HSMS-280X-TR2G [AVAGO]

Surface Mount RF Schottky Barrier Diodes; 表面贴装射频肖特基势垒二极管
HSMS-280X-TR2G
型号: HSMS-280X-TR2G
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

Surface Mount RF Schottky Barrier Diodes
表面贴装射频肖特基势垒二极管

二极管 射频
文件: 总10页 (文件大小:196K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HSMS-280x  
Surface Mount RF Schottky Barrier Diodes  
Data Sheet  
Description/Applications  
Features  
These Schottky diodes are specifically designed for both Surface Mount Packages  
analog and digital applications. This series offers a wide  
range of specifications and package configurations to  
give the designer wide flexibility. The HSMS-280x series  
High Breakdown Voltage  
Low FIT (Failure in Time) Rate*  
of diodes is optimized for high voltage applications.  
Six-sigma Quality Level  
Single, Dual and Quad Versions  
Tape and Reel Options Available  
Lead-free  
Note that Avago’s manufacturing techniques assure that  
dice found in pairs and quads are taken from adjacent sites  
on the wafer, assuring the highest degree of match.  
*
For more information see the Surface Mount Schottky Reliability  
Data Sheet.  
Package Lead Code Identification, SOT-323 (Top View)  
Package Lead Code Identification, SOT-363 (Top View)  
HIGH ISOLATION  
UNCONNECTED  
TRIO  
SERIES  
SINGLE  
UNCONNECTED PAIR  
6
5
4
6
5
4
B
C
1
2
3
1
2
3
K
L
COMMON  
ANODE  
COMMON  
CATHODE  
COMMON  
COMMON  
CATHODE QUAD  
ANODE QUAD  
6
1
6
1
5
4
6
1
6
1
5
4
E
F
2
3
2
3
M
N
BRIDGE  
QUAD  
RING  
QUAD  
5
4
5
4
Package Lead Code Identification, SOT-23/SOT-143 (Top View)  
2
3
2
3
P
R
COMMON  
ANODE  
3
COMMON  
CATHODE  
3
SINGLE  
3
SERIES  
3
1
2
1
2
1
2
1
2
#4  
#0  
#2  
#3  
UNCONNECTED  
PAIR  
BRIDGE  
QUAD  
3
4
3
4
1
2
1
2
#5  
#8  
Pin Connections and Package Marking, SOT-363  
Notes:  
1
2
3
6
5
4
1. Package marking provides orientation and identification.  
2. See “Electrical Specificationsfor appropriate package marking.  
ESD WARNING:  
Handling Precautions Should Be Taken To Avoid Static Discharge.  
Absolute Maximum Ratings[1] TC = 25°C  
Symbol  
Parameter  
Unit  
Amp  
V
SOT-23/SOT-143  
SOT-323/SOT-363  
If  
Forward Current (1 μs Pulse)  
Peak Inverse Voltage  
Junction Temperature  
Storage Temperature  
Thermal Resistance[2]  
1
1
PIV  
Tj  
Same as VBR  
150  
Same as VBR  
150  
°C  
Tstg  
jc  
°C  
-65 to 150  
500  
-65 to 150  
150  
°C/W  
Notes:  
1. Operation in excess of any one of these conditions may result in permanent damage to the device.  
2. TC = +25°C, where TC is defined to be the temperature at the package pins where contact is made to the circuit board.  
Electrical Specifications TA = 25°C, Single Diode [3]  
Minimum  
Breakdown  
Voltage  
Maximum  
Forward  
Voltage  
VF (mV)  
Maximum  
Forward  
Voltage  
Maximum  
Reverse  
Leakage  
Typical  
Dynamic  
Resistance  
RD (Ω)[5]  
Part  
Package  
Marking  
Code  
Maximum  
