT AIR KNIFE  
TURBULENT WAVE  
250  
200  
150  
100  
TOP SIDE  
OF PC BOARD  
BOTTOM SIDE  
OF PC BOARD  
FLUXING  
CONVEYOR SPEED = 1.83 M/ MIN (6 FT/ MIN)  
PREHEAT SETTING = 150°C (100°C PCB)  
SOLDER WAVE TEMPERATURE = 245°C ± 5°C  
AIR KNIFE AIR TEMPERATURE = 390°C  
AIR KNIFE DISTANCE = 1.91 mm (0.25 IN.)  
AIR KNIFE ANGLE = 40°  
LEAD SOLDER: SN63; FLUX: RMA  
LEAD FREE SOLDER: 96.5% Sn, 3.0% Ag, 0.5% Cu  
50  
30  
NOTE: ALLOW FOR BOARDS TO BE  
SUFFICIENTLY COOLED BEFORE  
EXERTING MECHANICAL FORCE.  
PREHEAT  
20 30  
0
10  
40  
50  
60  
70  
80  
90  
100  
TIME – SECONDS  
Figure 8. Recommended wave soldering profile.  
10  
Ammo Packs Drawing  
6.35 ± 1.30  
(0.25 ± 0.0512)  
12.70 ± 1.00  
(0.50 ± 0.0394)  
CATHODE  
20.5 ± 1.00  
(0.8071 ± 0.0394)  
9.125 ± 0.625  
(0.3593 ± 0.025)  
18.00 ± 0.50  
(0.7087 ± 0.0197)  
A
A
4.00 ± 0.20  
(0.1575 ± 0.0079)  
12.70 ± 0.30  
(0.50 ± 0.0118)  
TYP.  
VIEW AA  
0.70 ± 0.20  
(0.0276 ± 0.0079)  
ALL DIMENSIONS IN MILLIMETERS (INCHES).  
Note: The ammo-packs drawing is applicable for packaging option -DD & -ZZ and regardless of standoff or non-standoff.  
Packaging Box Ammo Packs  
LABEL ON  
THIS SIDE  
OF BOX.  
FROM LEFT SIDE OF BOX,  
ADHESIVE TAPE MUST BE  
FACING UPWARDS.  
+
A
AVAGO  
ANODE  
CATHODE  
TECHNOLOGIES  
ANODE LEAD LEAVES  
THE BOX FIRST.  
L
E
B
A
L
R
E
H
T
C
O
M
Note: For InGaN device, the ammo pack packaging box contains ESD logo.  
11  
DISCLAIMER  
AVAGO’S PRODUCTS AND SOFTWARE ARE NOT SPECIFICALLY DESIGNED, MANUFACTURED OR AUTHORIZED FOR  
SALE AS PARTS, COMPONENTS OR ASSEMBLIES FOR THE PLANNING, CONSTRUCTION, MAINTENANCE OR  
DIRECT OPERATION OF A NUCLEAR FACILITY OR FOR USE IN MEDICAL DEVICES OR APPLICATIONS. CUSTOMER IS  
SOLELY RESPONSIBLE, AND WAIVES ALL RIGHTS TO MAKE CLAIMS AGAINST AVAGO OR ITS SUPPLIERS, FOR ALL  
LOSS, DAMAGE, EXPENSE OR LIABILITY IN CONNECTION WITH SUCH USE.  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-4145EN  
AV02-0206EN March 20, 2007  

相关型号:

HLMP-HM57

Precision Optical Performance Red, Green and Blue 5 mm Standard Oval LEDs
AVAGO

HLMP-HM57-RSC00

Single Color LED, Green, Tinted Diffused, T-1 3/4, 5mm, PLASTIC PACKAGE-2
AGILENT

HLMP-HM57-RSCDD

T-1 3/4 SINGLE COLOR LED, GREEN, 5mm, PLASTIC PACKAGE-2
AVAGO

HLMP-HM57-RSCXX

Precision Optical Performance Red, Green and Blue 5 mm Standard Oval LEDs
AVAGO

HLMP-HM57-RSCZZ

Single Color LED, Green, Tinted Diffused, T-1 3/4, 5mm, PLASTIC PACKAGE-2
AGILENT

HLMP-HM57-RU000

Single Color LED, Green, Tinted Diffused, T-1 3/4, 5mm, PLASTIC PACKAGE-2
AGILENT

HLMP-HM57-RU000

T-1 3/4 SINGLE COLOR LED, GREEN, 5mm, PLASTIC PACKAGE-2
AVAGO

HLMP-HM57-RU0DD

T-1 3/4 SINGLE COLOR LED, GREEN, 5mm, PLASTIC PACKAGE-2
AVAGO

HLMP-HM57-RU0XX

Precision Optical Performance Red, Green and Blue 5 mm Standard Oval LEDs
AVAGO

HLMP-HM57-RU0ZZ

T-1 3/4 SINGLE COLOR LED, GREEN, 5mm, PLASTIC PACKAGE-2
AVAGO

HLMP-HM57-SV000

T-1 3/4 SINGLE COLOR LED, GREEN, 5mm, PLASTIC PACKAGE-2
AVAGO

HLMP-HM57-SV0DD

Single Color LED, Green, Tinted Diffused, T-1 3/4, 5mm, PLASTIC PACKAGE-2
AGILENT