MGA-16516-BLKG [AVAGO]

Low Noise, High Linearity Match Pair Low Noise Amplifier;
MGA-16516-BLKG
型号: MGA-16516-BLKG
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

Low Noise, High Linearity Match Pair Low Noise Amplifier

文件: 总16页 (文件大小:435K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MGA-16516  
Low Noise, High Linearity Match Pair Low Noise Amplifier  
Data Sheet  
Description  
Features  
3
Avago Technologies’ MGA-16516 is an economical, easy- ꢀꢁ 4.0 x 4.0 x 0.85 mm 16-lead QFN  
to-use GaAs MMIC match pair Low Noise Amplifier (LNA).  
The LNA has low noise and high linearity achieved through  
the use of Avago Technologies’ proprietary 0.25um GaAs  
ꢀꢁ Low noise figure  
ꢀꢁ High linearity performance  
[1]  
Enhancement-mode pHEMT process. It is housed in a ꢀꢁ GaAs E-pHEMT Technology  
3
miniature 4.0 x 4.0 x 0.85mm 16-pin Quad-Flat-Non-Lead  
3
ꢀꢁ Low cost small package size: 4.0x4.0x0.85 mm  
ꢀꢁ Excellent uniformity in product specifications  
(QFN) package. The compact footprint and low profile  
coupled with low noise, high gain and high linearity make  
the MGA-16516 an ideal choice as a low noise amplifier for ꢀꢁ Tape-and-Reel packaging option available  
cellular infrastructure for GSM and CDMA. This device is  
Specifications  
850MHz; 5V, 50mA (typ) per section  
ꢀꢁ 17.7 dB Gain  
applicable to both Single and Balance mode. It is designed  
for optimum use from 500MHz to 1.7GHz. For optimum  
performance at higher frequency from 1.7GHz to 2.7GHz,  
the MGA-17516 is recommended. Both MGA-16516 and  
MGA-17516 share the same package and pinout.  
ꢀꢁ 0.4 dB Noise Figure  
ꢀꢁ 11.8 dBm Input IP3  
Package Marking  
ꢀꢁ 18.3 dBm Output Power at 1dB gain compression  
Applications  
ꢀꢁ Low noise amplifier for cellular infrastructure for GSM  
and CDMA.  
Pin 12  
Pin 11  
Pin 10  
Pin 9  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
ꢀꢁ Other ultra low noise application.  
16516  
YYWW  
XXX  
GND  
Attention: Observe precautions for  
handling electrostatic sensitive devices.  
ESD Machine Model = 60 V  
TOP VIEW  
BOTTOM VIEW  
ESD Human Body Model = 350 V  
Refer to Avago Application Note A004R:  
Electrostatic Discharge, Damage and Control.  
Note:  
Package marking provides orientation and identification  
“16516” = Device Code  
“YYWW“= Year and Work Week  
“XXXX” = Last 4 digit of Device Lot Number  
Pin Configuration  
Pin  
1
Use  
Not Used  
Not Used  
Not Used  
Not Used  
RFin1  
[5]  
[6]  
[7]  
[8]  
[16]  
[15]  
[14]  
[13]  
2
3
4
5
6
Not Used  
Not Used  
RFin2  
7
8
9
Not Used  
Not Used  
Not Used  
Not Used  
RFout2  
10  
11  
12  
13  
14  
15  
16  
Not Used  
Not Used  
RFout1  
Simplified Schematic  
Vgg1  
Vdd1  
Ca11  
Ca7  
Ca5  
Ra1  
L1  
Ra4  
Ca9  
L2  
Ra7  
C1  
C3  
C2  
C4  
RFin a  
RFin b  
RFout a  
RFout b  
[5]  
[6]  
[7]  
[8]  
[16]  
[15]  
[14]  
[13]  
L3  
Rb1  
Rb7  
L4  
Cb5  
Cb7  
Cb9  
Rb4  
Cb11  
Vgg2  
Vdd2  
Note:  
ꢀꢁ Enhancement mode technology employs positive gate voltage,  
thereby eliminating the need of negative gate voltage associated  
with conventional depletion mode devices.  
2
[2]  