Capacitance  
CT (pF)  
Number  
Lead  
HSMS[4]  
Code Configuration  
VBR (V)  
VF (V) @ IF (mA) IR (nA) @ VR (V)  
2800  
2802  
2803  
2804  
2805  
2808  
280B  
280C  
280E  
280F  
A0  
A2  
A3  
A4  
A5  
A8  
A0  
A2  
A3  
A4  
0
2
3
4
5
8
B
C
E
F
Single  
Series  
Common Anode  
Common Cathode  
Unconnected Pair  
Bridge Quad[4]  
Single  
Series  
70  
410  
1.0 @ 15  
200 @ 50  
2.0  
35  
Common Anode  
Common Cathode  
High Isolation  
Unconnected Pair  
280K  
AK  
K
280L  
280M  
280N  
280P  
280R  
AL  
H
L
M
N
P
Unconnected Trio  
Common Cathode Quad  
Common Anode Quad  
Bridge Quad  
N
AP  
O
R
Ring Quad  
Test Conditions  
IR = 10 mA  
IF = 1 mA  
VF = 0 V  
f = 1 MHz  
IF = 5 mA  
Notes:  
1. DVF for diodes in pairs and quads in 15 mV maximum at 1 mA.  
2. DCTO for diodes in pairs and quads is 0.2 pF maximum.  
3. Effective Carrier Lifetime (t) for all these diodes is 100 ps maximum measured with Krakauer method at 5 mA.  
4. See section titled “Quad Capacitance.”  
5. RD = RS + 5.2Ω at 25°C and If = 5 mA.  
2
Quad Capacitance  
A
B
C1  
C2  
C3  
Capacitance of Schottky diode quads is measured using  
an HP4271 LCR meter. This instrument effectively isolates  
individual diode branches from the others, allowing  
accurate capacitance measurement of each branch or  
each diode. The conditions are: 20 mV R.M.S. voltage at 1  
MHz. Avago defines this measurement as “CM, and it is  
equivalent to the capacitance of the diode by itself. The  
equivalent diagonal and adjacent capacitances can then  
be calculated by the formulas given below.  
C
C4  
The equivalent adjacent capacitance is the capacitance  
between points A and C in the figure below. This capaci-  
tance is calculated using the following formula  
1
C
ADJACENT = C1 + ____________  
In a quad, the diagonal capacitance is the capacitance  
between points A and B as shown in the figure below.  
The diagonal capacitance is calculated using the follow-  
ing formula  
1
1
1
–– + –– + ––  
C2 C3 C4  
This information does not apply to cross-over quad  
diodes.  
C1 x C2  
C3 x C4  
CDIAGONAL = _______ + _______  
C1 + C2 C3 + C4  
Linear Equivalent Circuit, Diode Chip  
SPICE Parameters  
Parameter  
Units  
HSMS-280x  
75  
R
j
BV  
CJ0  
EG  
IBV  
IS  
V
pF  
eV  
A
1.6  
R
S
0.69  
E-5  
A
3.00E-08  
1.08  
30  
C
N
j
RS  
PB  
PT  
M
V
RS = series resistance (see Table of SPICE parameters)  
Cj = junction capacitance (see Table of SPICE parameters)  
0.65  
2
8.33 X 10-5 nT  
Ib + Is  
Rj =  
0.5  
where  
Ib = externally applied bias current in amps  
Is = saturation current (see table of SPICE parameters)  
T = temperature, K  
n = ideality factor (see table of SPICE parameters)  
Note:  
To effectively model the packaged HSMS-280x product,  
please refer to Application Note AN1124.  
3
Typical Performance, TC = 25°C (unless otherwise noted), Single Diode  
100  
100,000  
