HSSR-7111-200 [AVAGO]

TRANSISTOR OUTPUT SOLID STATE RELAY, 1500V ISOLATION-MAX, HERMETIC SEALED, CERAMIC, DIP-8;
HSSR-7111-200
型号: HSSR-7111-200
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

TRANSISTOR OUTPUT SOLID STATE RELAY, 1500V ISOLATION-MAX, HERMETIC SEALED, CERAMIC, DIP-8

分离技术 隔离技术 输出元件
文件: 总11页 (文件大小:212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HSSR-7110, HSSR-7111 & HSSR-7112, HSSR-711E  
5962-9314001, 5962-9314002 90 V/1.0 Ω, Hermetically Sealed,  
Power MOSFET Optocoupler  
Data Sheet  
Description  
Features  
The HSSR-7110, HSSR-7111, HSSR-7112, HSSR-711E and  
SMD 5962-93140 are single channel power MOSFET  
optocouplers, constructed in eight-pin, hermetic, dual-in-  
line, ceramic packages. The devices operate exactly like a  
solid-state relay.  
Dual Marked with Device Part Number and DSCC  
Standard Microcircuit Drawing  
ac/dc Signal & Power Switching  
Compact Solid-State Bidirectional Switch  
Manufactured and Tested on a MIL-PRF-38534 Certi-  
fied Line  
Theproductsarecapableofoperationandstorageoverthe  
full military temperature range and may be purchased as  
a standard product (HSSR-7110), with full MIL-PRF-38534  
ClassHtesting(HSSR-7111andHSSR-7112),withMIL-PRF-  
38534ClassEtesting(ClassKwithexceptions)(HSSR-711E)  
or from the DSCC Standard Microcircuit Drawing (SMD)  
5962-93140. Details of the Class E program may be found  
on page 11 of this datasheet.  
QML-38534  
MIL-PRF-38534 Class H  
Modified Space Level Processing Available  
(Class E)  
Hermetically Sealed 8-Pin Dual In-Line Package  
Small Size and Weight  
Applications  
Performance Guaranteed over  
-55°C to +125°C  
Military and Space  
High Reliability Systems  
Standard 28 Vdc and 48 Vdc Load Driver  
Standard 24 Vac Load Driver  
Aircraft Controls  
Connection A 0.8 A, 1.0 Ω  
Connection B 1.6 A, 0.25 Ω  
1500 Vdc Withstand Test Voltage  
High Transient Immunity  
ac/dc Electromechanical and Solid State Relay  
Replacement  
5 Amp Output Surge Current  
I/O Modules  
Harsh Industrial Environments  
Functional Diagrams  
CONNECTION A  
AC/DC CONNECTION  
CONNECTION B  
DC CONNECTION  
I
I
O
O
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
NC  
NC  
+
O
-
+
V
I
I
F
TRUTH TABLE  
F
INPUT  
OUTPUT  
CLOSED  
OPEN  
+
-
+
-
V
V
F
V
H
L
F
O
-
NC  
NC  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to pre-  
vent damage and/or degradation which may be induced by ESD.  
All devices are manufactured and tested on a MIL-PRF-  
38534certifiedlineandareincludedintheDSCCQualified  
Manufacturers List, QML-38534 for Hybrid Microcircuits.  
Each device contains an AlGaAs light emitting diode opti-  
cally coupled to a photovoltaic diode stack which drives  
two discrete power MOSFETs. The device operates as a  
solid-state replacement for single-pole, normally open,  
(1 Form A) relays used for general purpose switching of  
signals and loads in high reliability applications.  
The devices are convenient replacements for mechanical  
and solid state relays where high component reliability  
with standard footprint lead configuration is desirable.  
Devices may be purchased with a variety of lead bend  
and plating options. See Selection Guide table for details.  
Standard Microcircuit Drawing (SMD) parts are available  
for each package and lead style.  
The HSSR-7110, HSSR-7111, HSSR-7112, HSSR-711E and  
SMD 5962-93140 are designed to switch loads on 28 Vdc  
power systems. They meet 80 V surge and 600 V spike  
requirements.  
The devices feature logic level input control and very low  
output on-resistance, making them suitable for both ac  