Absolute Maximum Rating T = 25°C  
A
[3]  
Symbol  
Parameter  
Units  
V
Absolute Max.  
Thermal Resistance  
(Vdd = 5.0V, Idd = 50mA per channel),  
jc = 49.4°C/W per channel  
Vdd  
Device Voltage, RF output to ground  
Gate Voltage  
5.5  
1
Vgg  
V
Notes:  
2. Operation of this device in excess of any of  
these limits may cause permanent damage.  
3. Thermal resistance measured using Infra-Red  
Measurement Technique with both channels  
Pin,max  
CW RF Input Power  
(Vdd = 5.0, Id=50mA)  
dBm  
15  
Idd  
Device Current,  
RFout to ground per channel  
mA  
100  
turned on hence I  
=100mA.  
dd_total  
4. Power dissipation with both channels turned  
on. Board temperature T is 25°C. Derate at  
Pdiss  
Tj  
Total Power Dissipation [4]  
Junction Temperature  
Storage Temperature  
W
°C  
°C  
1
B
20mW/°C for T >100°C.  
B
150  
TSTG  
-65 to 150  
[7-10]  
Electrical Specifications  
RF performance at T = 25°C, V 5V, I = 50mA, 850MHz and 900MHz given for each RF channel, measured on demo  
A
dd  
dd  
board in Figure 5 with component list in Table1 for 850 MHz matching.  
Symbol  
Vgg  
Parameter and Test Condition  
Operational Gate Voltage, Idd = 50mA  
Gain  
Frequency  
Units  
V
Min.  
Typ.  
0.48  
17.7  
17.4  
11.8  
12.4  
0.40  
0.41  
18.3  
19.3  
8.9  
Max.  
0.38  
0.63  
dB  
Gain  
850  
900  
850  
900  
850  
900  
850  
900  
850  
900  
850  
900  
850  
900  
850  
900  
dB  
15.8  
10.5  
18.8  
0.70  
IIP3 [8]  
NF [9]  
OP1dB  
IRL  
Output Third Order Intercept Point  
Noise Figure  
dBm  
dBm  
dB  
dB  
dBm  
dBm  
dB  
Output Power at 1dB Gain Compression  
Input Return Loss, 50source  
Output Return Loss, 50load  
Reverse Isolation  
dB  
7.0  
dB  
3.3  
ORL  
dB  
4.7  
dB  
29.9  
29.5  
45  
REV ISOL  
dB  
dB  
ISOL1-2  
Notes:  
Isolation between RFin1 and RFin2  
dB  
45  
7. Measurements at 850 MHz and 900 MHz are obtained using demo board described in Figure 5.  
8. IIP3 test condition:  
a.  
b.  
F
F
= 850 MHz, F = 851 MHz with input power of -15dBm per tone.  
RF1  
RF2  
= 900 MHz, F = 901MHz with input power of -15dBm per tone.  
RF1  
RF2  
9. For NF data, board losses of the input have not been de-embedded.  
10. Use proper bias, heatsink and derating to ensure maximum channel temperature is not exceeded. See absolute maximum ratings and application  
note for more details.  
3
Product Consistency Distribution Charts  
Mean : 0.483  
Min : 0.38  
Max : 0.63  
Mean : 0.41  
Max : 0.70  
Figure 1. Vgg @ 900MHz, 5V, 50mA  
Mean = 0.48  
Figure 2. Noise Figure @ 900MHz, 5V, 50mA  
Mean = 0.41  
Mean : 12.4  
Min : 10.5  
Mean : 17.4  
Min : 15.8  
Max : 18.8  
Figure 3. IIP3 @ 900MHz, 5V, 50mA  
Mean = 12.4  
Figure 4. Gain @ 900MHz, 5V, 50mA  
Mean = 17.4  
Notes:  
1. Distribution data samples size is 500 samples taken from 4 different wafers. Future wafers allocated to this product may have nominal values  
anywhere between the upper and lower limits. Circuit losses have not been de-embedded from actual measurement.  
4
Demo Board Layout  
– Recommended PCB material is 10 mils Rogers RO4350  
with a total thickness 62 mils  