1000  
100  
10,000  
10  
1000  
100  
1
10  
1
TA = +125C  
TA = +75C  
TA = +25C  
TA = –25C  
0.1  
TA = +125C  
TA = +75C  
TA = +25C  
10  
1
0.01  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
0
10  
20  
30  
40  
50  
0.1  
1
10  
I – FORWARD CURRENT (mA)  
F
100  
V
– FORWARD VOLTAGE (V)  
V
– REVERSE VOLTAGE (V)  
F
R
Figure 1. Forward Current vs. Forward Voltage  
at Temperatures.  
Figure 2. Reverse Current vs. Reverse Voltage  
at Temperatures.  
Figure 3. Dynamic Resistance vs. Forward  
Current.  
2
30  
10  
30  
I
(Left Scale)  
F
10  
1.5  
1
V
(Right Scale)  
F
0.5  
1
1
0
0.3  
0.2  
0.3  
1.4  
0
10  
20  
30  
40  
50  
0.4  
0.6  
0.8  
1.0  
1.2  
V
– REVERSE VOLTAGE (V)  
V
- FORWARD VOLTAGE (V)  
R
F
Figure 4. Total Capacitance vs. Reverse  
Voltage.  
Figure 5. Typical Vf Match, Pairs and Quads.  
4
Applications Information Introduction —  
Product Selection  
0.026  
Avago’s family of Schottky products provides unique  
solutions to many design problems.  
0.079  
The first step in choosing the right product is to select the  
diode type. All of the products in the HSMS-280x family  
use the same diode chip, and the same is true of the  
HSMS-281x and HSMS-282x families. Each family has a dif-  
ferent set of characteristics which can be compared most  
easily by consulting the SPICE parameters in Table 1.  
0.039  
0.022  
Dimensions in inches  
Figure 6. Recommended PCB Pad Layout for Avago’s SC70 3L/SOT-323  
Products.  
A review of these data shows that the HSMS-280x family  
has the highest breakdown voltage, but at the expense of  
a high value of series resistance (Rs). In applications which  
do not require high voltage the HSMS-282x family, with a  
lower value of series resistance, will offer higher current  
carrying capacity and better performance.The HSMS-281x  
family is a hybrid Schottky (as is the HSMS-280x), offering  
lower 1/f or flicker noise than the HSMS-282x family.  
Assembly Instructions  
SOT-363 PCB Footprint  
A recommended PCB pad layout for the miniature SOT-  
363 (SC-70, 6 lead) package is shown in Figure 7 (dimen-  
sions are in inches). This layout provides ample allowance  
for package placement by automated assembly equip-  
ment without adding parasitics that could impair the  
performance.  
In general, the HSMS-282x family should be the designer’s  
first choice, with the -280x family reserved for high voltage  
applications and the HSMS-281x family for low flicker  
noise applications.  
0.026  
Assembly Instructions  
SOT-323 PCB Footprint  
0.079  
A recommended PCB pad layout for the miniature SOT-  
323 (SC-70) package is shown in Figure 6 (dimensions  
are in inches). This layout provides ample allowance for  
package placement by automated assembly equipment  
without adding parasitics that could impair the perfor-  
mance.  
0.039  
0.018  
Dimensions in inches  