and dc loads. Connection A, as shown in the Functional  
Diagram, allows the device to switch either ac or dc loads.  
Connection B, with the polarity and pin configuration  
as shown, allows the device to switch dc loads only. The  
advantage of Connection B is that the on-resistance is  
significantly reduced, and the output current capability  
increases by a factor of two.  
Selection Guide–Package Styles and Lead Configuration Options  
Avago Technologies’ Part Number and Options  
Commercial  
HSSR-7110  
HSSR-7111  
MIL-PRF-38534 Class H  
MIL-PRF-38534 Class E  
Standard Lead Finish  
Solder Dipped*  
HSSR-7112  
HSSR-711E  
Gold Plate  
Option -200  
Gold Plate  
Option #200  
Option #100  
Option #300  
Option #600  
Gold Plate  
Option -200  
Option -100  
Option -300  
Butt Joint/Gold Plate  
Gull Wing/Soldered*  
Crew Cut/Gold Plate  
SMD Part #  
Prescript for all below  
Either Gold or Soldered  
Gold Plate  
5962-  
5962-  
9314001HPX  
9314001HPC  
9314001HPA  
9314001HYC  
9314001HYA  
9314001HXA  
9314002HPX  
9314002HPC  
9314002HPA  
9314002HYC  
9314002HYA  
9314002HXA  
9314001EPX  
9314001EPC  
9314001EPA  
Solder Dipped*  
Butt Joint/Gold Plate  
Butt Joint/Soldered*  
Gull Wing/Soldered*  
Crew Cut/Gold Plate  
9314001HZC  
9314001HZA  
Crew Cut/Soldered*  
* Solder Contains Lead  
CAUTION: Maximum Switching Frequency – Care should be taken during repetitive switching of loads so as not to  
exceed the maximum output current, maximum output power dissipation, maximum case temperature, and maxi-  
mum junction temperature.  
Outline Drawing  
Device Marking  
Agilent  
DESIGNATOR  
8-pin DIP Through Hole  
A QYYWWZ  
XXXXXX  
XXXXXXX  
XXX XXX  
50434  
COMPLIANCE INDICATOR,*  
DATE CODE, SUFFIX  
(IF NEEDED)  
COUNTRY OF MFR.  
Agilent CAGE CODE*  
9.40 (0.370)  
9.91 (0.390)  
0.76 (0.030)  
1.27 (0.050)  
8.13 (0.320)  
MAX.  
Agilent P/N  
DSCC SMD*  
DSCC SMD*  
PIN ONE/  
7.16 (0.282)  
7.57 (0.298)  
ESD IDENT  
4.32 (0.170)  
MAX.  
* QUALIFIED PARTS ONLY  
0.51 (0.020)  
MIN.  
Thermal Resistance  
3.81 (0.150)  
MIN.  
0.20 (0.008)  
0.33 (0.013)  
Maximum Output MOSFET Junction to Case – θ = 15°C/W  
JC  
ESD Classification  
7.36 (0.290)  
7.87 (0.310)  
2.29 (0.090)  
2.79 (0.110)  
0.51 (0.020)  
MAX.  
(MIL-STD-883, Method 3015) .......................... ( ), Class 2  
NOTE: DIMENSIONS IN MILLIMETERS (INCHES).  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
-65°  
-55°  
Max.  
+150°  
Units  
Note  
Storage Temperature Range  
Operating Ambient Temperature  
Junction Temperature  
T
S
C
C
C
C
C
T
A
+125°  
T
J
+150°  
Operating Case Temperature  
T
C
+145°  
1
Lead Solder Temperature  
260° for 10 s  
(1.6 mm below seating plane)  
Average Input Current  
I
20  
40  
mA  
mA  
F
Peak Repetitive Input Current  
I
FPK  
(Pulse Width < 100 ms; duty cycle < 50%)  
Peak Surge Input Current  
(Pulse Width < 0.2 ms; duty cycle < 0.1%)  
I
100  
5
mA  
V
FPK surge  
Reverse Input Voltage  
V
R
Average Output Current - Figure 2  
Connection A  
0.8  
1.6  
A
A
I
O
Connection B  
Single Shot Output Current - Figure 3  
Connection A (Pulse width < 10 ms)  
Connection B (Pulse width < 10 ms)  
Output Voltage  
5.0  
A
A
I
OPK surge  
10.0  
Connection A  
-90  
-90  
90  
90  
V
V
V
O
Connection B  
Average Output Power Dissipation - Figure 4  
800  
mW  
2
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
5
Max.  
20  
Units  
mA  
mA  
V
Note  
10  
Input Current (on)  
Input Current (on)  
Input Voltage (o)  
Operating Temperature  
I
I
F(ON)  
10  
20  
11  
F(ON)  
V
0