– Suggested component values may vary according to  
layout and PCB material.  
Figure 5. Demo Board Layout Diagram  
Demo Board Schematic  
Vgg1  
Vdd1  
Table 1. Component list for 850 MHz matching.  
Part  
Size  
Value  
Detail Part Number  
GJM1555C1H150JB01D  
GJM1555C1H3R3CB01D  
0402CS-30NXJLU  
Ca11  
C1 , C3  
C2, C4  
0402  
0402  
0402  
0402  
0402  
0402  
0402  
0402  
0402  
0805  
15pF(Murata)  
3.3pF(Murata)  
30nH(Coilcraft)  
22nH(Toko)  
Ca7  
Ra1  
Ra4  
L1, L3  
Ca5  
Ca9  
L2  
L1  
L2, L4  
LL1005-FHL22NJ  
Ra7  
Ra7, Rb7  
Ca5, Cb5  
Ca9, Cb9  
Ra1, Rb1  
Ra4, Rb4  
Ca7, Cb7  
110Ohm(ROhm) MCR01MZCJ111  
C1  
C3  
C2  
12pF(Murata)  
6pF(Murata)  
GJM1555C1H120JB01D  
RFin a  
RFin b  
RFout a  
RFout b  
[5]  
[6]  
[7]  
[8]  
[16]  
[15]  
[14]  
[13]  
GJM1555C1H6R0CB01D  
MCR01MZSJ560  
56Ohm(ROhm)  
9.1Ohm(Rohm)  
4.7uF(Murata)  
4.7uF(Murata)  
C4  
MCR01MZSJ9R1  
GRM21BR60J475KA11L  
GRM21BR60J475KA11L  
Ca11, Cb11 0805  
L3  
Rb7  
L4  
Cb9  
Cb5  
Rb1  
Rb4  
Cb11  
Cb7  
Vgg2  
Vdd2  
Figure 6. Demo Board Schematic Diagram  
5
MGA-16516 Typical Performance  
RF performance for each RF channel at T = 25°C, V = 5V, I = 50mA unless otherwise stated. OIP3 is measured with  
A
dd  
dd  
input power of -15dBm per tone.  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
50  
60  
40  
50  
60  
Idd(mA)  
Idd(mA)  
Figure 7. Fmin vs Idd at 5V at 700MHz  
Figure 8. Fmin vs Idd at 5V at 900MHz  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
40  
50  
60  
40  
50  
60  
Idd(mA)  
Idd(mA)  
Figure 9. Gain vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 700MHz  
Figure 10. Gain vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 900MHz  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
40  
50  
60  
40  
50  
60  
Idd(mA)  
Idd(mA)  
Figure 11. OIP3 vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 700MHz  
Figure 12. OIP3 vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 900MHz  
6
MGA-16516 Typical Performance  
RF performance for each RF channel at T = 25°C, V =5V, I = 50mA unless otherwise stated. OIP3 is measured with  
A
dd  
dd  
input power of -15dBm per tone.  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
6
4
6
4
2
2
0
0
40  
50  
Idd(mA)  
60  
40  
50  
Idd(mA)  
60  
Figure 13. OP1dB vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 700MHz  
Figure 14. OP1dB vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 900MHz  
100  
1
Vgg=0.48  
Idd=40mA  
Idd=50mA  
Idd=60mA  
Vgg=0.50  
0.9  
0.8  
90  
Vgg=0.52  
Vgg=0.54  
80  
Vgg=0.56  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Vgg=0.58  
70  
60  
50  
40  
30  
20  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.5  
0.7  
0.9  
1.7  
Vdd (V)  
Frequency (GHz)  
Figure 15. Fmin vs Frequency and Idd at 5V  
Figure 16. I-V curve  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
-40 °C  
25 °C  
85 °C  
-40°C  
25°C  
85°C  
0.5  
0.65  
0.7  
0.75  
Frequency(GHz)  
0.8  
0.9  
1.7  
0.5  
0.7  
0.9  
Frequency (
G
Hz)  
1.7  
Figure 17. Gain vs Frequency and Temperature tuned for Optimum OIP3 and  
Fmin at 5V 50mA  
Figure 18. Fmin vs Frequency and Temperature tuned for Optimum OIP3 and  