Figure 7. Recommended PCB Pad Layout for Avago’s SC70 6L/SOT-363  
Products.  
Table 1. Typical SPICE Parameters  
Parameter  
Units  
V
HSMS-280x  
75  
HSMS-281x HSMS-282x  
BV  
25  
15  
CJ0  
EG  
pF  
eV  
A
1.6  
1.1  
0.7  
0.69  
1 E-5  
3 E-8  
1.08  
30  
0.69  
1 E-5  
4.8 E-9  
1.08  
10  
0.69  
1 E-4  
2.2 E-8  
1.08  
6
IBV  
IS  
A
N
RS  
Ω
V
PB (VJ)  
PT (XTI)  
M
0.65  
2
0.65  
2
0.65  
2
0.5  
0.5  
0.5  
5
SMT Assembly  
Reliable assembly of surface mount components is a  
complex process that involves many material, process, and  
equipment factors, including: method of heating (e.g., IR  
or vapor phase reflow, wave soldering, etc.) circuit board  
material, conductor thickness and pattern, type of solder  
alloy, and the thermal conductivity and thermal mass of  
components. Components with a low mass, such as the  
SOT package, will reach solder reflow temperatures faster  
than those with a greater mass.  
zones. The preheat zones increase the temperature of the  
board and components to prevent thermal shock and  
begin evaporating solvents from the solder paste. The  
reflow zone briefly elevates the temperature sufficiently  
to produce a reflow of the solder.  
The rates of change of temperature for the ramp-up and  
cool-down zones are chosen to be low enough to not  
cause deformation of the board or damage to compo-  
nents due to thermal shock. The maximum temperature  
in the reflow zone (TMAX) should not exceed 260°C.  
Avago’s SOT diodes have been qualified to the time-  
temperature profile shown in Figure 8. This profile is  
representative of an IR reflow type of surface mount as-  
sembly process.  
These parameters are typical for a surface mount assem-  
bly process for Avago diodes. As a general guideline, the  
circuit board and components should be exposed only  
to the minimum temperatures and times necessary to  
achieve a uniform reflow of solder.  
After ramping up from room temperature, the circuit  
board with components attached to it (held in place  
with solder paste) passes through one or more preheat  
tp  
Critical Zone  
Tp  
T
to Tp  
L
Ramp-up  
T
L
tL  
Ts  
max  
Ts  
min  
Ramp-down  
ts  
Preheat  
25  
t 25° C to Peak  
Time  
Figure 8. Surface Mount Assembly Profile.  
Lead-Free Reflow Profile Recommendation (IPC/JEDEC J-STD-020C)  
Reflow Parameter  
Lead-Free Assembly  
3°C/ second max  
150°C  
Average ramp-up rate (Liquidus Temperature (TS(max) to Peak)  
Preheat  
Temperature Min (TS(min)  
)
Temperature Max (TS(max)  
Time (min to max) (tS)  
)
200°C  
60-180 seconds  
3°C/second max  
217°C  
Ts(max) to TL Ramp-up Rate  
Time maintained above:  
Temperature (TL)  
Time (tL)  
60-150 seconds  
260 +0/-5°C  
Peak Temperature (TP)  
Time within 5 °C of actual Peak temperature (tP)  
Ramp-down Rate  
20-40 seconds  
6°C/second max  
8 minutes max  
Time 25 °C to Peak Temperature  