0.6  
F(OFF)  
T
A
-55°  
+125°  
C
Hermetic Optocoupler Options  
Note: Dimensions in millimeters (inches).  
D
e
s
c
r
i
 t
 i
n
Option  
100  
Surface mountable hermetic optocoupler with leads trimmed for butt joint assembly. This option is  
available on commercial and hi-rel product.  
4.32 (0.170)  
MAX.  
0.51 (0.020)  
1.14 (0.045)  
MIN.  
0.20 (0.008)  
0.33 (0.013)  
1.40 (0.055)  
2.29 (0.090)  
2.79 (0.110)  
0.51 (0.020)  
MAX.  
7.36 (0.290)  
7.87 (0.310)  
Lead finish is solder dipped rather than gold plated. This option is available on commercial and hi-  
rel product. DSCC Drawing part numbers contain provisions for lead finish.  
200  
300  
Surface mountable hermetic optocoupler with leads cut and bent for gull wing assembly. This op-  
tion is available on commercial and hi-rel product. This option has solder dipped leads.  
4.57 (0.180)  
MAX.  
4.57 (0.180)  
MAX.  
0.20 (0.008)  
0.33 (0.013)  
0.51 (0.020)  
MIN.  
5˚ MAX.  
1.40 (0.055)  
1.65 (0.065)  
9.65 (0.380)  
9.91 (0.390)  
2.29 (0.090)  
2.79 (0.110)  
0.51 (0.020)  
MAX.  
600  
Surface mountable hermetic optocoupler with leads trimmed for butt joint assembly. This option is  
available on commercial and hi-rel product.  
3.81 (0.150)  
MAX.  
0.20 (0.008)  
0.33 (0.013)  
0.51 (0.020)  
MIN.  
2.29 (0.090)  
2.79 (0.110)  
1.02 (0.040)  
TYP.  
7.36 (0.290)  
7.87 (0.310)  
Electrical Specifications  
T =-55°C to +125°C, unless otherwise specified. See note 9.  
A
Parameter  
Group A,  
Sub-group  
Test Conditions  
V = 0.6 V, I = 10 mA  
Min. Typ.* Max. Units  
Fig.  
Notes  
Sym.  
|V  
Output  
|
1, 2, 3  
90  
110  
V
5
O(OFF)  
F
O
Withstand  
Voltage  
Output On-Resistance  
Connection A  
I = 10 mA, I = 800 mA,  
(pulse duration 30 ms)  
0.40 1.0  
1.0  
3, 11  
3, 10  
3, 11  
3, 10  
F
O
I = 5 mA, I = 800 mA,  
F
O
(pulse duration 30 ms)  
R
(ON)  
1, 2, 3  
1, 2, 3  
W
6, 7  
Connection B  
I = 10 mA, I = 1.6 A,  
0.12 0.25  
F
O
(pulse duration 30 ms)  
I = 5 mA, I = 1.6 A,  
0.25  
F
O
(pulse duration 30 ms)  
-4  
Output  
Leakage  
Current  
I
V = 0.6 V, V = 90 V  
10  
10  
mA  
8
9
O(OFF)  
F
O
Input  
Forward  
Voltage  
I = 10 mA  
F
11  
10  
V
V
1, 2, 3  
1, 2, 3  
1.0 1.24 1.7  
5.0  
V
V
F
I = 5 mA  
F
Input Reverse  
Breakdown  
Voltage  
I = 100 mA  
R
R
Input-Output  
Insulation  
RH 65%, t = 5 s,  
= 1500 Vdc, T = 25°C  
1.0  
mA  
ms  
4, 5  
11  
I
1
I-O  
V
I-O  
A
Turn On Time  
I = 10 mA, V = 28 V,  
1.25 6.0  
F
DD  
1,  
10, 11,  
12, 13  
I
O
= 800 mA  
t
9, 10, 11  
ON  
I = 5 mA, V = 28 V,  
6.0  
0.02 0.25  
0.25  
10  
11  
10  
F
DD  
I
O
= 800 mA  
Turn Off Time  
I = 10 mA, V = 28 V,  
F
DD  
1,  
10, 14,  
15  
I
O
= 800 mA  
t
9, 10, 11  
9
ms  
OFF  
I = 5 mA, V = 28 V,  
F
DD  
I
O
= 800 mA  
Output  
Transient  
Rejection  
dVo  
dt  
V
V
= 50 V, C = 1000 pF, 1000  
V/ms  
17  
PEAK  
M
C = 15 pF, R 1 MW  
L
M
Input-Output  
Transient  
dVio  
dt  
9
= 5 V, V  
= 50 V,  
DD  
I-O(PEAK)  
500  
V/ms  
18  
R = 20 kW, C = 15 pF  
L
L
Rejection  
Typical Characteristics  
All typical values are at T = 25°C, I (ON) = 10 mA, V (OFF) = 0.6 V unless otherwise specified.  
A
F
F
Parameter  
Symbol  
Test Conditions  
V = 28 V, f = 1 MHz  
O
Typ.  
145  
2
Units  
pF  
Fig.  
16  
Notes  
Output Off-Capacitance  
Output Offset Voltage  
C
O(OFF)  
|V  
OS  
|
I = 10 mA, I = 0 mA  
mV  
19  
7
F
O
Input Diode Temperature  
Coefficient  
DV /DT  
I = 10 mA  
F
-1.4  
mV/°C  
F
A
Input Capacitance  
C
V = 0 V, f = 1MHz  
20  
pF  
pF  
W
8
4
4
6
IN  
I-O  
I-O  
ON  
F
Input-Output Capacitance  
Input-Output Resistance  