Fmin at 5V 50mA  
7
MGA-16516 Typical Performance  
RF performance at T = 25°C, V =5V, I = 50mA unless otherwise stated. OIP3 is measured with input power of -15dBm  
A
dd  
dd  
per tone.  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
45  
40  
35  
30  
25  
20  
15  
10  
5
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0
0.5  
0.65  
0.7  
0.75  
0.8  
0.9  
1.7  
0.5  
0.65  
0.7  
0.75  
0.8  
0.9  
1.7  
Frequency(GHz)  
Frequency(GHz)  
Figure 19. OP1dB vs Frequency and Temperature tuned for Optimum OIP3  
and Fmin at 5V 50mA  
Figure 20. OIP3 vs Frequency and Temperature tuned for Optimum OIP3 and  
Fmin at 5V 50mA  
Below is the table showing the MGA-16516 Reflection Coefficient Parameters tuned for Maximum OIP3, Vdd=5V,  
Idd=50mA.  
Gamma Load position  
Frequency(GHz)  
0.50  
Magnitude  
0.472  
Angle  
100.2  
101.1  
119.4  
125.1  
6.9  
OIP3(dBm)  
29.2  
P1dB(dBm)  
17.6  
0.65  
0.594  
34.6  
18.4  
0.70  
0.498  
32.6  
19.2  
0.75  
0.457  
32.2  
18.9  
0.80  
0.512  
32.3  
18.2  
0.90  
0.594  
-11.5  
24.3  
34.5  
18.3  
1.70  
0.440  
38.6  
20.2  
Notes:  
RFout  
1. The Maximum OIP3 values are calculated based on Load pull  
measurements on approximately 100 different impedances using  
Maury’s Load pull test system.  
RFin  
reference plane  
reference plane  
[5]  
[6]  
[7]  
[8]  
[16]  
[15]  
[14]  
[13]  
2. Measurements are conducted on 0.010 inch thick ROGER 4350. The  
input reference plane is at the end of the RFin pin and the output  
reference plane is at the end of the RFout pin as shown in Figure 21.  
3. Gamma Load for maximum OIP3 with biasing of 3V 50mA, 3.5V  
50mA, 4V 50mA, 4.5V 50mA, 5V 40mA, 5V 50mA and 5V 60mA from  
500 MHz to 3.5GHz are available upon request.  
Figure 21.  
8
MGA-16516 Typical Performance  
RF performance at T = 25°C, Vdd =5V, Idd= 50mA, given for each RF channel, measured on demo board in Figure 5 with  
A
component list in Table1 for 850 MHz matching. IIP3 is measured with input power of -15dBm per tone.  
20  
18  
16  
14  
12  
10  
8
34  
32  
30  
28  
26  
24  
22  
20  
6
4
Channel A  
Channel B  
Channel A  
Channel B  
2
0
600 650 700 750 800 850 900 950 1000 1050  
600 650 700 750 800 850 900 950 1000 1050  
Frequency(MHz)  
Frequency(MHz)  
Figure 22. Gain vs Frequency and channel  
Figure 23. Reverse Isolation vs Frequency and channel  
6
5
4
3
2
12  
10  
8
6
4
2
1
0
Channel A  
Channel A  
Channel B  
Channel B  
0
600 650 700 750 800 850 900 950 1000 1050  
600 650 700 750 800 850 900 950 1000 1050  
Frequency(MHz)  
Frequency(MHz)  
Figure 24. Input Return Loss vs Frequency and channel  
Figure 25. Output Return Loss vs Frequency and channel  
18  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
4
4
Channel A  
Channel B  
Channel A  
2
2
Channel B  
0
550  
0
650  
750  
850  
950  
1050  
600 650 700 750 800 850 900 950 1000 1050  
Frequency (GHz)  
Frequency (MHz)  
Figure 26. OP1dB vs Frequency and channel  
Figure 27. IIP3 vs Frequency and channel  
9
MGA-16516 Typical Performance  
RF performance at T = 25°C, Vdd =5V, Idd= 50mA, given for each RF channel, measured on demo board in Figure 5 with  