Note 1: All temperatures refer to topside of the package, measured on the package body surface  
6
Part Number Ordering Information  
No. of  
Part Number  
Devices  
10000  
3000  
Container  
13Reel  
HSMS-280x-TR2G  
HSMS-280x-TR1G  
HSMS-280x-BLKG  
7Reel  
100  
antistatic bag  
x = 0, 2, 3, 4, 5, 8, B, C, E, F, K, L, M, N, P, R  
Package Dimensions  
Outline 23 (SOT-23)  
Outline SOT-323 (SC-70 3 Lead)  
e1  
e2  
e1  
E1  
E
XXX  
E1  
E
XXX  
e
L
B
e
C
L
D
DIMENSIONS (mm)  
B
C
SYMBOL  
MIN.  
0.80  
0.00  
0.15  
0.08  
1.80  
1.10  
MAX.  
1.00  
0.10  
0.40  
0.25  
2.25  
1.40  
A
A1  
B
D
DIMENSIONS (mm)  
A
SYMBOL  
MIN.  
0.79  
0.000  
0.30  
0.08  
2.73  
1.15  
0.89  
1.78  
0.45  
2.10  
0.45  
MAX.  
1.20  
0.100  
0.54  
0.20  
3.13  
1.50  
1.02  
2.04  
0.60  
2.70  
0.69  
C
D
E1  
e
e1  
E
A
A1  
B
A1  
A
0.65 typical  
1.30 typical  
C
D
Notes:  
A1  
1.80  
0.26  
2.40  
0.46  
XXX-package marking  
Drawings are not to scale  
E1  
e
e1  
e2  
E
L
Notes:  
XXX-package marking  
Drawings are not to scale  
L
7
Package Dimensions (Continued)  
Outline 143 (SOT-143)  
Outline SOT-363 (SC-70 6 Lead)  
e2  
DIMENSIONS (mm)  
e1  
SYMBOL  
E
D
HE  
A
MIN.  
1.15  
1.80  
1.80  
0.80  
0.80  
0.00  
MAX.  
1.35  
2.25  
2.40  
1.10  
1.00  
0.10  
HE  
E
B1  
A2  
A1  
e
E
E1  
XXX  
0.650 BCS  
e
b
0.15  
0.08  
0.10  
0.30  
0.25  
0.46  
c
L
D
L
B
C
e
c
A1  
A2  
A
DIMENSIONS (mm)  
D
SYMBOL  
MIN.  
0.79  
0.013  
0.36  
0.76  
0.086  
2.80  
1.20  
0.89  
1.78  
0.45  
2.10  
0.45  
MAX.  
1.097  
0.10  
0.54  
0.92  
0.152  
3.06  
1.40  
1.02  
2.04  
0.60  
2.65  
0.69  
A
A1  
B
b
L
A
B1  
C
D
E1  
e
e1  
e2  
E
A1  
Notes:  
XXX-package marking  
Drawings are not to scale  
L
For Outlines SOT-23, -323  
Device Orientation  
REEL  
TOP VIEW  
4 mm  
END VIEW  
CARRIER  
TAPE  
8 mm  
ABC  
ABC  
ABC  
ABC  
USER  
FEED  
DIRECTION  
Note: "AB" represents package marking code.  
"C" represents date code.  
COVER TAPE  
For Outline SOT-143  
For Outline SOT-363  
TOP VIEW  
4 mm  
END VIEW  
TOP VIEW  
4 mm  
END VIEW  
8 mm  
A B C  
A B C  
A B C  
A B C  
8 mm  
ABC  
ABC  
ABC  
ABC  
Note: "AB" represents package marking code.  
"C" represents date code.  
Note: "AB" represents package marking code.  
"C" represents date code.  
8
Tape Dimensions and Product Orientation  
For Outline SOT-23  
P
P
D
2
E
F
P
0
W
D
1
t1  
Ko  
13.5° MAX  
8° MAX  
9° MAX  
B
A
0
0
DESCRIPTION  
SYMBOL  
SIZE (mm)  
SIZE (INCHES)  
CAVITY  
LENGTH  
WIDTH  
DEPTH  
PITCH  
A
B
K
P
3.15 0.10  
2.77 0.10  
1.22 0.10  
4.00 0.10  
1.00+ 0.05  
0.124 0.004  
0.109 0.004  
0.048 0.004  
0.157 0.004  
0.039 0.002  
0
0
0
BOTTOM HOLE DIAMETER  
D
1
PERFORATION  
CARRIER TAPE  
DIAMETER  
PITCH  
POSITION  
D
1.50 + 0.10  
4.00 0.10  
1.75 0.10  
0.059 + 0.004  
0.157 0.004  
0.069 0.004  
P
E
0
WIDTH  
W
8.00+0.30- 0.10 0.315+0.012- 0.004  
THICKNESS  
t1  
0.229 0.013  