Turn On Time With Peaking  
C
R
V
= 0 V, f = 1 MHz  
= 500 V, t = 60 s  
1.5  
I-O  
I-O  
13  
V
10  
t
I
= 100 mA,  
0.22  
ms  
1
FPK  
I
= 10 mA  
FSS  
V
= 28 V,  
DD  
I
= 800 mA  
O
Notes:  
1. Maximum junction to case thermal resistance for the device is 15°C/W, where case temperature, T , is measured at the center of the package  
C
bottom.  
2. For rating, see Figure 4. The output power P rating curve is obtained when the part is handling the maximum average output current I as  
O
O
shown in Figure 2.  
3. During the pulsed R measurement (I duration <30 ms), ambient (T ) and case temperature (T ) are equal.  
ON  
O
A
C
4. Device considered a two terminal device: pins 1 through 4 shorted together and pins 5 through 8 shorted together.  
5. This is a momentary withstand test, not an operating condition.  
6. For a faster turn-on time, the optional peaking circuit shown in Figure 1 may be implemented.  
7.  
V
is a function of I , and is defined between pins 5 and 8, with pin 5 as the reference. V must be measured in a stable ambient (free of tem-  
OS F OS  
perature gradients).  
8. Zero-bias capacitance measured between the LED anode and cathode.  
9. Standard parts receive 100% testing at 25°C (Subgroups 1 and 9). SMD, Class H and Class E parts receive 100% testing at 25°C, 125°C and -55°C  
(Subgroups 1 and 9, 2 and 10, 3 and 11 respectively).  
10. Applies to HSSR-7112 and 5962-9314002Hxx devices only.  
11. Applies to HSSR-7110, HSSR-7111, HSSR-711E, 5962-9314001Hxx and 5962-9314001Exx devices only.  
HSSR-7110  
1
2
3
4
8
7
6
5
V
(+5V)  
CC  
I
F
+
V
F
-
R2  
1200  
R3  
R1  
330  
C
15 µF  
IN  
1/4 54ACTOO  
1/4 54ACTOO*  
R1 = REQUIRED CURRENT LIMITING RESISTOR  
FOR IF (ON) = 10 mA.  
R2 = PULL-UP RESISTOR FOR VF (OFF) < 600 mV;  
IF (VCC-VOH ) < 600 mV, OMIT R2.  
R3, C = OPTIONAL PEAKING CIRCUIT.  
TYPICAL VALUES  
R3  
()  
I
HSSR-7110  
tON (ms)  
F (PK)  
(mA)  
-
10 (NO PK)  
2.0  
330  
100  
33  
* USE SECOND GATE IF IF (PK) > 50 mA  
REMINDER: TIE ALL UNUSED INPUTS TO GROUND OR V  
20  
40  
100  
1.0  
0.48  
0.22  
CC  
Figure 1. Recommended Input Circuit.  
1.0  
0.8  
0.6  
0.4  
0.2  
1.0  
0.8  
0.6  
0.4  
0.2  
12  
11  
10  
9
I
10 mA  
F
CONNECTION-B  
CONNECTION-A  
8
7
6
CONNECTION - A  
CONNECTION - A  
I
10 mA  
5
4
3
F
I
10 mA  
F
θ
= 40˚ C/W  
= 80˚ C/W  
CA  
CA  
θ
= 40˚ C/W  
= 80˚ C/W  
CA  
CA  
θ
θ
0
0
-55 -25  
5
35  
65  
95 125 155  
-55 -25  
5
35  
65  
95 125 155  
10  
200  
400  
600  
800  
1000  
PULSE DURATION - ms  
T
- AMBIENT TEMPERATURE - ˚C  
T
- AMBIENT TEMPERATURE - ˚C  
A
A
Figure 2. Maximum Average Output Cur-  
rent Rating vs. Ambient Temperature.  
Figure 3. Single Shot (non-repetitive) Out-  
put Current vs. Pulse Duration.  
Figure 4. Output Power Rating vs. Ambient  
Temperature.  
1.10  
1.8  
0.8  
CONNECTION - A  
CONNECTION - A  
V
I
= 0.6 V  
= 10 µA  
F
O
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
I
I
10 mA  
(PULSE DURATION  
30 ms)  
I
I
10 mA  
= 800 mA  
O
O
0.6  
0.4  
0.2  
F
O
1.6  
1.4  
1.2  
1.0  
(PULSE DURATION 30 ms)  
0
T
= 125˚C  
A
-0.2  
T
T
= 25˚C  
A
A
-0.4  
-0.6  
-0.8  
= -55˚C  
0.8  
0.6  
-55  
-25  
5
35  
65  
95  
125  
-55  
-25  
5
35  
65  
95  
125  
-0.6 -0.4  
V - OUTPUT VOLTAGE - V  
O
-0.2  
0
0.2  
0.4  
0.6  
- AMBIENT TEMPERATURE - ˚C  
T
- AMBIENT TEMPERATURE - ˚C  
T
A
A
Figure 5. Normalized Typical Output With-  
stand Voltage vs. Temperature.  
Figure 6. Normalized Typical Output Resis-  
tance vs. Temperature.  
Figure 7. Typical On State Output I-V Char-  
acteristics.  
-7  
-1  
10  
10  
CONNECTION A  