A
component list in Table1 for 850 MHz matching.  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
IRL  
IRL  
ORL  
ORL  
Gain  
Rev Isol  
Gain  
Rev Isol  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Frequency(GHz)  
Frequency(GHz)  
Figure 28. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs  
Frequency for channel A  
Figure 29. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs  
Frequency for channel A  
5.00  
4.00  
3.00  
2.00  
0.65  
0.6  
0.55  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
1.00  
Channel A  
Channel B  
Channel A  
Channel B  
0.1  
0.05  
0.00  
0
0.00  
4.00  
8.00  
12.00  
16.00  
20.00  
650  
700  
750  
800  
850  
900  
950  
1000  
Frequency(GHz)  
Frequency(MHz)  
Figure 30. K Factor vs Frequency and channel  
Figure 31. NF vs Frequency and channel  
10  
MGA-16516 Typical Scattering Parameters, Vdd=5V, Idd=50mA  
S
11  
S
S
S
22  
21  
12  
Freq  
GHz  
Mag.  
0.96  
0.65  
0.50  
0.48  
0.42  
0.40  
0.40  
0.40  
0.40  
0.41  
0.44  
0.45  
0.45  
0.45  
0.48  
0.49  
0.48  
0.44  
0.42  
0.46  
0.52  
0.57  
0.60  
0.62  
0.65  
0.72  
Ang.  
dB  
Mag.  
31.87  
16.33  
10.80  
9.94  
6.94  
5.54  
5.28  
4.24  
3.50  
2.59  
2.01  
1.61  
1.32  
1.09  
0.91  
0.79  
0.70  
0.65  
0.57  
0.51  
0.46  
0.42  
0.40  
0.38  
0.36  
0.31  
Ang.  
Mag.  
Ang.  
Mag.  
0.48  
0.18  
0.14  
0.13  
0.12  
0.14  
0.14  
0.17  
0.22  
0.30  
0.38  
0.46  
0.55  
0.64  
0.68  
0.71  
0.71  
0.72  
0.76  
0.79  
0.78  
0.76  
0.76  
0.77  
0.77  
0.78  
Ang.  
0.1  
-19.1  
-81.2  
-116.2  
-121.1  
-148.5  
-164.6  
-168.1  
176.2  
161.9  
136.4  
115.0  
99.2  
28.56  
24.26  
20.67  
19.94  
16.82  
14.88  
14.45  
12.54  
10.89  
8.26  
160.5  
116.5  
93.9  
0.001  
0.030  
0.044  
0.047  
0.063  
0.076  
0.079  
0.096  
0.111  
0.140  
0.163  
0.183  
0.197  
0.207  
0.211  
0.218  
0.228  
0.241  
0.242  
0.239  
0.238  
0.242  
0.247  
0.253  
0.255  
0.237  
76.8  
-33.2  
-88.0  
-124.9  
-128.2  
-164.5  
171.7  
167.0  
146.5  
131.7  
110.5  
86.9  
0.5  
59.5  
0.9  
53.0  
1.0  
89.8  
51.7  
1.5  
71.7  
45.7  
1.9  
59.7  
40.4  
2.0  
56.9  
38.9  
2.5  
43.5  
31.5  
3.0  
30.6  
23.4  
4.0  
6.8  
6.7  
5.0  
6.08  
-16.4  
-36.6  
-58.1  
-78.8  
-96.3  
-110.8  
-124.3  
-140.1  
-157.3  
-173.3  
172.1  
158.0  
145.5  
133.3  
117.9  
101.5  
-11.0  
-26.8  
-44.8  
-62.4  
-77.6  
-90.2  
-102.4  
-117.1  
-133.6  
-149.3  
-163.8  
-178.2  
168.9  
156.1  
140.1  
122.9  
6.0  
4.16  
72.6  
7.0  
78.9  
2.44  
52.9  
8.0  
58.3  
0.76  
35.8  
9.0  
44.0  
-0.83  
-2.11  
-3.05  
-3.78  
-4.84  
-5.93  
-6.84  
-7.46  
-8.01  
-8.44  
-8.95  
-10.1  
21.8  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
19.0  
20.0  
40.1  
11.8  
39.6  
3.2  
32.9  
-6.6  
16.4  
-17.2  
-23.8  
-32.8  
-44.7  
-54.5  
-54.9  
-57.9  
-66.1  
0.6  
-1.0  
5.2  
11.2  
4.6  
-12.7  
-29.3  
RFout  
RFin  
reference plane  
reference plane  
[5]  
[6]  
[7]  
[8]  
[16]  
[15]  
[14]  
[13]  
Figure 32.  
11  
Typical Noise Parameters, Vdd=5V, Idd=50mA  