0.009 0.0005  
DISTANCE  
BETWEEN  
CENTERLINE  
CAVITY TO PERFORATION  
(WIDTH DIRECTION)  
F
P
3.50 0.05  
0.138 0.002  
CAVITY TO PERFORATION  
(LENGTH DIRECTION)  
2.00 0.05  
0.079 0.002  
2
For Outline SOT-143  
P
D
P2  
P0  
E
F
W
D1  
t1  
K
0
9°  
MAX  
9°  
MAX  
A0  
B
0
DESCRIPTION  
SYMBOL  
SIZE (mm)  
SIZE (INCHES)  
CAVITY  
LENGTH  
WIDTH  
DEPTH  
PITCH  
A
B
K
P
3.19 0.10  
2.80 0.10  
1.31 0.10  
4.00 0.10  
1.00+ 0.25  
0.126 0.004  
0.110 0.004  
0.052 0.004  
0.157 0.004  
0.039 +0.010  
0
0
0
BOTTOM HOLE DIAMETER  
D
1
PERFORATION  
DIAMETER  
PITCH  
POSITION  
D
1.50 + 0.10  
4.00 0.10  
1.75 0.10  
0.059 + 0.004  
0.157 0.004  
0.069 0.004  
P
E
0
CARRIER TAPE  
DISTANCE  
WIDTH  
THICKNESS  
W
t1  
8.00+0.30- 0.10 0.315+0.012- 0.004  
0.254 0.013  
0.0100 0.0005  
CAVITY TO PERFORATION  
(WIDTH DIRECTION)  
F
P
3.50 0.05  
0.138 0.002  
CAVITY TO PERFORATION  
(LENGTH DIRECTION)  
2.00 0.05  
0.079 0.002  
2
9
Tape Dimensions and Product Orientation  
For Outlines SOT-323, -363  
P
P
D
2
P
0
E
F
W
C
D
1
t
(CARRIER TAPE THICKNESS)  
T (COVER TAPE THICKNESS)  
t
1
K
An  
An  
0
A
B
0
0
DESCRIPTION  
SYMBOL  
SIZE (mm)  
SIZE (INCHES)  
CAVITY  
LENGTH  
WIDTH  
DEPTH  
PITCH  
A
B
K
P
2.40 0.10  
2.40 0.10  
1.20 0.10  
4.00 0.10  
1.00 + 0.25  
0.094 0.004  
0.094 0.004  
0.047 0.004  
0.157 0.004  
0.039 + 0.010  
0
0
0
BOTTOM HOLE DIAMETER  
D
1
PERFORATION  
DIAMETER  
PITCH  
POSITION  
D
1.55 0.05  
4.00 0.10  
1.75 0.10  
0.061 0.002  
0.157 0.004  
0.069 0.004  
P
E
0
CARRIER TAPE  
COVER TAPE  
DISTANCE  
WIDTH  
THICKNESS  
W
8.00 0.30  
0.254 0.02  
0.315 0.012  
0.0100 0.0008  
t
1
WIDTH  
TAPE THICKNESS  
C
5.4 0.10  
0.062 0.001  
0.205 0.004  
0.0025 0.00004  
0.138 0.002  
T
t
CAVITY TO PERFORATION  
(WIDTH DIRECTION)  
F
3.50 0.05  
CAVITY TO PERFORATION  
(LENGTH DIRECTION)  
P
2.00 0.05  
0.079 0.002  
2
ANGLE  
FOR SOT-323 (SC70-3 LEAD)  
FOR SOT-363 (SC70-6 LEAD)  
An  
8
°
C MAX  
10 C MAX  
°
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved. Obsoletes 5989-4020EN  
AV02-0533EN - April 14, 2010  

相关型号:

HSMS-280X/1X/2X

Surface Mount Schottky Diodes -- Reliability Data (28K in pdf)
ETC

HSMS-281-BLKG

Surface Mount RF Schottky Barrier Diodes
AVAGO

HSMS-281-TR1G

Surface Mount RF Schottky Barrier Diodes
AVAGO

HSMS-281-TR2G

Surface Mount RF Schottky Barrier Diodes
AVAGO

HSMS-2810

Surface Mount RF Schottky Barrier Diodes Surface Mount Packages
AVAGO

HSMS-2810-BLK

Surface Mount RF Schottky Barrier Diodes
AGILENT

HSMS-2810-BLKG

Surface Mount RF Schottky Barrier Diodes
AVAGO

HSMS-2810-BLKG

Mixer Diode, Silicon, LEAD FREE PACKAGE3
AGILENT

HSMS-2810-TR1

Surface Mount RF Schottky Barrier Diodes
AGILENT

HSMS-2810-TR1G

Surface Mount RF Schottky Barrier Diodes
AVAGO

HSMS-2810-TR1G

Mixer Diode, Silicon, LEAD FREE PACKAGE3
AGILENT

HSMS-2810-TR2

Surface Mount RF Schottky Barrier Diodes
AGILENT