V
V
= 0.6 V  
= 90 V  
F
O
-2  
10  
-8  
-9  
10  
10  
-3  
10  
T
= 125˚C  
A
-4  
-5  
10  
10  
T
T
= 25˚C  
A
A
-10  
10  
10  
= -55˚C  
1.4  
-6  
-11  
10  
0.4  
0.6  
0.8  
1.0  
1.2  
1.6  
20  
35  
65  
95  
125  
V
- INPUT FORWARD VOLTAGE - V  
F
T
- TEMPERATURE - ˚C  
A
Figure 8. Typical Output Leakage Current  
vs. Temperature.  
Figure 9. Typical Input Forward Current vs.  
Input Forward Voltage.  
V
DD  
PULSE GEN.  
= 50   
50%  
50%  
Z
O
R
C
I
L
t = t = 5 ns  
F
f
r
HSSR-7110  
P.W. = 15 ms  
8
7
6
5
1
2
3
4
V
O
MONITOR NODE  
I
F
+
= 25 pF  
V
L
F
-
(C INCLUDES PROBE AND  
FIXTURE CAPACITANCE)  
L
V
O
90%  
I
F
10%  
MONITOR  
R (MONITOR)  
200 Ω  
t
t
ON  
OFF  
Figure 10. Switching Test Circuit for t  
,
ON  
GND  
GND  
3.0  
2.6  
2.0  
CONNECTION A  
= 28 V  
CONNECTION A  
CONNECTION - A  
V
2.4  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
DD  
I
V
= 10 mA  
I
I
T
= 10 mA  
= 800 mA  
= 25˚C  
2.6  
2.2  
F
F
O
A
I
T
= 800 mA  
= 25˚C  
O
A
= 28 V  
DD  
= 800 mA  
2.2  
2.0  
I
O
1.8  
1.4  
1.0  
0.6  
0.2  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0
5
10  
15  
20  
-55  
-25  
5
35  
65  
95  
125  
0
10 20 30 40 50 60 70 80 90  
- VOLTAGE - V  
I
- INPUT CURRENT - mA  
F
T
- TEMPERATURE - ˚C  
V
A
DD  
Figure 11. Typical Turn On Time vs. Tem-  
perature.  
Figure 12. Typical Turn On Time vs. Input  
Current.  
Figure 13. Typical Turn On Time vs. Voltage.  
15.0  
45  
440  
CONNECTION A  
CONNECTION A  
CONNECTION A  
40  
14.8  
f = 1 MHz  
= 25˚C  
I
= 10 mA  
= 28 V  
= 800 mA  
400  
360  
320  
280  
240  
200  
160  
120  
V
I
= 28 V  
F
DD  
DD  
T
V
I
= 800 mA  
= 25˚C  
A
O
A
14.6  
14.4  
35  
30  
25  
20  
15  
10  
5
T
O
14.2  
14.0  
13.8  
13.6  
13.4  
13.2  
-55  
-25  
5
35  
65  
95 125  
5
10  
15  
20  
0
5
10  
1 5  
20  
25  
30  
V
- OUTPUT VOLTAGE - V  
T
-TEMPERATURE - ˚C  
O(OFF)  
A
I
- INPUT CURRENT - mA  
F
Figure 14. Typical Turn Off Time vs. Tem-  
perature.  
Figure 15. Typical Turn Off Time vs. Input  
Current.  
Figure 16. Typical Output Off Capacitance  
vs. Output Voltage.  
HSSR-7110  
V
M
1
2
3
4
8
7
6
5
MONITOR  
NODE  
I
F
C
M
R
M
INPUT OPEN  
+
V
F
-
V
+
PEAK  
-
PULSE  
GENERATOR  
C
R
INCLUDES PROBE AND FIXTURE CAPACITANCE  
INCLUDES PROBE AND FIXTURE RESISTANCE  
M
M
90%  
90%  
V
PEAK  
10%  
10%  
t
t
f
r
(MAX) 5 V  
V
M
(0.8) V  
(0.8) V  
dV  
d
(PEAK)  
r
(PEAK)  
t
f
O
t
=
OR  
t
OVERSHOOT ON V  
IS TO BE 10%.  
PEAK  
Figure 17. Output Transient Rejection Test Circuit.  
V
DD  
HSSR-7110  
R
L
V
O
1
2
3
4
8
7
6
5
I
F
+
C
L
V
F
(C INCLUDES PROBE PLUS  
L
FIXTURE CAPACITANCE )  
-
S
1
A
B
V
IN  
V
I-O  
+
-
PULSE  
GENERATOR  
90%  
90%  
V
I-O(PEAK)  
10%  
10%  
t
f
t
r
V
O(OFF)  
AT A (V = 0 V)  
S
1
F
(min) 3.25 V  
V
O(OFF)  
10  
V
(max) 0.8  
O(ON)  
V
S
O(ON)  
11  
AT B (I = 10 mA) OR (I = 5 mA)  
1
F
F
(0.8) V  
(0.8) V  
I-O(PEAK)  
dV  
dt  
I-O(PEAK)  
I-O  
=
OR  
t
t
r
f
OVERSHOOT ON V  
IS TO BE 10%  
I-O(PEAK)  
Figure 18. Input-Output Transient Rejection Test Circuit.  
T
T
T
T
jf2  
ISOTHERMAL CHAMBER  
HSSR-7110  
je  
jf1  
jd  
104  
15  
15  
15  
I
F
1
2
3
4
8
7
6
5
+
T
C
+
-
DIGITAL  
NANOVOLTMETER  
V
OS  
θ
CA  
T
A
-
T
= LED JUNCTION TEMPERATURE  
= FET 1 JUNCTION TEMPERATURE  
= FET 2 JUNCTION TEMPERATURE  
= FET DRIVER JUNCTION TEMPERATURE  
je  
T
T
T
T
jf1  
jf2  
jd  
C
Figure 19. Voltage Offset Test Setup.  
= CASE TEMPERATURE (MEASURED AT CENTER  
OF PACKAGE BOTTOM)  
HSSR-7110  
V
(SEE NOTE)  
O
R
OUT  
8
7
6
5
1
2
3
4
T
= AMBIENT TEMPERATURE (MEASURED 6" AWAY  
FROM THE PACKAGE)  
A
1.0 Ω  
θ