Part Number Ordering Information  
Fmin  
dB  
Part Number  
No. of Devices Container  
opt  
opt  
Freq  
GHz  
MGA-16516-BLKG  
MGA-16516-TR1G  
100  
Antistatic Bag  
Tape/reel  
Mag.  
0.35  
0.30  
0.25  
0.26  
0.25  
0.21  
0.17  
0.23  
0.26  
Ang.  
R
n/50  
3000  
0.5  
0.7  
0.9  
1.7  
1.85  
2.0  
2.4  
2.6  
3.5  
0.32  
0.32  
0.33  
0.40  
0.42  
0.45  
0.52  
0.56  
0.69  
-23.36  
-5.38  
0.049  
0.047  
0.061  
0.053  
0.047  
0.039  
0.040  
0.034  
0.035  
1.05  
24.96  
36.84  
95.96  
113.99  
134.72  
172.14  
Notes:  
1. The Fmin values are based on noise figure measurements at 100  
different impedances using Focus source pull test system. From  
these measurements a true Fmin is calculated.  
2. Scattering and noise parameters are measured on 0.010 inch thick  
ROGER 4350. The input reference plane is at the end of the RFin pin  
and the output reference plane is at the end of the RFout pin as  
shown in Figure 32.  
3. S2P file with scattering and noise parameters for biasing 3V 50mA,  
3.5V 50mA, 4V 50mA, 4.5V 50mA, 5V 40mA, 5V 50mA and 5V 60mA  
are available upon request.  
SLP4X4 Package Dimension  
2.70 0.05  
Exp.DAP  
0.203 Ref.  
PIN #1 IDENTIFICATION  
CHAMFER 0.30 x 45º  
Pin 1 Dot  
by marking  
4.00 0.10  
0.40 0.05  
16516  
YYWW  
XXXX  
0.30 0.05  
0.65 Bsc  
2.70 0.05  
Exp.DAP  
4.00 0.10  
1.95  
Ref.  
0.00 - 0.05  
0.85 0.10  
SIDE VIEW  
BOTTOM VIEW  
TOP VIEW  
Notes:  
1. All dimensions are in millimeters.  
2. Dimensions are inclusive of plating.  
3. Dimensions are exclusive of mold ash and metal burr.  
12  
PCB Land Pattern and Stencil Design  
4.00  
2.70  
3.96  
2.16  
0.65  
0.65  
0.36  
0.40  
0.30  
0.27  
Stencil Opening  
Land Pattern  
2.70  
2.16  
0.65  
0.36  
0.40  
0.27  
0.30  
Combination of Land Pattern & Stencil Opening  
Notes:  
1. All dimensions are in millimeters.  
2. 4 mil stencil thickness recommended  
13  
Device Orientation  
REEL  
USER FEED DIRECTION  
16ꢀ16  
YYWW  
XXXX  
16ꢀ16  
YYWW  
XXXX  
16ꢀ16  
YYWW  
XXXX  
CARRIER  
TAPE  
USER  
FEED  
DIRECTION  
TOP VIEW  
END VIEW  
COVER  
TAPE  
Tape Dimensions  
1.ꢀ0 + .10  
1.7ꢀ 0.10  
8.0 0.10  
4.0 0.10  
2.00 0.0ꢀ  
+
+
+
+
ꢀ.ꢀ0 .0ꢀ  
12.00  
+0.30/-0.10  
1.ꢀ0 +0.2ꢀ  
.279 0.02  
10º MAX.  
10º MAX.  
1.13 0.10  
Ko  
4.2ꢀ 0.10  
4.2ꢀ 0.10  
Ao  
Bo  
14  
Reel Dimension - 7 Inch  
A
B
ØE  
ØD  
SIDE VIEW  
F
FRONT VIEW  
BACK VIEW  
SPECIFICATION  
TAPE  
WIDTH  
A
MAX  
B
C1  
0.5  
ØD  
0.5  
ØE  
(max)  
F
ØG  
0.2  
ØH  
(min)  
+1.5–0.0  
(min)  
12mm  
18.00  
12.4  
4.40  
55.0  
178  
1.50  
13.50  
20.20  
C1  
TAPE SLOT  
PLANE VIEW  
Note: Surface resistivity to be <1012 Ohms/square  
ARBOR HOLE  
15  
Reel Dimension - 13 Inch  
ESD Label  
(See Below)  
RECYCLE SYMBOL  
DETAIL “X”  
EMBOSSED LINE X2  
90.0mm length  
LINES 147.0mm AWAY FROM CENTER POINT  
EMBOSSED ‘M’ 5.0mm height  
FRONT VIEW  
11.90–15.40**  
13.20 0.50*  
Ø20.2 (MIN.)  
RECYCLE SYMBOL  
DETAIL “X”  
+0.5  
Ø13.0  
–0.2  
2.00 0.5  
DETAIL “X”  
SLOT 5.00 0.50  
16.40”  
MAX.  
BACK VIEW  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved.  
AV02-1980EN - August 13, 2010  