= CASE-TO-AMBIENT THERMAL RESISTANCE  
CA  
V
IN  
R
IN  
ALL THERMAL RESISTANCE VALUES ARE IN ˚C/W  
200 Ω  
R
5.5 V  
OUT  
Figure 21. Thermal Model.  
1.0 Ω  
NOTE:  
IN ORDER TO DETERMINE VOUT  
BE MEASURED FOR THE BURN-IN BOARDS TO BE USED. THEN, KNOWING  
CORRECTLY, THE CASE TO AMBIENT THERMAL IMPEDANCE MUST  
CA , DETERMINE THE  
θ
CORRECT OUTPUT CURRENT PER FIGURES 2 AND 4 TO INSURE THAT THE DEVICE MEETS THE  
DERATING REQUIREMENTS AS SHOWN.  
Figure 20. Burn-In Circuit.  
Applications Information  
the output contact when a DC current signal is applied to  
the output pins for a duration sufficient to reach thermal  
Thermal Model  
The steady state thermal model for the HSSR-7110 is  
shown in Figure 21. The thermal resistance values given  
in this model can be used to calculate the temperatures  
at each node for a given operating condition. The thermal  
resistances between the LED and other internal nodes are  
very large in comparison with the other terms and are  
omitted for simplicity. The components do, however, in-  
teractindirectlythroughθ ,thecase-to-ambientthermal  
resistance. All heat generated flows through θ , which  
raises the case temperature T accordingly. The value of  
equilibrium.R includestheeffectsofthetemperaturerise  
SS  
of each element in the thermal model. Rating curves are  
shown in Figures 2 and 4. Figure 2 specifies the maximum  
averageoutputcurrentallowableforagivenambienttem-  
perature. Figure 4 specifies the output power dissipation  
allowable for a given ambient temperature. Above 55°C  
(for θ = 80°C/W) and 107°C (for θ = 40°C/W), the maxi-  
CA  
CA  
CA  
mum allowable output current and power dissipation are  
CA  
2
related by the expression R = P (max)/ (I (max)) from  
SS  
O
O
C
which R can be calculated. Staying within the safe area  
SS  
θ
depends on the conditions of the board design and  
CA  
assuresthatthesteady-statejunctiontemperaturesremain  
is, therefore, determined by the designer.  
less than 150°C. As an example, for T = 95°C and θ  
=
A
CA  
80°C/W, Figure 2 shows that the output current should be  
limited to less than 610 mA. A check with Figure 4 shows  
The maximum value for each output MOSFET junction-  
to-case thermal resistance is specified as 15°C/W. The  
thermal resistance from FET driver junction-to-case is also  
15°C/W. The power dissipation in the FET driver, however,  
is negligible in comparison to the MOSFETs.  
that the output power dissipation at T = 95°C and I  
=
A
O
610 mA, will be limited to less than 0.35 W. This yields an  
of 0.94 Ω.  
R
SS  
Design Considerations for Replacement of Electro-  
Mechanical Relays  
On-Resistance and Rating Curves  
The output on-resistance, R , specified in this data sheet,  
ON  
The HSSR-7110 family can replace electro-mechanical re-  
lays with comparable output voltage and current ratings.  
The following design issues need to be considered in the  
replacement circuit.  
istheresistancemeasuredacrosstheoutputcontactwhen  
a pulsed current signal (I = 800 mA) is applied to the out-  
O
put pins. The use of a pulsed signal (≤ 30 ms) implies that  
each junction temperature is equal to the ambient and  
case temperatures. The steadystate resistance, R , on the  
other hand, is the value of the resistance measured across  
SS  
Input Circuit: The drive circuit of the electro-mechani-  
cal relay coil needs to be modified so that the average  
10  
References:  
forward current driving the LED of the HSSR- 7110 does  
not exceed 20 mA. A nominal forward drive current of 10  
mA is recommended. A recommended drive circuit with  
1. Application Note 1047, “Low On-Resistance Solid State  
Relays for High Reliability Applications.”  
5 volt V and CMOS logic gates is shown in Figure 1. If  
CC  
2. Reliability Data for HSSR-7110.  
higher V voltages are used, adjust the current limiting  
CC  
resistor to a nominal LED forward current of 10 mA. One  
important consideration to note is that when the LED is  
turned off, no more than 0.6 volt forward bias should be  
applied across the LED. Even a few microamps of current  
may be sufficient to turn on the HSSR- 7110, although it  
may take a considerable time. The drive circuit should  
maintain at least 5 mA of LED current during the ON  
condition. If the LED forward current is less than the 5  
mA level, it will cause the HSSR-7110 to turn on with a  
longer delay. In addition, the power dissipation in the  
output power MOSFETs increases, which, in turn, may  
violate the power dissipation guidelines and affect the  
reliability of the device.  
MOV is a registered trademark of GE/RCA Solid State.  
TransZorb is a registered trademark of General Semicon-  
ductor.  
MIL-PRF-38534 Class H, Class E and DSCC SMD Test  
Program  
Class H:  
Avago Technologies’ Hi-Rel Optocouplers are in compli-  
ance with MIL-PRF-38534 Class H. Class H devices are also  
in compliance with DSCC drawing 5962-93140.  
Testing consists of 100% screening and quality confor-  
mance inspection to MIL-PRF-38534.  
Output Circuit: Unlike electromechanical relays, the  
designer should pay careful attention to the output  
on-resistance of solid state relays. The previous section,  
“On- Resistance and Rating Curves” describes the issues  
that need to be considered. In addition, for strictly dc  
applications the designer has an advantage using Con-  
nection B which has twice the output current rating as  
ConnectionA.Furthermore,fordc-onlyapplications,with  
Connection B the on-resistance is considerably less when  
compared to Connection A.  
Class E:  
Class E devices are in compliance with DSCC drawing  
5962-9314001Exx. Avago Technologies has defined the  
Class E device on this drawing to be based on the Class  
K requirements of MIL-PRF-38534 with exceptions. The  
exceptions are as follows:  
1. Nondestructive Bond Pull, Test method 2023 of MIL-  
STD-883 is device screening is not required.  
Output over-voltage protection is yet another important  
designconsiderationwhenreplacingelectro-mechanical  
relays with the HSSR-7110. The output power MOSFETs  
can be protected using Metal oxide varistors (MOVs) or  
TransZorbs against voltage surges that exceed the 90 volt  
output withstand voltage rating. Examples of sources of  
voltage surges are inductive load kickbacks, lightning  
strikes,andelectro-staticvoltagesthatexceedthespecifi-  
cationsonthisdatasheet.Formoreinformationonoutput  
load and protection refer to Application Note 1047.  
2. Particle Impact Noise Detection (PIND), Test method  
2020 of MIL-STD-883 in device screening and group C  
testing is not required.  
3. Die Shear Strength, Test method 2019 of MIL-STD-883  
in group B testing is not required.  
4. InternalWaterVapor Content,Test method 1018 of MIL-  
STD-883 in group C testing is not required.  
5. Scanning Electron Microscope (SEM) inspections, Test  
method 2018 of MIL-STD-883 in element evaluation is  
not required.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Pte. in the United States and other countries.  
Data subject to change. Copyright © 2006 Avago Technologies Pte. All rights reserved.  
5989-1944EN - April 3, 2006  
11  