相关型号:

MGA-16516-TR1G

Low Noise, High Linearity Match Pair Low Noise Amplifier
AVAGO

MGA-17516

Low Noise, High Linearity Match Pair Low Noise Amplifier
AVAGO

MGA-17516-BLKG

Low Noise, High Linearity Match Pair Low Noise Amplifier
AVAGO

MGA-17516-TR1G

Low Noise, High Linearity Match Pair Low Noise Amplifier
AVAGO

MGA-21108

Broadband Fully Integrated Matched Low-Noise Amplifier MMIC
AVAGO

MGA-21108-BLKG

Broadband Fully Integrated Matched Low-Noise Amplifier MMIC
AVAGO

MGA-21108-TR1G

Broadband Fully Integrated Matched Low-Noise Amplifier MMIC
AVAGO

MGA-21108-TR2G

1500MHz - 8000MHz RF/MICROWAVE WIDE BAND MEDIUM POWER AMPLIFIER, 2.50 X 2.50 MM, 0.55 MM HEIGHT, STSLP-8
AVAGO

MGA-22003

2.3-2.7 GHz 3x3mm WiMAX and WiFi Power Amplifi er
AVAGO

MGA-22003-BLK

2.3-2.7 GHz 3x3mm WiMAX and WiFi Power Amplifi er
AVAGO

MGA-22003-BLKG

2300MHz - 2700MHz RF/MICROWAVE NARROW BAND MEDIUM POWER AMPLIFIER, 3 X 3 MM, 1 MM HEIGHT, SMT-16
AVAGO

MGA-22003-TR1

2.3-2.7 GHz 3x3mm WiMAX and WiFi Power Amplifi er
AVAGO