相关型号:

HSSR-7111600

Transistor Output SSR, 1-Channel, 1500V Isolation, HERMETIC SEALED, DIP-8
AGILENT

HSSR-7112

90 V/1.0 , Hermetically Sealed, Power MOSFET Optocoupler QML-38534
AVAGO

HSSR-7112-100

Transistor Output SSR, 1-Channel, 1500V Isolation, HERMETIC SEALED, DIP-8
AGILENT

HSSR-7112-200

Transistor Output SSR, 1-Channel, 1500V Isolation, HERMETIC SEALED, DIP-8
AGILENT

HSSR-7112-300

TRANSISTOR OUTPUT SOLID STATE RELAY, 1500V ISOLATION-MAX, HERMETIC SEALED, DIP-8
AVAGO

HSSR-7112E

TRANSISTOR OUTPUT SOLID STATE RELAY, 1500V ISOLATION-MAX, HERMETIC SEALED, DIP-8
AVAGO

HSSR-7112E-200

TRANSISTOR OUTPUT SOLID STATE RELAY, 1500V ISOLATION-MAX, HERMETIC SEALED, DIP-8
AVAGO

HSSR-711E

90 V/1.0 Ohm, Hermetically Sealed, Power MOSFET Optocoupler
AVAGO

HSSR-711E-200

TRANSISTOR OUTPUT SOLID STATE RELAY, 1500V ISOLATION-MAX, HERMETIC SEALED, DIP-8
AVAGO

HSSR-711X

90 V/1.0 W, Hermetically Sealed, Power MOSFET Optocoupler
AGILENT

HSSR-8060

60 V/0.7 Ohm, General Purpose, 1 Form A, Solid State Relay
AGILENT

HSSR-8060#500

Solid State Relay, 1-Channel, 2500V Isolation
AGILENT